ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/Coro/Coro.pm
Revision: 1.145
Committed: Wed Oct 3 16:03:17 2007 UTC (16 years, 8 months ago) by root
Branch: MAIN
Changes since 1.144: +5 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.8 Coro - coroutine process abstraction
4 root 1.1
5     =head1 SYNOPSIS
6    
7     use Coro;
8    
9 root 1.8 async {
10     # some asynchronous thread of execution
11 root 1.2 };
12    
13 root 1.92 # alternatively create an async coroutine like this:
14 root 1.6
15 root 1.8 sub some_func : Coro {
16     # some more async code
17     }
18    
19 root 1.22 cede;
20 root 1.2
21 root 1.1 =head1 DESCRIPTION
22    
23 root 1.98 This module collection manages coroutines. Coroutines are similar
24     to threads but don't run in parallel at the same time even on SMP
25 root 1.124 machines. The specific flavor of coroutine used in this module also
26     guarantees you that it will not switch between coroutines unless
27 root 1.98 necessary, at easily-identified points in your program, so locking and
28     parallel access are rarely an issue, making coroutine programming much
29     safer than threads programming.
30    
31     (Perl, however, does not natively support real threads but instead does a
32     very slow and memory-intensive emulation of processes using threads. This
33     is a performance win on Windows machines, and a loss everywhere else).
34    
35     In this module, coroutines are defined as "callchain + lexical variables +
36     @_ + $_ + $@ + $/ + C stack), that is, a coroutine has its own callchain,
37     its own set of lexicals and its own set of perls most important global
38     variables.
39 root 1.22
40 root 1.8 =cut
41    
42     package Coro;
43    
44 root 1.71 use strict;
45     no warnings "uninitialized";
46 root 1.36
47 root 1.8 use Coro::State;
48    
49 root 1.83 use base qw(Coro::State Exporter);
50 pcg 1.55
51 root 1.83 our $idle; # idle handler
52 root 1.71 our $main; # main coroutine
53     our $current; # current coroutine
54 root 1.8
55 root 1.144 our $VERSION = '4.0';
56 root 1.8
57 root 1.105 our @EXPORT = qw(async async_pool cede schedule terminate current unblock_sub);
58 root 1.71 our %EXPORT_TAGS = (
59 root 1.31 prio => [qw(PRIO_MAX PRIO_HIGH PRIO_NORMAL PRIO_LOW PRIO_IDLE PRIO_MIN)],
60     );
61 root 1.97 our @EXPORT_OK = (@{$EXPORT_TAGS{prio}}, qw(nready));
62 root 1.8
63     {
64     my @async;
65 root 1.26 my $init;
66 root 1.8
67     # this way of handling attributes simply is NOT scalable ;()
68     sub import {
69 root 1.71 no strict 'refs';
70    
71 root 1.93 Coro->export_to_level (1, @_);
72 root 1.71
73 root 1.8 my $old = *{(caller)[0]."::MODIFY_CODE_ATTRIBUTES"}{CODE};
74     *{(caller)[0]."::MODIFY_CODE_ATTRIBUTES"} = sub {
75     my ($package, $ref) = (shift, shift);
76     my @attrs;
77     for (@_) {
78     if ($_ eq "Coro") {
79     push @async, $ref;
80 root 1.26 unless ($init++) {
81     eval q{
82     sub INIT {
83     &async(pop @async) while @async;
84     }
85     };
86     }
87 root 1.8 } else {
88 root 1.17 push @attrs, $_;
89 root 1.8 }
90     }
91 root 1.17 return $old ? $old->($package, $ref, @attrs) : @attrs;
92 root 1.8 };
93     }
94    
95     }
96    
97 root 1.43 =over 4
98    
99 root 1.8 =item $main
100 root 1.2
101 root 1.8 This coroutine represents the main program.
102 root 1.1
103     =cut
104    
105 pcg 1.55 $main = new Coro;
106 root 1.8
107 root 1.19 =item $current (or as function: current)
108 root 1.1
109 root 1.83 The current coroutine (the last coroutine switched to). The initial value
110     is C<$main> (of course).
111    
112     This variable is B<strictly> I<read-only>. It is provided for performance
113 root 1.124 reasons. If performance is not essential you are encouraged to use the
114 root 1.83 C<Coro::current> function instead.
115 root 1.1
116 root 1.8 =cut
117    
118 root 1.131 $main->{desc} = "[main::]";
119    
120 root 1.8 # maybe some other module used Coro::Specific before...
121 root 1.142 $main->{_specific} = $current->{_specific}
122 root 1.93 if $current;
123 root 1.1
124 root 1.93 _set_current $main;
125 root 1.19
126     sub current() { $current }
127 root 1.9
128     =item $idle
129    
130 root 1.83 A callback that is called whenever the scheduler finds no ready coroutines
131     to run. The default implementation prints "FATAL: deadlock detected" and
132 root 1.91 exits, because the program has no other way to continue.
133 root 1.83
134     This hook is overwritten by modules such as C<Coro::Timer> and
135 root 1.91 C<Coro::Event> to wait on an external event that hopefully wake up a
136     coroutine so the scheduler can run it.
137    
138     Please note that if your callback recursively invokes perl (e.g. for event
139     handlers), then it must be prepared to be called recursively.
140 root 1.9
141     =cut
142    
143 root 1.83 $idle = sub {
144 root 1.96 require Carp;
145     Carp::croak ("FATAL: deadlock detected");
146 root 1.9 };
147 root 1.8
148 root 1.103 sub _cancel {
149     my ($self) = @_;
150    
151     # free coroutine data and mark as destructed
152     $self->_destroy
153     or return;
154    
155     # call all destruction callbacks
156 root 1.142 $_->(@{$self->{_status}})
157     for @{(delete $self->{_on_destroy}) || []};
158 root 1.103 }
159    
160 root 1.24 # this coroutine is necessary because a coroutine
161     # cannot destroy itself.
162     my @destroy;
163 root 1.103 my $manager;
164    
165     $manager = new Coro sub {
166 pcg 1.57 while () {
167 root 1.103 (shift @destroy)->_cancel
168     while @destroy;
169    
170 root 1.24 &schedule;
171     }
172     };
173 root 1.132 $manager->desc ("[coro manager]");
174 root 1.103 $manager->prio (PRIO_MAX);
175    
176 root 1.8 # static methods. not really.
177 root 1.43
178     =back
179 root 1.8
180     =head2 STATIC METHODS
181    
182 root 1.92 Static methods are actually functions that operate on the current coroutine only.
183 root 1.8
184     =over 4
185    
186 root 1.13 =item async { ... } [@args...]
187 root 1.8
188 root 1.92 Create a new asynchronous coroutine and return it's coroutine object
189     (usually unused). When the sub returns the new coroutine is automatically
190 root 1.8 terminated.
191    
192 root 1.145 See the C<Coro::State::new> constructor for info about the coroutine
193     environment.
194    
195 root 1.122 Calling C<exit> in a coroutine will do the same as calling exit outside
196     the coroutine. Likewise, when the coroutine dies, the program will exit,
197     just as it would in the main program.
198 root 1.79
199 root 1.13 # create a new coroutine that just prints its arguments
200     async {
201     print "@_\n";
202     } 1,2,3,4;
203    
204 root 1.8 =cut
205    
206 root 1.13 sub async(&@) {
207 root 1.104 my $coro = new Coro @_;
208     $coro->ready;
209     $coro
210 root 1.8 }
211 root 1.1
212 root 1.105 =item async_pool { ... } [@args...]
213    
214     Similar to C<async>, but uses a coroutine pool, so you should not call
215     terminate or join (although you are allowed to), and you get a coroutine
216     that might have executed other code already (which can be good or bad :).
217    
218     Also, the block is executed in an C<eval> context and a warning will be
219 root 1.108 issued in case of an exception instead of terminating the program, as
220     C<async> does. As the coroutine is being reused, stuff like C<on_destroy>
221     will not work in the expected way, unless you call terminate or cancel,
222     which somehow defeats the purpose of pooling.
223 root 1.105
224     The priority will be reset to C<0> after each job, otherwise the coroutine
225     will be re-used "as-is".
226    
227     The pool size is limited to 8 idle coroutines (this can be adjusted by
228     changing $Coro::POOL_SIZE), and there can be as many non-idle coros as
229     required.
230    
231     If you are concerned about pooled coroutines growing a lot because a
232 root 1.133 single C<async_pool> used a lot of stackspace you can e.g. C<async_pool
233     { terminate }> once per second or so to slowly replenish the pool. In
234     addition to that, when the stacks used by a handler grows larger than 16kb
235 root 1.134 (adjustable with $Coro::POOL_RSS) it will also exit.
236 root 1.105
237     =cut
238    
239     our $POOL_SIZE = 8;
240 root 1.134 our $POOL_RSS = 16 * 1024;
241     our @async_pool;
242 root 1.105
243     sub pool_handler {
244 root 1.134 my $cb;
245    
246 root 1.105 while () {
247 root 1.134 eval {
248     while () {
249 root 1.136 _pool_1 $cb;
250 root 1.134 &$cb;
251 root 1.136 _pool_2 $cb;
252 root 1.135 &schedule;
253 root 1.134 }
254 root 1.105 };
255 root 1.134
256 root 1.136 last if $@ eq "\3terminate\2\n";
257 root 1.105 warn $@ if $@;
258 root 1.106 }
259     }
260 root 1.105
261     sub async_pool(&@) {
262     # this is also inlined into the unlock_scheduler
263 root 1.135 my $coro = (pop @async_pool) || new Coro \&pool_handler;
264 root 1.105
265     $coro->{_invoke} = [@_];
266     $coro->ready;
267    
268     $coro
269     }
270    
271 root 1.8 =item schedule
272 root 1.6
273 root 1.92 Calls the scheduler. Please note that the current coroutine will not be put
274 root 1.8 into the ready queue, so calling this function usually means you will
275 root 1.91 never be called again unless something else (e.g. an event handler) calls
276     ready.
277    
278     The canonical way to wait on external events is this:
279    
280     {
281 root 1.92 # remember current coroutine
282 root 1.91 my $current = $Coro::current;
283    
284     # register a hypothetical event handler
285     on_event_invoke sub {
286     # wake up sleeping coroutine
287     $current->ready;
288     undef $current;
289     };
290    
291 root 1.124 # call schedule until event occurred.
292 root 1.91 # in case we are woken up for other reasons
293     # (current still defined), loop.
294     Coro::schedule while $current;
295     }
296 root 1.1
297 root 1.22 =item cede
298 root 1.1
299 root 1.92 "Cede" to other coroutines. This function puts the current coroutine into the
300 root 1.22 ready queue and calls C<schedule>, which has the effect of giving up the
301     current "timeslice" to other coroutines of the same or higher priority.
302 root 1.7
303 root 1.107 Returns true if at least one coroutine switch has happened.
304    
305 root 1.102 =item Coro::cede_notself
306    
307     Works like cede, but is not exported by default and will cede to any
308     coroutine, regardless of priority, once.
309    
310 root 1.107 Returns true if at least one coroutine switch has happened.
311    
312 root 1.40 =item terminate [arg...]
313 root 1.7
314 root 1.92 Terminates the current coroutine with the given status values (see L<cancel>).
315 root 1.13
316 root 1.141 =item killall
317    
318     Kills/terminates/cancels all coroutines except the currently running
319     one. This is useful after a fork, either in the child or the parent, as
320     usually only one of them should inherit the running coroutines.
321    
322 root 1.1 =cut
323    
324 root 1.8 sub terminate {
325 pcg 1.59 $current->cancel (@_);
326 root 1.1 }
327 root 1.6
328 root 1.141 sub killall {
329     for (Coro::State::list) {
330     $_->cancel
331     if $_ != $current && UNIVERSAL::isa $_, "Coro";
332     }
333     }
334    
335 root 1.8 =back
336    
337     # dynamic methods
338    
339 root 1.92 =head2 COROUTINE METHODS
340 root 1.8
341 root 1.92 These are the methods you can call on coroutine objects.
342 root 1.6
343 root 1.8 =over 4
344    
345 root 1.13 =item new Coro \&sub [, @args...]
346 root 1.8
347 root 1.92 Create a new coroutine and return it. When the sub returns the coroutine
348 root 1.40 automatically terminates as if C<terminate> with the returned values were
349 root 1.92 called. To make the coroutine run you must first put it into the ready queue
350 root 1.41 by calling the ready method.
351 root 1.13
352 root 1.145 See C<async> and C<Coro::State::new> for additional info about the
353     coroutine environment.
354 root 1.89
355 root 1.6 =cut
356    
357 root 1.94 sub _run_coro {
358 root 1.13 terminate &{+shift};
359     }
360    
361 root 1.8 sub new {
362     my $class = shift;
363 root 1.83
364 root 1.94 $class->SUPER::new (\&_run_coro, @_)
365 root 1.8 }
366 root 1.6
367 root 1.92 =item $success = $coroutine->ready
368 root 1.1
369 root 1.92 Put the given coroutine into the ready queue (according to it's priority)
370     and return true. If the coroutine is already in the ready queue, do nothing
371 root 1.90 and return false.
372 root 1.1
373 root 1.92 =item $is_ready = $coroutine->is_ready
374 root 1.90
375 root 1.92 Return wether the coroutine is currently the ready queue or not,
376 root 1.28
377 root 1.92 =item $coroutine->cancel (arg...)
378 root 1.28
379 root 1.92 Terminates the given coroutine and makes it return the given arguments as
380 root 1.103 status (default: the empty list). Never returns if the coroutine is the
381     current coroutine.
382 root 1.28
383     =cut
384    
385     sub cancel {
386 pcg 1.59 my $self = shift;
387 root 1.142 $self->{_status} = [@_];
388 root 1.103
389     if ($current == $self) {
390     push @destroy, $self;
391     $manager->ready;
392     &schedule while 1;
393     } else {
394     $self->_cancel;
395     }
396 root 1.40 }
397    
398 root 1.92 =item $coroutine->join
399 root 1.40
400     Wait until the coroutine terminates and return any values given to the
401 root 1.143 C<terminate> or C<cancel> functions. C<join> can be called concurrently
402     from multiple coroutines.
403 root 1.40
404     =cut
405    
406     sub join {
407     my $self = shift;
408 root 1.103
409 root 1.142 unless ($self->{_status}) {
410 root 1.103 my $current = $current;
411    
412 root 1.142 push @{$self->{_on_destroy}}, sub {
413 root 1.103 $current->ready;
414     undef $current;
415     };
416    
417     &schedule while $current;
418 root 1.40 }
419 root 1.103
420 root 1.142 wantarray ? @{$self->{_status}} : $self->{_status}[0];
421 root 1.31 }
422    
423 root 1.101 =item $coroutine->on_destroy (\&cb)
424    
425     Registers a callback that is called when this coroutine gets destroyed,
426     but before it is joined. The callback gets passed the terminate arguments,
427     if any.
428    
429     =cut
430    
431     sub on_destroy {
432     my ($self, $cb) = @_;
433    
434 root 1.142 push @{ $self->{_on_destroy} }, $cb;
435 root 1.101 }
436    
437 root 1.92 =item $oldprio = $coroutine->prio ($newprio)
438 root 1.31
439 root 1.41 Sets (or gets, if the argument is missing) the priority of the
440 root 1.92 coroutine. Higher priority coroutines get run before lower priority
441     coroutines. Priorities are small signed integers (currently -4 .. +3),
442 root 1.41 that you can refer to using PRIO_xxx constants (use the import tag :prio
443     to get then):
444 root 1.31
445     PRIO_MAX > PRIO_HIGH > PRIO_NORMAL > PRIO_LOW > PRIO_IDLE > PRIO_MIN
446     3 > 1 > 0 > -1 > -3 > -4
447    
448     # set priority to HIGH
449     current->prio(PRIO_HIGH);
450    
451     The idle coroutine ($Coro::idle) always has a lower priority than any
452     existing coroutine.
453    
454 root 1.92 Changing the priority of the current coroutine will take effect immediately,
455     but changing the priority of coroutines in the ready queue (but not
456 root 1.31 running) will only take effect after the next schedule (of that
457 root 1.92 coroutine). This is a bug that will be fixed in some future version.
458 root 1.31
459 root 1.92 =item $newprio = $coroutine->nice ($change)
460 root 1.31
461     Similar to C<prio>, but subtract the given value from the priority (i.e.
462     higher values mean lower priority, just as in unix).
463    
464 root 1.92 =item $olddesc = $coroutine->desc ($newdesc)
465 root 1.41
466     Sets (or gets in case the argument is missing) the description for this
467 root 1.92 coroutine. This is just a free-form string you can associate with a coroutine.
468 root 1.41
469 root 1.142 This method simply sets the C<< $coroutine->{desc} >> member to the given string. You
470     can modify this member directly if you wish.
471    
472 root 1.41 =cut
473    
474     sub desc {
475     my $old = $_[0]{desc};
476     $_[0]{desc} = $_[1] if @_ > 1;
477     $old;
478 root 1.8 }
479 root 1.1
480 root 1.8 =back
481 root 1.2
482 root 1.97 =head2 GLOBAL FUNCTIONS
483 root 1.92
484     =over 4
485    
486 root 1.97 =item Coro::nready
487    
488     Returns the number of coroutines that are currently in the ready state,
489 root 1.124 i.e. that can be switched to. The value C<0> means that the only runnable
490 root 1.97 coroutine is the currently running one, so C<cede> would have no effect,
491     and C<schedule> would cause a deadlock unless there is an idle handler
492     that wakes up some coroutines.
493    
494 root 1.103 =item my $guard = Coro::guard { ... }
495    
496 root 1.119 This creates and returns a guard object. Nothing happens until the object
497 root 1.103 gets destroyed, in which case the codeblock given as argument will be
498     executed. This is useful to free locks or other resources in case of a
499     runtime error or when the coroutine gets canceled, as in both cases the
500     guard block will be executed. The guard object supports only one method,
501     C<< ->cancel >>, which will keep the codeblock from being executed.
502    
503     Example: set some flag and clear it again when the coroutine gets canceled
504     or the function returns:
505    
506     sub do_something {
507     my $guard = Coro::guard { $busy = 0 };
508     $busy = 1;
509    
510     # do something that requires $busy to be true
511     }
512    
513     =cut
514    
515     sub guard(&) {
516     bless \(my $cb = $_[0]), "Coro::guard"
517     }
518    
519     sub Coro::guard::cancel {
520     ${$_[0]} = sub { };
521     }
522    
523     sub Coro::guard::DESTROY {
524     ${$_[0]}->();
525     }
526    
527    
528 root 1.92 =item unblock_sub { ... }
529    
530     This utility function takes a BLOCK or code reference and "unblocks" it,
531     returning the new coderef. This means that the new coderef will return
532     immediately without blocking, returning nothing, while the original code
533     ref will be called (with parameters) from within its own coroutine.
534    
535 root 1.124 The reason this function exists is that many event libraries (such as the
536 root 1.92 venerable L<Event|Event> module) are not coroutine-safe (a weaker form
537     of thread-safety). This means you must not block within event callbacks,
538     otherwise you might suffer from crashes or worse.
539    
540     This function allows your callbacks to block by executing them in another
541     coroutine where it is safe to block. One example where blocking is handy
542     is when you use the L<Coro::AIO|Coro::AIO> functions to save results to
543     disk.
544    
545     In short: simply use C<unblock_sub { ... }> instead of C<sub { ... }> when
546     creating event callbacks that want to block.
547    
548     =cut
549    
550     our @unblock_queue;
551    
552 root 1.105 # we create a special coro because we want to cede,
553     # to reduce pressure on the coro pool (because most callbacks
554     # return immediately and can be reused) and because we cannot cede
555     # inside an event callback.
556 root 1.132 our $unblock_scheduler = new Coro sub {
557 root 1.92 while () {
558     while (my $cb = pop @unblock_queue) {
559 root 1.105 # this is an inlined copy of async_pool
560 root 1.134 my $coro = (pop @async_pool) || new Coro \&pool_handler;
561 root 1.105
562     $coro->{_invoke} = $cb;
563     $coro->ready;
564     cede; # for short-lived callbacks, this reduces pressure on the coro pool
565 root 1.92 }
566 root 1.105 schedule; # sleep well
567 root 1.92 }
568     };
569 root 1.132 $unblock_scheduler->desc ("[unblock_sub scheduler]");
570 root 1.92
571     sub unblock_sub(&) {
572     my $cb = shift;
573    
574     sub {
575 root 1.105 unshift @unblock_queue, [$cb, @_];
576 root 1.92 $unblock_scheduler->ready;
577     }
578     }
579    
580     =back
581    
582 root 1.8 =cut
583 root 1.2
584 root 1.8 1;
585 root 1.14
586 root 1.17 =head1 BUGS/LIMITATIONS
587 root 1.14
588 root 1.52 - you must make very sure that no coro is still active on global
589 root 1.53 destruction. very bad things might happen otherwise (usually segfaults).
590 root 1.52
591     - this module is not thread-safe. You should only ever use this module
592 root 1.124 from the same thread (this requirement might be loosened in the future
593 root 1.52 to allow per-thread schedulers, but Coro::State does not yet allow
594     this).
595 root 1.9
596     =head1 SEE ALSO
597    
598 root 1.67 Support/Utility: L<Coro::Cont>, L<Coro::Specific>, L<Coro::State>, L<Coro::Util>.
599    
600     Locking/IPC: L<Coro::Signal>, L<Coro::Channel>, L<Coro::Semaphore>, L<Coro::SemaphoreSet>, L<Coro::RWLock>.
601    
602     Event/IO: L<Coro::Timer>, L<Coro::Event>, L<Coro::Handle>, L<Coro::Socket>, L<Coro::Select>.
603    
604     Embedding: L<Coro:MakeMaker>
605 root 1.1
606     =head1 AUTHOR
607    
608 root 1.66 Marc Lehmann <schmorp@schmorp.de>
609 root 1.64 http://home.schmorp.de/
610 root 1.1
611     =cut
612