ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/Coro/Coro.pm
(Generate patch)

Comparing Coro/Coro.pm (file contents):
Revision 1.4 by root, Tue Jul 3 05:05:45 2001 UTC vs.
Revision 1.97 by root, Mon Dec 4 13:47:56 2006 UTC

1=head1 NAME 1=head1 NAME
2 2
3Coro - create and manage coroutines 3Coro - coroutine process abstraction
4 4
5=head1 SYNOPSIS 5=head1 SYNOPSIS
6 6
7 use Coro; 7 use Coro;
8 8
9 $new = new Coro sub { 9 async {
10 print "in coroutine, switching back\n"; 10 # some asynchronous thread of execution
11 $Coro::main->resume;
12 print "in coroutine again, switching back\n";
13 $Coro::main->resume;
14 }; 11 };
15 12
16 print "in main, switching to coroutine\n"; 13 # alternatively create an async coroutine like this:
17 $new->resume; 14
18 print "back in main, switch to coroutine again\n"; 15 sub some_func : Coro {
19 $new->resume; 16 # some more async code
20 print "back in main\n"; 17 }
18
19 cede;
21 20
22=head1 DESCRIPTION 21=head1 DESCRIPTION
23 22
24This module implements coroutines. Coroutines, similar to continuations, 23This module collection manages coroutines. Coroutines are similar to
25allow you to run more than one "thread of execution" in parallel. Unlike 24threads but don't run in parallel.
26threads this, only voluntary switching is used so locking problems are
27greatly reduced.
28 25
29Although this is the "main" module of the Coro family it provides only 26In this module, coroutines are defined as "callchain + lexical variables
30low-level functionality. See L<Coro::Process> and related modules for a 27+ @_ + $_ + $@ + $^W + C stack), that is, a coroutine has it's own
31more useful process abstraction including scheduling. 28callchain, it's own set of lexicals and it's own set of perl's most
29important global variables.
30
31=cut
32
33package Coro;
34
35use strict;
36no warnings "uninitialized";
37
38use Coro::State;
39
40use base qw(Coro::State Exporter);
41
42our $idle; # idle handler
43our $main; # main coroutine
44our $current; # current coroutine
45
46our $VERSION = '3.01';
47
48our @EXPORT = qw(async cede schedule terminate current unblock_sub);
49our %EXPORT_TAGS = (
50 prio => [qw(PRIO_MAX PRIO_HIGH PRIO_NORMAL PRIO_LOW PRIO_IDLE PRIO_MIN)],
51);
52our @EXPORT_OK = (@{$EXPORT_TAGS{prio}}, qw(nready));
53
54{
55 my @async;
56 my $init;
57
58 # this way of handling attributes simply is NOT scalable ;()
59 sub import {
60 no strict 'refs';
61
62 Coro->export_to_level (1, @_);
63
64 my $old = *{(caller)[0]."::MODIFY_CODE_ATTRIBUTES"}{CODE};
65 *{(caller)[0]."::MODIFY_CODE_ATTRIBUTES"} = sub {
66 my ($package, $ref) = (shift, shift);
67 my @attrs;
68 for (@_) {
69 if ($_ eq "Coro") {
70 push @async, $ref;
71 unless ($init++) {
72 eval q{
73 sub INIT {
74 &async(pop @async) while @async;
75 }
76 };
77 }
78 } else {
79 push @attrs, $_;
80 }
81 }
82 return $old ? $old->($package, $ref, @attrs) : @attrs;
83 };
84 }
85
86}
32 87
33=over 4 88=over 4
34 89
35=cut
36
37package Coro;
38
39BEGIN {
40 $VERSION = 0.01;
41
42 require XSLoader;
43 XSLoader::load Coro, $VERSION;
44}
45
46=item $main 90=item $main
47 91
48This coroutine represents the main program. 92This coroutine represents the main program.
49 93
50=item $current 94=cut
51 95
96$main = new Coro;
97
98=item $current (or as function: current)
99
52The current coroutine (the last coroutine switched to). The initial value is C<$main> (of course). 100The current coroutine (the last coroutine switched to). The initial value
101is C<$main> (of course).
53 102
54=cut 103This variable is B<strictly> I<read-only>. It is provided for performance
104reasons. If performance is not essentiel you are encouraged to use the
105C<Coro::current> function instead.
55 106
56$main = $current = _newprocess { 107=cut
57 # never being called 108
109# maybe some other module used Coro::Specific before...
110$main->{specific} = $current->{specific}
111 if $current;
112
113_set_current $main;
114
115sub current() { $current }
116
117=item $idle
118
119A callback that is called whenever the scheduler finds no ready coroutines
120to run. The default implementation prints "FATAL: deadlock detected" and
121exits, because the program has no other way to continue.
122
123This hook is overwritten by modules such as C<Coro::Timer> and
124C<Coro::Event> to wait on an external event that hopefully wake up a
125coroutine so the scheduler can run it.
126
127Please note that if your callback recursively invokes perl (e.g. for event
128handlers), then it must be prepared to be called recursively.
129
130=cut
131
132$idle = sub {
133 require Carp;
134 Carp::croak ("FATAL: deadlock detected");
58}; 135};
59 136
60=item $error, $error_msg, $error_coro 137# this coroutine is necessary because a coroutine
138# cannot destroy itself.
139my @destroy;
140my $manager; $manager = new Coro sub {
141 while () {
142 # by overwriting the state object with the manager we destroy it
143 # while still being able to schedule this coroutine (in case it has
144 # been readied multiple times. this is harmless since the manager
145 # can be called as many times as neccessary and will always
146 # remove itself from the runqueue
147 while (@destroy) {
148 my $coro = pop @destroy;
149 $coro->{status} ||= [];
150 $_->ready for @{delete $coro->{join} || []};
61 151
62This coroutine will be called on fatal errors. C<$error_msg> and 152 # the next line destroys the coro state, but keeps the
63C<$error_coro> return the error message and the error-causing coroutine, 153 # coroutine itself intact (we basically make it a zombie
64respectively. 154 # coroutine that always runs the manager thread, so it's possible
65 155 # to transfer() to this coroutine).
66=cut 156 $coro->_clone_state_from ($manager);
67 157 }
68$error_msg = 158 &schedule;
69$error_coro = undef; 159 }
70
71$error = _newprocess {
72 print STDERR "FATAL: $error_msg\nprogram aborted\n";
73 exit 250;
74}; 160};
75 161
76=item $coro = new $coderef [, @args] 162# static methods. not really.
77 163
78Create a new coroutine and return it. The first C<resume> call to this 164=back
79coroutine will start execution at the given coderef. If it returns it
80should return a coroutine to switch to. If, after returning, the coroutine
81is C<resume>d again it starts execution again at the givne coderef.
82 165
166=head2 STATIC METHODS
167
168Static methods are actually functions that operate on the current coroutine only.
169
170=over 4
171
172=item async { ... } [@args...]
173
174Create a new asynchronous coroutine and return it's coroutine object
175(usually unused). When the sub returns the new coroutine is automatically
176terminated.
177
178Calling C<exit> in a coroutine will not work correctly, so do not do that.
179
180When the coroutine dies, the program will exit, just as in the main
181program.
182
183 # create a new coroutine that just prints its arguments
184 async {
185 print "@_\n";
186 } 1,2,3,4;
187
83=cut 188=cut
189
190sub async(&@) {
191 my $pid = new Coro @_;
192 $pid->ready;
193 $pid
194}
195
196=item schedule
197
198Calls the scheduler. Please note that the current coroutine will not be put
199into the ready queue, so calling this function usually means you will
200never be called again unless something else (e.g. an event handler) calls
201ready.
202
203The canonical way to wait on external events is this:
204
205 {
206 # remember current coroutine
207 my $current = $Coro::current;
208
209 # register a hypothetical event handler
210 on_event_invoke sub {
211 # wake up sleeping coroutine
212 $current->ready;
213 undef $current;
214 };
215
216 # call schedule until event occured.
217 # in case we are woken up for other reasons
218 # (current still defined), loop.
219 Coro::schedule while $current;
220 }
221
222=item cede
223
224"Cede" to other coroutines. This function puts the current coroutine into the
225ready queue and calls C<schedule>, which has the effect of giving up the
226current "timeslice" to other coroutines of the same or higher priority.
227
228=item terminate [arg...]
229
230Terminates the current coroutine with the given status values (see L<cancel>).
231
232=cut
233
234sub terminate {
235 $current->cancel (@_);
236}
237
238=back
239
240# dynamic methods
241
242=head2 COROUTINE METHODS
243
244These are the methods you can call on coroutine objects.
245
246=over 4
247
248=item new Coro \&sub [, @args...]
249
250Create a new coroutine and return it. When the sub returns the coroutine
251automatically terminates as if C<terminate> with the returned values were
252called. To make the coroutine run you must first put it into the ready queue
253by calling the ready method.
254
255Calling C<exit> in a coroutine will not work correctly, so do not do that.
256
257=cut
258
259sub _run_coro {
260 terminate &{+shift};
261}
84 262
85sub new { 263sub new {
86 my $class = $_[0]; 264 my $class = shift;
87 my $proc = $_[1]; 265
88 bless _newprocess { 266 $class->SUPER::new (\&_run_coro, @_)
89 do { 267}
90 eval { &$proc->resume }; 268
91 if ($@) { 269=item $success = $coroutine->ready
92 ($error_msg, $error_coro) = ($@, $current); 270
93 $error->resume; 271Put the given coroutine into the ready queue (according to it's priority)
272and return true. If the coroutine is already in the ready queue, do nothing
273and return false.
274
275=item $is_ready = $coroutine->is_ready
276
277Return wether the coroutine is currently the ready queue or not,
278
279=item $coroutine->cancel (arg...)
280
281Terminates the given coroutine and makes it return the given arguments as
282status (default: the empty list).
283
284=cut
285
286sub cancel {
287 my $self = shift;
288 $self->{status} = [@_];
289 push @destroy, $self;
290 $manager->ready;
291 &schedule if $current == $self;
292}
293
294=item $coroutine->join
295
296Wait until the coroutine terminates and return any values given to the
297C<terminate> or C<cancel> functions. C<join> can be called multiple times
298from multiple coroutine.
299
300=cut
301
302sub join {
303 my $self = shift;
304 unless ($self->{status}) {
305 push @{$self->{join}}, $current;
306 &schedule;
307 }
308 wantarray ? @{$self->{status}} : $self->{status}[0];
309}
310
311=item $oldprio = $coroutine->prio ($newprio)
312
313Sets (or gets, if the argument is missing) the priority of the
314coroutine. Higher priority coroutines get run before lower priority
315coroutines. Priorities are small signed integers (currently -4 .. +3),
316that you can refer to using PRIO_xxx constants (use the import tag :prio
317to get then):
318
319 PRIO_MAX > PRIO_HIGH > PRIO_NORMAL > PRIO_LOW > PRIO_IDLE > PRIO_MIN
320 3 > 1 > 0 > -1 > -3 > -4
321
322 # set priority to HIGH
323 current->prio(PRIO_HIGH);
324
325The idle coroutine ($Coro::idle) always has a lower priority than any
326existing coroutine.
327
328Changing the priority of the current coroutine will take effect immediately,
329but changing the priority of coroutines in the ready queue (but not
330running) will only take effect after the next schedule (of that
331coroutine). This is a bug that will be fixed in some future version.
332
333=item $newprio = $coroutine->nice ($change)
334
335Similar to C<prio>, but subtract the given value from the priority (i.e.
336higher values mean lower priority, just as in unix).
337
338=item $olddesc = $coroutine->desc ($newdesc)
339
340Sets (or gets in case the argument is missing) the description for this
341coroutine. This is just a free-form string you can associate with a coroutine.
342
343=cut
344
345sub desc {
346 my $old = $_[0]{desc};
347 $_[0]{desc} = $_[1] if @_ > 1;
348 $old;
349}
350
351=back
352
353=head2 GLOBAL FUNCTIONS
354
355=over 4
356
357=item Coro::nready
358
359Returns the number of coroutines that are currently in the ready state,
360i.e. that can be swicthed to. The value C<0> means that the only runnable
361coroutine is the currently running one, so C<cede> would have no effect,
362and C<schedule> would cause a deadlock unless there is an idle handler
363that wakes up some coroutines.
364
365=item unblock_sub { ... }
366
367This utility function takes a BLOCK or code reference and "unblocks" it,
368returning the new coderef. This means that the new coderef will return
369immediately without blocking, returning nothing, while the original code
370ref will be called (with parameters) from within its own coroutine.
371
372The reason this fucntion exists is that many event libraries (such as the
373venerable L<Event|Event> module) are not coroutine-safe (a weaker form
374of thread-safety). This means you must not block within event callbacks,
375otherwise you might suffer from crashes or worse.
376
377This function allows your callbacks to block by executing them in another
378coroutine where it is safe to block. One example where blocking is handy
379is when you use the L<Coro::AIO|Coro::AIO> functions to save results to
380disk.
381
382In short: simply use C<unblock_sub { ... }> instead of C<sub { ... }> when
383creating event callbacks that want to block.
384
385=cut
386
387our @unblock_pool;
388our @unblock_queue;
389our $UNBLOCK_POOL_SIZE = 2;
390
391sub unblock_handler_ {
392 while () {
393 my ($cb, @arg) = @{ delete $Coro::current->{arg} };
394 $cb->(@arg);
395
396 last if @unblock_pool >= $UNBLOCK_POOL_SIZE;
397 push @unblock_pool, $Coro::current;
398 schedule;
399 }
400}
401
402our $unblock_scheduler = async {
403 while () {
404 while (my $cb = pop @unblock_queue) {
405 my $handler = (pop @unblock_pool or new Coro \&unblock_handler_);
406 $handler->{arg} = $cb;
407 $handler->ready;
408 cede;
94 } 409 }
95 } while (1);
96 }, $class;
97}
98 410
99=item $coro->resume 411 schedule;
412 }
413};
100 414
101Resume execution at the given coroutine. 415sub unblock_sub(&) {
416 my $cb = shift;
102 417
103=cut 418 sub {
104 419 push @unblock_queue, [$cb, @_];
105my $prev; 420 $unblock_scheduler->ready;
106 421 }
107sub resume {
108 $prev = $current; $current = $_[0];
109 _transfer($prev, $current);
110} 422}
423
424=back
425
426=cut
111 427
1121; 4281;
113 429
114=back 430=head1 BUGS/LIMITATIONS
115 431
116=head1 BUGS 432 - you must make very sure that no coro is still active on global
433 destruction. very bad things might happen otherwise (usually segfaults).
117 434
118This module has not yet been extensively tested. 435 - this module is not thread-safe. You should only ever use this module
436 from the same thread (this requirement might be losened in the future
437 to allow per-thread schedulers, but Coro::State does not yet allow
438 this).
119 439
120=head1 SEE ALSO 440=head1 SEE ALSO
121 441
122L<Coro::Process>, L<Coro::Signal>. 442Support/Utility: L<Coro::Cont>, L<Coro::Specific>, L<Coro::State>, L<Coro::Util>.
443
444Locking/IPC: L<Coro::Signal>, L<Coro::Channel>, L<Coro::Semaphore>, L<Coro::SemaphoreSet>, L<Coro::RWLock>.
445
446Event/IO: L<Coro::Timer>, L<Coro::Event>, L<Coro::Handle>, L<Coro::Socket>, L<Coro::Select>.
447
448Embedding: L<Coro:MakeMaker>
123 449
124=head1 AUTHOR 450=head1 AUTHOR
125 451
126 Marc Lehmann <pcg@goof.com> 452 Marc Lehmann <schmorp@schmorp.de>
127 http://www.goof.com/pcg/marc/ 453 http://home.schmorp.de/
128 454
129=cut 455=cut
130 456

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines