ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/Coro/Coro.pm
Revision: 1.105
Committed: Fri Jan 5 16:55:01 2007 UTC (17 years, 5 months ago) by root
Branch: MAIN
Changes since 1.104: +65 -21 lines
Log Message:
coro pool

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.8 Coro - coroutine process abstraction
4 root 1.1
5     =head1 SYNOPSIS
6    
7     use Coro;
8    
9 root 1.8 async {
10     # some asynchronous thread of execution
11 root 1.2 };
12    
13 root 1.92 # alternatively create an async coroutine like this:
14 root 1.6
15 root 1.8 sub some_func : Coro {
16     # some more async code
17     }
18    
19 root 1.22 cede;
20 root 1.2
21 root 1.1 =head1 DESCRIPTION
22    
23 root 1.98 This module collection manages coroutines. Coroutines are similar
24     to threads but don't run in parallel at the same time even on SMP
25     machines. The specific flavor of coroutine use din this module also
26     guarentees you that it will not switch between coroutines unless
27     necessary, at easily-identified points in your program, so locking and
28     parallel access are rarely an issue, making coroutine programming much
29     safer than threads programming.
30    
31     (Perl, however, does not natively support real threads but instead does a
32     very slow and memory-intensive emulation of processes using threads. This
33     is a performance win on Windows machines, and a loss everywhere else).
34    
35     In this module, coroutines are defined as "callchain + lexical variables +
36     @_ + $_ + $@ + $/ + C stack), that is, a coroutine has its own callchain,
37     its own set of lexicals and its own set of perls most important global
38     variables.
39 root 1.22
40 root 1.8 =cut
41    
42     package Coro;
43    
44 root 1.71 use strict;
45     no warnings "uninitialized";
46 root 1.36
47 root 1.8 use Coro::State;
48    
49 root 1.83 use base qw(Coro::State Exporter);
50 pcg 1.55
51 root 1.83 our $idle; # idle handler
52 root 1.71 our $main; # main coroutine
53     our $current; # current coroutine
54 root 1.8
55 root 1.101 our $VERSION = '3.3';
56 root 1.8
57 root 1.105 our @EXPORT = qw(async async_pool cede schedule terminate current unblock_sub);
58 root 1.71 our %EXPORT_TAGS = (
59 root 1.31 prio => [qw(PRIO_MAX PRIO_HIGH PRIO_NORMAL PRIO_LOW PRIO_IDLE PRIO_MIN)],
60     );
61 root 1.97 our @EXPORT_OK = (@{$EXPORT_TAGS{prio}}, qw(nready));
62 root 1.8
63     {
64     my @async;
65 root 1.26 my $init;
66 root 1.8
67     # this way of handling attributes simply is NOT scalable ;()
68     sub import {
69 root 1.71 no strict 'refs';
70    
71 root 1.93 Coro->export_to_level (1, @_);
72 root 1.71
73 root 1.8 my $old = *{(caller)[0]."::MODIFY_CODE_ATTRIBUTES"}{CODE};
74     *{(caller)[0]."::MODIFY_CODE_ATTRIBUTES"} = sub {
75     my ($package, $ref) = (shift, shift);
76     my @attrs;
77     for (@_) {
78     if ($_ eq "Coro") {
79     push @async, $ref;
80 root 1.26 unless ($init++) {
81     eval q{
82     sub INIT {
83     &async(pop @async) while @async;
84     }
85     };
86     }
87 root 1.8 } else {
88 root 1.17 push @attrs, $_;
89 root 1.8 }
90     }
91 root 1.17 return $old ? $old->($package, $ref, @attrs) : @attrs;
92 root 1.8 };
93     }
94    
95     }
96    
97 root 1.43 =over 4
98    
99 root 1.8 =item $main
100 root 1.2
101 root 1.8 This coroutine represents the main program.
102 root 1.1
103     =cut
104    
105 pcg 1.55 $main = new Coro;
106 root 1.8
107 root 1.19 =item $current (or as function: current)
108 root 1.1
109 root 1.83 The current coroutine (the last coroutine switched to). The initial value
110     is C<$main> (of course).
111    
112     This variable is B<strictly> I<read-only>. It is provided for performance
113     reasons. If performance is not essentiel you are encouraged to use the
114     C<Coro::current> function instead.
115 root 1.1
116 root 1.8 =cut
117    
118     # maybe some other module used Coro::Specific before...
119 root 1.93 $main->{specific} = $current->{specific}
120     if $current;
121 root 1.1
122 root 1.93 _set_current $main;
123 root 1.19
124     sub current() { $current }
125 root 1.9
126     =item $idle
127    
128 root 1.83 A callback that is called whenever the scheduler finds no ready coroutines
129     to run. The default implementation prints "FATAL: deadlock detected" and
130 root 1.91 exits, because the program has no other way to continue.
131 root 1.83
132     This hook is overwritten by modules such as C<Coro::Timer> and
133 root 1.91 C<Coro::Event> to wait on an external event that hopefully wake up a
134     coroutine so the scheduler can run it.
135    
136     Please note that if your callback recursively invokes perl (e.g. for event
137     handlers), then it must be prepared to be called recursively.
138 root 1.9
139     =cut
140    
141 root 1.83 $idle = sub {
142 root 1.96 require Carp;
143     Carp::croak ("FATAL: deadlock detected");
144 root 1.9 };
145 root 1.8
146 root 1.103 sub _cancel {
147     my ($self) = @_;
148    
149     # free coroutine data and mark as destructed
150     $self->_destroy
151     or return;
152    
153     # call all destruction callbacks
154     $_->(@{$self->{status}})
155     for @{(delete $self->{destroy_cb}) || []};
156     }
157    
158 root 1.24 # this coroutine is necessary because a coroutine
159     # cannot destroy itself.
160     my @destroy;
161 root 1.103 my $manager;
162    
163     $manager = new Coro sub {
164 pcg 1.57 while () {
165 root 1.103 (shift @destroy)->_cancel
166     while @destroy;
167    
168 root 1.24 &schedule;
169     }
170     };
171    
172 root 1.103 $manager->prio (PRIO_MAX);
173    
174 root 1.8 # static methods. not really.
175 root 1.43
176     =back
177 root 1.8
178     =head2 STATIC METHODS
179    
180 root 1.92 Static methods are actually functions that operate on the current coroutine only.
181 root 1.8
182     =over 4
183    
184 root 1.13 =item async { ... } [@args...]
185 root 1.8
186 root 1.92 Create a new asynchronous coroutine and return it's coroutine object
187     (usually unused). When the sub returns the new coroutine is automatically
188 root 1.8 terminated.
189    
190 root 1.89 Calling C<exit> in a coroutine will not work correctly, so do not do that.
191    
192 root 1.79 When the coroutine dies, the program will exit, just as in the main
193     program.
194    
195 root 1.13 # create a new coroutine that just prints its arguments
196     async {
197     print "@_\n";
198     } 1,2,3,4;
199    
200 root 1.8 =cut
201    
202 root 1.13 sub async(&@) {
203 root 1.104 my $coro = new Coro @_;
204     $coro->ready;
205     $coro
206 root 1.8 }
207 root 1.1
208 root 1.105 =item async_pool { ... } [@args...]
209    
210     Similar to C<async>, but uses a coroutine pool, so you should not call
211     terminate or join (although you are allowed to), and you get a coroutine
212     that might have executed other code already (which can be good or bad :).
213    
214     Also, the block is executed in an C<eval> context and a warning will be
215     issued in case of an exception instead of terminating the program, as C<async> does.
216    
217     The priority will be reset to C<0> after each job, otherwise the coroutine
218     will be re-used "as-is".
219    
220     The pool size is limited to 8 idle coroutines (this can be adjusted by
221     changing $Coro::POOL_SIZE), and there can be as many non-idle coros as
222     required.
223    
224     If you are concerned about pooled coroutines growing a lot because a
225     single C<async_pool> used a lot of stackspace you can e.g. C<async_pool {
226     terminate }> once per second or so to slowly replenish the pool.
227    
228     =cut
229    
230     our $POOL_SIZE = 8;
231     our @pool;
232    
233     sub pool_handler {
234     while () {
235     my ($cb, @arg) = @{ delete $current->{_invoke} };
236    
237     eval {
238     $cb->(@arg);
239     };
240     warn $@ if $@;
241    
242     last if @pool >= $POOL_SIZE;
243     push @pool, $current;
244    
245     $current->prio (0);
246     schedule;
247     }
248     }
249    
250     sub async_pool(&@) {
251     # this is also inlined into the unlock_scheduler
252     my $coro = (pop @pool or new Coro \&pool_handler);
253    
254     $coro->{_invoke} = [@_];
255     $coro->ready;
256    
257     $coro
258     }
259    
260 root 1.8 =item schedule
261 root 1.6
262 root 1.92 Calls the scheduler. Please note that the current coroutine will not be put
263 root 1.8 into the ready queue, so calling this function usually means you will
264 root 1.91 never be called again unless something else (e.g. an event handler) calls
265     ready.
266    
267     The canonical way to wait on external events is this:
268    
269     {
270 root 1.92 # remember current coroutine
271 root 1.91 my $current = $Coro::current;
272    
273     # register a hypothetical event handler
274     on_event_invoke sub {
275     # wake up sleeping coroutine
276     $current->ready;
277     undef $current;
278     };
279    
280     # call schedule until event occured.
281     # in case we are woken up for other reasons
282     # (current still defined), loop.
283     Coro::schedule while $current;
284     }
285 root 1.1
286 root 1.22 =item cede
287 root 1.1
288 root 1.92 "Cede" to other coroutines. This function puts the current coroutine into the
289 root 1.22 ready queue and calls C<schedule>, which has the effect of giving up the
290     current "timeslice" to other coroutines of the same or higher priority.
291 root 1.7
292 root 1.102 =item Coro::cede_notself
293    
294     Works like cede, but is not exported by default and will cede to any
295     coroutine, regardless of priority, once.
296    
297 root 1.40 =item terminate [arg...]
298 root 1.7
299 root 1.92 Terminates the current coroutine with the given status values (see L<cancel>).
300 root 1.13
301 root 1.1 =cut
302    
303 root 1.8 sub terminate {
304 pcg 1.59 $current->cancel (@_);
305 root 1.1 }
306 root 1.6
307 root 1.8 =back
308    
309     # dynamic methods
310    
311 root 1.92 =head2 COROUTINE METHODS
312 root 1.8
313 root 1.92 These are the methods you can call on coroutine objects.
314 root 1.6
315 root 1.8 =over 4
316    
317 root 1.13 =item new Coro \&sub [, @args...]
318 root 1.8
319 root 1.92 Create a new coroutine and return it. When the sub returns the coroutine
320 root 1.40 automatically terminates as if C<terminate> with the returned values were
321 root 1.92 called. To make the coroutine run you must first put it into the ready queue
322 root 1.41 by calling the ready method.
323 root 1.13
324 root 1.89 Calling C<exit> in a coroutine will not work correctly, so do not do that.
325    
326 root 1.6 =cut
327    
328 root 1.94 sub _run_coro {
329 root 1.13 terminate &{+shift};
330     }
331    
332 root 1.8 sub new {
333     my $class = shift;
334 root 1.83
335 root 1.94 $class->SUPER::new (\&_run_coro, @_)
336 root 1.8 }
337 root 1.6
338 root 1.92 =item $success = $coroutine->ready
339 root 1.1
340 root 1.92 Put the given coroutine into the ready queue (according to it's priority)
341     and return true. If the coroutine is already in the ready queue, do nothing
342 root 1.90 and return false.
343 root 1.1
344 root 1.92 =item $is_ready = $coroutine->is_ready
345 root 1.90
346 root 1.92 Return wether the coroutine is currently the ready queue or not,
347 root 1.28
348 root 1.92 =item $coroutine->cancel (arg...)
349 root 1.28
350 root 1.92 Terminates the given coroutine and makes it return the given arguments as
351 root 1.103 status (default: the empty list). Never returns if the coroutine is the
352     current coroutine.
353 root 1.28
354     =cut
355    
356     sub cancel {
357 pcg 1.59 my $self = shift;
358     $self->{status} = [@_];
359 root 1.103
360     if ($current == $self) {
361     push @destroy, $self;
362     $manager->ready;
363     &schedule while 1;
364     } else {
365     $self->_cancel;
366     }
367 root 1.40 }
368    
369 root 1.92 =item $coroutine->join
370 root 1.40
371     Wait until the coroutine terminates and return any values given to the
372 pcg 1.59 C<terminate> or C<cancel> functions. C<join> can be called multiple times
373 root 1.92 from multiple coroutine.
374 root 1.40
375     =cut
376    
377     sub join {
378     my $self = shift;
379 root 1.103
380 root 1.40 unless ($self->{status}) {
381 root 1.103 my $current = $current;
382    
383     push @{$self->{destroy_cb}}, sub {
384     $current->ready;
385     undef $current;
386     };
387    
388     &schedule while $current;
389 root 1.40 }
390 root 1.103
391 root 1.40 wantarray ? @{$self->{status}} : $self->{status}[0];
392 root 1.31 }
393    
394 root 1.101 =item $coroutine->on_destroy (\&cb)
395    
396     Registers a callback that is called when this coroutine gets destroyed,
397     but before it is joined. The callback gets passed the terminate arguments,
398     if any.
399    
400     =cut
401    
402     sub on_destroy {
403     my ($self, $cb) = @_;
404    
405     push @{ $self->{destroy_cb} }, $cb;
406     }
407    
408 root 1.92 =item $oldprio = $coroutine->prio ($newprio)
409 root 1.31
410 root 1.41 Sets (or gets, if the argument is missing) the priority of the
411 root 1.92 coroutine. Higher priority coroutines get run before lower priority
412     coroutines. Priorities are small signed integers (currently -4 .. +3),
413 root 1.41 that you can refer to using PRIO_xxx constants (use the import tag :prio
414     to get then):
415 root 1.31
416     PRIO_MAX > PRIO_HIGH > PRIO_NORMAL > PRIO_LOW > PRIO_IDLE > PRIO_MIN
417     3 > 1 > 0 > -1 > -3 > -4
418    
419     # set priority to HIGH
420     current->prio(PRIO_HIGH);
421    
422     The idle coroutine ($Coro::idle) always has a lower priority than any
423     existing coroutine.
424    
425 root 1.92 Changing the priority of the current coroutine will take effect immediately,
426     but changing the priority of coroutines in the ready queue (but not
427 root 1.31 running) will only take effect after the next schedule (of that
428 root 1.92 coroutine). This is a bug that will be fixed in some future version.
429 root 1.31
430 root 1.92 =item $newprio = $coroutine->nice ($change)
431 root 1.31
432     Similar to C<prio>, but subtract the given value from the priority (i.e.
433     higher values mean lower priority, just as in unix).
434    
435 root 1.92 =item $olddesc = $coroutine->desc ($newdesc)
436 root 1.41
437     Sets (or gets in case the argument is missing) the description for this
438 root 1.92 coroutine. This is just a free-form string you can associate with a coroutine.
439 root 1.41
440     =cut
441    
442     sub desc {
443     my $old = $_[0]{desc};
444     $_[0]{desc} = $_[1] if @_ > 1;
445     $old;
446 root 1.8 }
447 root 1.1
448 root 1.8 =back
449 root 1.2
450 root 1.97 =head2 GLOBAL FUNCTIONS
451 root 1.92
452     =over 4
453    
454 root 1.97 =item Coro::nready
455    
456     Returns the number of coroutines that are currently in the ready state,
457     i.e. that can be swicthed to. The value C<0> means that the only runnable
458     coroutine is the currently running one, so C<cede> would have no effect,
459     and C<schedule> would cause a deadlock unless there is an idle handler
460     that wakes up some coroutines.
461    
462 root 1.103 =item my $guard = Coro::guard { ... }
463    
464     This creates and returns a guard object. Nothing happens until the objetc
465     gets destroyed, in which case the codeblock given as argument will be
466     executed. This is useful to free locks or other resources in case of a
467     runtime error or when the coroutine gets canceled, as in both cases the
468     guard block will be executed. The guard object supports only one method,
469     C<< ->cancel >>, which will keep the codeblock from being executed.
470    
471     Example: set some flag and clear it again when the coroutine gets canceled
472     or the function returns:
473    
474     sub do_something {
475     my $guard = Coro::guard { $busy = 0 };
476     $busy = 1;
477    
478     # do something that requires $busy to be true
479     }
480    
481     =cut
482    
483     sub guard(&) {
484     bless \(my $cb = $_[0]), "Coro::guard"
485     }
486    
487     sub Coro::guard::cancel {
488     ${$_[0]} = sub { };
489     }
490    
491     sub Coro::guard::DESTROY {
492     ${$_[0]}->();
493     }
494    
495    
496 root 1.92 =item unblock_sub { ... }
497    
498     This utility function takes a BLOCK or code reference and "unblocks" it,
499     returning the new coderef. This means that the new coderef will return
500     immediately without blocking, returning nothing, while the original code
501     ref will be called (with parameters) from within its own coroutine.
502    
503     The reason this fucntion exists is that many event libraries (such as the
504     venerable L<Event|Event> module) are not coroutine-safe (a weaker form
505     of thread-safety). This means you must not block within event callbacks,
506     otherwise you might suffer from crashes or worse.
507    
508     This function allows your callbacks to block by executing them in another
509     coroutine where it is safe to block. One example where blocking is handy
510     is when you use the L<Coro::AIO|Coro::AIO> functions to save results to
511     disk.
512    
513     In short: simply use C<unblock_sub { ... }> instead of C<sub { ... }> when
514     creating event callbacks that want to block.
515    
516     =cut
517    
518     our @unblock_queue;
519    
520 root 1.105 # we create a special coro because we want to cede,
521     # to reduce pressure on the coro pool (because most callbacks
522     # return immediately and can be reused) and because we cannot cede
523     # inside an event callback.
524 root 1.92 our $unblock_scheduler = async {
525     while () {
526     while (my $cb = pop @unblock_queue) {
527 root 1.105 # this is an inlined copy of async_pool
528     my $coro = (pop @pool or new Coro \&pool_handler);
529    
530     $coro->{_invoke} = $cb;
531     $coro->ready;
532     cede; # for short-lived callbacks, this reduces pressure on the coro pool
533 root 1.92 }
534 root 1.105 schedule; # sleep well
535 root 1.92 }
536     };
537    
538     sub unblock_sub(&) {
539     my $cb = shift;
540    
541     sub {
542 root 1.105 unshift @unblock_queue, [$cb, @_];
543 root 1.92 $unblock_scheduler->ready;
544     }
545     }
546    
547     =back
548    
549 root 1.8 =cut
550 root 1.2
551 root 1.8 1;
552 root 1.14
553 root 1.17 =head1 BUGS/LIMITATIONS
554 root 1.14
555 root 1.52 - you must make very sure that no coro is still active on global
556 root 1.53 destruction. very bad things might happen otherwise (usually segfaults).
557 root 1.52
558     - this module is not thread-safe. You should only ever use this module
559     from the same thread (this requirement might be losened in the future
560     to allow per-thread schedulers, but Coro::State does not yet allow
561     this).
562 root 1.9
563     =head1 SEE ALSO
564    
565 root 1.67 Support/Utility: L<Coro::Cont>, L<Coro::Specific>, L<Coro::State>, L<Coro::Util>.
566    
567     Locking/IPC: L<Coro::Signal>, L<Coro::Channel>, L<Coro::Semaphore>, L<Coro::SemaphoreSet>, L<Coro::RWLock>.
568    
569     Event/IO: L<Coro::Timer>, L<Coro::Event>, L<Coro::Handle>, L<Coro::Socket>, L<Coro::Select>.
570    
571     Embedding: L<Coro:MakeMaker>
572 root 1.1
573     =head1 AUTHOR
574    
575 root 1.66 Marc Lehmann <schmorp@schmorp.de>
576 root 1.64 http://home.schmorp.de/
577 root 1.1
578     =cut
579