ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.39
Committed: Tue May 27 04:59:51 2008 UTC (15 years, 11 months ago) by root
Branch: MAIN
Changes since 1.38: +2 -0 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 package AnyEvent::Handle;
2
3 no warnings;
4 use strict;
5
6 use AnyEvent ();
7 use AnyEvent::Util qw(WSAWOULDBLOCK);
8 use Scalar::Util ();
9 use Carp ();
10 use Fcntl ();
11 use Errno qw/EAGAIN EINTR/;
12
13 =head1 NAME
14
15 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17 =cut
18
19 our $VERSION = '0.04';
20
21 =head1 SYNOPSIS
22
23 use AnyEvent;
24 use AnyEvent::Handle;
25
26 my $cv = AnyEvent->condvar;
27
28 my $handle =
29 AnyEvent::Handle->new (
30 fh => \*STDIN,
31 on_eof => sub {
32 $cv->broadcast;
33 },
34 );
35
36 # send some request line
37 $handle->push_write ("getinfo\015\012");
38
39 # read the response line
40 $handle->push_read (line => sub {
41 my ($handle, $line) = @_;
42 warn "read line <$line>\n";
43 $cv->send;
44 });
45
46 $cv->recv;
47
48 =head1 DESCRIPTION
49
50 This module is a helper module to make it easier to do event-based I/O on
51 filehandles. For utility functions for doing non-blocking connects and accepts
52 on sockets see L<AnyEvent::Util>.
53
54 In the following, when the documentation refers to of "bytes" then this
55 means characters. As sysread and syswrite are used for all I/O, their
56 treatment of characters applies to this module as well.
57
58 All callbacks will be invoked with the handle object as their first
59 argument.
60
61 =head1 METHODS
62
63 =over 4
64
65 =item B<new (%args)>
66
67 The constructor supports these arguments (all as key => value pairs).
68
69 =over 4
70
71 =item fh => $filehandle [MANDATORY]
72
73 The filehandle this L<AnyEvent::Handle> object will operate on.
74
75 NOTE: The filehandle will be set to non-blocking (using
76 AnyEvent::Util::fh_nonblocking).
77
78 =item on_eof => $cb->($self)
79
80 Set the callback to be called on EOF.
81
82 While not mandatory, it is highly recommended to set an eof callback,
83 otherwise you might end up with a closed socket while you are still
84 waiting for data.
85
86 =item on_error => $cb->($self)
87
88 This is the fatal error callback, that is called when, well, a fatal error
89 occurs, such as not being able to resolve the hostname, failure to connect
90 or a read error.
91
92 The object will not be in a usable state when this callback has been
93 called.
94
95 On callback entrance, the value of C<$!> contains the operating system
96 error (or C<ENOSPC>, C<EPIPE> or C<EBADMSG>).
97
98 The callback should throw an exception. If it returns, then
99 AnyEvent::Handle will C<croak> for you.
100
101 While not mandatory, it is I<highly> recommended to set this callback, as
102 you will not be notified of errors otherwise. The default simply calls
103 die.
104
105 =item on_read => $cb->($self)
106
107 This sets the default read callback, which is called when data arrives
108 and no read request is in the queue.
109
110 To access (and remove data from) the read buffer, use the C<< ->rbuf >>
111 method or access the C<$self->{rbuf}> member directly.
112
113 When an EOF condition is detected then AnyEvent::Handle will first try to
114 feed all the remaining data to the queued callbacks and C<on_read> before
115 calling the C<on_eof> callback. If no progress can be made, then a fatal
116 error will be raised (with C<$!> set to C<EPIPE>).
117
118 =item on_drain => $cb->()
119
120 This sets the callback that is called when the write buffer becomes empty
121 (or when the callback is set and the buffer is empty already).
122
123 To append to the write buffer, use the C<< ->push_write >> method.
124
125 =item rbuf_max => <bytes>
126
127 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
128 when the read buffer ever (strictly) exceeds this size. This is useful to
129 avoid denial-of-service attacks.
130
131 For example, a server accepting connections from untrusted sources should
132 be configured to accept only so-and-so much data that it cannot act on
133 (for example, when expecting a line, an attacker could send an unlimited
134 amount of data without a callback ever being called as long as the line
135 isn't finished).
136
137 =item read_size => <bytes>
138
139 The default read block size (the amount of bytes this module will try to read
140 on each [loop iteration). Default: C<4096>.
141
142 =item low_water_mark => <bytes>
143
144 Sets the amount of bytes (default: C<0>) that make up an "empty" write
145 buffer: If the write reaches this size or gets even samller it is
146 considered empty.
147
148 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
149
150 When this parameter is given, it enables TLS (SSL) mode, that means it
151 will start making tls handshake and will transparently encrypt/decrypt
152 data.
153
154 TLS mode requires Net::SSLeay to be installed (it will be loaded
155 automatically when you try to create a TLS handle).
156
157 For the TLS server side, use C<accept>, and for the TLS client side of a
158 connection, use C<connect> mode.
159
160 You can also provide your own TLS connection object, but you have
161 to make sure that you call either C<Net::SSLeay::set_connect_state>
162 or C<Net::SSLeay::set_accept_state> on it before you pass it to
163 AnyEvent::Handle.
164
165 See the C<starttls> method if you need to start TLs negotiation later.
166
167 =item tls_ctx => $ssl_ctx
168
169 Use the given Net::SSLeay::CTX object to create the new TLS connection
170 (unless a connection object was specified directly). If this parameter is
171 missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
172
173 =item filter_r => $cb
174
175 =item filter_w => $cb
176
177 These exist, but are undocumented at this time.
178
179 =back
180
181 =cut
182
183 sub new {
184 my $class = shift;
185
186 my $self = bless { @_ }, $class;
187
188 $self->{fh} or Carp::croak "mandatory argument fh is missing";
189
190 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
191
192 if ($self->{tls}) {
193 require Net::SSLeay;
194 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
195 }
196
197 $self->on_eof (delete $self->{on_eof} ) if $self->{on_eof};
198 $self->on_error (delete $self->{on_error}) if $self->{on_error};
199 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
200 $self->on_read (delete $self->{on_read} ) if $self->{on_read};
201
202 $self->start_read;
203
204 $self
205 }
206
207 sub _shutdown {
208 my ($self) = @_;
209
210 delete $self->{_rw};
211 delete $self->{_ww};
212 delete $self->{fh};
213 }
214
215 sub error {
216 my ($self) = @_;
217
218 {
219 local $!;
220 $self->_shutdown;
221 }
222
223 $self->{on_error}($self)
224 if $self->{on_error};
225
226 Carp::croak "AnyEvent::Handle uncaught fatal error: $!";
227 }
228
229 =item $fh = $handle->fh
230
231 This method returns the file handle of the L<AnyEvent::Handle> object.
232
233 =cut
234
235 sub fh { $_[0]{fh} }
236
237 =item $handle->on_error ($cb)
238
239 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
240
241 =cut
242
243 sub on_error {
244 $_[0]{on_error} = $_[1];
245 }
246
247 =item $handle->on_eof ($cb)
248
249 Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
250
251 =cut
252
253 sub on_eof {
254 $_[0]{on_eof} = $_[1];
255 }
256
257 #############################################################################
258
259 =back
260
261 =head2 WRITE QUEUE
262
263 AnyEvent::Handle manages two queues per handle, one for writing and one
264 for reading.
265
266 The write queue is very simple: you can add data to its end, and
267 AnyEvent::Handle will automatically try to get rid of it for you.
268
269 When data could be written and the write buffer is shorter then the low
270 water mark, the C<on_drain> callback will be invoked.
271
272 =over 4
273
274 =item $handle->on_drain ($cb)
275
276 Sets the C<on_drain> callback or clears it (see the description of
277 C<on_drain> in the constructor).
278
279 =cut
280
281 sub on_drain {
282 my ($self, $cb) = @_;
283
284 $self->{on_drain} = $cb;
285
286 $cb->($self)
287 if $cb && $self->{low_water_mark} >= length $self->{wbuf};
288 }
289
290 =item $handle->push_write ($data)
291
292 Queues the given scalar to be written. You can push as much data as you
293 want (only limited by the available memory), as C<AnyEvent::Handle>
294 buffers it independently of the kernel.
295
296 =cut
297
298 sub _drain_wbuf {
299 my ($self) = @_;
300
301 if (!$self->{_ww} && length $self->{wbuf}) {
302
303 Scalar::Util::weaken $self;
304
305 my $cb = sub {
306 my $len = syswrite $self->{fh}, $self->{wbuf};
307
308 if ($len >= 0) {
309 substr $self->{wbuf}, 0, $len, "";
310
311 $self->{on_drain}($self)
312 if $self->{low_water_mark} >= length $self->{wbuf}
313 && $self->{on_drain};
314
315 delete $self->{_ww} unless length $self->{wbuf};
316 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAWOULDBLOCK) {
317 $self->error;
318 }
319 };
320
321 # try to write data immediately
322 $cb->();
323
324 # if still data left in wbuf, we need to poll
325 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
326 if length $self->{wbuf};
327 };
328 }
329
330 our %WH;
331
332 sub register_write_type($$) {
333 $WH{$_[0]} = $_[1];
334 }
335
336 sub push_write {
337 my $self = shift;
338
339 if (@_ > 1) {
340 my $type = shift;
341
342 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
343 ->($self, @_);
344 }
345
346 if ($self->{filter_w}) {
347 $self->{filter_w}->($self, \$_[0]);
348 } else {
349 $self->{wbuf} .= $_[0];
350 $self->_drain_wbuf;
351 }
352 }
353
354 =item $handle->push_write (type => @args)
355
356 =item $handle->unshift_write (type => @args)
357
358 Instead of formatting your data yourself, you can also let this module do
359 the job by specifying a type and type-specific arguments.
360
361 Predefined types are (if you have ideas for additional types, feel free to
362 drop by and tell us):
363
364 =over 4
365
366 =item netstring => $string
367
368 Formats the given value as netstring
369 (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
370
371 =back
372
373 =cut
374
375 register_write_type netstring => sub {
376 my ($self, $string) = @_;
377
378 sprintf "%d:%s,", (length $string), $string
379 };
380
381 =item json => $array_or_hashref
382
383 =item AnyEvent::Handle::register_write_type type => $coderef->($self, @args)
384
385 This function (not method) lets you add your own types to C<push_write>.
386 Whenever the given C<type> is used, C<push_write> will invoke the code
387 reference with the handle object and the remaining arguments.
388
389 The code reference is supposed to return a single octet string that will
390 be appended to the write buffer.
391
392 Note that this is a function, and all types registered this way will be
393 global, so try to use unique names.
394
395 =cut
396
397 #############################################################################
398
399 =back
400
401 =head2 READ QUEUE
402
403 AnyEvent::Handle manages two queues per handle, one for writing and one
404 for reading.
405
406 The read queue is more complex than the write queue. It can be used in two
407 ways, the "simple" way, using only C<on_read> and the "complex" way, using
408 a queue.
409
410 In the simple case, you just install an C<on_read> callback and whenever
411 new data arrives, it will be called. You can then remove some data (if
412 enough is there) from the read buffer (C<< $handle->rbuf >>) if you want
413 or not.
414
415 In the more complex case, you want to queue multiple callbacks. In this
416 case, AnyEvent::Handle will call the first queued callback each time new
417 data arrives and removes it when it has done its job (see C<push_read>,
418 below).
419
420 This way you can, for example, push three line-reads, followed by reading
421 a chunk of data, and AnyEvent::Handle will execute them in order.
422
423 Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
424 the specified number of bytes which give an XML datagram.
425
426 # in the default state, expect some header bytes
427 $handle->on_read (sub {
428 # some data is here, now queue the length-header-read (4 octets)
429 shift->unshift_read_chunk (4, sub {
430 # header arrived, decode
431 my $len = unpack "N", $_[1];
432
433 # now read the payload
434 shift->unshift_read_chunk ($len, sub {
435 my $xml = $_[1];
436 # handle xml
437 });
438 });
439 });
440
441 Example 2: Implement a client for a protocol that replies either with
442 "OK" and another line or "ERROR" for one request, and 64 bytes for the
443 second request. Due tot he availability of a full queue, we can just
444 pipeline sending both requests and manipulate the queue as necessary in
445 the callbacks:
446
447 # request one
448 $handle->push_write ("request 1\015\012");
449
450 # we expect "ERROR" or "OK" as response, so push a line read
451 $handle->push_read_line (sub {
452 # if we got an "OK", we have to _prepend_ another line,
453 # so it will be read before the second request reads its 64 bytes
454 # which are already in the queue when this callback is called
455 # we don't do this in case we got an error
456 if ($_[1] eq "OK") {
457 $_[0]->unshift_read_line (sub {
458 my $response = $_[1];
459 ...
460 });
461 }
462 });
463
464 # request two
465 $handle->push_write ("request 2\015\012");
466
467 # simply read 64 bytes, always
468 $handle->push_read_chunk (64, sub {
469 my $response = $_[1];
470 ...
471 });
472
473 =over 4
474
475 =cut
476
477 sub _drain_rbuf {
478 my ($self) = @_;
479
480 if (
481 defined $self->{rbuf_max}
482 && $self->{rbuf_max} < length $self->{rbuf}
483 ) {
484 $! = &Errno::ENOSPC;
485 $self->error;
486 }
487
488 return if $self->{in_drain};
489 local $self->{in_drain} = 1;
490
491 while (my $len = length $self->{rbuf}) {
492 no strict 'refs';
493 if (my $cb = shift @{ $self->{_queue} }) {
494 unless ($cb->($self)) {
495 if ($self->{_eof}) {
496 # no progress can be made (not enough data and no data forthcoming)
497 $! = &Errno::EPIPE;
498 $self->error;
499 }
500
501 unshift @{ $self->{_queue} }, $cb;
502 return;
503 }
504 } elsif ($self->{on_read}) {
505 $self->{on_read}($self);
506
507 if (
508 $self->{_eof} # if no further data will arrive
509 && $len == length $self->{rbuf} # and no data has been consumed
510 && !@{ $self->{_queue} } # and the queue is still empty
511 && $self->{on_read} # and we still want to read data
512 ) {
513 # then no progress can be made
514 $! = &Errno::EPIPE;
515 $self->error;
516 }
517 } else {
518 # read side becomes idle
519 delete $self->{_rw};
520 return;
521 }
522 }
523
524 if ($self->{_eof}) {
525 $self->_shutdown;
526 $self->{on_eof}($self)
527 if $self->{on_eof};
528 }
529 }
530
531 =item $handle->on_read ($cb)
532
533 This replaces the currently set C<on_read> callback, or clears it (when
534 the new callback is C<undef>). See the description of C<on_read> in the
535 constructor.
536
537 =cut
538
539 sub on_read {
540 my ($self, $cb) = @_;
541
542 $self->{on_read} = $cb;
543 }
544
545 =item $handle->rbuf
546
547 Returns the read buffer (as a modifiable lvalue).
548
549 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
550 you want.
551
552 NOTE: The read buffer should only be used or modified if the C<on_read>,
553 C<push_read> or C<unshift_read> methods are used. The other read methods
554 automatically manage the read buffer.
555
556 =cut
557
558 sub rbuf : lvalue {
559 $_[0]{rbuf}
560 }
561
562 =item $handle->push_read ($cb)
563
564 =item $handle->unshift_read ($cb)
565
566 Append the given callback to the end of the queue (C<push_read>) or
567 prepend it (C<unshift_read>).
568
569 The callback is called each time some additional read data arrives.
570
571 It must check whether enough data is in the read buffer already.
572
573 If not enough data is available, it must return the empty list or a false
574 value, in which case it will be called repeatedly until enough data is
575 available (or an error condition is detected).
576
577 If enough data was available, then the callback must remove all data it is
578 interested in (which can be none at all) and return a true value. After returning
579 true, it will be removed from the queue.
580
581 =cut
582
583 our %RH;
584
585 sub register_read_type($$) {
586 $RH{$_[0]} = $_[1];
587 }
588
589 sub push_read {
590 my $self = shift;
591 my $cb = pop;
592
593 if (@_) {
594 my $type = shift;
595
596 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
597 ->($self, $cb, @_);
598 }
599
600 push @{ $self->{_queue} }, $cb;
601 $self->_drain_rbuf;
602 }
603
604 sub unshift_read {
605 my $self = shift;
606 my $cb = pop;
607
608 if (@_) {
609 my $type = shift;
610
611 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
612 ->($self, $cb, @_);
613 }
614
615
616 unshift @{ $self->{_queue} }, $cb;
617 $self->_drain_rbuf;
618 }
619
620 =item $handle->push_read (type => @args, $cb)
621
622 =item $handle->unshift_read (type => @args, $cb)
623
624 Instead of providing a callback that parses the data itself you can chose
625 between a number of predefined parsing formats, for chunks of data, lines
626 etc.
627
628 Predefined types are (if you have ideas for additional types, feel free to
629 drop by and tell us):
630
631 =over 4
632
633 =item chunk => $octets, $cb->($self, $data)
634
635 Invoke the callback only once C<$octets> bytes have been read. Pass the
636 data read to the callback. The callback will never be called with less
637 data.
638
639 Example: read 2 bytes.
640
641 $handle->push_read (chunk => 2, sub {
642 warn "yay ", unpack "H*", $_[1];
643 });
644
645 =cut
646
647 register_read_type chunk => sub {
648 my ($self, $cb, $len) = @_;
649
650 sub {
651 $len <= length $_[0]{rbuf} or return;
652 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
653 1
654 }
655 };
656
657 # compatibility with older API
658 sub push_read_chunk {
659 $_[0]->push_read (chunk => $_[1], $_[2]);
660 }
661
662 sub unshift_read_chunk {
663 $_[0]->unshift_read (chunk => $_[1], $_[2]);
664 }
665
666 =item line => [$eol, ]$cb->($self, $line, $eol)
667
668 The callback will be called only once a full line (including the end of
669 line marker, C<$eol>) has been read. This line (excluding the end of line
670 marker) will be passed to the callback as second argument (C<$line>), and
671 the end of line marker as the third argument (C<$eol>).
672
673 The end of line marker, C<$eol>, can be either a string, in which case it
674 will be interpreted as a fixed record end marker, or it can be a regex
675 object (e.g. created by C<qr>), in which case it is interpreted as a
676 regular expression.
677
678 The end of line marker argument C<$eol> is optional, if it is missing (NOT
679 undef), then C<qr|\015?\012|> is used (which is good for most internet
680 protocols).
681
682 Partial lines at the end of the stream will never be returned, as they are
683 not marked by the end of line marker.
684
685 =cut
686
687 register_read_type line => sub {
688 my ($self, $cb, $eol) = @_;
689
690 $eol = qr|(\015?\012)| if @_ < 3;
691 $eol = quotemeta $eol unless ref $eol;
692 $eol = qr|^(.*?)($eol)|s;
693
694 sub {
695 $_[0]{rbuf} =~ s/$eol// or return;
696
697 $cb->($_[0], $1, $2);
698 1
699 }
700 };
701
702 # compatibility with older API
703 sub push_read_line {
704 my $self = shift;
705 $self->push_read (line => @_);
706 }
707
708 sub unshift_read_line {
709 my $self = shift;
710 $self->unshift_read (line => @_);
711 }
712
713 =item netstring => $cb->($string)
714
715 A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
716
717 Throws an error with C<$!> set to EBADMSG on format violations.
718
719 =cut
720
721 register_read_type netstring => sub {
722 my ($self, $cb) = @_;
723
724 sub {
725 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
726 if ($_[0]{rbuf} =~ /[^0-9]/) {
727 $! = &Errno::EBADMSG;
728 $self->error;
729 }
730 return;
731 }
732
733 my $len = $1;
734
735 $self->unshift_read (chunk => $len, sub {
736 my $string = $_[1];
737 $_[0]->unshift_read (chunk => 1, sub {
738 if ($_[1] eq ",") {
739 $cb->($_[0], $string);
740 } else {
741 $! = &Errno::EBADMSG;
742 $self->error;
743 }
744 });
745 });
746
747 1
748 }
749 };
750
751 =item regex => $accept[, $reject[, $skip], $cb->($data)
752
753 Makes a regex match against the regex object C<$accept> and returns
754 everything up to and including the match.
755
756 Example: read a single line terminated by '\n'.
757
758 $handle->push_read (regex => qr<\n>, sub { ... });
759
760 If C<$reject> is given and not undef, then it determines when the data is
761 to be rejected: it is matched against the data when the C<$accept> regex
762 does not match and generates an C<EBADMSG> error when it matches. This is
763 useful to quickly reject wrong data (to avoid waiting for a timeout or a
764 receive buffer overflow).
765
766 Example: expect a single decimal number followed by whitespace, reject
767 anything else (not the use of an anchor).
768
769 $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
770
771 If C<$skip> is given and not C<undef>, then it will be matched against
772 the receive buffer when neither C<$accept> nor C<$reject> match,
773 and everything preceding and including the match will be accepted
774 unconditionally. This is useful to skip large amounts of data that you
775 know cannot be matched, so that the C<$accept> or C<$reject> regex do not
776 have to start matching from the beginning. This is purely an optimisation
777 and is usually worth only when you expect more than a few kilobytes.
778
779 Example: expect a http header, which ends at C<\015\012\015\012>. Since we
780 expect the header to be very large (it isn't in practise, but...), we use
781 a skip regex to skip initial portions. The skip regex is tricky in that
782 it only accepts something not ending in either \015 or \012, as these are
783 required for the accept regex.
784
785 $handle->push_read (regex =>
786 qr<\015\012\015\012>,
787 undef, # no reject
788 qr<^.*[^\015\012]>,
789 sub { ... });
790
791 =cut
792
793 register_read_type regex => sub {
794 my ($self, $cb, $accept, $reject, $skip) = @_;
795
796 my $data;
797 my $rbuf = \$self->{rbuf};
798
799 sub {
800 # accept
801 if ($$rbuf =~ $accept) {
802 $data .= substr $$rbuf, 0, $+[0], "";
803 $cb->($self, $data);
804 return 1;
805 }
806
807 # reject
808 if ($reject && $$rbuf =~ $reject) {
809 $! = &Errno::EBADMSG;
810 $self->error;
811 }
812
813 # skip
814 if ($skip && $$rbuf =~ $skip) {
815 $data .= substr $$rbuf, 0, $+[0], "";
816 }
817
818 ()
819 }
820 };
821
822 =back
823
824 =item AnyEvent::Handle::register_read_type type => $coderef->($self, $cb, @args)
825
826 This function (not method) lets you add your own types to C<push_read>.
827
828 Whenever the given C<type> is used, C<push_read> will invoke the code
829 reference with the handle object, the callback and the remaining
830 arguments.
831
832 The code reference is supposed to return a callback (usually a closure)
833 that works as a plain read callback (see C<< ->push_read ($cb) >>).
834
835 It should invoke the passed callback when it is done reading (remember to
836 pass C<$self> as first argument as all other callbacks do that).
837
838 Note that this is a function, and all types registered this way will be
839 global, so try to use unique names.
840
841 For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
842 search for C<register_read_type>)).
843
844 =item $handle->stop_read
845
846 =item $handle->start_read
847
848 In rare cases you actually do not want to read anything from the
849 socket. In this case you can call C<stop_read>. Neither C<on_read> no
850 any queued callbacks will be executed then. To start reading again, call
851 C<start_read>.
852
853 =cut
854
855 sub stop_read {
856 my ($self) = @_;
857
858 delete $self->{_rw};
859 }
860
861 sub start_read {
862 my ($self) = @_;
863
864 unless ($self->{_rw} || $self->{_eof}) {
865 Scalar::Util::weaken $self;
866
867 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
868 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
869 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
870
871 if ($len > 0) {
872 $self->{filter_r}
873 ? $self->{filter_r}->($self, $rbuf)
874 : $self->_drain_rbuf;
875
876 } elsif (defined $len) {
877 delete $self->{_rw};
878 $self->{_eof} = 1;
879 $self->_drain_rbuf;
880
881 } elsif ($! != EAGAIN && $! != EINTR && $! != &AnyEvent::Util::WSAWOULDBLOCK) {
882 return $self->error;
883 }
884 });
885 }
886 }
887
888 sub _dotls {
889 my ($self) = @_;
890
891 if (length $self->{_tls_wbuf}) {
892 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
893 substr $self->{_tls_wbuf}, 0, $len, "";
894 }
895 }
896
897 if (defined (my $buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
898 $self->{wbuf} .= $buf;
899 $self->_drain_wbuf;
900 }
901
902 while (defined (my $buf = Net::SSLeay::read ($self->{tls}))) {
903 $self->{rbuf} .= $buf;
904 $self->_drain_rbuf;
905 }
906
907 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
908
909 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
910 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
911 $self->error;
912 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
913 $! = &Errno::EIO;
914 $self->error;
915 }
916
917 # all others are fine for our purposes
918 }
919 }
920
921 =item $handle->starttls ($tls[, $tls_ctx])
922
923 Instead of starting TLS negotiation immediately when the AnyEvent::Handle
924 object is created, you can also do that at a later time by calling
925 C<starttls>.
926
927 The first argument is the same as the C<tls> constructor argument (either
928 C<"connect">, C<"accept"> or an existing Net::SSLeay object).
929
930 The second argument is the optional C<Net::SSLeay::CTX> object that is
931 used when AnyEvent::Handle has to create its own TLS connection object.
932
933 The TLS connection object will end up in C<< $handle->{tls} >> after this
934 call and can be used or changed to your liking. Note that the handshake
935 might have already started when this function returns.
936
937 =cut
938
939 # TODO: maybe document...
940 sub starttls {
941 my ($self, $ssl, $ctx) = @_;
942
943 $self->stoptls;
944
945 if ($ssl eq "accept") {
946 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
947 Net::SSLeay::set_accept_state ($ssl);
948 } elsif ($ssl eq "connect") {
949 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
950 Net::SSLeay::set_connect_state ($ssl);
951 }
952
953 $self->{tls} = $ssl;
954
955 # basically, this is deep magic (because SSL_read should have the same issues)
956 # but the openssl maintainers basically said: "trust us, it just works".
957 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
958 # and mismaintained ssleay-module doesn't even offer them).
959 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
960 Net::SSLeay::CTX_set_mode ($self->{tls},
961 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
962 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
963
964 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
965 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
966
967 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
968
969 $self->{filter_w} = sub {
970 $_[0]{_tls_wbuf} .= ${$_[1]};
971 &_dotls;
972 };
973 $self->{filter_r} = sub {
974 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
975 &_dotls;
976 };
977 }
978
979 =item $handle->stoptls
980
981 Destroys the SSL connection, if any. Partial read or write data will be
982 lost.
983
984 =cut
985
986 sub stoptls {
987 my ($self) = @_;
988
989 Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
990
991 delete $self->{_rbio};
992 delete $self->{_wbio};
993 delete $self->{_tls_wbuf};
994 delete $self->{filter_r};
995 delete $self->{filter_w};
996 }
997
998 sub DESTROY {
999 my $self = shift;
1000
1001 $self->stoptls;
1002 }
1003
1004 =item AnyEvent::Handle::TLS_CTX
1005
1006 This function creates and returns the Net::SSLeay::CTX object used by
1007 default for TLS mode.
1008
1009 The context is created like this:
1010
1011 Net::SSLeay::load_error_strings;
1012 Net::SSLeay::SSLeay_add_ssl_algorithms;
1013 Net::SSLeay::randomize;
1014
1015 my $CTX = Net::SSLeay::CTX_new;
1016
1017 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1018
1019 =cut
1020
1021 our $TLS_CTX;
1022
1023 sub TLS_CTX() {
1024 $TLS_CTX || do {
1025 require Net::SSLeay;
1026
1027 Net::SSLeay::load_error_strings ();
1028 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1029 Net::SSLeay::randomize ();
1030
1031 $TLS_CTX = Net::SSLeay::CTX_new ();
1032
1033 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1034
1035 $TLS_CTX
1036 }
1037 }
1038
1039 =back
1040
1041 =head1 SUBCLASSING AnyEvent::Handle
1042
1043 In many cases, you might want to subclass AnyEvent::Handle.
1044
1045 To make this easier, a given version of AnyEvent::Handle uses these
1046 conventions:
1047
1048 =over 4
1049
1050 =item * all constructor arguments become object members.
1051
1052 At least initially, when you pass a C<tls>-argument to the constructor it
1053 will end up in C<< $handle->{tls} >>. Those members might be changes or
1054 mutated later on (for example C<tls> will hold the TLS connection object).
1055
1056 =item * other object member names are prefixed with an C<_>.
1057
1058 All object members not explicitly documented (internal use) are prefixed
1059 with an underscore character, so the remaining non-C<_>-namespace is free
1060 for use for subclasses.
1061
1062 =item * all members not documented here and not prefixed with an underscore
1063 are free to use in subclasses.
1064
1065 Of course, new versions of AnyEvent::Handle may introduce more "public"
1066 member variables, but thats just life, at least it is documented.
1067
1068 =back
1069
1070 =head1 AUTHOR
1071
1072 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1073
1074 =cut
1075
1076 1; # End of AnyEvent::Handle