ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/Coro/Coro.pm
(Generate patch)

Comparing Coro/Coro.pm (file contents):
Revision 1.1 by root, Tue Jul 3 02:53:34 2001 UTC vs.
Revision 1.92 by root, Fri Dec 1 03:47:55 2006 UTC

1=head1 NAME 1=head1 NAME
2 2
3Coro - create an manage coroutines 3Coro - coroutine process abstraction
4 4
5=head1 SYNOPSIS 5=head1 SYNOPSIS
6 6
7 use Coro; 7 use Coro;
8 8
9 async {
10 # some asynchronous thread of execution
11 };
12
13 # alternatively create an async coroutine like this:
14
15 sub some_func : Coro {
16 # some more async code
17 }
18
19 cede;
20
9=head1 DESCRIPTION 21=head1 DESCRIPTION
10 22
23This module collection manages coroutines. Coroutines are similar to
24threads but don't run in parallel.
25
26In this module, coroutines are defined as "callchain + lexical variables
27+ @_ + $_ + $@ + $^W + C stack), that is, a coroutine has it's own
28callchain, it's own set of lexicals and it's own set of perl's most
29important global variables.
30
31=cut
32
33package Coro;
34
35use strict;
36no warnings "uninitialized";
37
38use Coro::State;
39
40use base qw(Coro::State Exporter);
41
42our $idle; # idle handler
43our $main; # main coroutine
44our $current; # current coroutine
45
46our $VERSION = '3.0';
47
48our @EXPORT = qw(async cede schedule terminate current unblock_sub);
49our %EXPORT_TAGS = (
50 prio => [qw(PRIO_MAX PRIO_HIGH PRIO_NORMAL PRIO_LOW PRIO_IDLE PRIO_MIN)],
51);
52our @EXPORT_OK = @{$EXPORT_TAGS{prio}};
53
54{
55 my @async;
56 my $init;
57
58 # this way of handling attributes simply is NOT scalable ;()
59 sub import {
60 no strict 'refs';
61
62 Coro->export_to_level(1, @_);
63
64 my $old = *{(caller)[0]."::MODIFY_CODE_ATTRIBUTES"}{CODE};
65 *{(caller)[0]."::MODIFY_CODE_ATTRIBUTES"} = sub {
66 my ($package, $ref) = (shift, shift);
67 my @attrs;
68 for (@_) {
69 if ($_ eq "Coro") {
70 push @async, $ref;
71 unless ($init++) {
72 eval q{
73 sub INIT {
74 &async(pop @async) while @async;
75 }
76 };
77 }
78 } else {
79 push @attrs, $_;
80 }
81 }
82 return $old ? $old->($package, $ref, @attrs) : @attrs;
83 };
84 }
85
86}
87
11=over 4 88=over 4
12 89
13=cut
14
15package Coro;
16
17BEGIN {
18 $VERSION = 0.01;
19
20 require XSLoader;
21 XSLoader::load Coro, $VERSION;
22}
23
24=item $main 90=item $main
25 91
26This coroutine represents the main program. 92This coroutine represents the main program.
27 93
28=item $current 94=cut
29 95
96$main = new Coro;
97
98=item $current (or as function: current)
99
30The current coroutine (the last coroutine switched to). The initial value is C<$main> (of course). 100The current coroutine (the last coroutine switched to). The initial value
101is C<$main> (of course).
31 102
32=cut 103This variable is B<strictly> I<read-only>. It is provided for performance
104reasons. If performance is not essentiel you are encouraged to use the
105C<Coro::current> function instead.
33 106
34$main = $current = _newprocess { 107=cut
35 # never being called 108
109# maybe some other module used Coro::Specific before...
110if ($current) {
111 $main->{specific} = $current->{specific};
112}
113
114$current = $main;
115
116sub current() { $current }
117
118=item $idle
119
120A callback that is called whenever the scheduler finds no ready coroutines
121to run. The default implementation prints "FATAL: deadlock detected" and
122exits, because the program has no other way to continue.
123
124This hook is overwritten by modules such as C<Coro::Timer> and
125C<Coro::Event> to wait on an external event that hopefully wake up a
126coroutine so the scheduler can run it.
127
128Please note that if your callback recursively invokes perl (e.g. for event
129handlers), then it must be prepared to be called recursively.
130
131=cut
132
133$idle = sub {
134 print STDERR "FATAL: deadlock detected\n";
135 exit (51);
36}; 136};
37 137
38=item $error, $error_msg, $error_coro 138# this coroutine is necessary because a coroutine
139# cannot destroy itself.
140my @destroy;
141my $manager; $manager = new Coro sub {
142 while () {
143 # by overwriting the state object with the manager we destroy it
144 # while still being able to schedule this coroutine (in case it has
145 # been readied multiple times. this is harmless since the manager
146 # can be called as many times as neccessary and will always
147 # remove itself from the runqueue
148 while (@destroy) {
149 my $coro = pop @destroy;
150 $coro->{status} ||= [];
151 $_->ready for @{delete $coro->{join} || []};
39 152
40This coroutine will be called on fatal errors. C<$error_msg> and 153 # the next line destroys the coro state, but keeps the
41C<$error_coro> return the error message and the error-causing coroutine, 154 # coroutine itself intact (we basically make it a zombie
42respectively. 155 # coroutine that always runs the manager thread, so it's possible
43 156 # to transfer() to this coroutine).
44=cut 157 $coro->_clone_state_from ($manager);
45 158 }
46$error_msg = 159 &schedule;
47$error_coro = undef; 160 }
48
49$error = _newprocess {
50 print STDERR "FATAL: $error_msg, program aborted\n";
51 exit 250;
52}; 161};
53 162
54=item $coro = new $coderef [, @args] 163# static methods. not really.
55 164
56Create a new coroutine and return it. The first C<resume> call to this 165=back
57coroutine will start execution at the given coderef. If it returns it
58should return a coroutine to switch to. If, after returning, the coroutine
59is C<resume>d again it starts execution again at the givne coderef.
60 166
167=head2 STATIC METHODS
168
169Static methods are actually functions that operate on the current coroutine only.
170
171=over 4
172
173=item async { ... } [@args...]
174
175Create a new asynchronous coroutine and return it's coroutine object
176(usually unused). When the sub returns the new coroutine is automatically
177terminated.
178
179Calling C<exit> in a coroutine will not work correctly, so do not do that.
180
181When the coroutine dies, the program will exit, just as in the main
182program.
183
184 # create a new coroutine that just prints its arguments
185 async {
186 print "@_\n";
187 } 1,2,3,4;
188
61=cut 189=cut
190
191sub async(&@) {
192 my $pid = new Coro @_;
193 $pid->ready;
194 $pid
195}
196
197=item schedule
198
199Calls the scheduler. Please note that the current coroutine will not be put
200into the ready queue, so calling this function usually means you will
201never be called again unless something else (e.g. an event handler) calls
202ready.
203
204The canonical way to wait on external events is this:
205
206 {
207 # remember current coroutine
208 my $current = $Coro::current;
209
210 # register a hypothetical event handler
211 on_event_invoke sub {
212 # wake up sleeping coroutine
213 $current->ready;
214 undef $current;
215 };
216
217 # call schedule until event occured.
218 # in case we are woken up for other reasons
219 # (current still defined), loop.
220 Coro::schedule while $current;
221 }
222
223=item cede
224
225"Cede" to other coroutines. This function puts the current coroutine into the
226ready queue and calls C<schedule>, which has the effect of giving up the
227current "timeslice" to other coroutines of the same or higher priority.
228
229=item terminate [arg...]
230
231Terminates the current coroutine with the given status values (see L<cancel>).
232
233=cut
234
235sub terminate {
236 $current->cancel (@_);
237}
238
239=back
240
241# dynamic methods
242
243=head2 COROUTINE METHODS
244
245These are the methods you can call on coroutine objects.
246
247=over 4
248
249=item new Coro \&sub [, @args...]
250
251Create a new coroutine and return it. When the sub returns the coroutine
252automatically terminates as if C<terminate> with the returned values were
253called. To make the coroutine run you must first put it into the ready queue
254by calling the ready method.
255
256Calling C<exit> in a coroutine will not work correctly, so do not do that.
257
258=cut
259
260sub _new_coro {
261 terminate &{+shift};
262}
62 263
63sub new { 264sub new {
64 my $class = $_[0]; 265 my $class = shift;
65 my $proc = $_[1]; 266
66 bless _newprocess { 267 $class->SUPER::new (\&_new_coro, @_)
67 do { 268}
68 eval { &$proc->resume }; 269
69 if ($@) { 270=item $success = $coroutine->ready
70 ($error_msg, $error_coro) = ($@, $current); 271
71 $error->resume; 272Put the given coroutine into the ready queue (according to it's priority)
273and return true. If the coroutine is already in the ready queue, do nothing
274and return false.
275
276=item $is_ready = $coroutine->is_ready
277
278Return wether the coroutine is currently the ready queue or not,
279
280=item $coroutine->cancel (arg...)
281
282Terminates the given coroutine and makes it return the given arguments as
283status (default: the empty list).
284
285=cut
286
287sub cancel {
288 my $self = shift;
289 $self->{status} = [@_];
290 push @destroy, $self;
291 $manager->ready;
292 &schedule if $current == $self;
293}
294
295=item $coroutine->join
296
297Wait until the coroutine terminates and return any values given to the
298C<terminate> or C<cancel> functions. C<join> can be called multiple times
299from multiple coroutine.
300
301=cut
302
303sub join {
304 my $self = shift;
305 unless ($self->{status}) {
306 push @{$self->{join}}, $current;
307 &schedule;
308 }
309 wantarray ? @{$self->{status}} : $self->{status}[0];
310}
311
312=item $oldprio = $coroutine->prio ($newprio)
313
314Sets (or gets, if the argument is missing) the priority of the
315coroutine. Higher priority coroutines get run before lower priority
316coroutines. Priorities are small signed integers (currently -4 .. +3),
317that you can refer to using PRIO_xxx constants (use the import tag :prio
318to get then):
319
320 PRIO_MAX > PRIO_HIGH > PRIO_NORMAL > PRIO_LOW > PRIO_IDLE > PRIO_MIN
321 3 > 1 > 0 > -1 > -3 > -4
322
323 # set priority to HIGH
324 current->prio(PRIO_HIGH);
325
326The idle coroutine ($Coro::idle) always has a lower priority than any
327existing coroutine.
328
329Changing the priority of the current coroutine will take effect immediately,
330but changing the priority of coroutines in the ready queue (but not
331running) will only take effect after the next schedule (of that
332coroutine). This is a bug that will be fixed in some future version.
333
334=item $newprio = $coroutine->nice ($change)
335
336Similar to C<prio>, but subtract the given value from the priority (i.e.
337higher values mean lower priority, just as in unix).
338
339=item $olddesc = $coroutine->desc ($newdesc)
340
341Sets (or gets in case the argument is missing) the description for this
342coroutine. This is just a free-form string you can associate with a coroutine.
343
344=cut
345
346sub desc {
347 my $old = $_[0]{desc};
348 $_[0]{desc} = $_[1] if @_ > 1;
349 $old;
350}
351
352=back
353
354=head2 UTILITY FUNCTIONS
355
356=over 4
357
358=item unblock_sub { ... }
359
360This utility function takes a BLOCK or code reference and "unblocks" it,
361returning the new coderef. This means that the new coderef will return
362immediately without blocking, returning nothing, while the original code
363ref will be called (with parameters) from within its own coroutine.
364
365The reason this fucntion exists is that many event libraries (such as the
366venerable L<Event|Event> module) are not coroutine-safe (a weaker form
367of thread-safety). This means you must not block within event callbacks,
368otherwise you might suffer from crashes or worse.
369
370This function allows your callbacks to block by executing them in another
371coroutine where it is safe to block. One example where blocking is handy
372is when you use the L<Coro::AIO|Coro::AIO> functions to save results to
373disk.
374
375In short: simply use C<unblock_sub { ... }> instead of C<sub { ... }> when
376creating event callbacks that want to block.
377
378=cut
379
380our @unblock_pool;
381our @unblock_queue;
382our $UNBLOCK_POOL_SIZE = 2;
383
384sub unblock_handler_ {
385 while () {
386 my ($cb, @arg) = @{ delete $Coro::current->{arg} };
387 $cb->(@arg);
388
389 last if @unblock_pool >= $UNBLOCK_POOL_SIZE;
390 push @unblock_pool, $Coro::current;
391 schedule;
392 }
393}
394
395our $unblock_scheduler = async {
396 while () {
397 while (my $cb = pop @unblock_queue) {
398 my $handler = (pop @unblock_pool or new Coro \&unblock_handler_);
399 $handler->{arg} = $cb;
400 $handler->ready;
401 cede;
72 } 402 }
73 } while ();
74 }, $class;
75}
76 403
77=item $coro->resume 404 schedule;
405 }
406};
78 407
79Resume execution at the given coroutine. 408sub unblock_sub(&) {
409 my $cb = shift;
80 410
81=cut 411 sub {
82 412 push @unblock_queue, [$cb, @_];
83my $prev; 413 $unblock_scheduler->ready;
84 414 }
85sub resume {
86 $prev = $current; $current = $_[0];
87 _transfer($prev, $current);
88} 415}
416
417=back
418
419=cut
89 420
901; 4211;
91 422
92=back 423=head1 BUGS/LIMITATIONS
93 424
94=head1 BUGS 425 - you must make very sure that no coro is still active on global
426 destruction. very bad things might happen otherwise (usually segfaults).
95 427
96This module has not yet been extensively tested. 428 - this module is not thread-safe. You should only ever use this module
429 from the same thread (this requirement might be losened in the future
430 to allow per-thread schedulers, but Coro::State does not yet allow
431 this).
432
433=head1 SEE ALSO
434
435Support/Utility: L<Coro::Cont>, L<Coro::Specific>, L<Coro::State>, L<Coro::Util>.
436
437Locking/IPC: L<Coro::Signal>, L<Coro::Channel>, L<Coro::Semaphore>, L<Coro::SemaphoreSet>, L<Coro::RWLock>.
438
439Event/IO: L<Coro::Timer>, L<Coro::Event>, L<Coro::Handle>, L<Coro::Socket>, L<Coro::Select>.
440
441Embedding: L<Coro:MakeMaker>
97 442
98=head1 AUTHOR 443=head1 AUTHOR
99 444
100 Marc Lehmann <pcg@goof.com> 445 Marc Lehmann <schmorp@schmorp.de>
101 http://www.goof.com/pcg/marc/ 446 http://home.schmorp.de/
102 447
103=cut 448=cut
104 449

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines