ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.62
Committed: Fri Jun 6 10:49:20 2008 UTC (15 years, 11 months ago) by root
Branch: MAIN
Changes since 1.61: +33 -0 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 package AnyEvent::Handle;
2
3 no warnings;
4 use strict;
5
6 use AnyEvent ();
7 use AnyEvent::Util qw(WSAEWOULDBLOCK);
8 use Scalar::Util ();
9 use Carp ();
10 use Fcntl ();
11 use Errno qw(EAGAIN EINTR);
12
13 =head1 NAME
14
15 AnyEvent::Handle - non-blocking I/O on file handles via AnyEvent
16
17 =cut
18
19 our $VERSION = 4.14;
20
21 =head1 SYNOPSIS
22
23 use AnyEvent;
24 use AnyEvent::Handle;
25
26 my $cv = AnyEvent->condvar;
27
28 my $handle =
29 AnyEvent::Handle->new (
30 fh => \*STDIN,
31 on_eof => sub {
32 $cv->broadcast;
33 },
34 );
35
36 # send some request line
37 $handle->push_write ("getinfo\015\012");
38
39 # read the response line
40 $handle->push_read (line => sub {
41 my ($handle, $line) = @_;
42 warn "read line <$line>\n";
43 $cv->send;
44 });
45
46 $cv->recv;
47
48 =head1 DESCRIPTION
49
50 This module is a helper module to make it easier to do event-based I/O on
51 filehandles. For utility functions for doing non-blocking connects and accepts
52 on sockets see L<AnyEvent::Util>.
53
54 In the following, when the documentation refers to of "bytes" then this
55 means characters. As sysread and syswrite are used for all I/O, their
56 treatment of characters applies to this module as well.
57
58 All callbacks will be invoked with the handle object as their first
59 argument.
60
61 =head1 METHODS
62
63 =over 4
64
65 =item B<new (%args)>
66
67 The constructor supports these arguments (all as key => value pairs).
68
69 =over 4
70
71 =item fh => $filehandle [MANDATORY]
72
73 The filehandle this L<AnyEvent::Handle> object will operate on.
74
75 NOTE: The filehandle will be set to non-blocking (using
76 AnyEvent::Util::fh_nonblocking).
77
78 =item on_eof => $cb->($handle)
79
80 Set the callback to be called when an end-of-file condition is detcted,
81 i.e. in the case of a socket, when the other side has closed the
82 connection cleanly.
83
84 While not mandatory, it is highly recommended to set an eof callback,
85 otherwise you might end up with a closed socket while you are still
86 waiting for data.
87
88 =item on_error => $cb->($handle, $fatal)
89
90 This is the error callback, which is called when, well, some error
91 occured, such as not being able to resolve the hostname, failure to
92 connect or a read error.
93
94 Some errors are fatal (which is indicated by C<$fatal> being true). On
95 fatal errors the handle object will be shut down and will not be
96 usable. Non-fatal errors can be retried by simply returning, but it is
97 recommended to simply ignore this parameter and instead abondon the handle
98 object when this callback is invoked.
99
100 On callback entrance, the value of C<$!> contains the operating system
101 error (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT> or C<EBADMSG>).
102
103 While not mandatory, it is I<highly> recommended to set this callback, as
104 you will not be notified of errors otherwise. The default simply calls
105 C<croak>.
106
107 =item on_read => $cb->($handle)
108
109 This sets the default read callback, which is called when data arrives
110 and no read request is in the queue (unlike read queue callbacks, this
111 callback will only be called when at least one octet of data is in the
112 read buffer).
113
114 To access (and remove data from) the read buffer, use the C<< ->rbuf >>
115 method or access the C<$handle->{rbuf}> member directly.
116
117 When an EOF condition is detected then AnyEvent::Handle will first try to
118 feed all the remaining data to the queued callbacks and C<on_read> before
119 calling the C<on_eof> callback. If no progress can be made, then a fatal
120 error will be raised (with C<$!> set to C<EPIPE>).
121
122 =item on_drain => $cb->($handle)
123
124 This sets the callback that is called when the write buffer becomes empty
125 (or when the callback is set and the buffer is empty already).
126
127 To append to the write buffer, use the C<< ->push_write >> method.
128
129 =item timeout => $fractional_seconds
130
131 If non-zero, then this enables an "inactivity" timeout: whenever this many
132 seconds pass without a successful read or write on the underlying file
133 handle, the C<on_timeout> callback will be invoked (and if that one is
134 missing, an C<ETIMEDOUT> error will be raised).
135
136 Note that timeout processing is also active when you currently do not have
137 any outstanding read or write requests: If you plan to keep the connection
138 idle then you should disable the timout temporarily or ignore the timeout
139 in the C<on_timeout> callback.
140
141 Zero (the default) disables this timeout.
142
143 =item on_timeout => $cb->($handle)
144
145 Called whenever the inactivity timeout passes. If you return from this
146 callback, then the timeout will be reset as if some activity had happened,
147 so this condition is not fatal in any way.
148
149 =item rbuf_max => <bytes>
150
151 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
152 when the read buffer ever (strictly) exceeds this size. This is useful to
153 avoid denial-of-service attacks.
154
155 For example, a server accepting connections from untrusted sources should
156 be configured to accept only so-and-so much data that it cannot act on
157 (for example, when expecting a line, an attacker could send an unlimited
158 amount of data without a callback ever being called as long as the line
159 isn't finished).
160
161 =item read_size => <bytes>
162
163 The default read block size (the amount of bytes this module will try to read
164 during each (loop iteration). Default: C<8192>.
165
166 =item low_water_mark => <bytes>
167
168 Sets the amount of bytes (default: C<0>) that make up an "empty" write
169 buffer: If the write reaches this size or gets even samller it is
170 considered empty.
171
172 =item linger => <seconds>
173
174 If non-zero (default: C<3600>), then the destructor of the
175 AnyEvent::Handle object will check wether there is still outstanding write
176 data and will install a watcher that will write out this data. No errors
177 will be reported (this mostly matches how the operating system treats
178 outstanding data at socket close time).
179
180 This will not work for partial TLS data that could not yet been
181 encoded. This data will be lost.
182
183 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
184
185 When this parameter is given, it enables TLS (SSL) mode, that means it
186 will start making tls handshake and will transparently encrypt/decrypt
187 data.
188
189 TLS mode requires Net::SSLeay to be installed (it will be loaded
190 automatically when you try to create a TLS handle).
191
192 For the TLS server side, use C<accept>, and for the TLS client side of a
193 connection, use C<connect> mode.
194
195 You can also provide your own TLS connection object, but you have
196 to make sure that you call either C<Net::SSLeay::set_connect_state>
197 or C<Net::SSLeay::set_accept_state> on it before you pass it to
198 AnyEvent::Handle.
199
200 See the C<starttls> method if you need to start TLs negotiation later.
201
202 =item tls_ctx => $ssl_ctx
203
204 Use the given Net::SSLeay::CTX object to create the new TLS connection
205 (unless a connection object was specified directly). If this parameter is
206 missing, then AnyEvent::Handle will use C<AnyEvent::Handle::TLS_CTX>.
207
208 =item json => JSON or JSON::XS object
209
210 This is the json coder object used by the C<json> read and write types.
211
212 If you don't supply it, then AnyEvent::Handle will create and use a
213 suitable one, which will write and expect UTF-8 encoded JSON texts.
214
215 Note that you are responsible to depend on the JSON module if you want to
216 use this functionality, as AnyEvent does not have a dependency itself.
217
218 =item filter_r => $cb
219
220 =item filter_w => $cb
221
222 These exist, but are undocumented at this time.
223
224 =back
225
226 =cut
227
228 sub new {
229 my $class = shift;
230
231 my $self = bless { @_ }, $class;
232
233 $self->{fh} or Carp::croak "mandatory argument fh is missing";
234
235 AnyEvent::Util::fh_nonblocking $self->{fh}, 1;
236
237 if ($self->{tls}) {
238 require Net::SSLeay;
239 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx});
240 }
241
242 $self->{_activity} = AnyEvent->now;
243 $self->_timeout;
244
245 $self->on_drain (delete $self->{on_drain}) if $self->{on_drain};
246
247 $self
248 }
249
250 sub _shutdown {
251 my ($self) = @_;
252
253 delete $self->{_tw};
254 delete $self->{_rw};
255 delete $self->{_ww};
256 delete $self->{fh};
257
258 $self->stoptls;
259 }
260
261 sub _error {
262 my ($self, $errno, $fatal) = @_;
263
264 $self->_shutdown
265 if $fatal;
266
267 $! = $errno;
268
269 if ($self->{on_error}) {
270 $self->{on_error}($self, $fatal);
271 } else {
272 Carp::croak "AnyEvent::Handle uncaught error: $!";
273 }
274 }
275
276 =item $fh = $handle->fh
277
278 This method returns the file handle of the L<AnyEvent::Handle> object.
279
280 =cut
281
282 sub fh { $_[0]{fh} }
283
284 =item $handle->on_error ($cb)
285
286 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
287
288 =cut
289
290 sub on_error {
291 $_[0]{on_error} = $_[1];
292 }
293
294 =item $handle->on_eof ($cb)
295
296 Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
297
298 =cut
299
300 sub on_eof {
301 $_[0]{on_eof} = $_[1];
302 }
303
304 =item $handle->on_timeout ($cb)
305
306 Replace the current C<on_timeout> callback, or disables the callback
307 (but not the timeout) if C<$cb> = C<undef>. See C<timeout> constructor
308 argument.
309
310 =cut
311
312 sub on_timeout {
313 $_[0]{on_timeout} = $_[1];
314 }
315
316 #############################################################################
317
318 =item $handle->timeout ($seconds)
319
320 Configures (or disables) the inactivity timeout.
321
322 =cut
323
324 sub timeout {
325 my ($self, $timeout) = @_;
326
327 $self->{timeout} = $timeout;
328 $self->_timeout;
329 }
330
331 # reset the timeout watcher, as neccessary
332 # also check for time-outs
333 sub _timeout {
334 my ($self) = @_;
335
336 if ($self->{timeout}) {
337 my $NOW = AnyEvent->now;
338
339 # when would the timeout trigger?
340 my $after = $self->{_activity} + $self->{timeout} - $NOW;
341
342 # now or in the past already?
343 if ($after <= 0) {
344 $self->{_activity} = $NOW;
345
346 if ($self->{on_timeout}) {
347 $self->{on_timeout}($self);
348 } else {
349 $self->_error (&Errno::ETIMEDOUT);
350 }
351
352 # callback could have changed timeout value, optimise
353 return unless $self->{timeout};
354
355 # calculate new after
356 $after = $self->{timeout};
357 }
358
359 Scalar::Util::weaken $self;
360 return unless $self; # ->error could have destroyed $self
361
362 $self->{_tw} ||= AnyEvent->timer (after => $after, cb => sub {
363 delete $self->{_tw};
364 $self->_timeout;
365 });
366 } else {
367 delete $self->{_tw};
368 }
369 }
370
371 #############################################################################
372
373 =back
374
375 =head2 WRITE QUEUE
376
377 AnyEvent::Handle manages two queues per handle, one for writing and one
378 for reading.
379
380 The write queue is very simple: you can add data to its end, and
381 AnyEvent::Handle will automatically try to get rid of it for you.
382
383 When data could be written and the write buffer is shorter then the low
384 water mark, the C<on_drain> callback will be invoked.
385
386 =over 4
387
388 =item $handle->on_drain ($cb)
389
390 Sets the C<on_drain> callback or clears it (see the description of
391 C<on_drain> in the constructor).
392
393 =cut
394
395 sub on_drain {
396 my ($self, $cb) = @_;
397
398 $self->{on_drain} = $cb;
399
400 $cb->($self)
401 if $cb && $self->{low_water_mark} >= length $self->{wbuf};
402 }
403
404 =item $handle->push_write ($data)
405
406 Queues the given scalar to be written. You can push as much data as you
407 want (only limited by the available memory), as C<AnyEvent::Handle>
408 buffers it independently of the kernel.
409
410 =cut
411
412 sub _drain_wbuf {
413 my ($self) = @_;
414
415 if (!$self->{_ww} && length $self->{wbuf}) {
416
417 Scalar::Util::weaken $self;
418
419 my $cb = sub {
420 my $len = syswrite $self->{fh}, $self->{wbuf};
421
422 if ($len >= 0) {
423 substr $self->{wbuf}, 0, $len, "";
424
425 $self->{_activity} = AnyEvent->now;
426
427 $self->{on_drain}($self)
428 if $self->{low_water_mark} >= length $self->{wbuf}
429 && $self->{on_drain};
430
431 delete $self->{_ww} unless length $self->{wbuf};
432 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
433 $self->_error ($!, 1);
434 }
435 };
436
437 # try to write data immediately
438 $cb->();
439
440 # if still data left in wbuf, we need to poll
441 $self->{_ww} = AnyEvent->io (fh => $self->{fh}, poll => "w", cb => $cb)
442 if length $self->{wbuf};
443 };
444 }
445
446 our %WH;
447
448 sub register_write_type($$) {
449 $WH{$_[0]} = $_[1];
450 }
451
452 sub push_write {
453 my $self = shift;
454
455 if (@_ > 1) {
456 my $type = shift;
457
458 @_ = ($WH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_write")
459 ->($self, @_);
460 }
461
462 if ($self->{filter_w}) {
463 $self->{filter_w}($self, \$_[0]);
464 } else {
465 $self->{wbuf} .= $_[0];
466 $self->_drain_wbuf;
467 }
468 }
469
470 =item $handle->push_write (type => @args)
471
472 Instead of formatting your data yourself, you can also let this module do
473 the job by specifying a type and type-specific arguments.
474
475 Predefined types are (if you have ideas for additional types, feel free to
476 drop by and tell us):
477
478 =over 4
479
480 =item netstring => $string
481
482 Formats the given value as netstring
483 (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
484
485 =cut
486
487 register_write_type netstring => sub {
488 my ($self, $string) = @_;
489
490 sprintf "%d:%s,", (length $string), $string
491 };
492
493 =item packstring => $format, $data
494
495 An octet string prefixed with an encoded length. The encoding C<$format>
496 uses the same format as a Perl C<pack> format, but must specify a single
497 integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
498 optional C<!>, C<< < >> or C<< > >> modifier).
499
500 =cut
501
502 register_write_type packstring => sub {
503 my ($self, $format, $string) = @_;
504
505 pack "$format/a", $string
506 };
507
508 =item json => $array_or_hashref
509
510 Encodes the given hash or array reference into a JSON object. Unless you
511 provide your own JSON object, this means it will be encoded to JSON text
512 in UTF-8.
513
514 JSON objects (and arrays) are self-delimiting, so you can write JSON at
515 one end of a handle and read them at the other end without using any
516 additional framing.
517
518 The generated JSON text is guaranteed not to contain any newlines: While
519 this module doesn't need delimiters after or between JSON texts to be
520 able to read them, many other languages depend on that.
521
522 A simple RPC protocol that interoperates easily with others is to send
523 JSON arrays (or objects, although arrays are usually the better choice as
524 they mimic how function argument passing works) and a newline after each
525 JSON text:
526
527 $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
528 $handle->push_write ("\012");
529
530 An AnyEvent::Handle receiver would simply use the C<json> read type and
531 rely on the fact that the newline will be skipped as leading whitespace:
532
533 $handle->push_read (json => sub { my $array = $_[1]; ... });
534
535 Other languages could read single lines terminated by a newline and pass
536 this line into their JSON decoder of choice.
537
538 =cut
539
540 register_write_type json => sub {
541 my ($self, $ref) = @_;
542
543 require JSON;
544
545 $self->{json} ? $self->{json}->encode ($ref)
546 : JSON::encode_json ($ref)
547 };
548
549 =back
550
551 =item AnyEvent::Handle::register_write_type type => $coderef->($handle, @args)
552
553 This function (not method) lets you add your own types to C<push_write>.
554 Whenever the given C<type> is used, C<push_write> will invoke the code
555 reference with the handle object and the remaining arguments.
556
557 The code reference is supposed to return a single octet string that will
558 be appended to the write buffer.
559
560 Note that this is a function, and all types registered this way will be
561 global, so try to use unique names.
562
563 =cut
564
565 #############################################################################
566
567 =back
568
569 =head2 READ QUEUE
570
571 AnyEvent::Handle manages two queues per handle, one for writing and one
572 for reading.
573
574 The read queue is more complex than the write queue. It can be used in two
575 ways, the "simple" way, using only C<on_read> and the "complex" way, using
576 a queue.
577
578 In the simple case, you just install an C<on_read> callback and whenever
579 new data arrives, it will be called. You can then remove some data (if
580 enough is there) from the read buffer (C<< $handle->rbuf >>) if you want
581 or not.
582
583 In the more complex case, you want to queue multiple callbacks. In this
584 case, AnyEvent::Handle will call the first queued callback each time new
585 data arrives (also the first time it is queued) and removes it when it has
586 done its job (see C<push_read>, below).
587
588 This way you can, for example, push three line-reads, followed by reading
589 a chunk of data, and AnyEvent::Handle will execute them in order.
590
591 Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
592 the specified number of bytes which give an XML datagram.
593
594 # in the default state, expect some header bytes
595 $handle->on_read (sub {
596 # some data is here, now queue the length-header-read (4 octets)
597 shift->unshift_read (chunk => 4, sub {
598 # header arrived, decode
599 my $len = unpack "N", $_[1];
600
601 # now read the payload
602 shift->unshift_read (chunk => $len, sub {
603 my $xml = $_[1];
604 # handle xml
605 });
606 });
607 });
608
609 Example 2: Implement a client for a protocol that replies either with
610 "OK" and another line or "ERROR" for one request, and 64 bytes for the
611 second request. Due tot he availability of a full queue, we can just
612 pipeline sending both requests and manipulate the queue as necessary in
613 the callbacks:
614
615 # request one
616 $handle->push_write ("request 1\015\012");
617
618 # we expect "ERROR" or "OK" as response, so push a line read
619 $handle->push_read (line => sub {
620 # if we got an "OK", we have to _prepend_ another line,
621 # so it will be read before the second request reads its 64 bytes
622 # which are already in the queue when this callback is called
623 # we don't do this in case we got an error
624 if ($_[1] eq "OK") {
625 $_[0]->unshift_read (line => sub {
626 my $response = $_[1];
627 ...
628 });
629 }
630 });
631
632 # request two
633 $handle->push_write ("request 2\015\012");
634
635 # simply read 64 bytes, always
636 $handle->push_read (chunk => 64, sub {
637 my $response = $_[1];
638 ...
639 });
640
641 =over 4
642
643 =cut
644
645 sub _drain_rbuf {
646 my ($self) = @_;
647
648 local $self->{_in_drain} = 1;
649
650 if (
651 defined $self->{rbuf_max}
652 && $self->{rbuf_max} < length $self->{rbuf}
653 ) {
654 return $self->_error (&Errno::ENOSPC, 1);
655 }
656
657 while () {
658 no strict 'refs';
659
660 my $len = length $self->{rbuf};
661
662 if (my $cb = shift @{ $self->{_queue} }) {
663 unless ($cb->($self)) {
664 if ($self->{_eof}) {
665 # no progress can be made (not enough data and no data forthcoming)
666 $self->_error (&Errno::EPIPE, 1), last;
667 }
668
669 unshift @{ $self->{_queue} }, $cb;
670 last;
671 }
672 } elsif ($self->{on_read}) {
673 last unless $len;
674
675 $self->{on_read}($self);
676
677 if (
678 $len == length $self->{rbuf} # if no data has been consumed
679 && !@{ $self->{_queue} } # and the queue is still empty
680 && $self->{on_read} # but we still have on_read
681 ) {
682 # no further data will arrive
683 # so no progress can be made
684 $self->_error (&Errno::EPIPE, 1), last
685 if $self->{_eof};
686
687 last; # more data might arrive
688 }
689 } else {
690 # read side becomes idle
691 delete $self->{_rw};
692 last;
693 }
694 }
695
696 $self->{on_eof}($self)
697 if $self->{_eof} && $self->{on_eof};
698
699 # may need to restart read watcher
700 unless ($self->{_rw}) {
701 $self->start_read
702 if $self->{on_read} || @{ $self->{_queue} };
703 }
704 }
705
706 =item $handle->on_read ($cb)
707
708 This replaces the currently set C<on_read> callback, or clears it (when
709 the new callback is C<undef>). See the description of C<on_read> in the
710 constructor.
711
712 =cut
713
714 sub on_read {
715 my ($self, $cb) = @_;
716
717 $self->{on_read} = $cb;
718 $self->_drain_rbuf if $cb && !$self->{_in_drain};
719 }
720
721 =item $handle->rbuf
722
723 Returns the read buffer (as a modifiable lvalue).
724
725 You can access the read buffer directly as the C<< ->{rbuf} >> member, if
726 you want.
727
728 NOTE: The read buffer should only be used or modified if the C<on_read>,
729 C<push_read> or C<unshift_read> methods are used. The other read methods
730 automatically manage the read buffer.
731
732 =cut
733
734 sub rbuf : lvalue {
735 $_[0]{rbuf}
736 }
737
738 =item $handle->push_read ($cb)
739
740 =item $handle->unshift_read ($cb)
741
742 Append the given callback to the end of the queue (C<push_read>) or
743 prepend it (C<unshift_read>).
744
745 The callback is called each time some additional read data arrives.
746
747 It must check whether enough data is in the read buffer already.
748
749 If not enough data is available, it must return the empty list or a false
750 value, in which case it will be called repeatedly until enough data is
751 available (or an error condition is detected).
752
753 If enough data was available, then the callback must remove all data it is
754 interested in (which can be none at all) and return a true value. After returning
755 true, it will be removed from the queue.
756
757 =cut
758
759 our %RH;
760
761 sub register_read_type($$) {
762 $RH{$_[0]} = $_[1];
763 }
764
765 sub push_read {
766 my $self = shift;
767 my $cb = pop;
768
769 if (@_) {
770 my $type = shift;
771
772 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::push_read")
773 ->($self, $cb, @_);
774 }
775
776 push @{ $self->{_queue} }, $cb;
777 $self->_drain_rbuf unless $self->{_in_drain};
778 }
779
780 sub unshift_read {
781 my $self = shift;
782 my $cb = pop;
783
784 if (@_) {
785 my $type = shift;
786
787 $cb = ($RH{$type} or Carp::croak "unsupported type passed to AnyEvent::Handle::unshift_read")
788 ->($self, $cb, @_);
789 }
790
791
792 unshift @{ $self->{_queue} }, $cb;
793 $self->_drain_rbuf unless $self->{_in_drain};
794 }
795
796 =item $handle->push_read (type => @args, $cb)
797
798 =item $handle->unshift_read (type => @args, $cb)
799
800 Instead of providing a callback that parses the data itself you can chose
801 between a number of predefined parsing formats, for chunks of data, lines
802 etc.
803
804 Predefined types are (if you have ideas for additional types, feel free to
805 drop by and tell us):
806
807 =over 4
808
809 =item chunk => $octets, $cb->($handle, $data)
810
811 Invoke the callback only once C<$octets> bytes have been read. Pass the
812 data read to the callback. The callback will never be called with less
813 data.
814
815 Example: read 2 bytes.
816
817 $handle->push_read (chunk => 2, sub {
818 warn "yay ", unpack "H*", $_[1];
819 });
820
821 =cut
822
823 register_read_type chunk => sub {
824 my ($self, $cb, $len) = @_;
825
826 sub {
827 $len <= length $_[0]{rbuf} or return;
828 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
829 1
830 }
831 };
832
833 # compatibility with older API
834 sub push_read_chunk {
835 $_[0]->push_read (chunk => $_[1], $_[2]);
836 }
837
838 sub unshift_read_chunk {
839 $_[0]->unshift_read (chunk => $_[1], $_[2]);
840 }
841
842 =item line => [$eol, ]$cb->($handle, $line, $eol)
843
844 The callback will be called only once a full line (including the end of
845 line marker, C<$eol>) has been read. This line (excluding the end of line
846 marker) will be passed to the callback as second argument (C<$line>), and
847 the end of line marker as the third argument (C<$eol>).
848
849 The end of line marker, C<$eol>, can be either a string, in which case it
850 will be interpreted as a fixed record end marker, or it can be a regex
851 object (e.g. created by C<qr>), in which case it is interpreted as a
852 regular expression.
853
854 The end of line marker argument C<$eol> is optional, if it is missing (NOT
855 undef), then C<qr|\015?\012|> is used (which is good for most internet
856 protocols).
857
858 Partial lines at the end of the stream will never be returned, as they are
859 not marked by the end of line marker.
860
861 =cut
862
863 register_read_type line => sub {
864 my ($self, $cb, $eol) = @_;
865
866 $eol = qr|(\015?\012)| if @_ < 3;
867 $eol = quotemeta $eol unless ref $eol;
868 $eol = qr|^(.*?)($eol)|s;
869
870 sub {
871 $_[0]{rbuf} =~ s/$eol// or return;
872
873 $cb->($_[0], $1, $2);
874 1
875 }
876 };
877
878 # compatibility with older API
879 sub push_read_line {
880 my $self = shift;
881 $self->push_read (line => @_);
882 }
883
884 sub unshift_read_line {
885 my $self = shift;
886 $self->unshift_read (line => @_);
887 }
888
889 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
890
891 Makes a regex match against the regex object C<$accept> and returns
892 everything up to and including the match.
893
894 Example: read a single line terminated by '\n'.
895
896 $handle->push_read (regex => qr<\n>, sub { ... });
897
898 If C<$reject> is given and not undef, then it determines when the data is
899 to be rejected: it is matched against the data when the C<$accept> regex
900 does not match and generates an C<EBADMSG> error when it matches. This is
901 useful to quickly reject wrong data (to avoid waiting for a timeout or a
902 receive buffer overflow).
903
904 Example: expect a single decimal number followed by whitespace, reject
905 anything else (not the use of an anchor).
906
907 $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
908
909 If C<$skip> is given and not C<undef>, then it will be matched against
910 the receive buffer when neither C<$accept> nor C<$reject> match,
911 and everything preceding and including the match will be accepted
912 unconditionally. This is useful to skip large amounts of data that you
913 know cannot be matched, so that the C<$accept> or C<$reject> regex do not
914 have to start matching from the beginning. This is purely an optimisation
915 and is usually worth only when you expect more than a few kilobytes.
916
917 Example: expect a http header, which ends at C<\015\012\015\012>. Since we
918 expect the header to be very large (it isn't in practise, but...), we use
919 a skip regex to skip initial portions. The skip regex is tricky in that
920 it only accepts something not ending in either \015 or \012, as these are
921 required for the accept regex.
922
923 $handle->push_read (regex =>
924 qr<\015\012\015\012>,
925 undef, # no reject
926 qr<^.*[^\015\012]>,
927 sub { ... });
928
929 =cut
930
931 register_read_type regex => sub {
932 my ($self, $cb, $accept, $reject, $skip) = @_;
933
934 my $data;
935 my $rbuf = \$self->{rbuf};
936
937 sub {
938 # accept
939 if ($$rbuf =~ $accept) {
940 $data .= substr $$rbuf, 0, $+[0], "";
941 $cb->($self, $data);
942 return 1;
943 }
944
945 # reject
946 if ($reject && $$rbuf =~ $reject) {
947 $self->_error (&Errno::EBADMSG);
948 }
949
950 # skip
951 if ($skip && $$rbuf =~ $skip) {
952 $data .= substr $$rbuf, 0, $+[0], "";
953 }
954
955 ()
956 }
957 };
958
959 =item netstring => $cb->($handle, $string)
960
961 A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
962
963 Throws an error with C<$!> set to EBADMSG on format violations.
964
965 =cut
966
967 register_read_type netstring => sub {
968 my ($self, $cb) = @_;
969
970 sub {
971 unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
972 if ($_[0]{rbuf} =~ /[^0-9]/) {
973 $self->_error (&Errno::EBADMSG);
974 }
975 return;
976 }
977
978 my $len = $1;
979
980 $self->unshift_read (chunk => $len, sub {
981 my $string = $_[1];
982 $_[0]->unshift_read (chunk => 1, sub {
983 if ($_[1] eq ",") {
984 $cb->($_[0], $string);
985 } else {
986 $self->_error (&Errno::EBADMSG);
987 }
988 });
989 });
990
991 1
992 }
993 };
994
995 =item packstring => $format, $cb->($handle, $string)
996
997 An octet string prefixed with an encoded length. The encoding C<$format>
998 uses the same format as a Perl C<pack> format, but must specify a single
999 integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1000 optional C<!>, C<< < >> or C<< > >> modifier).
1001
1002 DNS over TCP uses a prefix of C<n>, EPP uses a prefix of C<N>.
1003
1004 Example: read a block of data prefixed by its length in BER-encoded
1005 format (very efficient).
1006
1007 $handle->push_read (packstring => "w", sub {
1008 my ($handle, $data) = @_;
1009 });
1010
1011 =cut
1012
1013 register_read_type packstring => sub {
1014 my ($self, $cb, $format) = @_;
1015
1016 sub {
1017 # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1018 defined (my $len = eval { unpack $format, $_[0]->{rbuf} })
1019 or return;
1020
1021 # remove prefix
1022 substr $_[0]->{rbuf}, 0, (length pack $format, $len), "";
1023
1024 # read rest
1025 $_[0]->unshift_read (chunk => $len, $cb);
1026
1027 1
1028 }
1029 };
1030
1031 =item json => $cb->($handle, $hash_or_arrayref)
1032
1033 Reads a JSON object or array, decodes it and passes it to the callback.
1034
1035 If a C<json> object was passed to the constructor, then that will be used
1036 for the final decode, otherwise it will create a JSON coder expecting UTF-8.
1037
1038 This read type uses the incremental parser available with JSON version
1039 2.09 (and JSON::XS version 2.2) and above. You have to provide a
1040 dependency on your own: this module will load the JSON module, but
1041 AnyEvent does not depend on it itself.
1042
1043 Since JSON texts are fully self-delimiting, the C<json> read and write
1044 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1045 the C<json> write type description, above, for an actual example.
1046
1047 =cut
1048
1049 register_read_type json => sub {
1050 my ($self, $cb, $accept, $reject, $skip) = @_;
1051
1052 require JSON;
1053
1054 my $data;
1055 my $rbuf = \$self->{rbuf};
1056
1057 my $json = $self->{json} ||= JSON->new->utf8;
1058
1059 sub {
1060 my $ref = $json->incr_parse ($self->{rbuf});
1061
1062 if ($ref) {
1063 $self->{rbuf} = $json->incr_text;
1064 $json->incr_text = "";
1065 $cb->($self, $ref);
1066
1067 1
1068 } else {
1069 $self->{rbuf} = "";
1070 ()
1071 }
1072 }
1073 };
1074
1075 =back
1076
1077 =item AnyEvent::Handle::register_read_type type => $coderef->($handle, $cb, @args)
1078
1079 This function (not method) lets you add your own types to C<push_read>.
1080
1081 Whenever the given C<type> is used, C<push_read> will invoke the code
1082 reference with the handle object, the callback and the remaining
1083 arguments.
1084
1085 The code reference is supposed to return a callback (usually a closure)
1086 that works as a plain read callback (see C<< ->push_read ($cb) >>).
1087
1088 It should invoke the passed callback when it is done reading (remember to
1089 pass C<$handle> as first argument as all other callbacks do that).
1090
1091 Note that this is a function, and all types registered this way will be
1092 global, so try to use unique names.
1093
1094 For examples, see the source of this module (F<perldoc -m AnyEvent::Handle>,
1095 search for C<register_read_type>)).
1096
1097 =item $handle->stop_read
1098
1099 =item $handle->start_read
1100
1101 In rare cases you actually do not want to read anything from the
1102 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1103 any queued callbacks will be executed then. To start reading again, call
1104 C<start_read>.
1105
1106 Note that AnyEvent::Handle will automatically C<start_read> for you when
1107 you change the C<on_read> callback or push/unshift a read callback, and it
1108 will automatically C<stop_read> for you when neither C<on_read> is set nor
1109 there are any read requests in the queue.
1110
1111 =cut
1112
1113 sub stop_read {
1114 my ($self) = @_;
1115
1116 delete $self->{_rw};
1117 }
1118
1119 sub start_read {
1120 my ($self) = @_;
1121
1122 unless ($self->{_rw} || $self->{_eof}) {
1123 Scalar::Util::weaken $self;
1124
1125 $self->{_rw} = AnyEvent->io (fh => $self->{fh}, poll => "r", cb => sub {
1126 my $rbuf = $self->{filter_r} ? \my $buf : \$self->{rbuf};
1127 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size} || 8192, length $$rbuf;
1128
1129 if ($len > 0) {
1130 $self->{_activity} = AnyEvent->now;
1131
1132 $self->{filter_r}
1133 ? $self->{filter_r}($self, $rbuf)
1134 : $self->{_in_drain} || $self->_drain_rbuf;
1135
1136 } elsif (defined $len) {
1137 delete $self->{_rw};
1138 $self->{_eof} = 1;
1139 $self->_drain_rbuf unless $self->{_in_drain};
1140
1141 } elsif ($! != EAGAIN && $! != EINTR && $! != WSAEWOULDBLOCK) {
1142 return $self->_error ($!, 1);
1143 }
1144 });
1145 }
1146 }
1147
1148 sub _dotls {
1149 my ($self) = @_;
1150
1151 my $buf;
1152
1153 if (length $self->{_tls_wbuf}) {
1154 while ((my $len = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) > 0) {
1155 substr $self->{_tls_wbuf}, 0, $len, "";
1156 }
1157 }
1158
1159 if (length ($buf = Net::SSLeay::BIO_read ($self->{_wbio}))) {
1160 $self->{wbuf} .= $buf;
1161 $self->_drain_wbuf;
1162 }
1163
1164 while (defined ($buf = Net::SSLeay::read ($self->{tls}))) {
1165 if (length $buf) {
1166 $self->{rbuf} .= $buf;
1167 $self->_drain_rbuf unless $self->{_in_drain};
1168 } else {
1169 # let's treat SSL-eof as we treat normal EOF
1170 $self->{_eof} = 1;
1171 $self->_shutdown;
1172 return;
1173 }
1174 }
1175
1176 my $err = Net::SSLeay::get_error ($self->{tls}, -1);
1177
1178 if ($err!= Net::SSLeay::ERROR_WANT_READ ()) {
1179 if ($err == Net::SSLeay::ERROR_SYSCALL ()) {
1180 return $self->_error ($!, 1);
1181 } elsif ($err == Net::SSLeay::ERROR_SSL ()) {
1182 return $self->_error (&Errno::EIO, 1);
1183 }
1184
1185 # all others are fine for our purposes
1186 }
1187 }
1188
1189 =item $handle->starttls ($tls[, $tls_ctx])
1190
1191 Instead of starting TLS negotiation immediately when the AnyEvent::Handle
1192 object is created, you can also do that at a later time by calling
1193 C<starttls>.
1194
1195 The first argument is the same as the C<tls> constructor argument (either
1196 C<"connect">, C<"accept"> or an existing Net::SSLeay object).
1197
1198 The second argument is the optional C<Net::SSLeay::CTX> object that is
1199 used when AnyEvent::Handle has to create its own TLS connection object.
1200
1201 The TLS connection object will end up in C<< $handle->{tls} >> after this
1202 call and can be used or changed to your liking. Note that the handshake
1203 might have already started when this function returns.
1204
1205 =cut
1206
1207 sub starttls {
1208 my ($self, $ssl, $ctx) = @_;
1209
1210 $self->stoptls;
1211
1212 if ($ssl eq "accept") {
1213 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1214 Net::SSLeay::set_accept_state ($ssl);
1215 } elsif ($ssl eq "connect") {
1216 $ssl = Net::SSLeay::new ($ctx || TLS_CTX ());
1217 Net::SSLeay::set_connect_state ($ssl);
1218 }
1219
1220 $self->{tls} = $ssl;
1221
1222 # basically, this is deep magic (because SSL_read should have the same issues)
1223 # but the openssl maintainers basically said: "trust us, it just works".
1224 # (unfortunately, we have to hardcode constants because the abysmally misdesigned
1225 # and mismaintained ssleay-module doesn't even offer them).
1226 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
1227 Net::SSLeay::CTX_set_mode ($self->{tls},
1228 (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
1229 | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
1230
1231 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1232 $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
1233
1234 Net::SSLeay::set_bio ($ssl, $self->{_rbio}, $self->{_wbio});
1235
1236 $self->{filter_w} = sub {
1237 $_[0]{_tls_wbuf} .= ${$_[1]};
1238 &_dotls;
1239 };
1240 $self->{filter_r} = sub {
1241 Net::SSLeay::BIO_write ($_[0]{_rbio}, ${$_[1]});
1242 &_dotls;
1243 };
1244 }
1245
1246 =item $handle->stoptls
1247
1248 Destroys the SSL connection, if any. Partial read or write data will be
1249 lost.
1250
1251 =cut
1252
1253 sub stoptls {
1254 my ($self) = @_;
1255
1256 Net::SSLeay::free (delete $self->{tls}) if $self->{tls};
1257
1258 delete $self->{_rbio};
1259 delete $self->{_wbio};
1260 delete $self->{_tls_wbuf};
1261 delete $self->{filter_r};
1262 delete $self->{filter_w};
1263 }
1264
1265 sub DESTROY {
1266 my $self = shift;
1267
1268 $self->stoptls;
1269
1270 my $linger = exists $self->{linger} ? $self->{linger} : 3600;
1271
1272 if ($linger && length $self->{wbuf}) {
1273 my $fh = delete $self->{fh};
1274 my $wbuf = delete $self->{wbuf};
1275
1276 my @linger;
1277
1278 push @linger, AnyEvent->io (fh => $fh, poll => "w", cb => sub {
1279 my $len = syswrite $fh, $wbuf, length $wbuf;
1280
1281 if ($len > 0) {
1282 substr $wbuf, 0, $len, "";
1283 } else {
1284 @linger = (); # end
1285 }
1286 });
1287 push @linger, AnyEvent->timer (after => $linger, cb => sub {
1288 @linger = ();
1289 });
1290 }
1291 }
1292
1293 =item AnyEvent::Handle::TLS_CTX
1294
1295 This function creates and returns the Net::SSLeay::CTX object used by
1296 default for TLS mode.
1297
1298 The context is created like this:
1299
1300 Net::SSLeay::load_error_strings;
1301 Net::SSLeay::SSLeay_add_ssl_algorithms;
1302 Net::SSLeay::randomize;
1303
1304 my $CTX = Net::SSLeay::CTX_new;
1305
1306 Net::SSLeay::CTX_set_options $CTX, Net::SSLeay::OP_ALL
1307
1308 =cut
1309
1310 our $TLS_CTX;
1311
1312 sub TLS_CTX() {
1313 $TLS_CTX || do {
1314 require Net::SSLeay;
1315
1316 Net::SSLeay::load_error_strings ();
1317 Net::SSLeay::SSLeay_add_ssl_algorithms ();
1318 Net::SSLeay::randomize ();
1319
1320 $TLS_CTX = Net::SSLeay::CTX_new ();
1321
1322 Net::SSLeay::CTX_set_options ($TLS_CTX, Net::SSLeay::OP_ALL ());
1323
1324 $TLS_CTX
1325 }
1326 }
1327
1328 =back
1329
1330 =head1 SUBCLASSING AnyEvent::Handle
1331
1332 In many cases, you might want to subclass AnyEvent::Handle.
1333
1334 To make this easier, a given version of AnyEvent::Handle uses these
1335 conventions:
1336
1337 =over 4
1338
1339 =item * all constructor arguments become object members.
1340
1341 At least initially, when you pass a C<tls>-argument to the constructor it
1342 will end up in C<< $handle->{tls} >>. Those members might be changes or
1343 mutated later on (for example C<tls> will hold the TLS connection object).
1344
1345 =item * other object member names are prefixed with an C<_>.
1346
1347 All object members not explicitly documented (internal use) are prefixed
1348 with an underscore character, so the remaining non-C<_>-namespace is free
1349 for use for subclasses.
1350
1351 =item * all members not documented here and not prefixed with an underscore
1352 are free to use in subclasses.
1353
1354 Of course, new versions of AnyEvent::Handle may introduce more "public"
1355 member variables, but thats just life, at least it is documented.
1356
1357 =back
1358
1359 =head1 AUTHOR
1360
1361 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
1362
1363 =cut
1364
1365 1; # End of AnyEvent::Handle