ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/Coro/Coro.pm
(Generate patch)

Comparing Coro/Coro.pm (file contents):
Revision 1.7 by root, Fri Jul 13 13:05:38 2001 UTC vs.
Revision 1.101 by root, Fri Dec 29 08:36:34 2006 UTC

1=head1 NAME 1=head1 NAME
2 2
3Coro - create and manage simple coroutines 3Coro - coroutine process abstraction
4 4
5=head1 SYNOPSIS 5=head1 SYNOPSIS
6 6
7 use Coro; 7 use Coro;
8 8
9 $new = new Coro sub { 9 async {
10 print "in coroutine, switching back\n"; 10 # some asynchronous thread of execution
11 $new->transfer($main);
12 print "in coroutine again, switching back\n";
13 $new->transfer($main);
14 }; 11 };
15 12
16 $main = new Coro; 13 # alternatively create an async coroutine like this:
17 14
18 print "in main, switching to coroutine\n"; 15 sub some_func : Coro {
19 $main->transfer($new); 16 # some more async code
20 print "back in main, switch to coroutine again\n"; 17 }
21 $main->transfer($new); 18
22 print "back in main\n"; 19 cede;
23 20
24=head1 DESCRIPTION 21=head1 DESCRIPTION
25 22
26This module implements coroutines. Coroutines, similar to continuations, 23This module collection manages coroutines. Coroutines are similar
27allow you to run more than one "thread of execution" in parallel. Unlike 24to threads but don't run in parallel at the same time even on SMP
28threads this, only voluntary switching is used so locking problems are 25machines. The specific flavor of coroutine use din this module also
29greatly reduced. 26guarentees you that it will not switch between coroutines unless
27necessary, at easily-identified points in your program, so locking and
28parallel access are rarely an issue, making coroutine programming much
29safer than threads programming.
30 30
31Although this is the "main" module of the Coro family it provides only 31(Perl, however, does not natively support real threads but instead does a
32low-level functionality. See L<Coro::Process> and related modules for a 32very slow and memory-intensive emulation of processes using threads. This
33more useful process abstraction including scheduling. 33is a performance win on Windows machines, and a loss everywhere else).
34
35In this module, coroutines are defined as "callchain + lexical variables +
36@_ + $_ + $@ + $/ + C stack), that is, a coroutine has its own callchain,
37its own set of lexicals and its own set of perls most important global
38variables.
39
40=cut
41
42package Coro;
43
44use strict;
45no warnings "uninitialized";
46
47use Coro::State;
48
49use base qw(Coro::State Exporter);
50
51our $idle; # idle handler
52our $main; # main coroutine
53our $current; # current coroutine
54
55our $VERSION = '3.3';
56
57our @EXPORT = qw(async cede schedule terminate current unblock_sub);
58our %EXPORT_TAGS = (
59 prio => [qw(PRIO_MAX PRIO_HIGH PRIO_NORMAL PRIO_LOW PRIO_IDLE PRIO_MIN)],
60);
61our @EXPORT_OK = (@{$EXPORT_TAGS{prio}}, qw(nready));
62
63{
64 my @async;
65 my $init;
66
67 # this way of handling attributes simply is NOT scalable ;()
68 sub import {
69 no strict 'refs';
70
71 Coro->export_to_level (1, @_);
72
73 my $old = *{(caller)[0]."::MODIFY_CODE_ATTRIBUTES"}{CODE};
74 *{(caller)[0]."::MODIFY_CODE_ATTRIBUTES"} = sub {
75 my ($package, $ref) = (shift, shift);
76 my @attrs;
77 for (@_) {
78 if ($_ eq "Coro") {
79 push @async, $ref;
80 unless ($init++) {
81 eval q{
82 sub INIT {
83 &async(pop @async) while @async;
84 }
85 };
86 }
87 } else {
88 push @attrs, $_;
89 }
90 }
91 return $old ? $old->($package, $ref, @attrs) : @attrs;
92 };
93 }
94
95}
34 96
35=over 4 97=over 4
36 98
37=cut 99=item $main
38 100
39package Coro; 101This coroutine represents the main program.
40 102
41BEGIN { 103=cut
42 $VERSION = 0.03;
43 104
105$main = new Coro;
106
107=item $current (or as function: current)
108
109The current coroutine (the last coroutine switched to). The initial value
110is C<$main> (of course).
111
112This variable is B<strictly> I<read-only>. It is provided for performance
113reasons. If performance is not essentiel you are encouraged to use the
114C<Coro::current> function instead.
115
116=cut
117
118# maybe some other module used Coro::Specific before...
119$main->{specific} = $current->{specific}
120 if $current;
121
122_set_current $main;
123
124sub current() { $current }
125
126=item $idle
127
128A callback that is called whenever the scheduler finds no ready coroutines
129to run. The default implementation prints "FATAL: deadlock detected" and
130exits, because the program has no other way to continue.
131
132This hook is overwritten by modules such as C<Coro::Timer> and
133C<Coro::Event> to wait on an external event that hopefully wake up a
134coroutine so the scheduler can run it.
135
136Please note that if your callback recursively invokes perl (e.g. for event
137handlers), then it must be prepared to be called recursively.
138
139=cut
140
141$idle = sub {
44 require XSLoader; 142 require Carp;
45 XSLoader::load Coro, $VERSION; 143 Carp::croak ("FATAL: deadlock detected");
46} 144};
47 145
48=item $coro = new [$coderef [, @args]] 146# this coroutine is necessary because a coroutine
147# cannot destroy itself.
148my @destroy;
149my $manager; $manager = new Coro sub {
150 while () {
151 # by overwriting the state object with the manager we destroy it
152 # while still being able to schedule this coroutine (in case it has
153 # been readied multiple times. this is harmless since the manager
154 # can be called as many times as neccessary and will always
155 # remove itself from the runqueue
156 while (@destroy) {
157 my $coro = pop @destroy;
49 158
50Create a new coroutine and return it. The first C<transfer> call to this 159 $coro->{status} ||= [];
51coroutine will start execution at the given coderef. If, the subroutine
52returns it will be executed again.
53 160
54If the coderef is omitted this function will create a new "empty" 161 $_->ready for @{(delete $coro->{join} ) || []};
55coroutine, i.e. a coroutine that cannot be transfered to but can be used 162 $_->(@{$coro->{status}}) for @{(delete $coro->{destroy_cb}) || []};
56to save the current coroutine in.
57 163
164 # the next line destroys the coro state, but keeps the
165 # coroutine itself intact (we basically make it a zombie
166 # coroutine that always runs the manager thread, so it's possible
167 # to transfer() to this coroutine).
168 $coro->_clone_state_from ($manager);
169 }
170 &schedule;
171 }
172};
173
174# static methods. not really.
175
176=back
177
178=head2 STATIC METHODS
179
180Static methods are actually functions that operate on the current coroutine only.
181
182=over 4
183
184=item async { ... } [@args...]
185
186Create a new asynchronous coroutine and return it's coroutine object
187(usually unused). When the sub returns the new coroutine is automatically
188terminated.
189
190Calling C<exit> in a coroutine will not work correctly, so do not do that.
191
192When the coroutine dies, the program will exit, just as in the main
193program.
194
195 # create a new coroutine that just prints its arguments
196 async {
197 print "@_\n";
198 } 1,2,3,4;
199
58=cut 200=cut
201
202sub async(&@) {
203 my $pid = new Coro @_;
204 $pid->ready;
205 $pid
206}
207
208=item schedule
209
210Calls the scheduler. Please note that the current coroutine will not be put
211into the ready queue, so calling this function usually means you will
212never be called again unless something else (e.g. an event handler) calls
213ready.
214
215The canonical way to wait on external events is this:
216
217 {
218 # remember current coroutine
219 my $current = $Coro::current;
220
221 # register a hypothetical event handler
222 on_event_invoke sub {
223 # wake up sleeping coroutine
224 $current->ready;
225 undef $current;
226 };
227
228 # call schedule until event occured.
229 # in case we are woken up for other reasons
230 # (current still defined), loop.
231 Coro::schedule while $current;
232 }
233
234=item cede
235
236"Cede" to other coroutines. This function puts the current coroutine into the
237ready queue and calls C<schedule>, which has the effect of giving up the
238current "timeslice" to other coroutines of the same or higher priority.
239
240=item terminate [arg...]
241
242Terminates the current coroutine with the given status values (see L<cancel>).
243
244=cut
245
246sub terminate {
247 $current->cancel (@_);
248}
249
250=back
251
252# dynamic methods
253
254=head2 COROUTINE METHODS
255
256These are the methods you can call on coroutine objects.
257
258=over 4
259
260=item new Coro \&sub [, @args...]
261
262Create a new coroutine and return it. When the sub returns the coroutine
263automatically terminates as if C<terminate> with the returned values were
264called. To make the coroutine run you must first put it into the ready queue
265by calling the ready method.
266
267Calling C<exit> in a coroutine will not work correctly, so do not do that.
268
269=cut
270
271sub _run_coro {
272 terminate &{+shift};
273}
59 274
60sub new { 275sub new {
61 my $class = $_[0]; 276 my $class = shift;
62 my $proc = $_[1] || sub { die "tried to transfer to an empty coroutine" };
63 bless _newprocess {
64 do {
65 eval { &$proc };
66 if ($@) {
67 $error_msg = $@;
68 $error_coro = _newprocess { };
69 &transfer($error_coro, $error);
70 }
71 } while (1);
72 }, $class;
73}
74 277
75=item $prev->transfer($next) 278 $class->SUPER::new (\&_run_coro, @_)
279}
76 280
77Save the state of the current subroutine in C<$prev> and switch to the 281=item $success = $coroutine->ready
78coroutine saved in C<$next>.
79 282
80The "state" of a subroutine only ever includes scope, i.e. lexical 283Put the given coroutine into the ready queue (according to it's priority)
81variables and the current execution state. It does not save/restore any 284and return true. If the coroutine is already in the ready queue, do nothing
82global variables such as C<$_> or C<$@> or any other special or non 285and return false.
83special variables. So remember that every function call that might call
84C<transfer> (such as C<Coro::Channel::put>) might clobber any global
85and/or special variables. Yes, this is by design ;) You cna always create
86your own process abstraction model that saves these variables.
87 286
88The easiest way to do this is to create your own scheduling primitive like this: 287=item $is_ready = $coroutine->is_ready
89 288
90 sub schedule { 289Return wether the coroutine is currently the ready queue or not,
91 local ($_, $@, ...); 290
92 $old->transfer($new); 291=item $coroutine->cancel (arg...)
292
293Terminates the given coroutine and makes it return the given arguments as
294status (default: the empty list).
295
296=cut
297
298sub cancel {
299 my $self = shift;
300 $self->{status} = [@_];
301 push @destroy, $self;
302 $manager->ready;
303 &schedule if $current == $self;
304}
305
306=item $coroutine->join
307
308Wait until the coroutine terminates and return any values given to the
309C<terminate> or C<cancel> functions. C<join> can be called multiple times
310from multiple coroutine.
311
312=cut
313
314sub join {
315 my $self = shift;
316 unless ($self->{status}) {
317 push @{$self->{join}}, $current;
318 &schedule;
93 } 319 }
94 320 wantarray ? @{$self->{status}} : $self->{status}[0];
95=cut
96
97# I call the _transfer function from a perl function
98# because that way perl saves all important things on
99# the stack. Actually, I'd do it from within XS, but
100# I couldn't get it to work.
101sub transfer {
102 _transfer($_[0], $_[1]);
103} 321}
104 322
105=item $error, $error_msg, $error_coro 323=item $coroutine->on_destroy (\&cb)
106 324
107This coroutine will be called on fatal errors. C<$error_msg> and 325Registers a callback that is called when this coroutine gets destroyed,
108C<$error_coro> return the error message and the error-causing coroutine 326but before it is joined. The callback gets passed the terminate arguments,
109(NOT an object) respectively. This API might change. 327if any.
110 328
111=cut 329=cut
112 330
113$error_msg = 331sub on_destroy {
114$error_coro = undef; 332 my ($self, $cb) = @_;
115 333
116$error = _newprocess { 334 push @{ $self->{destroy_cb} }, $cb;
117 print STDERR "FATAL: $error_msg\nprogram aborted\n"; 335}
118 exit 50; 336
337=item $oldprio = $coroutine->prio ($newprio)
338
339Sets (or gets, if the argument is missing) the priority of the
340coroutine. Higher priority coroutines get run before lower priority
341coroutines. Priorities are small signed integers (currently -4 .. +3),
342that you can refer to using PRIO_xxx constants (use the import tag :prio
343to get then):
344
345 PRIO_MAX > PRIO_HIGH > PRIO_NORMAL > PRIO_LOW > PRIO_IDLE > PRIO_MIN
346 3 > 1 > 0 > -1 > -3 > -4
347
348 # set priority to HIGH
349 current->prio(PRIO_HIGH);
350
351The idle coroutine ($Coro::idle) always has a lower priority than any
352existing coroutine.
353
354Changing the priority of the current coroutine will take effect immediately,
355but changing the priority of coroutines in the ready queue (but not
356running) will only take effect after the next schedule (of that
357coroutine). This is a bug that will be fixed in some future version.
358
359=item $newprio = $coroutine->nice ($change)
360
361Similar to C<prio>, but subtract the given value from the priority (i.e.
362higher values mean lower priority, just as in unix).
363
364=item $olddesc = $coroutine->desc ($newdesc)
365
366Sets (or gets in case the argument is missing) the description for this
367coroutine. This is just a free-form string you can associate with a coroutine.
368
369=cut
370
371sub desc {
372 my $old = $_[0]{desc};
373 $_[0]{desc} = $_[1] if @_ > 1;
374 $old;
375}
376
377=back
378
379=head2 GLOBAL FUNCTIONS
380
381=over 4
382
383=item Coro::nready
384
385Returns the number of coroutines that are currently in the ready state,
386i.e. that can be swicthed to. The value C<0> means that the only runnable
387coroutine is the currently running one, so C<cede> would have no effect,
388and C<schedule> would cause a deadlock unless there is an idle handler
389that wakes up some coroutines.
390
391=item unblock_sub { ... }
392
393This utility function takes a BLOCK or code reference and "unblocks" it,
394returning the new coderef. This means that the new coderef will return
395immediately without blocking, returning nothing, while the original code
396ref will be called (with parameters) from within its own coroutine.
397
398The reason this fucntion exists is that many event libraries (such as the
399venerable L<Event|Event> module) are not coroutine-safe (a weaker form
400of thread-safety). This means you must not block within event callbacks,
401otherwise you might suffer from crashes or worse.
402
403This function allows your callbacks to block by executing them in another
404coroutine where it is safe to block. One example where blocking is handy
405is when you use the L<Coro::AIO|Coro::AIO> functions to save results to
406disk.
407
408In short: simply use C<unblock_sub { ... }> instead of C<sub { ... }> when
409creating event callbacks that want to block.
410
411=cut
412
413our @unblock_pool;
414our @unblock_queue;
415our $UNBLOCK_POOL_SIZE = 2;
416
417sub unblock_handler_ {
418 while () {
419 my ($cb, @arg) = @{ delete $Coro::current->{arg} };
420 $cb->(@arg);
421
422 last if @unblock_pool >= $UNBLOCK_POOL_SIZE;
423 push @unblock_pool, $Coro::current;
424 schedule;
425 }
426}
427
428our $unblock_scheduler = async {
429 while () {
430 while (my $cb = pop @unblock_queue) {
431 my $handler = (pop @unblock_pool or new Coro \&unblock_handler_);
432 $handler->{arg} = $cb;
433 $handler->ready;
434 cede;
435 }
436
437 schedule;
438 }
119}; 439};
120 440
441sub unblock_sub(&) {
442 my $cb = shift;
443
444 sub {
445 push @unblock_queue, [$cb, @_];
446 $unblock_scheduler->ready;
447 }
448}
449
450=back
451
452=cut
453
1211; 4541;
122 455
123=back 456=head1 BUGS/LIMITATIONS
124 457
125=head1 BUGS 458 - you must make very sure that no coro is still active on global
459 destruction. very bad things might happen otherwise (usually segfaults).
126 460
127This module has not yet been extensively tested. 461 - this module is not thread-safe. You should only ever use this module
462 from the same thread (this requirement might be losened in the future
463 to allow per-thread schedulers, but Coro::State does not yet allow
464 this).
128 465
129=head1 SEE ALSO 466=head1 SEE ALSO
130 467
131L<Coro::Process>, L<Coro::Signal>. 468Support/Utility: L<Coro::Cont>, L<Coro::Specific>, L<Coro::State>, L<Coro::Util>.
469
470Locking/IPC: L<Coro::Signal>, L<Coro::Channel>, L<Coro::Semaphore>, L<Coro::SemaphoreSet>, L<Coro::RWLock>.
471
472Event/IO: L<Coro::Timer>, L<Coro::Event>, L<Coro::Handle>, L<Coro::Socket>, L<Coro::Select>.
473
474Embedding: L<Coro:MakeMaker>
132 475
133=head1 AUTHOR 476=head1 AUTHOR
134 477
135 Marc Lehmann <pcg@goof.com> 478 Marc Lehmann <schmorp@schmorp.de>
136 http://www.goof.com/pcg/marc/ 479 http://home.schmorp.de/
137 480
138=cut 481=cut
139 482

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines