ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/AnyEvent/lib/AnyEvent/Handle.pm
Revision: 1.256
Committed: Wed Jul 29 15:58:58 2020 UTC (3 years, 9 months ago) by root
Branch: MAIN
CVS Tags: HEAD
Changes since 1.255: +1 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 elmex 1.1 =head1 NAME
2    
3 root 1.194 AnyEvent::Handle - non-blocking I/O on streaming handles via AnyEvent
4 elmex 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent;
8     use AnyEvent::Handle;
9    
10     my $cv = AnyEvent->condvar;
11    
12 root 1.149 my $hdl; $hdl = new AnyEvent::Handle
13     fh => \*STDIN,
14     on_error => sub {
15 root 1.151 my ($hdl, $fatal, $msg) = @_;
16 root 1.233 AE::log error => $msg;
17 root 1.151 $hdl->destroy;
18 root 1.149 $cv->send;
19 root 1.188 };
20 elmex 1.2
21 root 1.31 # send some request line
22 root 1.149 $hdl->push_write ("getinfo\015\012");
23 root 1.31
24     # read the response line
25 root 1.149 $hdl->push_read (line => sub {
26     my ($hdl, $line) = @_;
27 root 1.225 say "got line <$line>";
28 root 1.31 $cv->send;
29     });
30    
31     $cv->recv;
32 elmex 1.1
33     =head1 DESCRIPTION
34    
35 root 1.246 This is a helper module to make it easier to do event-based I/O
36     on stream-based filehandles (sockets, pipes, and other stream
37     things). Specifically, it doesn't work as expected on files, packet-based
38     sockets or similar things.
39 root 1.8
40 root 1.84 The L<AnyEvent::Intro> tutorial contains some well-documented
41     AnyEvent::Handle examples.
42    
43 root 1.198 In the following, where the documentation refers to "bytes", it means
44     characters. As sysread and syswrite are used for all I/O, their
45 root 1.8 treatment of characters applies to this module as well.
46 elmex 1.1
47 root 1.159 At the very minimum, you should specify C<fh> or C<connect>, and the
48     C<on_error> callback.
49    
50 root 1.8 All callbacks will be invoked with the handle object as their first
51     argument.
52 elmex 1.1
53 root 1.176 =cut
54    
55     package AnyEvent::Handle;
56    
57     use Scalar::Util ();
58     use List::Util ();
59     use Carp ();
60 root 1.243 use Errno qw(EAGAIN EWOULDBLOCK EINTR);
61 root 1.176
62     use AnyEvent (); BEGIN { AnyEvent::common_sense }
63     use AnyEvent::Util qw(WSAEWOULDBLOCK);
64    
65 root 1.177 our $VERSION = $AnyEvent::VERSION;
66    
67 root 1.185 sub _load_func($) {
68     my $func = $_[0];
69    
70     unless (defined &$func) {
71     my $pkg = $func;
72     do {
73     $pkg =~ s/::[^:]+$//
74     or return;
75     eval "require $pkg";
76     } until defined &$func;
77     }
78    
79     \&$func
80     }
81    
82 root 1.203 sub MAX_READ_SIZE() { 131072 }
83    
84 elmex 1.1 =head1 METHODS
85    
86     =over 4
87    
88 root 1.191 =item $handle = B<new> AnyEvent::Handle fh => $filehandle, key => value...
89 elmex 1.1
90 root 1.131 The constructor supports these arguments (all as C<< key => value >> pairs).
91 elmex 1.1
92     =over 4
93    
94 root 1.159 =item fh => $filehandle [C<fh> or C<connect> MANDATORY]
95 root 1.158
96 elmex 1.1 The filehandle this L<AnyEvent::Handle> object will operate on.
97 root 1.83 NOTE: The filehandle will be set to non-blocking mode (using
98 root 1.245 C<AnyEvent::fh_unblock>) by the constructor and needs to stay in
99 root 1.83 that mode.
100 root 1.8
101 root 1.159 =item connect => [$host, $service] [C<fh> or C<connect> MANDATORY]
102    
103     Try to connect to the specified host and service (port), using
104     C<AnyEvent::Socket::tcp_connect>. The C<$host> additionally becomes the
105     default C<peername>.
106    
107     You have to specify either this parameter, or C<fh>, above.
108    
109 root 1.160 It is possible to push requests on the read and write queues, and modify
110     properties of the stream, even while AnyEvent::Handle is connecting.
111    
112 root 1.159 When this parameter is specified, then the C<on_prepare>,
113     C<on_connect_error> and C<on_connect> callbacks will be called under the
114     appropriate circumstances:
115    
116     =over 4
117    
118     =item on_prepare => $cb->($handle)
119    
120     This (rarely used) callback is called before a new connection is
121 root 1.210 attempted, but after the file handle has been created (you can access that
122     file handle via C<< $handle->{fh} >>). It could be used to prepare the
123     file handle with parameters required for the actual connect (as opposed to
124     settings that can be changed when the connection is already established).
125 root 1.159
126 root 1.161 The return value of this callback should be the connect timeout value in
127 root 1.198 seconds (or C<0>, or C<undef>, or the empty list, to indicate that the
128     default timeout is to be used).
129 root 1.161
130 root 1.159 =item on_connect => $cb->($handle, $host, $port, $retry->())
131    
132     This callback is called when a connection has been successfully established.
133    
134 root 1.198 The peer's numeric host and port (the socket peername) are passed as
135 root 1.228 parameters, together with a retry callback. At the time it is called the
136     read and write queues, EOF status, TLS status and similar properties of
137     the handle will have been reset.
138    
139     If, for some reason, the handle is not acceptable, calling C<$retry> will
140     continue with the next connection target (in case of multi-homed hosts or
141     SRV records there can be multiple connection endpoints). The C<$retry>
142     callback can be invoked after the connect callback returns, i.e. one can
143     start a handshake and then decide to retry with the next host if the
144     handshake fails.
145 root 1.159
146 root 1.198 In most cases, you should ignore the C<$retry> parameter.
147 root 1.158
148 root 1.159 =item on_connect_error => $cb->($handle, $message)
149 root 1.10
150 root 1.186 This callback is called when the connection could not be
151 root 1.159 established. C<$!> will contain the relevant error code, and C<$message> a
152     message describing it (usually the same as C<"$!">).
153 root 1.8
154 root 1.159 If this callback isn't specified, then C<on_error> will be called with a
155     fatal error instead.
156 root 1.82
157 root 1.159 =back
158 root 1.80
159 root 1.133 =item on_error => $cb->($handle, $fatal, $message)
160 root 1.10
161 root 1.52 This is the error callback, which is called when, well, some error
162     occured, such as not being able to resolve the hostname, failure to
163 root 1.198 connect, or a read error.
164 root 1.52
165     Some errors are fatal (which is indicated by C<$fatal> being true). On
166 root 1.149 fatal errors the handle object will be destroyed (by a call to C<< ->
167     destroy >>) after invoking the error callback (which means you are free to
168     examine the handle object). Examples of fatal errors are an EOF condition
169 root 1.204 with active (but unsatisfiable) read watchers (C<EPIPE>) or I/O errors. In
170 root 1.198 cases where the other side can close the connection at will, it is
171 root 1.159 often easiest to not report C<EPIPE> errors in this callback.
172 root 1.82
173 root 1.133 AnyEvent::Handle tries to find an appropriate error code for you to check
174 root 1.233 against, but in some cases (TLS errors), this does not work well.
175    
176     If you report the error to the user, it is recommended to always output
177     the C<$message> argument in human-readable error messages (you don't need
178     to report C<"$!"> if you report C<$message>).
179    
180     If you want to react programmatically to the error, then looking at C<$!>
181     and comparing it against some of the documented C<Errno> values is usually
182     better than looking at the C<$message>.
183 root 1.133
184 root 1.198 Non-fatal errors can be retried by returning, but it is recommended
185 root 1.82 to simply ignore this parameter and instead abondon the handle object
186     when this callback is invoked. Examples of non-fatal errors are timeouts
187     C<ETIMEDOUT>) or badly-formatted data (C<EBADMSG>).
188 root 1.8
189 root 1.198 On entry to the callback, the value of C<$!> contains the operating
190     system error code (or C<ENOSPC>, C<EPIPE>, C<ETIMEDOUT>, C<EBADMSG> or
191 root 1.133 C<EPROTO>).
192 root 1.8
193 root 1.10 While not mandatory, it is I<highly> recommended to set this callback, as
194 root 1.198 you will not be notified of errors otherwise. The default just calls
195 root 1.52 C<croak>.
196 root 1.8
197 root 1.40 =item on_read => $cb->($handle)
198 root 1.8
199     This sets the default read callback, which is called when data arrives
200 root 1.61 and no read request is in the queue (unlike read queue callbacks, this
201     callback will only be called when at least one octet of data is in the
202     read buffer).
203 root 1.8
204     To access (and remove data from) the read buffer, use the C<< ->rbuf >>
205 root 1.139 method or access the C<< $handle->{rbuf} >> member directly. Note that you
206 root 1.117 must not enlarge or modify the read buffer, you can only remove data at
207     the beginning from it.
208 root 1.8
209 root 1.197 You can also call C<< ->push_read (...) >> or any other function that
210     modifies the read queue. Or do both. Or ...
211    
212 root 1.198 When an EOF condition is detected, AnyEvent::Handle will first try to
213 root 1.8 feed all the remaining data to the queued callbacks and C<on_read> before
214     calling the C<on_eof> callback. If no progress can be made, then a fatal
215     error will be raised (with C<$!> set to C<EPIPE>).
216 elmex 1.1
217 root 1.150 Note that, unlike requests in the read queue, an C<on_read> callback
218     doesn't mean you I<require> some data: if there is an EOF and there
219     are outstanding read requests then an error will be flagged. With an
220     C<on_read> callback, the C<on_eof> callback will be invoked.
221    
222 root 1.159 =item on_eof => $cb->($handle)
223    
224     Set the callback to be called when an end-of-file condition is detected,
225     i.e. in the case of a socket, when the other side has closed the
226     connection cleanly, and there are no outstanding read requests in the
227     queue (if there are read requests, then an EOF counts as an unexpected
228     connection close and will be flagged as an error).
229    
230     For sockets, this just means that the other side has stopped sending data,
231     you can still try to write data, and, in fact, one can return from the EOF
232     callback and continue writing data, as only the read part has been shut
233     down.
234    
235     If an EOF condition has been detected but no C<on_eof> callback has been
236     set, then a fatal error will be raised with C<$!> set to <0>.
237    
238 root 1.40 =item on_drain => $cb->($handle)
239 elmex 1.1
240 root 1.229 This sets the callback that is called once when the write buffer becomes
241     empty (and immediately when the handle object is created).
242 elmex 1.1
243 root 1.8 To append to the write buffer, use the C<< ->push_write >> method.
244 elmex 1.2
245 root 1.69 This callback is useful when you don't want to put all of your write data
246     into the queue at once, for example, when you want to write the contents
247     of some file to the socket you might not want to read the whole file into
248     memory and push it into the queue, but instead only read more data from
249     the file when the write queue becomes empty.
250    
251 root 1.43 =item timeout => $fractional_seconds
252    
253 root 1.176 =item rtimeout => $fractional_seconds
254    
255     =item wtimeout => $fractional_seconds
256    
257     If non-zero, then these enables an "inactivity" timeout: whenever this
258     many seconds pass without a successful read or write on the underlying
259     file handle (or a call to C<timeout_reset>), the C<on_timeout> callback
260     will be invoked (and if that one is missing, a non-fatal C<ETIMEDOUT>
261     error will be raised).
262    
263 root 1.218 There are three variants of the timeouts that work independently of each
264     other, for both read and write (triggered when nothing was read I<OR>
265     written), just read (triggered when nothing was read), and just write:
266 root 1.176 C<timeout>, C<rtimeout> and C<wtimeout>, with corresponding callbacks
267     C<on_timeout>, C<on_rtimeout> and C<on_wtimeout>, and reset functions
268     C<timeout_reset>, C<rtimeout_reset>, and C<wtimeout_reset>.
269 root 1.43
270 root 1.218 Note that timeout processing is active even when you do not have any
271     outstanding read or write requests: If you plan to keep the connection
272     idle then you should disable the timeout temporarily or ignore the
273     timeout in the corresponding C<on_timeout> callback, in which case
274     AnyEvent::Handle will simply restart the timeout.
275 root 1.43
276 root 1.218 Zero (the default) disables the corresponding timeout.
277 root 1.43
278     =item on_timeout => $cb->($handle)
279    
280 root 1.218 =item on_rtimeout => $cb->($handle)
281    
282     =item on_wtimeout => $cb->($handle)
283    
284 root 1.43 Called whenever the inactivity timeout passes. If you return from this
285     callback, then the timeout will be reset as if some activity had happened,
286     so this condition is not fatal in any way.
287    
288 root 1.8 =item rbuf_max => <bytes>
289 elmex 1.2
290 root 1.8 If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
291     when the read buffer ever (strictly) exceeds this size. This is useful to
292 root 1.88 avoid some forms of denial-of-service attacks.
293 elmex 1.2
294 root 1.8 For example, a server accepting connections from untrusted sources should
295     be configured to accept only so-and-so much data that it cannot act on
296     (for example, when expecting a line, an attacker could send an unlimited
297     amount of data without a callback ever being called as long as the line
298     isn't finished).
299 elmex 1.2
300 root 1.209 =item wbuf_max => <bytes>
301    
302     If defined, then a fatal error will be raised (with C<$!> set to C<ENOSPC>)
303     when the write buffer ever (strictly) exceeds this size. This is useful to
304     avoid some forms of denial-of-service attacks.
305    
306     Although the units of this parameter is bytes, this is the I<raw> number
307     of bytes not yet accepted by the kernel. This can make a difference when
308     you e.g. use TLS, as TLS typically makes your write data larger (but it
309     can also make it smaller due to compression).
310    
311     As an example of when this limit is useful, take a chat server that sends
312     chat messages to a client. If the client does not read those in a timely
313     manner then the send buffer in the server would grow unbounded.
314    
315 root 1.70 =item autocork => <boolean>
316    
317 root 1.198 When disabled (the default), C<push_write> will try to immediately
318     write the data to the handle if possible. This avoids having to register
319 root 1.88 a write watcher and wait for the next event loop iteration, but can
320     be inefficient if you write multiple small chunks (on the wire, this
321     disadvantage is usually avoided by your kernel's nagle algorithm, see
322     C<no_delay>, but this option can save costly syscalls).
323 root 1.70
324 root 1.198 When enabled, writes will always be queued till the next event loop
325 root 1.70 iteration. This is efficient when you do many small writes per iteration,
326 root 1.88 but less efficient when you do a single write only per iteration (or when
327     the write buffer often is full). It also increases write latency.
328 root 1.70
329     =item no_delay => <boolean>
330    
331     When doing small writes on sockets, your operating system kernel might
332     wait a bit for more data before actually sending it out. This is called
333     the Nagle algorithm, and usually it is beneficial.
334    
335 root 1.88 In some situations you want as low a delay as possible, which can be
336     accomplishd by setting this option to a true value.
337 root 1.70
338 root 1.198 The default is your operating system's default behaviour (most likely
339     enabled). This option explicitly enables or disables it, if possible.
340 root 1.70
341 root 1.182 =item keepalive => <boolean>
342    
343     Enables (default disable) the SO_KEEPALIVE option on the stream socket:
344     normally, TCP connections have no time-out once established, so TCP
345 root 1.186 connections, once established, can stay alive forever even when the other
346 root 1.182 side has long gone. TCP keepalives are a cheap way to take down long-lived
347 root 1.198 TCP connections when the other side becomes unreachable. While the default
348 root 1.182 is OS-dependent, TCP keepalives usually kick in after around two hours,
349     and, if the other side doesn't reply, take down the TCP connection some 10
350     to 15 minutes later.
351    
352     It is harmless to specify this option for file handles that do not support
353     keepalives, and enabling it on connections that are potentially long-lived
354     is usually a good idea.
355    
356     =item oobinline => <boolean>
357    
358     BSD majorly fucked up the implementation of TCP urgent data. The result
359     is that almost no OS implements TCP according to the specs, and every OS
360     implements it slightly differently.
361    
362 root 1.183 If you want to handle TCP urgent data, then setting this flag (the default
363     is enabled) gives you the most portable way of getting urgent data, by
364     putting it into the stream.
365    
366     Since BSD emulation of OOB data on top of TCP's urgent data can have
367     security implications, AnyEvent::Handle sets this flag automatically
368 root 1.184 unless explicitly specified. Note that setting this flag after
369     establishing a connection I<may> be a bit too late (data loss could
370     already have occured on BSD systems), but at least it will protect you
371     from most attacks.
372 root 1.182
373 root 1.8 =item read_size => <bytes>
374 elmex 1.2
375 root 1.221 The initial read block size, the number of bytes this module will try
376     to read during each loop iteration. Each handle object will consume
377     at least this amount of memory for the read buffer as well, so when
378     handling many connections watch out for memory requirements). See also
379     C<max_read_size>. Default: C<2048>.
380 root 1.203
381     =item max_read_size => <bytes>
382    
383     The maximum read buffer size used by the dynamic adjustment
384     algorithm: Each time AnyEvent::Handle can read C<read_size> bytes in
385     one go it will double C<read_size> up to the maximum given by this
386     option. Default: C<131072> or C<read_size>, whichever is higher.
387 root 1.8
388     =item low_water_mark => <bytes>
389    
390 root 1.198 Sets the number of bytes (default: C<0>) that make up an "empty" write
391     buffer: If the buffer reaches this size or gets even samller it is
392 root 1.8 considered empty.
393 elmex 1.2
394 root 1.88 Sometimes it can be beneficial (for performance reasons) to add data to
395     the write buffer before it is fully drained, but this is a rare case, as
396     the operating system kernel usually buffers data as well, so the default
397     is good in almost all cases.
398    
399 root 1.62 =item linger => <seconds>
400    
401 root 1.198 If this is non-zero (default: C<3600>), the destructor of the
402 root 1.88 AnyEvent::Handle object will check whether there is still outstanding
403     write data and will install a watcher that will write this data to the
404     socket. No errors will be reported (this mostly matches how the operating
405     system treats outstanding data at socket close time).
406 root 1.62
407 root 1.88 This will not work for partial TLS data that could not be encoded
408 root 1.93 yet. This data will be lost. Calling the C<stoptls> method in time might
409     help.
410 root 1.62
411 root 1.133 =item peername => $string
412    
413 root 1.134 A string used to identify the remote site - usually the DNS hostname
414     (I<not> IDN!) used to create the connection, rarely the IP address.
415 root 1.131
416 root 1.133 Apart from being useful in error messages, this string is also used in TLS
417 root 1.144 peername verification (see C<verify_peername> in L<AnyEvent::TLS>). This
418 root 1.198 verification will be skipped when C<peername> is not specified or is
419 root 1.144 C<undef>.
420 root 1.131
421 root 1.19 =item tls => "accept" | "connect" | Net::SSLeay::SSL object
422    
423 root 1.85 When this parameter is given, it enables TLS (SSL) mode, that means
424 root 1.186 AnyEvent will start a TLS handshake as soon as the connection has been
425 root 1.88 established and will transparently encrypt/decrypt data afterwards.
426 root 1.19
427 root 1.133 All TLS protocol errors will be signalled as C<EPROTO>, with an
428     appropriate error message.
429    
430 root 1.26 TLS mode requires Net::SSLeay to be installed (it will be loaded
431 root 1.88 automatically when you try to create a TLS handle): this module doesn't
432     have a dependency on that module, so if your module requires it, you have
433 root 1.234 to add the dependency yourself. If Net::SSLeay cannot be loaded or is too
434     old, you get an C<EPROTO> error.
435 root 1.26
436 root 1.85 Unlike TCP, TLS has a server and client side: for the TLS server side, use
437     C<accept>, and for the TLS client side of a connection, use C<connect>
438     mode.
439 root 1.19
440     You can also provide your own TLS connection object, but you have
441     to make sure that you call either C<Net::SSLeay::set_connect_state>
442     or C<Net::SSLeay::set_accept_state> on it before you pass it to
443 root 1.131 AnyEvent::Handle. Also, this module will take ownership of this connection
444     object.
445    
446     At some future point, AnyEvent::Handle might switch to another TLS
447     implementation, then the option to use your own session object will go
448     away.
449 root 1.19
450 root 1.109 B<IMPORTANT:> since Net::SSLeay "objects" are really only integers,
451     passing in the wrong integer will lead to certain crash. This most often
452     happens when one uses a stylish C<< tls => 1 >> and is surprised about the
453     segmentation fault.
454    
455 root 1.198 Use the C<< ->starttls >> method if you need to start TLS negotiation later.
456 root 1.26
457 root 1.131 =item tls_ctx => $anyevent_tls
458 root 1.19
459 root 1.131 Use the given C<AnyEvent::TLS> object to create the new TLS connection
460 root 1.207 (unless a connection object was specified directly). If this
461     parameter is missing (or C<undef>), then AnyEvent::Handle will use
462     C<AnyEvent::Handle::TLS_CTX>.
463 root 1.19
464 root 1.131 Instead of an object, you can also specify a hash reference with C<< key
465     => value >> pairs. Those will be passed to L<AnyEvent::TLS> to create a
466     new TLS context object.
467    
468 root 1.143 =item on_starttls => $cb->($handle, $success[, $error_message])
469 root 1.142
470     This callback will be invoked when the TLS/SSL handshake has finished. If
471     C<$success> is true, then the TLS handshake succeeded, otherwise it failed
472     (C<on_stoptls> will not be called in this case).
473    
474     The session in C<< $handle->{tls} >> can still be examined in this
475     callback, even when the handshake was not successful.
476    
477 root 1.143 TLS handshake failures will not cause C<on_error> to be invoked when this
478     callback is in effect, instead, the error message will be passed to C<on_starttls>.
479    
480     Without this callback, handshake failures lead to C<on_error> being
481 root 1.198 called as usual.
482 root 1.143
483 root 1.198 Note that you cannot just call C<starttls> again in this callback. If you
484 root 1.143 need to do that, start an zero-second timer instead whose callback can
485     then call C<< ->starttls >> again.
486    
487 root 1.142 =item on_stoptls => $cb->($handle)
488    
489     When a SSLv3/TLS shutdown/close notify/EOF is detected and this callback is
490     set, then it will be invoked after freeing the TLS session. If it is not,
491     then a TLS shutdown condition will be treated like a normal EOF condition
492     on the handle.
493    
494     The session in C<< $handle->{tls} >> can still be examined in this
495     callback.
496    
497     This callback will only be called on TLS shutdowns, not when the
498     underlying handle signals EOF.
499    
500 root 1.240 =item json => L<JSON>, L<JSON::PP> or L<JSON::XS> object
501 root 1.40
502     This is the json coder object used by the C<json> read and write types.
503    
504 root 1.41 If you don't supply it, then AnyEvent::Handle will create and use a
505 root 1.241 suitable one (on demand), which will write and expect UTF-8 encoded
506     JSON texts (either using L<JSON::XS> or L<JSON>). The written texts are
507     guaranteed not to contain any newline character.
508    
509     For security reasons, this encoder will likely I<not> handle numbers and
510     strings, only arrays and objects/hashes. The reason is that originally
511     JSON was self-delimited, but Dougles Crockford thought it was a splendid
512     idea to redefine JSON incompatibly, so this is no longer true.
513    
514     For protocols that used back-to-back JSON texts, this might lead to
515     run-ins, where two or more JSON texts will be interpreted as one JSON
516     text.
517    
518     For this reason, if the default encoder uses L<JSON::XS>, it will default
519     to not allowing anything but arrays and objects/hashes, at least for the
520     forseeable future (it will change at some point). This might or might not
521     be true for the L<JSON> module, so this might cause a security issue.
522    
523     If you depend on either behaviour, you should create your own json object
524     and pass it in explicitly.
525 root 1.40
526 root 1.238 =item cbor => L<CBOR::XS> object
527    
528     This is the cbor coder object used by the C<cbor> read and write types.
529    
530     If you don't supply it, then AnyEvent::Handle will create and use a
531     suitable one (on demand), which will write CBOR without using extensions,
532 root 1.241 if possible.
533 root 1.238
534     Note that you are responsible to depend on the L<CBOR::XS> module if you
535     want to use this functionality, as AnyEvent does not have a dependency on
536     it itself.
537 root 1.40
538 elmex 1.1 =back
539    
540     =cut
541    
542     sub new {
543 root 1.8 my $class = shift;
544     my $self = bless { @_ }, $class;
545    
546 root 1.159 if ($self->{fh}) {
547     $self->_start;
548     return unless $self->{fh}; # could be gone by now
549    
550     } elsif ($self->{connect}) {
551     require AnyEvent::Socket;
552    
553     $self->{peername} = $self->{connect}[0]
554     unless exists $self->{peername};
555    
556     $self->{_skip_drain_rbuf} = 1;
557    
558     {
559     Scalar::Util::weaken (my $self = $self);
560    
561     $self->{_connect} =
562     AnyEvent::Socket::tcp_connect (
563     $self->{connect}[0],
564     $self->{connect}[1],
565     sub {
566     my ($fh, $host, $port, $retry) = @_;
567    
568 root 1.206 delete $self->{_connect}; # no longer needed
569 root 1.205
570 root 1.159 if ($fh) {
571     $self->{fh} = $fh;
572    
573     delete $self->{_skip_drain_rbuf};
574     $self->_start;
575    
576     $self->{on_connect}
577     and $self->{on_connect}($self, $host, $port, sub {
578 root 1.178 delete @$self{qw(fh _tw _rtw _wtw _ww _rw _eof _queue rbuf _wbuf tls _tls_rbuf _tls_wbuf)};
579 root 1.159 $self->{_skip_drain_rbuf} = 1;
580     &$retry;
581     });
582    
583     } else {
584     if ($self->{on_connect_error}) {
585     $self->{on_connect_error}($self, "$!");
586 root 1.217 $self->destroy if $self;
587 root 1.159 } else {
588 root 1.255 $self->error ($!, 1);
589 root 1.159 }
590     }
591     },
592     sub {
593     local $self->{fh} = $_[0];
594    
595 root 1.161 $self->{on_prepare}
596 root 1.210 ? $self->{on_prepare}->($self)
597 root 1.161 : ()
598 root 1.159 }
599     );
600     }
601    
602     } else {
603     Carp::croak "AnyEvent::Handle: either an existing fh or the connect parameter must be specified";
604     }
605    
606     $self
607     }
608    
609     sub _start {
610     my ($self) = @_;
611 root 1.8
612 root 1.194 # too many clueless people try to use udp and similar sockets
613     # with AnyEvent::Handle, do them a favour.
614 root 1.195 my $type = getsockopt $self->{fh}, Socket::SOL_SOCKET (), Socket::SO_TYPE ();
615     Carp::croak "AnyEvent::Handle: only stream sockets supported, anything else will NOT work!"
616 root 1.196 if Socket::SOCK_STREAM () != (unpack "I", $type) && defined $type;
617 root 1.194
618 root 1.245 AnyEvent::fh_unblock $self->{fh};
619 elmex 1.1
620 root 1.176 $self->{_activity} =
621     $self->{_ractivity} =
622     $self->{_wactivity} = AE::now;
623    
624 root 1.203 $self->{read_size} ||= 2048;
625     $self->{max_read_size} = $self->{read_size}
626     if $self->{read_size} > ($self->{max_read_size} || MAX_READ_SIZE);
627    
628 root 1.182 $self->timeout (delete $self->{timeout} ) if $self->{timeout};
629     $self->rtimeout (delete $self->{rtimeout} ) if $self->{rtimeout};
630     $self->wtimeout (delete $self->{wtimeout} ) if $self->{wtimeout};
631    
632 root 1.183 $self->no_delay (delete $self->{no_delay} ) if exists $self->{no_delay} && $self->{no_delay};
633     $self->keepalive (delete $self->{keepalive}) if exists $self->{keepalive} && $self->{keepalive};
634    
635     $self->oobinline (exists $self->{oobinline} ? delete $self->{oobinline} : 1);
636 root 1.131
637 root 1.182 $self->starttls (delete $self->{tls}, delete $self->{tls_ctx})
638 root 1.94 if $self->{tls};
639 root 1.19
640 root 1.199 $self->on_drain (delete $self->{on_drain} ) if $self->{on_drain};
641 root 1.10
642 root 1.66 $self->start_read
643 root 1.159 if $self->{on_read} || @{ $self->{_queue} };
644 root 1.160
645     $self->_drain_wbuf;
646 root 1.8 }
647 elmex 1.2
648 root 1.255 =item $handle->error ($errno[, $fatal[, $message]])
649    
650     Generates an error event, just like AnyEvent::Handle itself would do, i.e.
651     calls the C<on_error> callback.
652    
653 root 1.256 The only rerquired parameter is C<$errno>, which sets C<$!>. C<$fatal>
654 root 1.255 defaults to false and C<$message> defaults to the stringified version
655     of C<$1>.
656    
657     Example: generate C<EIO> when you read unexpected data.
658    
659     $handle->push_read (line => sub {
660     $_[1] eq "hello"
661     or return $handle->error (Errno::EIO);
662     });
663    
664     =cut
665    
666     sub error {
667 root 1.133 my ($self, $errno, $fatal, $message) = @_;
668 root 1.8
669 root 1.52 $! = $errno;
670 root 1.133 $message ||= "$!";
671 root 1.37
672 root 1.52 if ($self->{on_error}) {
673 root 1.133 $self->{on_error}($self, $fatal, $message);
674 root 1.151 $self->destroy if $fatal;
675 root 1.187 } elsif ($self->{fh} || $self->{connect}) {
676 root 1.149 $self->destroy;
677 root 1.133 Carp::croak "AnyEvent::Handle uncaught error: $message";
678 root 1.52 }
679 elmex 1.1 }
680    
681 root 1.8 =item $fh = $handle->fh
682 elmex 1.1
683 root 1.88 This method returns the file handle used to create the L<AnyEvent::Handle> object.
684 elmex 1.1
685     =cut
686    
687 root 1.38 sub fh { $_[0]{fh} }
688 elmex 1.1
689 root 1.8 =item $handle->on_error ($cb)
690 elmex 1.1
691 root 1.8 Replace the current C<on_error> callback (see the C<on_error> constructor argument).
692 elmex 1.1
693 root 1.8 =cut
694    
695     sub on_error {
696     $_[0]{on_error} = $_[1];
697     }
698    
699     =item $handle->on_eof ($cb)
700    
701     Replace the current C<on_eof> callback (see the C<on_eof> constructor argument).
702 elmex 1.1
703     =cut
704    
705 root 1.8 sub on_eof {
706     $_[0]{on_eof} = $_[1];
707     }
708    
709 root 1.43 =item $handle->on_timeout ($cb)
710    
711 root 1.176 =item $handle->on_rtimeout ($cb)
712    
713     =item $handle->on_wtimeout ($cb)
714    
715     Replace the current C<on_timeout>, C<on_rtimeout> or C<on_wtimeout>
716     callback, or disables the callback (but not the timeout) if C<$cb> =
717     C<undef>. See the C<timeout> constructor argument and method.
718 root 1.43
719     =cut
720    
721 root 1.176 # see below
722 root 1.43
723 root 1.70 =item $handle->autocork ($boolean)
724    
725     Enables or disables the current autocork behaviour (see C<autocork>
726 root 1.105 constructor argument). Changes will only take effect on the next write.
727 root 1.70
728     =cut
729    
730 root 1.105 sub autocork {
731     $_[0]{autocork} = $_[1];
732     }
733    
734 root 1.70 =item $handle->no_delay ($boolean)
735    
736     Enables or disables the C<no_delay> setting (see constructor argument of
737     the same name for details).
738    
739     =cut
740    
741     sub no_delay {
742     $_[0]{no_delay} = $_[1];
743    
744 root 1.200 setsockopt $_[0]{fh}, Socket::IPPROTO_TCP (), Socket::TCP_NODELAY (), int $_[1]
745     if $_[0]{fh};
746 root 1.182 }
747    
748     =item $handle->keepalive ($boolean)
749    
750     Enables or disables the C<keepalive> setting (see constructor argument of
751     the same name for details).
752    
753     =cut
754    
755     sub keepalive {
756     $_[0]{keepalive} = $_[1];
757    
758     eval {
759     local $SIG{__DIE__};
760     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_KEEPALIVE (), int $_[1]
761     if $_[0]{fh};
762     };
763     }
764    
765     =item $handle->oobinline ($boolean)
766    
767     Enables or disables the C<oobinline> setting (see constructor argument of
768     the same name for details).
769    
770     =cut
771    
772     sub oobinline {
773     $_[0]{oobinline} = $_[1];
774    
775     eval {
776     local $SIG{__DIE__};
777     setsockopt $_[0]{fh}, Socket::SOL_SOCKET (), Socket::SO_OOBINLINE (), int $_[1]
778     if $_[0]{fh};
779     };
780     }
781    
782 root 1.142 =item $handle->on_starttls ($cb)
783    
784     Replace the current C<on_starttls> callback (see the C<on_starttls> constructor argument).
785    
786     =cut
787    
788     sub on_starttls {
789     $_[0]{on_starttls} = $_[1];
790     }
791    
792     =item $handle->on_stoptls ($cb)
793    
794     Replace the current C<on_stoptls> callback (see the C<on_stoptls> constructor argument).
795    
796     =cut
797    
798 root 1.189 sub on_stoptls {
799 root 1.142 $_[0]{on_stoptls} = $_[1];
800     }
801    
802 root 1.168 =item $handle->rbuf_max ($max_octets)
803    
804     Configures the C<rbuf_max> setting (C<undef> disables it).
805    
806 root 1.209 =item $handle->wbuf_max ($max_octets)
807    
808     Configures the C<wbuf_max> setting (C<undef> disables it).
809    
810 root 1.168 =cut
811    
812     sub rbuf_max {
813     $_[0]{rbuf_max} = $_[1];
814     }
815    
816 root 1.215 sub wbuf_max {
817 root 1.209 $_[0]{wbuf_max} = $_[1];
818     }
819    
820 root 1.43 #############################################################################
821    
822     =item $handle->timeout ($seconds)
823    
824 root 1.176 =item $handle->rtimeout ($seconds)
825    
826     =item $handle->wtimeout ($seconds)
827    
828 root 1.43 Configures (or disables) the inactivity timeout.
829    
830 root 1.218 The timeout will be checked instantly, so this method might destroy the
831     handle before it returns.
832    
833 root 1.176 =item $handle->timeout_reset
834    
835     =item $handle->rtimeout_reset
836    
837     =item $handle->wtimeout_reset
838    
839     Reset the activity timeout, as if data was received or sent.
840    
841     These methods are cheap to call.
842    
843 root 1.43 =cut
844    
845 root 1.176 for my $dir ("", "r", "w") {
846     my $timeout = "${dir}timeout";
847     my $tw = "_${dir}tw";
848     my $on_timeout = "on_${dir}timeout";
849     my $activity = "_${dir}activity";
850     my $cb;
851    
852     *$on_timeout = sub {
853     $_[0]{$on_timeout} = $_[1];
854     };
855    
856     *$timeout = sub {
857     my ($self, $new_value) = @_;
858 root 1.43
859 root 1.201 $new_value >= 0
860     or Carp::croak "AnyEvent::Handle->$timeout called with negative timeout ($new_value), caught";
861    
862 root 1.176 $self->{$timeout} = $new_value;
863     delete $self->{$tw}; &$cb;
864     };
865 root 1.43
866 root 1.176 *{"${dir}timeout_reset"} = sub {
867     $_[0]{$activity} = AE::now;
868     };
869 root 1.43
870 root 1.176 # main workhorse:
871     # reset the timeout watcher, as neccessary
872     # also check for time-outs
873     $cb = sub {
874     my ($self) = @_;
875    
876     if ($self->{$timeout} && $self->{fh}) {
877     my $NOW = AE::now;
878    
879     # when would the timeout trigger?
880     my $after = $self->{$activity} + $self->{$timeout} - $NOW;
881    
882     # now or in the past already?
883     if ($after <= 0) {
884     $self->{$activity} = $NOW;
885 root 1.43
886 root 1.176 if ($self->{$on_timeout}) {
887     $self->{$on_timeout}($self);
888     } else {
889 root 1.255 $self->error (Errno::ETIMEDOUT);
890 root 1.176 }
891 root 1.43
892 root 1.176 # callback could have changed timeout value, optimise
893     return unless $self->{$timeout};
894 root 1.43
895 root 1.176 # calculate new after
896     $after = $self->{$timeout};
897 root 1.43 }
898    
899 root 1.176 Scalar::Util::weaken $self;
900     return unless $self; # ->error could have destroyed $self
901 root 1.43
902 root 1.176 $self->{$tw} ||= AE::timer $after, 0, sub {
903     delete $self->{$tw};
904     $cb->($self);
905     };
906     } else {
907     delete $self->{$tw};
908 root 1.43 }
909     }
910     }
911    
912 root 1.9 #############################################################################
913    
914     =back
915    
916     =head2 WRITE QUEUE
917    
918     AnyEvent::Handle manages two queues per handle, one for writing and one
919     for reading.
920    
921     The write queue is very simple: you can add data to its end, and
922     AnyEvent::Handle will automatically try to get rid of it for you.
923    
924 elmex 1.20 When data could be written and the write buffer is shorter then the low
925 root 1.229 water mark, the C<on_drain> callback will be invoked once.
926 root 1.9
927     =over 4
928    
929 root 1.8 =item $handle->on_drain ($cb)
930    
931     Sets the C<on_drain> callback or clears it (see the description of
932     C<on_drain> in the constructor).
933    
934 root 1.193 This method may invoke callbacks (and therefore the handle might be
935     destroyed after it returns).
936    
937 root 1.8 =cut
938    
939     sub on_drain {
940 elmex 1.1 my ($self, $cb) = @_;
941    
942 root 1.8 $self->{on_drain} = $cb;
943    
944     $cb->($self)
945 root 1.93 if $cb && $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf});
946 root 1.8 }
947    
948     =item $handle->push_write ($data)
949    
950 root 1.209 Queues the given scalar to be written. You can push as much data as
951     you want (only limited by the available memory and C<wbuf_max>), as
952     C<AnyEvent::Handle> buffers it independently of the kernel.
953 root 1.8
954 root 1.193 This method may invoke callbacks (and therefore the handle might be
955     destroyed after it returns).
956    
957 root 1.8 =cut
958    
959 root 1.17 sub _drain_wbuf {
960     my ($self) = @_;
961 root 1.8
962 root 1.38 if (!$self->{_ww} && length $self->{wbuf}) {
963 root 1.35
964 root 1.8 Scalar::Util::weaken $self;
965 root 1.35
966 root 1.8 my $cb = sub {
967     my $len = syswrite $self->{fh}, $self->{wbuf};
968    
969 root 1.146 if (defined $len) {
970 root 1.8 substr $self->{wbuf}, 0, $len, "";
971    
972 root 1.176 $self->{_activity} = $self->{_wactivity} = AE::now;
973 root 1.43
974 root 1.8 $self->{on_drain}($self)
975 root 1.93 if $self->{low_water_mark} >= (length $self->{wbuf}) + (length $self->{_tls_wbuf})
976 root 1.8 && $self->{on_drain};
977    
978 root 1.38 delete $self->{_ww} unless length $self->{wbuf};
979 root 1.243 } elsif ($! != EAGAIN && $! != EINTR && $! != EWOULDBLOCK && $! != WSAEWOULDBLOCK) {
980 root 1.255 $self->error ($!, 1);
981 elmex 1.1 }
982 root 1.8 };
983    
984 root 1.35 # try to write data immediately
985 root 1.70 $cb->() unless $self->{autocork};
986 root 1.8
987 root 1.35 # if still data left in wbuf, we need to poll
988 root 1.175 $self->{_ww} = AE::io $self->{fh}, 1, $cb
989 root 1.35 if length $self->{wbuf};
990 root 1.209
991     if (
992     defined $self->{wbuf_max}
993     && $self->{wbuf_max} < length $self->{wbuf}
994     ) {
995 root 1.255 $self->error (Errno::ENOSPC, 1), return;
996 root 1.209 }
997 root 1.8 };
998     }
999    
1000 root 1.30 our %WH;
1001    
1002 root 1.185 # deprecated
1003 root 1.30 sub register_write_type($$) {
1004     $WH{$_[0]} = $_[1];
1005     }
1006    
1007 root 1.17 sub push_write {
1008     my $self = shift;
1009    
1010 root 1.29 if (@_ > 1) {
1011     my $type = shift;
1012    
1013 root 1.185 @_ = ($WH{$type} ||= _load_func "$type\::anyevent_write_type"
1014     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_write")
1015 root 1.29 ->($self, @_);
1016     }
1017    
1018 root 1.190 # we downgrade here to avoid hard-to-track-down bugs,
1019     # and diagnose the problem earlier and better.
1020    
1021 root 1.93 if ($self->{tls}) {
1022 root 1.190 utf8::downgrade $self->{_tls_wbuf} .= $_[0];
1023 root 1.160 &_dotls ($self) if $self->{fh};
1024 root 1.17 } else {
1025 root 1.190 utf8::downgrade $self->{wbuf} .= $_[0];
1026 root 1.159 $self->_drain_wbuf if $self->{fh};
1027 root 1.17 }
1028     }
1029    
1030 root 1.29 =item $handle->push_write (type => @args)
1031    
1032 root 1.185 Instead of formatting your data yourself, you can also let this module
1033     do the job by specifying a type and type-specific arguments. You
1034     can also specify the (fully qualified) name of a package, in which
1035     case AnyEvent tries to load the package and then expects to find the
1036 root 1.197 C<anyevent_write_type> function inside (see "custom write types", below).
1037 root 1.29
1038 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1039     drop by and tell us):
1040 root 1.29
1041     =over 4
1042    
1043     =item netstring => $string
1044    
1045     Formats the given value as netstring
1046     (http://cr.yp.to/proto/netstrings.txt, this is not a recommendation to use them).
1047    
1048     =cut
1049    
1050     register_write_type netstring => sub {
1051     my ($self, $string) = @_;
1052    
1053 root 1.96 (length $string) . ":$string,"
1054 root 1.29 };
1055    
1056 root 1.61 =item packstring => $format, $data
1057    
1058     An octet string prefixed with an encoded length. The encoding C<$format>
1059     uses the same format as a Perl C<pack> format, but must specify a single
1060     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1061     optional C<!>, C<< < >> or C<< > >> modifier).
1062    
1063     =cut
1064    
1065     register_write_type packstring => sub {
1066     my ($self, $format, $string) = @_;
1067    
1068 root 1.65 pack "$format/a*", $string
1069 root 1.61 };
1070    
1071 root 1.39 =item json => $array_or_hashref
1072    
1073 root 1.40 Encodes the given hash or array reference into a JSON object. Unless you
1074     provide your own JSON object, this means it will be encoded to JSON text
1075     in UTF-8.
1076    
1077 root 1.241 The default encoder might or might not handle every type of JSON value -
1078     it might be limited to arrays and objects for security reasons. See the
1079     C<json> constructor attribute for more details.
1080    
1081     JSON objects (and arrays) are self-delimiting, so if you only use arrays
1082     and hashes, you can write JSON at one end of a handle and read them at the
1083     other end without using any additional framing.
1084    
1085     The JSON text generated by the default encoder is guaranteed not to
1086     contain any newlines: While this module doesn't need delimiters after or
1087     between JSON texts to be able to read them, many other languages depend on
1088     them.
1089 root 1.41
1090 root 1.238 A simple RPC protocol that interoperates easily with other languages is
1091     to send JSON arrays (or objects, although arrays are usually the better
1092     choice as they mimic how function argument passing works) and a newline
1093     after each JSON text:
1094 root 1.41
1095     $handle->push_write (json => ["method", "arg1", "arg2"]); # whatever
1096     $handle->push_write ("\012");
1097    
1098     An AnyEvent::Handle receiver would simply use the C<json> read type and
1099     rely on the fact that the newline will be skipped as leading whitespace:
1100    
1101     $handle->push_read (json => sub { my $array = $_[1]; ... });
1102    
1103     Other languages could read single lines terminated by a newline and pass
1104     this line into their JSON decoder of choice.
1105    
1106 root 1.238 =item cbor => $perl_scalar
1107    
1108     Encodes the given scalar into a CBOR value. Unless you provide your own
1109     L<CBOR::XS> object, this means it will be encoded to a CBOR string not
1110     using any extensions, if possible.
1111    
1112     CBOR values are self-delimiting, so you can write CBOR at one end of
1113     a handle and read them at the other end without using any additional
1114     framing.
1115    
1116     A simple nd very very fast RPC protocol that interoperates with
1117     other languages is to send CBOR and receive CBOR values (arrays are
1118     recommended):
1119    
1120     $handle->push_write (cbor => ["method", "arg1", "arg2"]); # whatever
1121    
1122     An AnyEvent::Handle receiver would simply use the C<cbor> read type:
1123    
1124     $handle->push_read (cbor => sub { my $array = $_[1]; ... });
1125    
1126 root 1.40 =cut
1127    
1128 root 1.179 sub json_coder() {
1129     eval { require JSON::XS; JSON::XS->new->utf8 }
1130 root 1.240 || do { require JSON::PP; JSON::PP->new->utf8 }
1131 root 1.179 }
1132    
1133 root 1.40 register_write_type json => sub {
1134     my ($self, $ref) = @_;
1135    
1136 root 1.238 ($self->{json} ||= json_coder)
1137     ->encode ($ref)
1138     };
1139    
1140     sub cbor_coder() {
1141     require CBOR::XS;
1142     CBOR::XS->new
1143     }
1144    
1145     register_write_type cbor => sub {
1146     my ($self, $scalar) = @_;
1147 root 1.40
1148 root 1.238 ($self->{cbor} ||= cbor_coder)
1149     ->encode ($scalar)
1150 root 1.40 };
1151    
1152 root 1.63 =item storable => $reference
1153    
1154     Freezes the given reference using L<Storable> and writes it to the
1155     handle. Uses the C<nfreeze> format.
1156    
1157     =cut
1158    
1159     register_write_type storable => sub {
1160     my ($self, $ref) = @_;
1161    
1162 root 1.224 require Storable unless $Storable::VERSION;
1163 root 1.63
1164 root 1.65 pack "w/a*", Storable::nfreeze ($ref)
1165 root 1.63 };
1166    
1167 root 1.53 =back
1168    
1169 root 1.133 =item $handle->push_shutdown
1170    
1171     Sometimes you know you want to close the socket after writing your data
1172     before it was actually written. One way to do that is to replace your
1173 root 1.142 C<on_drain> handler by a callback that shuts down the socket (and set
1174     C<low_water_mark> to C<0>). This method is a shorthand for just that, and
1175     replaces the C<on_drain> callback with:
1176 root 1.133
1177 root 1.214 sub { shutdown $_[0]{fh}, 1 }
1178 root 1.133
1179     This simply shuts down the write side and signals an EOF condition to the
1180     the peer.
1181    
1182     You can rely on the normal read queue and C<on_eof> handling
1183     afterwards. This is the cleanest way to close a connection.
1184    
1185 root 1.193 This method may invoke callbacks (and therefore the handle might be
1186     destroyed after it returns).
1187    
1188 root 1.133 =cut
1189    
1190     sub push_shutdown {
1191 root 1.142 my ($self) = @_;
1192    
1193     delete $self->{low_water_mark};
1194     $self->on_drain (sub { shutdown $_[0]{fh}, 1 });
1195 root 1.133 }
1196    
1197 root 1.185 =item custom write types - Package::anyevent_write_type $handle, @args
1198    
1199     Instead of one of the predefined types, you can also specify the name of
1200     a package. AnyEvent will try to load the package and then expects to find
1201     a function named C<anyevent_write_type> inside. If it isn't found, it
1202     progressively tries to load the parent package until it either finds the
1203     function (good) or runs out of packages (bad).
1204    
1205     Whenever the given C<type> is used, C<push_write> will the function with
1206     the handle object and the remaining arguments.
1207    
1208     The function is supposed to return a single octet string that will be
1209 root 1.223 appended to the write buffer, so you can mentally treat this function as a
1210 root 1.185 "arguments to on-the-wire-format" converter.
1211 root 1.30
1212 root 1.185 Example: implement a custom write type C<join> that joins the remaining
1213     arguments using the first one.
1214 root 1.29
1215 root 1.185 $handle->push_write (My::Type => " ", 1,2,3);
1216 root 1.29
1217 root 1.185 # uses the following package, which can be defined in the "My::Type" or in
1218     # the "My" modules to be auto-loaded, or just about anywhere when the
1219     # My::Type::anyevent_write_type is defined before invoking it.
1220    
1221     package My::Type;
1222    
1223     sub anyevent_write_type {
1224     my ($handle, $delim, @args) = @_;
1225    
1226     join $delim, @args
1227     }
1228 root 1.29
1229 root 1.30 =cut
1230 root 1.29
1231 root 1.8 #############################################################################
1232    
1233 root 1.9 =back
1234    
1235     =head2 READ QUEUE
1236    
1237     AnyEvent::Handle manages two queues per handle, one for writing and one
1238     for reading.
1239    
1240     The read queue is more complex than the write queue. It can be used in two
1241     ways, the "simple" way, using only C<on_read> and the "complex" way, using
1242     a queue.
1243    
1244     In the simple case, you just install an C<on_read> callback and whenever
1245     new data arrives, it will be called. You can then remove some data (if
1246 root 1.197 enough is there) from the read buffer (C<< $handle->rbuf >>). Or you can
1247 root 1.69 leave the data there if you want to accumulate more (e.g. when only a
1248 root 1.197 partial message has been received so far), or change the read queue with
1249     e.g. C<push_read>.
1250 root 1.9
1251     In the more complex case, you want to queue multiple callbacks. In this
1252     case, AnyEvent::Handle will call the first queued callback each time new
1253 root 1.198 data arrives (also the first time it is queued) and remove it when it has
1254 root 1.61 done its job (see C<push_read>, below).
1255 root 1.9
1256     This way you can, for example, push three line-reads, followed by reading
1257     a chunk of data, and AnyEvent::Handle will execute them in order.
1258    
1259     Example 1: EPP protocol parser. EPP sends 4 byte length info, followed by
1260     the specified number of bytes which give an XML datagram.
1261    
1262     # in the default state, expect some header bytes
1263     $handle->on_read (sub {
1264     # some data is here, now queue the length-header-read (4 octets)
1265 root 1.52 shift->unshift_read (chunk => 4, sub {
1266 root 1.9 # header arrived, decode
1267     my $len = unpack "N", $_[1];
1268    
1269     # now read the payload
1270 root 1.52 shift->unshift_read (chunk => $len, sub {
1271 root 1.9 my $xml = $_[1];
1272     # handle xml
1273     });
1274     });
1275     });
1276    
1277 root 1.69 Example 2: Implement a client for a protocol that replies either with "OK"
1278     and another line or "ERROR" for the first request that is sent, and 64
1279     bytes for the second request. Due to the availability of a queue, we can
1280     just pipeline sending both requests and manipulate the queue as necessary
1281     in the callbacks.
1282    
1283     When the first callback is called and sees an "OK" response, it will
1284     C<unshift> another line-read. This line-read will be queued I<before> the
1285     64-byte chunk callback.
1286 root 1.9
1287 root 1.69 # request one, returns either "OK + extra line" or "ERROR"
1288 root 1.9 $handle->push_write ("request 1\015\012");
1289    
1290     # we expect "ERROR" or "OK" as response, so push a line read
1291 root 1.52 $handle->push_read (line => sub {
1292 root 1.9 # if we got an "OK", we have to _prepend_ another line,
1293     # so it will be read before the second request reads its 64 bytes
1294     # which are already in the queue when this callback is called
1295     # we don't do this in case we got an error
1296     if ($_[1] eq "OK") {
1297 root 1.52 $_[0]->unshift_read (line => sub {
1298 root 1.9 my $response = $_[1];
1299     ...
1300     });
1301     }
1302     });
1303    
1304 root 1.69 # request two, simply returns 64 octets
1305 root 1.9 $handle->push_write ("request 2\015\012");
1306    
1307     # simply read 64 bytes, always
1308 root 1.52 $handle->push_read (chunk => 64, sub {
1309 root 1.9 my $response = $_[1];
1310     ...
1311     });
1312    
1313     =over 4
1314    
1315 root 1.10 =cut
1316    
1317 root 1.8 sub _drain_rbuf {
1318     my ($self) = @_;
1319 elmex 1.1
1320 root 1.159 # avoid recursion
1321 root 1.167 return if $self->{_skip_drain_rbuf};
1322 root 1.159 local $self->{_skip_drain_rbuf} = 1;
1323 root 1.59
1324     while () {
1325 root 1.117 # we need to use a separate tls read buffer, as we must not receive data while
1326     # we are draining the buffer, and this can only happen with TLS.
1327 root 1.163 $self->{rbuf} .= delete $self->{_tls_rbuf}
1328     if exists $self->{_tls_rbuf};
1329 root 1.115
1330 root 1.59 my $len = length $self->{rbuf};
1331 elmex 1.1
1332 root 1.38 if (my $cb = shift @{ $self->{_queue} }) {
1333 root 1.29 unless ($cb->($self)) {
1334 root 1.163 # no progress can be made
1335     # (not enough data and no data forthcoming)
1336 root 1.255 $self->error (Errno::EPIPE, 1), return
1337 root 1.163 if $self->{_eof};
1338 root 1.10
1339 root 1.38 unshift @{ $self->{_queue} }, $cb;
1340 root 1.55 last;
1341 root 1.8 }
1342     } elsif ($self->{on_read}) {
1343 root 1.61 last unless $len;
1344    
1345 root 1.8 $self->{on_read}($self);
1346    
1347     if (
1348 root 1.55 $len == length $self->{rbuf} # if no data has been consumed
1349     && !@{ $self->{_queue} } # and the queue is still empty
1350     && $self->{on_read} # but we still have on_read
1351 root 1.8 ) {
1352 root 1.55 # no further data will arrive
1353     # so no progress can be made
1354 root 1.255 $self->error (Errno::EPIPE, 1), return
1355 root 1.55 if $self->{_eof};
1356    
1357     last; # more data might arrive
1358 elmex 1.1 }
1359 root 1.8 } else {
1360     # read side becomes idle
1361 root 1.93 delete $self->{_rw} unless $self->{tls};
1362 root 1.55 last;
1363 root 1.8 }
1364     }
1365    
1366 root 1.80 if ($self->{_eof}) {
1367 root 1.163 $self->{on_eof}
1368     ? $self->{on_eof}($self)
1369 root 1.255 : $self->error (0, 1, "Unexpected end-of-file");
1370 root 1.163
1371     return;
1372 root 1.80 }
1373 root 1.55
1374 root 1.169 if (
1375     defined $self->{rbuf_max}
1376     && $self->{rbuf_max} < length $self->{rbuf}
1377     ) {
1378 root 1.255 $self->error (Errno::ENOSPC, 1), return;
1379 root 1.169 }
1380    
1381 root 1.55 # may need to restart read watcher
1382     unless ($self->{_rw}) {
1383     $self->start_read
1384     if $self->{on_read} || @{ $self->{_queue} };
1385     }
1386 elmex 1.1 }
1387    
1388 root 1.8 =item $handle->on_read ($cb)
1389 elmex 1.1
1390 root 1.8 This replaces the currently set C<on_read> callback, or clears it (when
1391     the new callback is C<undef>). See the description of C<on_read> in the
1392     constructor.
1393 elmex 1.1
1394 root 1.193 This method may invoke callbacks (and therefore the handle might be
1395     destroyed after it returns).
1396    
1397 root 1.8 =cut
1398    
1399     sub on_read {
1400     my ($self, $cb) = @_;
1401 elmex 1.1
1402 root 1.8 $self->{on_read} = $cb;
1403 root 1.159 $self->_drain_rbuf if $cb;
1404 elmex 1.1 }
1405    
1406 root 1.8 =item $handle->rbuf
1407    
1408 root 1.199 Returns the read buffer (as a modifiable lvalue). You can also access the
1409     read buffer directly as the C<< ->{rbuf} >> member, if you want (this is
1410     much faster, and no less clean).
1411    
1412     The only operation allowed on the read buffer (apart from looking at it)
1413     is removing data from its beginning. Otherwise modifying or appending to
1414     it is not allowed and will lead to hard-to-track-down bugs.
1415    
1416     NOTE: The read buffer should only be used or modified in the C<on_read>
1417     callback or when C<push_read> or C<unshift_read> are used with a single
1418     callback (i.e. untyped). Typed C<push_read> and C<unshift_read> methods
1419     will manage the read buffer on their own.
1420 elmex 1.1
1421     =cut
1422    
1423 elmex 1.2 sub rbuf : lvalue {
1424 root 1.8 $_[0]{rbuf}
1425 elmex 1.2 }
1426 elmex 1.1
1427 root 1.8 =item $handle->push_read ($cb)
1428    
1429     =item $handle->unshift_read ($cb)
1430    
1431     Append the given callback to the end of the queue (C<push_read>) or
1432     prepend it (C<unshift_read>).
1433    
1434     The callback is called each time some additional read data arrives.
1435 elmex 1.1
1436 elmex 1.20 It must check whether enough data is in the read buffer already.
1437 elmex 1.1
1438 root 1.8 If not enough data is available, it must return the empty list or a false
1439     value, in which case it will be called repeatedly until enough data is
1440     available (or an error condition is detected).
1441    
1442     If enough data was available, then the callback must remove all data it is
1443     interested in (which can be none at all) and return a true value. After returning
1444     true, it will be removed from the queue.
1445 elmex 1.1
1446 root 1.193 These methods may invoke callbacks (and therefore the handle might be
1447     destroyed after it returns).
1448    
1449 elmex 1.1 =cut
1450    
1451 root 1.30 our %RH;
1452    
1453     sub register_read_type($$) {
1454     $RH{$_[0]} = $_[1];
1455     }
1456    
1457 root 1.8 sub push_read {
1458 root 1.28 my $self = shift;
1459     my $cb = pop;
1460    
1461     if (@_) {
1462     my $type = shift;
1463    
1464 root 1.185 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1465     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::push_read")
1466 root 1.28 ->($self, $cb, @_);
1467     }
1468 elmex 1.1
1469 root 1.38 push @{ $self->{_queue} }, $cb;
1470 root 1.159 $self->_drain_rbuf;
1471 elmex 1.1 }
1472    
1473 root 1.8 sub unshift_read {
1474 root 1.28 my $self = shift;
1475     my $cb = pop;
1476    
1477     if (@_) {
1478     my $type = shift;
1479    
1480 root 1.199 $cb = ($RH{$type} ||= _load_func "$type\::anyevent_read_type"
1481     or Carp::croak "unsupported/unloadable type '$type' passed to AnyEvent::Handle::unshift_read")
1482 root 1.28 ->($self, $cb, @_);
1483     }
1484    
1485 root 1.38 unshift @{ $self->{_queue} }, $cb;
1486 root 1.159 $self->_drain_rbuf;
1487 root 1.8 }
1488 elmex 1.1
1489 root 1.28 =item $handle->push_read (type => @args, $cb)
1490 elmex 1.1
1491 root 1.28 =item $handle->unshift_read (type => @args, $cb)
1492 elmex 1.1
1493 root 1.28 Instead of providing a callback that parses the data itself you can chose
1494     between a number of predefined parsing formats, for chunks of data, lines
1495 root 1.185 etc. You can also specify the (fully qualified) name of a package, in
1496     which case AnyEvent tries to load the package and then expects to find the
1497     C<anyevent_read_type> function inside (see "custom read types", below).
1498 elmex 1.1
1499 root 1.30 Predefined types are (if you have ideas for additional types, feel free to
1500     drop by and tell us):
1501 root 1.28
1502     =over 4
1503    
1504 root 1.40 =item chunk => $octets, $cb->($handle, $data)
1505 root 1.28
1506     Invoke the callback only once C<$octets> bytes have been read. Pass the
1507     data read to the callback. The callback will never be called with less
1508     data.
1509    
1510     Example: read 2 bytes.
1511    
1512     $handle->push_read (chunk => 2, sub {
1513 root 1.225 say "yay " . unpack "H*", $_[1];
1514 root 1.28 });
1515 elmex 1.1
1516     =cut
1517    
1518 root 1.28 register_read_type chunk => sub {
1519     my ($self, $cb, $len) = @_;
1520 elmex 1.1
1521 root 1.8 sub {
1522     $len <= length $_[0]{rbuf} or return;
1523 elmex 1.12 $cb->($_[0], substr $_[0]{rbuf}, 0, $len, "");
1524 root 1.8 1
1525     }
1526 root 1.28 };
1527 root 1.8
1528 root 1.40 =item line => [$eol, ]$cb->($handle, $line, $eol)
1529 elmex 1.1
1530 root 1.8 The callback will be called only once a full line (including the end of
1531     line marker, C<$eol>) has been read. This line (excluding the end of line
1532     marker) will be passed to the callback as second argument (C<$line>), and
1533     the end of line marker as the third argument (C<$eol>).
1534 elmex 1.1
1535 root 1.8 The end of line marker, C<$eol>, can be either a string, in which case it
1536     will be interpreted as a fixed record end marker, or it can be a regex
1537     object (e.g. created by C<qr>), in which case it is interpreted as a
1538     regular expression.
1539 elmex 1.1
1540 root 1.8 The end of line marker argument C<$eol> is optional, if it is missing (NOT
1541     undef), then C<qr|\015?\012|> is used (which is good for most internet
1542     protocols).
1543 elmex 1.1
1544 root 1.8 Partial lines at the end of the stream will never be returned, as they are
1545     not marked by the end of line marker.
1546 elmex 1.1
1547 root 1.8 =cut
1548 elmex 1.1
1549 root 1.28 register_read_type line => sub {
1550     my ($self, $cb, $eol) = @_;
1551 elmex 1.1
1552 root 1.76 if (@_ < 3) {
1553 root 1.237 # this is faster then the generic code below
1554 root 1.76 sub {
1555 root 1.237 (my $pos = index $_[0]{rbuf}, "\012") >= 0
1556     or return;
1557 elmex 1.1
1558 root 1.237 (my $str = substr $_[0]{rbuf}, 0, $pos + 1, "") =~ s/(\015?\012)\Z// or die;
1559     $cb->($_[0], $str, "$1");
1560 root 1.76 1
1561     }
1562     } else {
1563     $eol = quotemeta $eol unless ref $eol;
1564     $eol = qr|^(.*?)($eol)|s;
1565    
1566     sub {
1567     $_[0]{rbuf} =~ s/$eol// or return;
1568 elmex 1.1
1569 root 1.227 $cb->($_[0], "$1", "$2");
1570 root 1.76 1
1571     }
1572 root 1.8 }
1573 root 1.28 };
1574 elmex 1.1
1575 root 1.40 =item regex => $accept[, $reject[, $skip], $cb->($handle, $data)
1576 root 1.36
1577     Makes a regex match against the regex object C<$accept> and returns
1578 root 1.244 everything up to and including the match. All the usual regex variables
1579     ($1, %+ etc.) from the regex match are available in the callback.
1580 root 1.36
1581     Example: read a single line terminated by '\n'.
1582    
1583     $handle->push_read (regex => qr<\n>, sub { ... });
1584    
1585     If C<$reject> is given and not undef, then it determines when the data is
1586     to be rejected: it is matched against the data when the C<$accept> regex
1587     does not match and generates an C<EBADMSG> error when it matches. This is
1588     useful to quickly reject wrong data (to avoid waiting for a timeout or a
1589     receive buffer overflow).
1590    
1591     Example: expect a single decimal number followed by whitespace, reject
1592     anything else (not the use of an anchor).
1593    
1594     $handle->push_read (regex => qr<^[0-9]+\s>, qr<[^0-9]>, sub { ... });
1595    
1596     If C<$skip> is given and not C<undef>, then it will be matched against
1597     the receive buffer when neither C<$accept> nor C<$reject> match,
1598     and everything preceding and including the match will be accepted
1599     unconditionally. This is useful to skip large amounts of data that you
1600     know cannot be matched, so that the C<$accept> or C<$reject> regex do not
1601     have to start matching from the beginning. This is purely an optimisation
1602 root 1.198 and is usually worth it only when you expect more than a few kilobytes.
1603 root 1.36
1604     Example: expect a http header, which ends at C<\015\012\015\012>. Since we
1605 root 1.198 expect the header to be very large (it isn't in practice, but...), we use
1606 root 1.36 a skip regex to skip initial portions. The skip regex is tricky in that
1607     it only accepts something not ending in either \015 or \012, as these are
1608     required for the accept regex.
1609    
1610     $handle->push_read (regex =>
1611     qr<\015\012\015\012>,
1612     undef, # no reject
1613     qr<^.*[^\015\012]>,
1614     sub { ... });
1615    
1616     =cut
1617    
1618     register_read_type regex => sub {
1619     my ($self, $cb, $accept, $reject, $skip) = @_;
1620    
1621     my $data;
1622     my $rbuf = \$self->{rbuf};
1623    
1624     sub {
1625     # accept
1626     if ($$rbuf =~ $accept) {
1627     $data .= substr $$rbuf, 0, $+[0], "";
1628 root 1.220 $cb->($_[0], $data);
1629 root 1.36 return 1;
1630     }
1631    
1632     # reject
1633     if ($reject && $$rbuf =~ $reject) {
1634 root 1.255 $_[0]->error (Errno::EBADMSG);
1635 root 1.36 }
1636    
1637     # skip
1638     if ($skip && $$rbuf =~ $skip) {
1639     $data .= substr $$rbuf, 0, $+[0], "";
1640     }
1641    
1642     ()
1643     }
1644     };
1645    
1646 root 1.61 =item netstring => $cb->($handle, $string)
1647    
1648     A netstring (http://cr.yp.to/proto/netstrings.txt, this is not an endorsement).
1649    
1650     Throws an error with C<$!> set to EBADMSG on format violations.
1651    
1652     =cut
1653    
1654     register_read_type netstring => sub {
1655     my ($self, $cb) = @_;
1656    
1657     sub {
1658     unless ($_[0]{rbuf} =~ s/^(0|[1-9][0-9]*)://) {
1659     if ($_[0]{rbuf} =~ /[^0-9]/) {
1660 root 1.255 $_[0]->error (Errno::EBADMSG);
1661 root 1.61 }
1662     return;
1663     }
1664    
1665     my $len = $1;
1666    
1667 root 1.220 $_[0]->unshift_read (chunk => $len, sub {
1668 root 1.61 my $string = $_[1];
1669     $_[0]->unshift_read (chunk => 1, sub {
1670     if ($_[1] eq ",") {
1671     $cb->($_[0], $string);
1672     } else {
1673 root 1.255 $_[0]->error (Errno::EBADMSG);
1674 root 1.61 }
1675     });
1676     });
1677    
1678     1
1679     }
1680     };
1681    
1682     =item packstring => $format, $cb->($handle, $string)
1683    
1684     An octet string prefixed with an encoded length. The encoding C<$format>
1685     uses the same format as a Perl C<pack> format, but must specify a single
1686     integer only (only one of C<cCsSlLqQiInNvVjJw> is allowed, plus an
1687     optional C<!>, C<< < >> or C<< > >> modifier).
1688    
1689 root 1.96 For example, DNS over TCP uses a prefix of C<n> (2 octet network order),
1690     EPP uses a prefix of C<N> (4 octtes).
1691 root 1.61
1692     Example: read a block of data prefixed by its length in BER-encoded
1693     format (very efficient).
1694    
1695     $handle->push_read (packstring => "w", sub {
1696     my ($handle, $data) = @_;
1697     });
1698    
1699     =cut
1700    
1701     register_read_type packstring => sub {
1702     my ($self, $cb, $format) = @_;
1703    
1704     sub {
1705     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1706 root 1.76 defined (my $len = eval { unpack $format, $_[0]{rbuf} })
1707 root 1.61 or return;
1708    
1709 root 1.77 $format = length pack $format, $len;
1710 root 1.61
1711 root 1.77 # bypass unshift if we already have the remaining chunk
1712     if ($format + $len <= length $_[0]{rbuf}) {
1713     my $data = substr $_[0]{rbuf}, $format, $len;
1714     substr $_[0]{rbuf}, 0, $format + $len, "";
1715     $cb->($_[0], $data);
1716     } else {
1717     # remove prefix
1718     substr $_[0]{rbuf}, 0, $format, "";
1719    
1720     # read remaining chunk
1721     $_[0]->unshift_read (chunk => $len, $cb);
1722     }
1723 root 1.61
1724     1
1725     }
1726     };
1727    
1728 root 1.40 =item json => $cb->($handle, $hash_or_arrayref)
1729    
1730 root 1.110 Reads a JSON object or array, decodes it and passes it to the
1731     callback. When a parse error occurs, an C<EBADMSG> error will be raised.
1732 root 1.40
1733 root 1.240 If a C<json> object was passed to the constructor, then that will be
1734     used for the final decode, otherwise it will create a L<JSON::XS> or
1735     L<JSON::PP> coder object expecting UTF-8.
1736 root 1.40
1737     This read type uses the incremental parser available with JSON version
1738 root 1.240 2.09 (and JSON::XS version 2.2) and above.
1739 root 1.40
1740     Since JSON texts are fully self-delimiting, the C<json> read and write
1741 root 1.41 types are an ideal simple RPC protocol: just exchange JSON datagrams. See
1742     the C<json> write type description, above, for an actual example.
1743 root 1.40
1744     =cut
1745    
1746     register_read_type json => sub {
1747 root 1.63 my ($self, $cb) = @_;
1748 root 1.40
1749 root 1.179 my $json = $self->{json} ||= json_coder;
1750 root 1.40
1751     my $data;
1752    
1753     sub {
1754 root 1.220 my $ref = eval { $json->incr_parse ($_[0]{rbuf}) };
1755 root 1.110
1756 root 1.113 if ($ref) {
1757 root 1.220 $_[0]{rbuf} = $json->incr_text;
1758 root 1.113 $json->incr_text = "";
1759 root 1.220 $cb->($_[0], $ref);
1760 root 1.110
1761     1
1762 root 1.113 } elsif ($@) {
1763 root 1.111 # error case
1764 root 1.110 $json->incr_skip;
1765 root 1.40
1766 root 1.220 $_[0]{rbuf} = $json->incr_text;
1767 root 1.40 $json->incr_text = "";
1768    
1769 root 1.255 $_[0]->error (Errno::EBADMSG);
1770 root 1.114
1771 root 1.113 ()
1772     } else {
1773 root 1.220 $_[0]{rbuf} = "";
1774 root 1.114
1775 root 1.113 ()
1776     }
1777 root 1.40 }
1778     };
1779    
1780 root 1.238 =item cbor => $cb->($handle, $scalar)
1781    
1782     Reads a CBOR value, decodes it and passes it to the callback. When a parse
1783     error occurs, an C<EBADMSG> error will be raised.
1784    
1785     If a L<CBOR::XS> object was passed to the constructor, then that will be
1786     used for the final decode, otherwise it will create a CBOR coder without
1787     enabling any options.
1788    
1789     You have to provide a dependency to L<CBOR::XS> on your own: this module
1790     will load the L<CBOR::XS> module, but AnyEvent does not depend on it
1791     itself.
1792    
1793     Since CBOR values are fully self-delimiting, the C<cbor> read and write
1794     types are an ideal simple RPC protocol: just exchange CBOR datagrams. See
1795     the C<cbor> write type description, above, for an actual example.
1796    
1797     =cut
1798    
1799     register_read_type cbor => sub {
1800     my ($self, $cb) = @_;
1801    
1802     my $cbor = $self->{cbor} ||= cbor_coder;
1803    
1804     my $data;
1805    
1806     sub {
1807     my (@value) = eval { $cbor->incr_parse ($_[0]{rbuf}) };
1808    
1809     if (@value) {
1810     $cb->($_[0], @value);
1811    
1812     1
1813     } elsif ($@) {
1814     # error case
1815     $cbor->incr_reset;
1816    
1817 root 1.255 $_[0]->error (Errno::EBADMSG);
1818 root 1.238
1819     ()
1820     } else {
1821     ()
1822     }
1823     }
1824     };
1825    
1826 root 1.63 =item storable => $cb->($handle, $ref)
1827    
1828     Deserialises a L<Storable> frozen representation as written by the
1829     C<storable> write type (BER-encoded length prefix followed by nfreeze'd
1830     data).
1831    
1832     Raises C<EBADMSG> error if the data could not be decoded.
1833    
1834     =cut
1835    
1836     register_read_type storable => sub {
1837     my ($self, $cb) = @_;
1838    
1839 root 1.224 require Storable unless $Storable::VERSION;
1840 root 1.63
1841     sub {
1842     # when we can use 5.10 we can use ".", but for 5.8 we use the re-pack method
1843 root 1.76 defined (my $len = eval { unpack "w", $_[0]{rbuf} })
1844 root 1.63 or return;
1845    
1846 root 1.77 my $format = length pack "w", $len;
1847 root 1.63
1848 root 1.77 # bypass unshift if we already have the remaining chunk
1849     if ($format + $len <= length $_[0]{rbuf}) {
1850     my $data = substr $_[0]{rbuf}, $format, $len;
1851     substr $_[0]{rbuf}, 0, $format + $len, "";
1852 root 1.232
1853     eval { $cb->($_[0], Storable::thaw ($data)); 1 }
1854 root 1.255 or return $_[0]->error (Errno::EBADMSG);
1855 root 1.77 } else {
1856     # remove prefix
1857     substr $_[0]{rbuf}, 0, $format, "";
1858    
1859     # read remaining chunk
1860     $_[0]->unshift_read (chunk => $len, sub {
1861 root 1.232 eval { $cb->($_[0], Storable::thaw ($_[1])); 1 }
1862 root 1.255 or $_[0]->error (Errno::EBADMSG);
1863 root 1.77 });
1864     }
1865    
1866     1
1867 root 1.63 }
1868     };
1869    
1870 root 1.236 =item tls_detect => $cb->($handle, $detect, $major, $minor)
1871    
1872     Checks the input stream for a valid SSL or TLS handshake TLSPaintext
1873     record without consuming anything. Only SSL version 3 or higher
1874     is handled, up to the fictituous protocol 4.x (but both SSL3+ and
1875     SSL2-compatible framing is supported).
1876    
1877     If it detects that the input data is likely TLS, it calls the callback
1878     with a true value for C<$detect> and the (on-wire) TLS version as second
1879 root 1.251 and third argument (C<$major> is C<3>, and C<$minor> is 0..4 for SSL
1880     3.0, TLS 1.0, 1.1, 1.2 and 1.3, respectively). If it detects the input
1881     to be definitely not TLS, it calls the callback with a false value for
1882 root 1.236 C<$detect>.
1883    
1884     The callback could use this information to decide whether or not to start
1885     TLS negotiation.
1886    
1887     In all cases the data read so far is passed to the following read
1888     handlers.
1889    
1890     Usually you want to use the C<tls_autostart> read type instead.
1891    
1892     If you want to design a protocol that works in the presence of TLS
1893     dtection, make sure that any non-TLS data doesn't start with the octet 22
1894     (ASCII SYN, 16 hex) or 128-255 (i.e. highest bit set). The checks this
1895     read type does are a bit more strict, but might losen in the future to
1896     accomodate protocol changes.
1897    
1898     This read type does not rely on L<AnyEvent::TLS> (and thus, not on
1899     L<Net::SSLeay>).
1900    
1901 root 1.247 =item tls_autostart => [$tls_ctx, ]$tls
1902 root 1.236
1903     Tries to detect a valid SSL or TLS handshake. If one is detected, it tries
1904     to start tls by calling C<starttls> with the given arguments.
1905    
1906 root 1.254 In practice, C<$tls> must be C<accept>, or a Net::SSLeay context that has
1907 root 1.236 been configured to accept, as servers do not normally send a handshake on
1908     their own and ths cannot be detected in this way.
1909    
1910     See C<tls_detect> above for more details.
1911    
1912     Example: give the client a chance to start TLS before accepting a text
1913     line.
1914    
1915 root 1.247 $hdl->push_read (tls_autostart => "accept");
1916 root 1.236 $hdl->push_read (line => sub {
1917     print "received ", ($_[0]{tls} ? "encrypted" : "cleartext"), " <$_[1]>\n";
1918     });
1919    
1920     =cut
1921    
1922     register_read_type tls_detect => sub {
1923     my ($self, $cb) = @_;
1924    
1925     sub {
1926     # this regex matches a full or partial tls record
1927     if (
1928     # ssl3+: type(22=handshake) major(=3) minor(any) length_hi
1929     $self->{rbuf} =~ /^(?:\z| \x16 (\z| [\x03\x04] (?:\z| . (?:\z| [\x00-\x40] ))))/xs
1930     # ssl2 comapatible: len_hi len_lo type(1) major minor dummy(forlength)
1931     or $self->{rbuf} =~ /^(?:\z| [\x80-\xff] (?:\z| . (?:\z| \x01 (\z| [\x03\x04] (?:\z| . (?:\z| . ))))))/xs
1932     ) {
1933     return if 3 != length $1; # partial match, can't decide yet
1934    
1935     # full match, valid TLS record
1936     my ($major, $minor) = unpack "CC", $1;
1937 root 1.250 $cb->($self, "accept", $major, $minor);
1938 root 1.236 } else {
1939     # mismatch == guaranteed not TLS
1940     $cb->($self, undef);
1941     }
1942    
1943     1
1944     }
1945     };
1946    
1947     register_read_type tls_autostart => sub {
1948     my ($self, @tls) = @_;
1949    
1950     $RH{tls_detect}($self, sub {
1951     return unless $_[1];
1952     $_[0]->starttls (@tls);
1953     })
1954     };
1955    
1956 root 1.28 =back
1957    
1958 root 1.185 =item custom read types - Package::anyevent_read_type $handle, $cb, @args
1959 root 1.30
1960 root 1.185 Instead of one of the predefined types, you can also specify the name
1961     of a package. AnyEvent will try to load the package and then expects to
1962     find a function named C<anyevent_read_type> inside. If it isn't found, it
1963     progressively tries to load the parent package until it either finds the
1964     function (good) or runs out of packages (bad).
1965    
1966     Whenever this type is used, C<push_read> will invoke the function with the
1967     handle object, the original callback and the remaining arguments.
1968    
1969     The function is supposed to return a callback (usually a closure) that
1970     works as a plain read callback (see C<< ->push_read ($cb) >>), so you can
1971     mentally treat the function as a "configurable read type to read callback"
1972     converter.
1973    
1974     It should invoke the original callback when it is done reading (remember
1975     to pass C<$handle> as first argument as all other callbacks do that,
1976     although there is no strict requirement on this).
1977 root 1.30
1978 root 1.185 For examples, see the source of this module (F<perldoc -m
1979     AnyEvent::Handle>, search for C<register_read_type>)).
1980 root 1.30
1981 root 1.10 =item $handle->stop_read
1982    
1983     =item $handle->start_read
1984    
1985 root 1.18 In rare cases you actually do not want to read anything from the
1986 root 1.58 socket. In this case you can call C<stop_read>. Neither C<on_read> nor
1987 root 1.22 any queued callbacks will be executed then. To start reading again, call
1988 root 1.10 C<start_read>.
1989    
1990 root 1.56 Note that AnyEvent::Handle will automatically C<start_read> for you when
1991     you change the C<on_read> callback or push/unshift a read callback, and it
1992     will automatically C<stop_read> for you when neither C<on_read> is set nor
1993     there are any read requests in the queue.
1994    
1995 root 1.213 In older versions of this module (<= 5.3), these methods had no effect,
1996     as TLS does not support half-duplex connections. In current versions they
1997     work as expected, as this behaviour is required to avoid certain resource
1998     attacks, where the program would be forced to read (and buffer) arbitrary
1999     amounts of data before being able to send some data. The drawback is that
2000     some readings of the the SSL/TLS specifications basically require this
2001     attack to be working, as SSL/TLS implementations might stall sending data
2002     during a rehandshake.
2003    
2004     As a guideline, during the initial handshake, you should not stop reading,
2005 root 1.226 and as a client, it might cause problems, depending on your application.
2006 root 1.93
2007 root 1.10 =cut
2008    
2009     sub stop_read {
2010     my ($self) = @_;
2011 elmex 1.1
2012 root 1.213 delete $self->{_rw};
2013 root 1.8 }
2014 elmex 1.1
2015 root 1.10 sub start_read {
2016     my ($self) = @_;
2017    
2018 root 1.192 unless ($self->{_rw} || $self->{_eof} || !$self->{fh}) {
2019 root 1.10 Scalar::Util::weaken $self;
2020    
2021 root 1.175 $self->{_rw} = AE::io $self->{fh}, 0, sub {
2022 root 1.93 my $rbuf = \($self->{tls} ? my $buf : $self->{rbuf});
2023 root 1.203 my $len = sysread $self->{fh}, $$rbuf, $self->{read_size}, length $$rbuf;
2024 root 1.10
2025     if ($len > 0) {
2026 root 1.176 $self->{_activity} = $self->{_ractivity} = AE::now;
2027 root 1.43
2028 root 1.93 if ($self->{tls}) {
2029     Net::SSLeay::BIO_write ($self->{_rbio}, $$rbuf);
2030 root 1.97
2031 root 1.93 &_dotls ($self);
2032     } else {
2033 root 1.159 $self->_drain_rbuf;
2034 root 1.93 }
2035 root 1.10
2036 root 1.203 if ($len == $self->{read_size}) {
2037     $self->{read_size} *= 2;
2038     $self->{read_size} = $self->{max_read_size} || MAX_READ_SIZE
2039     if $self->{read_size} > ($self->{max_read_size} || MAX_READ_SIZE);
2040     }
2041    
2042 root 1.10 } elsif (defined $len) {
2043 root 1.38 delete $self->{_rw};
2044     $self->{_eof} = 1;
2045 root 1.159 $self->_drain_rbuf;
2046 root 1.10
2047 root 1.243 } elsif ($! != EAGAIN && $! != EINTR && $! != EWOULDBLOCK && $! != WSAEWOULDBLOCK) {
2048 root 1.255 return $self->error ($!, 1);
2049 root 1.10 }
2050 root 1.175 };
2051 root 1.10 }
2052 elmex 1.1 }
2053    
2054 root 1.133 our $ERROR_SYSCALL;
2055     our $ERROR_WANT_READ;
2056    
2057     sub _tls_error {
2058     my ($self, $err) = @_;
2059    
2060 root 1.255 return $self->error ($!, 1)
2061 root 1.133 if $err == Net::SSLeay::ERROR_SYSCALL ();
2062    
2063 root 1.233 my $err = Net::SSLeay::ERR_error_string (Net::SSLeay::ERR_get_error ());
2064 root 1.137
2065     # reduce error string to look less scary
2066     $err =~ s/^error:[0-9a-fA-F]{8}:[^:]+:([^:]+):/\L$1: /;
2067    
2068 root 1.143 if ($self->{_on_starttls}) {
2069     (delete $self->{_on_starttls})->($self, undef, $err);
2070     &_freetls;
2071     } else {
2072     &_freetls;
2073 root 1.255 $self->error (Errno::EPROTO, 1, $err);
2074 root 1.143 }
2075 root 1.133 }
2076    
2077 root 1.97 # poll the write BIO and send the data if applicable
2078 root 1.133 # also decode read data if possible
2079 root 1.253 # this is basically our TLS state machine
2080 root 1.133 # more efficient implementations are possible with openssl,
2081     # but not with the buggy and incomplete Net::SSLeay.
2082 root 1.19 sub _dotls {
2083     my ($self) = @_;
2084    
2085 root 1.97 my $tmp;
2086 root 1.56
2087 root 1.239 while (length $self->{_tls_wbuf}) {
2088     if (($tmp = Net::SSLeay::write ($self->{tls}, $self->{_tls_wbuf})) <= 0) {
2089     $tmp = Net::SSLeay::get_error ($self->{tls}, $tmp);
2090    
2091     return $self->_tls_error ($tmp)
2092     if $tmp != $ERROR_WANT_READ
2093     && ($tmp != $ERROR_SYSCALL || $!);
2094    
2095     last;
2096 root 1.22 }
2097 root 1.133
2098 root 1.239 substr $self->{_tls_wbuf}, 0, $tmp, "";
2099 root 1.19 }
2100    
2101 root 1.97 while (defined ($tmp = Net::SSLeay::read ($self->{tls}))) {
2102     unless (length $tmp) {
2103 root 1.143 $self->{_on_starttls}
2104     and (delete $self->{_on_starttls})->($self, undef, "EOF during handshake"); # ???
2105 root 1.92 &_freetls;
2106 root 1.143
2107 root 1.142 if ($self->{on_stoptls}) {
2108     $self->{on_stoptls}($self);
2109     return;
2110     } else {
2111     # let's treat SSL-eof as we treat normal EOF
2112     delete $self->{_rw};
2113     $self->{_eof} = 1;
2114     }
2115 root 1.56 }
2116 root 1.91
2117 root 1.116 $self->{_tls_rbuf} .= $tmp;
2118 root 1.159 $self->_drain_rbuf;
2119 root 1.92 $self->{tls} or return; # tls session might have gone away in callback
2120 root 1.23 }
2121    
2122 root 1.239 $tmp = Net::SSLeay::get_error ($self->{tls}, -1); # -1 is not neccessarily correct, but Net::SSLeay doesn't tell us
2123 root 1.133 return $self->_tls_error ($tmp)
2124     if $tmp != $ERROR_WANT_READ
2125 root 1.142 && ($tmp != $ERROR_SYSCALL || $!);
2126 root 1.91
2127 root 1.97 while (length ($tmp = Net::SSLeay::BIO_read ($self->{_wbio}))) {
2128     $self->{wbuf} .= $tmp;
2129 root 1.91 $self->_drain_wbuf;
2130 root 1.192 $self->{tls} or return; # tls session might have gone away in callback
2131 root 1.91 }
2132 root 1.142
2133     $self->{_on_starttls}
2134     and Net::SSLeay::state ($self->{tls}) == Net::SSLeay::ST_OK ()
2135 root 1.143 and (delete $self->{_on_starttls})->($self, 1, "TLS/SSL connection established");
2136 root 1.19 }
2137    
2138 root 1.25 =item $handle->starttls ($tls[, $tls_ctx])
2139    
2140     Instead of starting TLS negotiation immediately when the AnyEvent::Handle
2141     object is created, you can also do that at a later time by calling
2142 root 1.234 C<starttls>. See the C<tls> constructor argument for general info.
2143 root 1.25
2144 root 1.157 Starting TLS is currently an asynchronous operation - when you push some
2145     write data and then call C<< ->starttls >> then TLS negotiation will start
2146 root 1.234 immediately, after which the queued write data is then sent. This might
2147     change in future versions, so best make sure you have no outstanding write
2148     data when calling this method.
2149 root 1.157
2150 root 1.25 The first argument is the same as the C<tls> constructor argument (either
2151     C<"connect">, C<"accept"> or an existing Net::SSLeay object).
2152    
2153 root 1.131 The second argument is the optional C<AnyEvent::TLS> object that is used
2154     when AnyEvent::Handle has to create its own TLS connection object, or
2155     a hash reference with C<< key => value >> pairs that will be used to
2156     construct a new context.
2157    
2158     The TLS connection object will end up in C<< $handle->{tls} >>, the TLS
2159     context in C<< $handle->{tls_ctx} >> after this call and can be used or
2160     changed to your liking. Note that the handshake might have already started
2161     when this function returns.
2162 root 1.38
2163 root 1.160 Due to bugs in OpenSSL, it might or might not be possible to do multiple
2164 root 1.198 handshakes on the same stream. It is best to not attempt to use the
2165     stream after stopping TLS.
2166 root 1.92
2167 root 1.193 This method may invoke callbacks (and therefore the handle might be
2168     destroyed after it returns).
2169    
2170 root 1.25 =cut
2171    
2172 root 1.137 our %TLS_CACHE; #TODO not yet documented, should we?
2173    
2174 root 1.19 sub starttls {
2175 root 1.160 my ($self, $tls, $ctx) = @_;
2176    
2177     Carp::croak "It is an error to call starttls on an AnyEvent::Handle object while TLS is already active, caught"
2178     if $self->{tls};
2179    
2180 root 1.234 unless (defined $AnyEvent::TLS::VERSION) {
2181     eval {
2182     require Net::SSLeay;
2183     require AnyEvent::TLS;
2184     1
2185 root 1.255 } or return $self->error (Errno::EPROTO, 1, "TLS support not available on this system");
2186 root 1.234 }
2187    
2188 root 1.160 $self->{tls} = $tls;
2189     $self->{tls_ctx} = $ctx if @_ > 2;
2190    
2191     return unless $self->{fh};
2192 root 1.19
2193 root 1.142 $ERROR_SYSCALL = Net::SSLeay::ERROR_SYSCALL ();
2194     $ERROR_WANT_READ = Net::SSLeay::ERROR_WANT_READ ();
2195 root 1.133
2196 root 1.180 $tls = delete $self->{tls};
2197 root 1.160 $ctx = $self->{tls_ctx};
2198 root 1.131
2199 root 1.157 local $Carp::CarpLevel = 1; # skip ourselves when creating a new context or session
2200    
2201 root 1.131 if ("HASH" eq ref $ctx) {
2202 root 1.137 if ($ctx->{cache}) {
2203     my $key = $ctx+0;
2204     $ctx = $TLS_CACHE{$key} ||= new AnyEvent::TLS %$ctx;
2205     } else {
2206     $ctx = new AnyEvent::TLS %$ctx;
2207     }
2208 root 1.131 }
2209 root 1.92
2210 root 1.131 $self->{tls_ctx} = $ctx || TLS_CTX ();
2211 root 1.160 $self->{tls} = $tls = $self->{tls_ctx}->_get_session ($tls, $self, $self->{peername});
2212 root 1.19
2213 root 1.21 # basically, this is deep magic (because SSL_read should have the same issues)
2214     # but the openssl maintainers basically said: "trust us, it just works".
2215     # (unfortunately, we have to hardcode constants because the abysmally misdesigned
2216 root 1.249 # and mismaintained ssleay-module didn't offer them for a decade or so).
2217 root 1.27 # http://www.mail-archive.com/openssl-dev@openssl.org/msg22420.html
2218 root 1.87 #
2219     # in short: this is a mess.
2220 root 1.249 #
2221 root 1.93 # note that we do not try to keep the length constant between writes as we are required to do.
2222 root 1.87 # we assume that most (but not all) of this insanity only applies to non-blocking cases,
2223 root 1.93 # and we drive openssl fully in blocking mode here. Or maybe we don't - openssl seems to
2224     # have identity issues in that area.
2225 root 1.249 # Net::SSLeay::set_mode ($ssl,
2226 root 1.131 # (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ENABLE_PARTIAL_WRITE () } || 1)
2227     # | (eval { local $SIG{__DIE__}; Net::SSLeay::MODE_ACCEPT_MOVING_WRITE_BUFFER () } || 2));
2228 root 1.249 Net::SSLeay::set_mode ($tls, 1|2);
2229 root 1.21
2230 root 1.38 $self->{_rbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
2231     $self->{_wbio} = Net::SSLeay::BIO_new (Net::SSLeay::BIO_s_mem ());
2232 root 1.19
2233 root 1.219 Net::SSLeay::BIO_write ($self->{_rbio}, $self->{rbuf});
2234     $self->{rbuf} = "";
2235 root 1.172
2236 root 1.160 Net::SSLeay::set_bio ($tls, $self->{_rbio}, $self->{_wbio});
2237 root 1.19
2238 root 1.142 $self->{_on_starttls} = sub { $_[0]{on_starttls}(@_) }
2239 root 1.143 if $self->{on_starttls};
2240 root 1.142
2241 root 1.93 &_dotls; # need to trigger the initial handshake
2242     $self->start_read; # make sure we actually do read
2243 root 1.19 }
2244    
2245 root 1.25 =item $handle->stoptls
2246    
2247 root 1.92 Shuts down the SSL connection - this makes a proper EOF handshake by
2248     sending a close notify to the other side, but since OpenSSL doesn't
2249 root 1.192 support non-blocking shut downs, it is not guaranteed that you can re-use
2250 root 1.160 the stream afterwards.
2251 root 1.25
2252 root 1.193 This method may invoke callbacks (and therefore the handle might be
2253     destroyed after it returns).
2254    
2255 root 1.25 =cut
2256    
2257     sub stoptls {
2258     my ($self) = @_;
2259    
2260 root 1.192 if ($self->{tls} && $self->{fh}) {
2261 root 1.94 Net::SSLeay::shutdown ($self->{tls});
2262 root 1.92
2263     &_dotls;
2264    
2265 root 1.142 # # we don't give a shit. no, we do, but we can't. no...#d#
2266     # # we, we... have to use openssl :/#d#
2267     # &_freetls;#d#
2268 root 1.92 }
2269     }
2270    
2271     sub _freetls {
2272     my ($self) = @_;
2273    
2274     return unless $self->{tls};
2275 root 1.38
2276 root 1.160 $self->{tls_ctx}->_put_session (delete $self->{tls})
2277 root 1.171 if $self->{tls} > 0;
2278 root 1.252
2279 root 1.143 delete @$self{qw(_rbio _wbio _tls_wbuf _on_starttls)};
2280 root 1.25 }
2281    
2282 root 1.216 =item $handle->resettls
2283    
2284     This rarely-used method simply resets and TLS state on the handle, usually
2285     causing data loss.
2286    
2287     One case where it may be useful is when you want to skip over the data in
2288     the stream but you are not interested in interpreting it, so data loss is
2289     no concern.
2290    
2291     =cut
2292    
2293     *resettls = \&_freetls;
2294    
2295 root 1.19 sub DESTROY {
2296 root 1.120 my ($self) = @_;
2297 root 1.19
2298 root 1.92 &_freetls;
2299 root 1.62
2300     my $linger = exists $self->{linger} ? $self->{linger} : 3600;
2301    
2302 root 1.156 if ($linger && length $self->{wbuf} && $self->{fh}) {
2303 root 1.62 my $fh = delete $self->{fh};
2304     my $wbuf = delete $self->{wbuf};
2305    
2306     my @linger;
2307    
2308 root 1.175 push @linger, AE::io $fh, 1, sub {
2309 root 1.62 my $len = syswrite $fh, $wbuf, length $wbuf;
2310    
2311     if ($len > 0) {
2312     substr $wbuf, 0, $len, "";
2313 root 1.243 } elsif (defined $len || ($! != EAGAIN && $! != EINTR && $! != EWOULDBLOCK && $! != WSAEWOULDBLOCK)) {
2314 root 1.62 @linger = (); # end
2315     }
2316 root 1.175 };
2317     push @linger, AE::timer $linger, 0, sub {
2318 root 1.62 @linger = ();
2319 root 1.175 };
2320 root 1.62 }
2321 root 1.19 }
2322    
2323 root 1.99 =item $handle->destroy
2324    
2325 root 1.101 Shuts down the handle object as much as possible - this call ensures that
2326 root 1.141 no further callbacks will be invoked and as many resources as possible
2327 root 1.165 will be freed. Any method you will call on the handle object after
2328     destroying it in this way will be silently ignored (and it will return the
2329     empty list).
2330 root 1.99
2331 root 1.101 Normally, you can just "forget" any references to an AnyEvent::Handle
2332     object and it will simply shut down. This works in fatal error and EOF
2333     callbacks, as well as code outside. It does I<NOT> work in a read or write
2334     callback, so when you want to destroy the AnyEvent::Handle object from
2335     within such an callback. You I<MUST> call C<< ->destroy >> explicitly in
2336     that case.
2337    
2338 root 1.149 Destroying the handle object in this way has the advantage that callbacks
2339     will be removed as well, so if those are the only reference holders (as
2340     is common), then one doesn't need to do anything special to break any
2341     reference cycles.
2342    
2343 root 1.99 The handle might still linger in the background and write out remaining
2344     data, as specified by the C<linger> option, however.
2345    
2346     =cut
2347    
2348     sub destroy {
2349     my ($self) = @_;
2350    
2351     $self->DESTROY;
2352     %$self = ();
2353 root 1.164 bless $self, "AnyEvent::Handle::destroyed";
2354     }
2355    
2356 root 1.165 sub AnyEvent::Handle::destroyed::AUTOLOAD {
2357     #nop
2358 root 1.99 }
2359    
2360 root 1.192 =item $handle->destroyed
2361    
2362     Returns false as long as the handle hasn't been destroyed by a call to C<<
2363     ->destroy >>, true otherwise.
2364    
2365     Can be useful to decide whether the handle is still valid after some
2366     callback possibly destroyed the handle. For example, C<< ->push_write >>,
2367     C<< ->starttls >> and other methods can call user callbacks, which in turn
2368     can destroy the handle, so work can be avoided by checking sometimes:
2369    
2370     $hdl->starttls ("accept");
2371     return if $hdl->destroyed;
2372     $hdl->push_write (...
2373    
2374     Note that the call to C<push_write> will silently be ignored if the handle
2375     has been destroyed, so often you can just ignore the possibility of the
2376     handle being destroyed.
2377    
2378     =cut
2379    
2380     sub destroyed { 0 }
2381     sub AnyEvent::Handle::destroyed::destroyed { 1 }
2382    
2383 root 1.19 =item AnyEvent::Handle::TLS_CTX
2384    
2385 root 1.131 This function creates and returns the AnyEvent::TLS object used by default
2386     for TLS mode.
2387 root 1.19
2388 root 1.131 The context is created by calling L<AnyEvent::TLS> without any arguments.
2389 root 1.19
2390     =cut
2391    
2392     our $TLS_CTX;
2393    
2394     sub TLS_CTX() {
2395 root 1.131 $TLS_CTX ||= do {
2396     require AnyEvent::TLS;
2397 root 1.19
2398 root 1.131 new AnyEvent::TLS
2399 root 1.19 }
2400     }
2401    
2402 elmex 1.1 =back
2403    
2404 root 1.95
2405     =head1 NONFREQUENTLY ASKED QUESTIONS
2406    
2407     =over 4
2408    
2409 root 1.101 =item I C<undef> the AnyEvent::Handle reference inside my callback and
2410     still get further invocations!
2411    
2412     That's because AnyEvent::Handle keeps a reference to itself when handling
2413     read or write callbacks.
2414    
2415     It is only safe to "forget" the reference inside EOF or error callbacks,
2416     from within all other callbacks, you need to explicitly call the C<<
2417     ->destroy >> method.
2418    
2419 root 1.208 =item Why is my C<on_eof> callback never called?
2420    
2421     Probably because your C<on_error> callback is being called instead: When
2422     you have outstanding requests in your read queue, then an EOF is
2423     considered an error as you clearly expected some data.
2424    
2425     To avoid this, make sure you have an empty read queue whenever your handle
2426 root 1.223 is supposed to be "idle" (i.e. connection closes are O.K.). You can set
2427 root 1.208 an C<on_read> handler that simply pushes the first read requests in the
2428     queue.
2429    
2430     See also the next question, which explains this in a bit more detail.
2431    
2432     =item How can I serve requests in a loop?
2433    
2434     Most protocols consist of some setup phase (authentication for example)
2435     followed by a request handling phase, where the server waits for requests
2436     and handles them, in a loop.
2437    
2438     There are two important variants: The first (traditional, better) variant
2439     handles requests until the server gets some QUIT command, causing it to
2440     close the connection first (highly desirable for a busy TCP server). A
2441     client dropping the connection is an error, which means this variant can
2442     detect an unexpected detection close.
2443    
2444 root 1.235 To handle this case, always make sure you have a non-empty read queue, by
2445 root 1.208 pushing the "read request start" handler on it:
2446    
2447     # we assume a request starts with a single line
2448     my @start_request; @start_request = (line => sub {
2449     my ($hdl, $line) = @_;
2450    
2451     ... handle request
2452    
2453     # push next request read, possibly from a nested callback
2454     $hdl->push_read (@start_request);
2455     });
2456    
2457     # auth done, now go into request handling loop
2458     # now push the first @start_request
2459     $hdl->push_read (@start_request);
2460    
2461     By always having an outstanding C<push_read>, the handle always expects
2462     some data and raises the C<EPIPE> error when the connction is dropped
2463     unexpectedly.
2464    
2465     The second variant is a protocol where the client can drop the connection
2466     at any time. For TCP, this means that the server machine may run out of
2467 root 1.223 sockets easier, and in general, it means you cannot distinguish a protocl
2468 root 1.208 failure/client crash from a normal connection close. Nevertheless, these
2469     kinds of protocols are common (and sometimes even the best solution to the
2470     problem).
2471    
2472     Having an outstanding read request at all times is possible if you ignore
2473     C<EPIPE> errors, but this doesn't help with when the client drops the
2474     connection during a request, which would still be an error.
2475    
2476     A better solution is to push the initial request read in an C<on_read>
2477     callback. This avoids an error, as when the server doesn't expect data
2478     (i.e. is idly waiting for the next request, an EOF will not raise an
2479     error, but simply result in an C<on_eof> callback. It is also a bit slower
2480     and simpler:
2481    
2482     # auth done, now go into request handling loop
2483     $hdl->on_read (sub {
2484     my ($hdl) = @_;
2485    
2486     # called each time we receive data but the read queue is empty
2487     # simply start read the request
2488    
2489     $hdl->push_read (line => sub {
2490     my ($hdl, $line) = @_;
2491    
2492     ... handle request
2493    
2494     # do nothing special when the request has been handled, just
2495     # let the request queue go empty.
2496     });
2497     });
2498    
2499 root 1.101 =item I get different callback invocations in TLS mode/Why can't I pause
2500     reading?
2501    
2502     Unlike, say, TCP, TLS connections do not consist of two independent
2503 root 1.198 communication channels, one for each direction. Or put differently, the
2504 root 1.101 read and write directions are not independent of each other: you cannot
2505     write data unless you are also prepared to read, and vice versa.
2506    
2507 root 1.198 This means that, in TLS mode, you might get C<on_error> or C<on_eof>
2508 root 1.101 callback invocations when you are not expecting any read data - the reason
2509     is that AnyEvent::Handle always reads in TLS mode.
2510    
2511     During the connection, you have to make sure that you always have a
2512     non-empty read-queue, or an C<on_read> watcher. At the end of the
2513     connection (or when you no longer want to use it) you can call the
2514     C<destroy> method.
2515    
2516 root 1.95 =item How do I read data until the other side closes the connection?
2517    
2518 root 1.96 If you just want to read your data into a perl scalar, the easiest way
2519     to achieve this is by setting an C<on_read> callback that does nothing,
2520     clearing the C<on_eof> callback and in the C<on_error> callback, the data
2521     will be in C<$_[0]{rbuf}>:
2522 root 1.95
2523     $handle->on_read (sub { });
2524     $handle->on_eof (undef);
2525     $handle->on_error (sub {
2526     my $data = delete $_[0]{rbuf};
2527     });
2528    
2529 root 1.219 Note that this example removes the C<rbuf> member from the handle object,
2530     which is not normally allowed by the API. It is expressly permitted in
2531     this case only, as the handle object needs to be destroyed afterwards.
2532    
2533 root 1.95 The reason to use C<on_error> is that TCP connections, due to latencies
2534     and packets loss, might get closed quite violently with an error, when in
2535 root 1.198 fact all data has been received.
2536 root 1.95
2537 root 1.101 It is usually better to use acknowledgements when transferring data,
2538 root 1.95 to make sure the other side hasn't just died and you got the data
2539     intact. This is also one reason why so many internet protocols have an
2540     explicit QUIT command.
2541    
2542 root 1.96 =item I don't want to destroy the handle too early - how do I wait until
2543     all data has been written?
2544 root 1.95
2545     After writing your last bits of data, set the C<on_drain> callback
2546     and destroy the handle in there - with the default setting of
2547     C<low_water_mark> this will be called precisely when all data has been
2548     written to the socket:
2549    
2550     $handle->push_write (...);
2551     $handle->on_drain (sub {
2552 root 1.231 AE::log debug => "All data submitted to the kernel.";
2553 root 1.95 undef $handle;
2554     });
2555    
2556 root 1.143 If you just want to queue some data and then signal EOF to the other side,
2557     consider using C<< ->push_shutdown >> instead.
2558    
2559     =item I want to contact a TLS/SSL server, I don't care about security.
2560    
2561     If your TLS server is a pure TLS server (e.g. HTTPS) that only speaks TLS,
2562 root 1.198 connect to it and then create the AnyEvent::Handle with the C<tls>
2563 root 1.143 parameter:
2564    
2565 root 1.144 tcp_connect $host, $port, sub {
2566     my ($fh) = @_;
2567 root 1.143
2568 root 1.144 my $handle = new AnyEvent::Handle
2569     fh => $fh,
2570     tls => "connect",
2571     on_error => sub { ... };
2572    
2573     $handle->push_write (...);
2574     };
2575 root 1.143
2576     =item I want to contact a TLS/SSL server, I do care about security.
2577    
2578 root 1.144 Then you should additionally enable certificate verification, including
2579     peername verification, if the protocol you use supports it (see
2580     L<AnyEvent::TLS>, C<verify_peername>).
2581    
2582     E.g. for HTTPS:
2583    
2584     tcp_connect $host, $port, sub {
2585     my ($fh) = @_;
2586    
2587     my $handle = new AnyEvent::Handle
2588     fh => $fh,
2589     peername => $host,
2590     tls => "connect",
2591     tls_ctx => { verify => 1, verify_peername => "https" },
2592     ...
2593    
2594     Note that you must specify the hostname you connected to (or whatever
2595     "peername" the protocol needs) as the C<peername> argument, otherwise no
2596     peername verification will be done.
2597    
2598     The above will use the system-dependent default set of trusted CA
2599     certificates. If you want to check against a specific CA, add the
2600     C<ca_file> (or C<ca_cert>) arguments to C<tls_ctx>:
2601    
2602     tls_ctx => {
2603     verify => 1,
2604     verify_peername => "https",
2605     ca_file => "my-ca-cert.pem",
2606     },
2607    
2608     =item I want to create a TLS/SSL server, how do I do that?
2609    
2610     Well, you first need to get a server certificate and key. You have
2611     three options: a) ask a CA (buy one, use cacert.org etc.) b) create a
2612     self-signed certificate (cheap. check the search engine of your choice,
2613     there are many tutorials on the net) or c) make your own CA (tinyca2 is a
2614     nice program for that purpose).
2615    
2616     Then create a file with your private key (in PEM format, see
2617     L<AnyEvent::TLS>), followed by the certificate (also in PEM format). The
2618     file should then look like this:
2619    
2620     -----BEGIN RSA PRIVATE KEY-----
2621     ...header data
2622     ... lots of base64'y-stuff
2623     -----END RSA PRIVATE KEY-----
2624    
2625     -----BEGIN CERTIFICATE-----
2626     ... lots of base64'y-stuff
2627     -----END CERTIFICATE-----
2628    
2629     The important bits are the "PRIVATE KEY" and "CERTIFICATE" parts. Then
2630     specify this file as C<cert_file>:
2631    
2632     tcp_server undef, $port, sub {
2633     my ($fh) = @_;
2634    
2635     my $handle = new AnyEvent::Handle
2636     fh => $fh,
2637     tls => "accept",
2638     tls_ctx => { cert_file => "my-server-keycert.pem" },
2639     ...
2640 root 1.143
2641 root 1.144 When you have intermediate CA certificates that your clients might not
2642     know about, just append them to the C<cert_file>.
2643 root 1.143
2644 root 1.95 =back
2645    
2646 root 1.38 =head1 SUBCLASSING AnyEvent::Handle
2647    
2648     In many cases, you might want to subclass AnyEvent::Handle.
2649    
2650     To make this easier, a given version of AnyEvent::Handle uses these
2651     conventions:
2652    
2653     =over 4
2654    
2655     =item * all constructor arguments become object members.
2656    
2657     At least initially, when you pass a C<tls>-argument to the constructor it
2658 root 1.75 will end up in C<< $handle->{tls} >>. Those members might be changed or
2659 root 1.38 mutated later on (for example C<tls> will hold the TLS connection object).
2660    
2661     =item * other object member names are prefixed with an C<_>.
2662    
2663     All object members not explicitly documented (internal use) are prefixed
2664     with an underscore character, so the remaining non-C<_>-namespace is free
2665     for use for subclasses.
2666    
2667     =item * all members not documented here and not prefixed with an underscore
2668     are free to use in subclasses.
2669    
2670     Of course, new versions of AnyEvent::Handle may introduce more "public"
2671 root 1.198 member variables, but that's just life. At least it is documented.
2672 root 1.38
2673     =back
2674    
2675 elmex 1.1 =head1 AUTHOR
2676    
2677 root 1.8 Robin Redeker C<< <elmex at ta-sa.org> >>, Marc Lehmann <schmorp@schmorp.de>.
2678 elmex 1.1
2679     =cut
2680    
2681 root 1.230 1
2682