ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/Coro/Coro.pm
(Generate patch)

Comparing Coro/Coro.pm (file contents):
Revision 1.6 by root, Tue Jul 10 21:19:47 2001 UTC vs.
Revision 1.179 by root, Sat Apr 19 19:06:02 2008 UTC

1=head1 NAME 1=head1 NAME
2 2
3Coro - create and manage simple coroutines 3Coro - coroutine process abstraction
4 4
5=head1 SYNOPSIS 5=head1 SYNOPSIS
6 6
7 use Coro; 7 use Coro;
8 8
9 $new = new Coro sub { 9 async {
10 print "in coroutine, switching back\n"; 10 # some asynchronous thread of execution
11 $new->transfer($main); 11 print "2\n";
12 print "in coroutine again, switching back\n"; 12 cede; # yield back to main
13 $new->transfer($main); 13 print "4\n";
14 }; 14 };
15 15 print "1\n";
16 $main = new Coro; 16 cede; # yield to coroutine
17 17 print "3\n";
18 print "in main, switching to coroutine\n"; 18 cede; # and again
19 $main->transfer($new); 19
20 print "back in main, switch to coroutine again\n"; 20 # use locking
21 $main->transfer($new); 21 my $lock = new Coro::Semaphore;
22 print "back in main\n"; 22 my $locked;
23
24 $lock->down;
25 $locked = 1;
26 $lock->up;
23 27
24=head1 DESCRIPTION 28=head1 DESCRIPTION
25 29
26This module implements coroutines. Coroutines, similar to continuations, 30This module collection manages coroutines. Coroutines are similar
27allow you to run more than one "thread of execution" in parallel. Unlike 31to threads but don't run in parallel at the same time even on SMP
28threads this, only voluntary switching is used so locking problems are 32machines. The specific flavor of coroutine used in this module also
29greatly reduced. 33guarantees you that it will not switch between coroutines unless
34necessary, at easily-identified points in your program, so locking and
35parallel access are rarely an issue, making coroutine programming much
36safer than threads programming.
30 37
31Although this is the "main" module of the Coro family it provides only 38(Perl, however, does not natively support real threads but instead does a
32low-level functionality. See L<Coro::Process> and related modules for a 39very slow and memory-intensive emulation of processes using threads. This
33more useful process abstraction including scheduling. 40is a performance win on Windows machines, and a loss everywhere else).
41
42In this module, coroutines are defined as "callchain + lexical variables +
43@_ + $_ + $@ + $/ + C stack), that is, a coroutine has its own callchain,
44its own set of lexicals and its own set of perls most important global
45variables (see L<Coro::State> for more configuration).
46
47=cut
48
49package Coro;
50
51use strict;
52no warnings "uninitialized";
53
54use Coro::State;
55
56use base qw(Coro::State Exporter);
57
58our $idle; # idle handler
59our $main; # main coroutine
60our $current; # current coroutine
61
62our $VERSION = '4.51';
63
64our @EXPORT = qw(async async_pool cede schedule terminate current unblock_sub);
65our %EXPORT_TAGS = (
66 prio => [qw(PRIO_MAX PRIO_HIGH PRIO_NORMAL PRIO_LOW PRIO_IDLE PRIO_MIN)],
67);
68our @EXPORT_OK = (@{$EXPORT_TAGS{prio}}, qw(nready));
34 69
35=over 4 70=over 4
36 71
37=cut 72=item $main
38 73
39package Coro; 74This coroutine represents the main program.
40 75
41BEGIN { 76=cut
42 $VERSION = 0.03;
43 77
78$main = new Coro;
79
80=item $current (or as function: current)
81
82The current coroutine (the last coroutine switched to). The initial value
83is C<$main> (of course).
84
85This variable is B<strictly> I<read-only>. It is provided for performance
86reasons. If performance is not essential you are encouraged to use the
87C<Coro::current> function instead.
88
89=cut
90
91$main->{desc} = "[main::]";
92
93# maybe some other module used Coro::Specific before...
94$main->{_specific} = $current->{_specific}
95 if $current;
96
97_set_current $main;
98
99sub current() { $current }
100
101=item $idle
102
103A callback that is called whenever the scheduler finds no ready coroutines
104to run. The default implementation prints "FATAL: deadlock detected" and
105exits, because the program has no other way to continue.
106
107This hook is overwritten by modules such as C<Coro::Timer> and
108C<Coro::Event> to wait on an external event that hopefully wake up a
109coroutine so the scheduler can run it.
110
111Please note that if your callback recursively invokes perl (e.g. for event
112handlers), then it must be prepared to be called recursively itself.
113
114=cut
115
116$idle = sub {
44 require XSLoader; 117 require Carp;
45 XSLoader::load Coro, $VERSION; 118 Carp::croak ("FATAL: deadlock detected");
46} 119};
47 120
48=item $coro = new [$coderef [, @args]] 121sub _cancel {
122 my ($self) = @_;
49 123
50Create a new coroutine and return it. The first C<transfer> call to this 124 # free coroutine data and mark as destructed
51coroutine will start execution at the given coderef. If, the subroutine 125 $self->_destroy
52returns it will be executed again. 126 or return;
53 127
54If the coderef is omitted this function will create a new "empty" 128 # call all destruction callbacks
55coroutine, i.e. a coroutine that cannot be transfered to but can be used 129 $_->(@{$self->{_status}})
56to save the current coroutine in. 130 for @{(delete $self->{_on_destroy}) || []};
131}
57 132
133# this coroutine is necessary because a coroutine
134# cannot destroy itself.
135my @destroy;
136my $manager;
137
138$manager = new Coro sub {
139 while () {
140 (shift @destroy)->_cancel
141 while @destroy;
142
143 &schedule;
144 }
145};
146$manager->desc ("[coro manager]");
147$manager->prio (PRIO_MAX);
148
149=back
150
151=head2 STATIC METHODS
152
153Static methods are actually functions that operate on the current coroutine only.
154
155=over 4
156
157=item async { ... } [@args...]
158
159Create a new asynchronous coroutine and return it's coroutine object
160(usually unused). When the sub returns the new coroutine is automatically
161terminated.
162
163See the C<Coro::State::new> constructor for info about the coroutine
164environment in which coroutines run.
165
166Calling C<exit> in a coroutine will do the same as calling exit outside
167the coroutine. Likewise, when the coroutine dies, the program will exit,
168just as it would in the main program.
169
170 # create a new coroutine that just prints its arguments
171 async {
172 print "@_\n";
173 } 1,2,3,4;
174
58=cut 175=cut
176
177sub async(&@) {
178 my $coro = new Coro @_;
179 $coro->ready;
180 $coro
181}
182
183=item async_pool { ... } [@args...]
184
185Similar to C<async>, but uses a coroutine pool, so you should not call
186terminate or join (although you are allowed to), and you get a coroutine
187that might have executed other code already (which can be good or bad :).
188
189Also, the block is executed in an C<eval> context and a warning will be
190issued in case of an exception instead of terminating the program, as
191C<async> does. As the coroutine is being reused, stuff like C<on_destroy>
192will not work in the expected way, unless you call terminate or cancel,
193which somehow defeats the purpose of pooling.
194
195The priority will be reset to C<0> after each job, tracing will be
196disabled, the description will be reset and the default output filehandle
197gets restored, so you can change alkl these. Otherwise the coroutine will
198be re-used "as-is": most notably if you change other per-coroutine global
199stuff such as C<$/> you need to revert that change, which is most simply
200done by using local as in C< local $/ >.
201
202The pool size is limited to 8 idle coroutines (this can be adjusted by
203changing $Coro::POOL_SIZE), and there can be as many non-idle coros as
204required.
205
206If you are concerned about pooled coroutines growing a lot because a
207single C<async_pool> used a lot of stackspace you can e.g. C<async_pool
208{ terminate }> once per second or so to slowly replenish the pool. In
209addition to that, when the stacks used by a handler grows larger than 16kb
210(adjustable with $Coro::POOL_RSS) it will also exit.
211
212=cut
213
214our $POOL_SIZE = 8;
215our $POOL_RSS = 16 * 1024;
216our @async_pool;
217
218sub pool_handler {
219 my $cb;
220
221 while () {
222 eval {
223 while () {
224 _pool_1 $cb;
225 &$cb;
226 _pool_2 $cb;
227 &schedule;
228 }
229 };
230
231 last if $@ eq "\3async_pool terminate\2\n";
232 warn $@ if $@;
233 }
234}
235
236sub async_pool(&@) {
237 # this is also inlined into the unlock_scheduler
238 my $coro = (pop @async_pool) || new Coro \&pool_handler;
239
240 $coro->{_invoke} = [@_];
241 $coro->ready;
242
243 $coro
244}
245
246=item schedule
247
248Calls the scheduler. Please note that the current coroutine will not be put
249into the ready queue, so calling this function usually means you will
250never be called again unless something else (e.g. an event handler) calls
251ready.
252
253The canonical way to wait on external events is this:
254
255 {
256 # remember current coroutine
257 my $current = $Coro::current;
258
259 # register a hypothetical event handler
260 on_event_invoke sub {
261 # wake up sleeping coroutine
262 $current->ready;
263 undef $current;
264 };
265
266 # call schedule until event occurred.
267 # in case we are woken up for other reasons
268 # (current still defined), loop.
269 Coro::schedule while $current;
270 }
271
272=item cede
273
274"Cede" to other coroutines. This function puts the current coroutine into the
275ready queue and calls C<schedule>, which has the effect of giving up the
276current "timeslice" to other coroutines of the same or higher priority.
277
278=item Coro::cede_notself
279
280Works like cede, but is not exported by default and will cede to any
281coroutine, regardless of priority, once.
282
283=item terminate [arg...]
284
285Terminates the current coroutine with the given status values (see L<cancel>).
286
287=item killall
288
289Kills/terminates/cancels all coroutines except the currently running
290one. This is useful after a fork, either in the child or the parent, as
291usually only one of them should inherit the running coroutines.
292
293=cut
294
295sub terminate {
296 $current->cancel (@_);
297}
298
299sub killall {
300 for (Coro::State::list) {
301 $_->cancel
302 if $_ != $current && UNIVERSAL::isa $_, "Coro";
303 }
304}
305
306=back
307
308=head2 COROUTINE METHODS
309
310These are the methods you can call on coroutine objects.
311
312=over 4
313
314=item new Coro \&sub [, @args...]
315
316Create a new coroutine and return it. When the sub returns the coroutine
317automatically terminates as if C<terminate> with the returned values were
318called. To make the coroutine run you must first put it into the ready queue
319by calling the ready method.
320
321See C<async> and C<Coro::State::new> for additional info about the
322coroutine environment.
323
324=cut
325
326sub _run_coro {
327 terminate &{+shift};
328}
59 329
60sub new { 330sub new {
61 my $class = $_[0]; 331 my $class = shift;
62 my $proc = $_[1] || sub { die "tried to transfer to an empty coroutine" }; 332
63 bless _newprocess { 333 $class->SUPER::new (\&_run_coro, @_)
64 do { 334}
65 eval { &$proc }; 335
66 if ($@) { 336=item $success = $coroutine->ready
67 $error_msg = $@; 337
68 $error_coro = _newprocess { }; 338Put the given coroutine into the ready queue (according to it's priority)
69 &transfer($error_coro, $error); 339and return true. If the coroutine is already in the ready queue, do nothing
340and return false.
341
342=item $is_ready = $coroutine->is_ready
343
344Return wether the coroutine is currently the ready queue or not,
345
346=item $coroutine->cancel (arg...)
347
348Terminates the given coroutine and makes it return the given arguments as
349status (default: the empty list). Never returns if the coroutine is the
350current coroutine.
351
352=cut
353
354sub cancel {
355 my $self = shift;
356 $self->{_status} = [@_];
357
358 if ($current == $self) {
359 push @destroy, $self;
360 $manager->ready;
361 &schedule while 1;
362 } else {
363 $self->_cancel;
364 }
365}
366
367=item $coroutine->join
368
369Wait until the coroutine terminates and return any values given to the
370C<terminate> or C<cancel> functions. C<join> can be called concurrently
371from multiple coroutines.
372
373=cut
374
375sub join {
376 my $self = shift;
377
378 unless ($self->{_status}) {
379 my $current = $current;
380
381 push @{$self->{_on_destroy}}, sub {
382 $current->ready;
383 undef $current;
384 };
385
386 &schedule while $current;
387 }
388
389 wantarray ? @{$self->{_status}} : $self->{_status}[0];
390}
391
392=item $coroutine->on_destroy (\&cb)
393
394Registers a callback that is called when this coroutine gets destroyed,
395but before it is joined. The callback gets passed the terminate arguments,
396if any.
397
398=cut
399
400sub on_destroy {
401 my ($self, $cb) = @_;
402
403 push @{ $self->{_on_destroy} }, $cb;
404}
405
406=item $oldprio = $coroutine->prio ($newprio)
407
408Sets (or gets, if the argument is missing) the priority of the
409coroutine. Higher priority coroutines get run before lower priority
410coroutines. Priorities are small signed integers (currently -4 .. +3),
411that you can refer to using PRIO_xxx constants (use the import tag :prio
412to get then):
413
414 PRIO_MAX > PRIO_HIGH > PRIO_NORMAL > PRIO_LOW > PRIO_IDLE > PRIO_MIN
415 3 > 1 > 0 > -1 > -3 > -4
416
417 # set priority to HIGH
418 current->prio(PRIO_HIGH);
419
420The idle coroutine ($Coro::idle) always has a lower priority than any
421existing coroutine.
422
423Changing the priority of the current coroutine will take effect immediately,
424but changing the priority of coroutines in the ready queue (but not
425running) will only take effect after the next schedule (of that
426coroutine). This is a bug that will be fixed in some future version.
427
428=item $newprio = $coroutine->nice ($change)
429
430Similar to C<prio>, but subtract the given value from the priority (i.e.
431higher values mean lower priority, just as in unix).
432
433=item $olddesc = $coroutine->desc ($newdesc)
434
435Sets (or gets in case the argument is missing) the description for this
436coroutine. This is just a free-form string you can associate with a coroutine.
437
438This method simply sets the C<< $coroutine->{desc} >> member to the given string. You
439can modify this member directly if you wish.
440
441=item $coroutine->throw ([$scalar])
442
443If C<$throw> is specified and defined, it will be thrown as an exception
444inside the coroutine at the next convinient point in time (usually after
445it gains control at the next schedule/transfer/cede). Otherwise clears the
446exception object.
447
448The exception object will be thrown "as is" with the specified scalar in
449C<$@>, i.e. if it is a string, no line number or newline will be appended
450(unlike with C<die>).
451
452This can be used as a softer means than C<cancel> to ask a coroutine to
453end itself, although there is no guarentee that the exception will lead to
454termination, and if the exception isn't caught it might well end the whole
455program.
456
457=cut
458
459sub desc {
460 my $old = $_[0]{desc};
461 $_[0]{desc} = $_[1] if @_ > 1;
462 $old;
463}
464
465=back
466
467=head2 GLOBAL FUNCTIONS
468
469=over 4
470
471=item Coro::nready
472
473Returns the number of coroutines that are currently in the ready state,
474i.e. that can be switched to. The value C<0> means that the only runnable
475coroutine is the currently running one, so C<cede> would have no effect,
476and C<schedule> would cause a deadlock unless there is an idle handler
477that wakes up some coroutines.
478
479=item my $guard = Coro::guard { ... }
480
481This creates and returns a guard object. Nothing happens until the object
482gets destroyed, in which case the codeblock given as argument will be
483executed. This is useful to free locks or other resources in case of a
484runtime error or when the coroutine gets canceled, as in both cases the
485guard block will be executed. The guard object supports only one method,
486C<< ->cancel >>, which will keep the codeblock from being executed.
487
488Example: set some flag and clear it again when the coroutine gets canceled
489or the function returns:
490
491 sub do_something {
492 my $guard = Coro::guard { $busy = 0 };
493 $busy = 1;
494
495 # do something that requires $busy to be true
496 }
497
498=cut
499
500sub guard(&) {
501 bless \(my $cb = $_[0]), "Coro::guard"
502}
503
504sub Coro::guard::cancel {
505 ${$_[0]} = sub { };
506}
507
508sub Coro::guard::DESTROY {
509 ${$_[0]}->();
510}
511
512
513=item unblock_sub { ... }
514
515This utility function takes a BLOCK or code reference and "unblocks" it,
516returning the new coderef. This means that the new coderef will return
517immediately without blocking, returning nothing, while the original code
518ref will be called (with parameters) from within its own coroutine.
519
520The reason this function exists is that many event libraries (such as the
521venerable L<Event|Event> module) are not coroutine-safe (a weaker form
522of thread-safety). This means you must not block within event callbacks,
523otherwise you might suffer from crashes or worse.
524
525This function allows your callbacks to block by executing them in another
526coroutine where it is safe to block. One example where blocking is handy
527is when you use the L<Coro::AIO|Coro::AIO> functions to save results to
528disk.
529
530In short: simply use C<unblock_sub { ... }> instead of C<sub { ... }> when
531creating event callbacks that want to block.
532
533=cut
534
535our @unblock_queue;
536
537# we create a special coro because we want to cede,
538# to reduce pressure on the coro pool (because most callbacks
539# return immediately and can be reused) and because we cannot cede
540# inside an event callback.
541our $unblock_scheduler = new Coro sub {
542 while () {
543 while (my $cb = pop @unblock_queue) {
544 # this is an inlined copy of async_pool
545 my $coro = (pop @async_pool) || new Coro \&pool_handler;
546
547 $coro->{_invoke} = $cb;
548 $coro->ready;
549 cede; # for short-lived callbacks, this reduces pressure on the coro pool
70 } 550 }
71 } while (1); 551 schedule; # sleep well
72 }, $class; 552 }
73}
74
75=item $prev->transfer($next)
76
77Save the state of the current subroutine in $prev and switch to the
78coroutine saved in $next.
79
80=cut
81
82# I call the _transfer function from a perl function
83# because that way perl saves all important things on
84# the stack.
85sub transfer {
86 _transfer($_[0], $_[1]);
87}
88
89=item $error, $error_msg, $error_coro
90
91This coroutine will be called on fatal errors. C<$error_msg> and
92C<$error_coro> return the error message and the error-causing coroutine
93(NOT an object) respectively. This API might change.
94
95=cut
96
97$error_msg =
98$error_coro = undef;
99
100$error = _newprocess {
101 print STDERR "FATAL: $error_msg\nprogram aborted\n";
102 exit 50;
103}; 553};
554$unblock_scheduler->desc ("[unblock_sub scheduler]");
555
556sub unblock_sub(&) {
557 my $cb = shift;
558
559 sub {
560 unshift @unblock_queue, [$cb, @_];
561 $unblock_scheduler->ready;
562 }
563}
564
565=back
566
567=cut
104 568
1051; 5691;
106 570
107=back 571=head1 BUGS/LIMITATIONS
108 572
109=head1 BUGS 573 - you must make very sure that no coro is still active on global
574 destruction. very bad things might happen otherwise (usually segfaults).
110 575
111This module has not yet been extensively tested. 576 - this module is not thread-safe. You should only ever use this module
577 from the same thread (this requirement might be loosened in the future
578 to allow per-thread schedulers, but Coro::State does not yet allow
579 this).
112 580
113=head1 SEE ALSO 581=head1 SEE ALSO
114 582
115L<Coro::Process>, L<Coro::Signal>. 583Lower level Configuration, Coroutine Environment: L<Coro::State>.
584
585Debugging: L<Coro::Debug>.
586
587Support/Utility: L<Coro::Specific>, L<Coro::Util>.
588
589Locking/IPC: L<Coro::Signal>, L<Coro::Channel>, L<Coro::Semaphore>, L<Coro::SemaphoreSet>, L<Coro::RWLock>.
590
591Event/IO: L<Coro::Timer>, L<Coro::Event>, L<Coro::Handle>, L<Coro::Socket>.
592
593Compatibility: L<Coro::LWP>, L<Coro::Storable>, L<Coro::Select>.
594
595Embedding: L<Coro::MakeMaker>.
116 596
117=head1 AUTHOR 597=head1 AUTHOR
118 598
119 Marc Lehmann <pcg@goof.com> 599 Marc Lehmann <schmorp@schmorp.de>
120 http://www.goof.com/pcg/marc/ 600 http://home.schmorp.de/
121 601
122=cut 602=cut
123 603

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines