ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/Coro/Coro.pm
(Generate patch)

Comparing Coro/Coro.pm (file contents):
Revision 1.8 by root, Sat Jul 14 22:14:21 2001 UTC vs.
Revision 1.97 by root, Mon Dec 4 13:47:56 2006 UTC

8 8
9 async { 9 async {
10 # some asynchronous thread of execution 10 # some asynchronous thread of execution
11 }; 11 };
12 12
13 # alternatively create an async process like this: 13 # alternatively create an async coroutine like this:
14 14
15 sub some_func : Coro { 15 sub some_func : Coro {
16 # some more async code 16 # some more async code
17 } 17 }
18 18
19 yield; 19 cede;
20 20
21=head1 DESCRIPTION 21=head1 DESCRIPTION
22 22
23This module collection manages coroutines. Coroutines are similar to
24threads but don't run in parallel.
25
26In this module, coroutines are defined as "callchain + lexical variables
27+ @_ + $_ + $@ + $^W + C stack), that is, a coroutine has it's own
28callchain, it's own set of lexicals and it's own set of perl's most
29important global variables.
30
23=cut 31=cut
24 32
25package Coro; 33package Coro;
26 34
35use strict;
36no warnings "uninitialized";
37
27use Coro::State; 38use Coro::State;
28 39
29use base Exporter; 40use base qw(Coro::State Exporter);
30 41
31$VERSION = 0.03; 42our $idle; # idle handler
43our $main; # main coroutine
44our $current; # current coroutine
32 45
33@EXPORT = qw(async yield schedule); 46our $VERSION = '3.01';
34@EXPORT_OK = qw($current); 47
48our @EXPORT = qw(async cede schedule terminate current unblock_sub);
49our %EXPORT_TAGS = (
50 prio => [qw(PRIO_MAX PRIO_HIGH PRIO_NORMAL PRIO_LOW PRIO_IDLE PRIO_MIN)],
51);
52our @EXPORT_OK = (@{$EXPORT_TAGS{prio}}, qw(nready));
35 53
36{ 54{
37 use subs 'async';
38
39 my @async; 55 my @async;
56 my $init;
40 57
41 # this way of handling attributes simply is NOT scalable ;() 58 # this way of handling attributes simply is NOT scalable ;()
42 sub import { 59 sub import {
60 no strict 'refs';
61
43 Coro->export_to_level(1, @_); 62 Coro->export_to_level (1, @_);
63
44 my $old = *{(caller)[0]."::MODIFY_CODE_ATTRIBUTES"}{CODE}; 64 my $old = *{(caller)[0]."::MODIFY_CODE_ATTRIBUTES"}{CODE};
45 *{(caller)[0]."::MODIFY_CODE_ATTRIBUTES"} = sub { 65 *{(caller)[0]."::MODIFY_CODE_ATTRIBUTES"} = sub {
46 my ($package, $ref) = (shift, shift); 66 my ($package, $ref) = (shift, shift);
47 my @attrs; 67 my @attrs;
48 for (@_) { 68 for (@_) {
49 if ($_ eq "Coro") { 69 if ($_ eq "Coro") {
50 push @async, $ref; 70 push @async, $ref;
71 unless ($init++) {
72 eval q{
73 sub INIT {
74 &async(pop @async) while @async;
75 }
76 };
77 }
51 } else { 78 } else {
52 push @attrs, @_; 79 push @attrs, $_;
53 } 80 }
54 } 81 }
55 return $old ? $old->($package, $name, @attrs) : @attrs; 82 return $old ? $old->($package, $ref, @attrs) : @attrs;
56 }; 83 };
57 } 84 }
58 85
59 sub INIT {
60 async pop @async while @async;
61 }
62} 86}
63 87
64my $idle = new Coro sub { 88=over 4
65 &yield while 1; 89
90=item $main
91
92This coroutine represents the main program.
93
94=cut
95
96$main = new Coro;
97
98=item $current (or as function: current)
99
100The current coroutine (the last coroutine switched to). The initial value
101is C<$main> (of course).
102
103This variable is B<strictly> I<read-only>. It is provided for performance
104reasons. If performance is not essentiel you are encouraged to use the
105C<Coro::current> function instead.
106
107=cut
108
109# maybe some other module used Coro::Specific before...
110$main->{specific} = $current->{specific}
111 if $current;
112
113_set_current $main;
114
115sub current() { $current }
116
117=item $idle
118
119A callback that is called whenever the scheduler finds no ready coroutines
120to run. The default implementation prints "FATAL: deadlock detected" and
121exits, because the program has no other way to continue.
122
123This hook is overwritten by modules such as C<Coro::Timer> and
124C<Coro::Event> to wait on an external event that hopefully wake up a
125coroutine so the scheduler can run it.
126
127Please note that if your callback recursively invokes perl (e.g. for event
128handlers), then it must be prepared to be called recursively.
129
130=cut
131
132$idle = sub {
133 require Carp;
134 Carp::croak ("FATAL: deadlock detected");
66}; 135};
67 136
68=item $main 137# this coroutine is necessary because a coroutine
138# cannot destroy itself.
139my @destroy;
140my $manager; $manager = new Coro sub {
141 while () {
142 # by overwriting the state object with the manager we destroy it
143 # while still being able to schedule this coroutine (in case it has
144 # been readied multiple times. this is harmless since the manager
145 # can be called as many times as neccessary and will always
146 # remove itself from the runqueue
147 while (@destroy) {
148 my $coro = pop @destroy;
149 $coro->{status} ||= [];
150 $_->ready for @{delete $coro->{join} || []};
69 151
70This coroutine represents the main program. 152 # the next line destroys the coro state, but keeps the
71 153 # coroutine itself intact (we basically make it a zombie
72=cut 154 # coroutine that always runs the manager thread, so it's possible
73 155 # to transfer() to this coroutine).
74$main = new Coro; 156 $coro->_clone_state_from ($manager);
75 157 }
76=item $current 158 &schedule;
77 159 }
78The current coroutine (the last coroutine switched to). The initial value is C<$main> (of course). 160};
79
80=cut
81
82# maybe some other module used Coro::Specific before...
83if ($current) {
84 $main->{specific} = $current->{specific};
85}
86
87$current = $main;
88
89# we really need priorities...
90my @ready = (); # the ready queue. hehe, rather broken ;)
91 161
92# static methods. not really. 162# static methods. not really.
93 163
164=back
165
94=head2 STATIC METHODS 166=head2 STATIC METHODS
95 167
96Static methods are actually functions that operate on the current process only. 168Static methods are actually functions that operate on the current coroutine only.
97 169
98=over 4 170=over 4
99 171
100=item async { ... }; 172=item async { ... } [@args...]
101 173
102Create a new asynchronous process and return it's process object 174Create a new asynchronous coroutine and return it's coroutine object
103(usually unused). When the sub returns the new process is automatically 175(usually unused). When the sub returns the new coroutine is automatically
104terminated. 176terminated.
105 177
106=cut 178Calling C<exit> in a coroutine will not work correctly, so do not do that.
107 179
180When the coroutine dies, the program will exit, just as in the main
181program.
182
183 # create a new coroutine that just prints its arguments
184 async {
185 print "@_\n";
186 } 1,2,3,4;
187
188=cut
189
108sub async(&) { 190sub async(&@) {
109 (new Coro $_[0])->ready; 191 my $pid = new Coro @_;
192 $pid->ready;
193 $pid
110} 194}
111 195
112=item schedule 196=item schedule
113 197
114Calls the scheduler. Please note that the current process will not be put 198Calls the scheduler. Please note that the current coroutine will not be put
115into the ready queue, so calling this function usually means you will 199into the ready queue, so calling this function usually means you will
116never be called again. 200never be called again unless something else (e.g. an event handler) calls
201ready.
117 202
118=cut 203The canonical way to wait on external events is this:
119 204
120my $prev; 205 {
206 # remember current coroutine
207 my $current = $Coro::current;
121 208
122sub schedule { 209 # register a hypothetical event handler
123 ($prev, $current) = ($current, shift @ready); 210 on_event_invoke sub {
124 Coro::State::transfer($prev, $current); 211 # wake up sleeping coroutine
125}
126
127=item yield
128
129Yield to other processes. This function puts the current process into the
130ready queue and calls C<schedule>.
131
132=cut
133
134sub yield {
135 $current->ready; 212 $current->ready;
136 &schedule; 213 undef $current;
137} 214 };
138 215
216 # call schedule until event occured.
217 # in case we are woken up for other reasons
218 # (current still defined), loop.
219 Coro::schedule while $current;
220 }
221
222=item cede
223
224"Cede" to other coroutines. This function puts the current coroutine into the
225ready queue and calls C<schedule>, which has the effect of giving up the
226current "timeslice" to other coroutines of the same or higher priority.
227
139=item terminate 228=item terminate [arg...]
140 229
141Terminates the current process. 230Terminates the current coroutine with the given status values (see L<cancel>).
142 231
143=cut 232=cut
144 233
145sub terminate { 234sub terminate {
146 &schedule; 235 $current->cancel (@_);
147} 236}
148 237
149=back 238=back
150 239
151# dynamic methods 240# dynamic methods
152 241
153=head2 PROCESS METHODS 242=head2 COROUTINE METHODS
154 243
155These are the methods you can call on process objects. 244These are the methods you can call on coroutine objects.
156 245
157=over 4 246=over 4
158 247
159=item new Coro \&sub; 248=item new Coro \&sub [, @args...]
160 249
161Create a new process and return it. When the sub returns the process 250Create a new coroutine and return it. When the sub returns the coroutine
162automatically terminates. To start the process you must first put it into 251automatically terminates as if C<terminate> with the returned values were
252called. To make the coroutine run you must first put it into the ready queue
163the ready queue by calling the ready method. 253by calling the ready method.
164 254
255Calling C<exit> in a coroutine will not work correctly, so do not do that.
256
165=cut 257=cut
258
259sub _run_coro {
260 terminate &{+shift};
261}
166 262
167sub new { 263sub new {
168 my $class = shift; 264 my $class = shift;
265
266 $class->SUPER::new (\&_run_coro, @_)
267}
268
269=item $success = $coroutine->ready
270
271Put the given coroutine into the ready queue (according to it's priority)
272and return true. If the coroutine is already in the ready queue, do nothing
273and return false.
274
275=item $is_ready = $coroutine->is_ready
276
277Return wether the coroutine is currently the ready queue or not,
278
279=item $coroutine->cancel (arg...)
280
281Terminates the given coroutine and makes it return the given arguments as
282status (default: the empty list).
283
284=cut
285
286sub cancel {
287 my $self = shift;
288 $self->{status} = [@_];
289 push @destroy, $self;
290 $manager->ready;
291 &schedule if $current == $self;
292}
293
294=item $coroutine->join
295
296Wait until the coroutine terminates and return any values given to the
297C<terminate> or C<cancel> functions. C<join> can be called multiple times
298from multiple coroutine.
299
300=cut
301
302sub join {
303 my $self = shift;
304 unless ($self->{status}) {
305 push @{$self->{join}}, $current;
306 &schedule;
307 }
308 wantarray ? @{$self->{status}} : $self->{status}[0];
309}
310
311=item $oldprio = $coroutine->prio ($newprio)
312
313Sets (or gets, if the argument is missing) the priority of the
314coroutine. Higher priority coroutines get run before lower priority
315coroutines. Priorities are small signed integers (currently -4 .. +3),
316that you can refer to using PRIO_xxx constants (use the import tag :prio
317to get then):
318
319 PRIO_MAX > PRIO_HIGH > PRIO_NORMAL > PRIO_LOW > PRIO_IDLE > PRIO_MIN
320 3 > 1 > 0 > -1 > -3 > -4
321
322 # set priority to HIGH
323 current->prio(PRIO_HIGH);
324
325The idle coroutine ($Coro::idle) always has a lower priority than any
326existing coroutine.
327
328Changing the priority of the current coroutine will take effect immediately,
329but changing the priority of coroutines in the ready queue (but not
330running) will only take effect after the next schedule (of that
331coroutine). This is a bug that will be fixed in some future version.
332
333=item $newprio = $coroutine->nice ($change)
334
335Similar to C<prio>, but subtract the given value from the priority (i.e.
336higher values mean lower priority, just as in unix).
337
338=item $olddesc = $coroutine->desc ($newdesc)
339
340Sets (or gets in case the argument is missing) the description for this
341coroutine. This is just a free-form string you can associate with a coroutine.
342
343=cut
344
345sub desc {
169 my $proc = $_[0]; 346 my $old = $_[0]{desc};
170 bless { 347 $_[0]{desc} = $_[1] if @_ > 1;
171 _coro_state => new Coro::State ($proc ? sub { &$proc; &terminate } : $proc), 348 $old;
172 }, $class;
173}
174
175=item $process->ready
176
177Put the current process into the ready queue.
178
179=cut
180
181sub ready {
182 push @ready, $_[0];
183} 349}
184 350
185=back 351=back
186 352
353=head2 GLOBAL FUNCTIONS
354
355=over 4
356
357=item Coro::nready
358
359Returns the number of coroutines that are currently in the ready state,
360i.e. that can be swicthed to. The value C<0> means that the only runnable
361coroutine is the currently running one, so C<cede> would have no effect,
362and C<schedule> would cause a deadlock unless there is an idle handler
363that wakes up some coroutines.
364
365=item unblock_sub { ... }
366
367This utility function takes a BLOCK or code reference and "unblocks" it,
368returning the new coderef. This means that the new coderef will return
369immediately without blocking, returning nothing, while the original code
370ref will be called (with parameters) from within its own coroutine.
371
372The reason this fucntion exists is that many event libraries (such as the
373venerable L<Event|Event> module) are not coroutine-safe (a weaker form
374of thread-safety). This means you must not block within event callbacks,
375otherwise you might suffer from crashes or worse.
376
377This function allows your callbacks to block by executing them in another
378coroutine where it is safe to block. One example where blocking is handy
379is when you use the L<Coro::AIO|Coro::AIO> functions to save results to
380disk.
381
382In short: simply use C<unblock_sub { ... }> instead of C<sub { ... }> when
383creating event callbacks that want to block.
384
385=cut
386
387our @unblock_pool;
388our @unblock_queue;
389our $UNBLOCK_POOL_SIZE = 2;
390
391sub unblock_handler_ {
392 while () {
393 my ($cb, @arg) = @{ delete $Coro::current->{arg} };
394 $cb->(@arg);
395
396 last if @unblock_pool >= $UNBLOCK_POOL_SIZE;
397 push @unblock_pool, $Coro::current;
398 schedule;
399 }
400}
401
402our $unblock_scheduler = async {
403 while () {
404 while (my $cb = pop @unblock_queue) {
405 my $handler = (pop @unblock_pool or new Coro \&unblock_handler_);
406 $handler->{arg} = $cb;
407 $handler->ready;
408 cede;
409 }
410
411 schedule;
412 }
413};
414
415sub unblock_sub(&) {
416 my $cb = shift;
417
418 sub {
419 push @unblock_queue, [$cb, @_];
420 $unblock_scheduler->ready;
421 }
422}
423
424=back
425
187=cut 426=cut
188 427
1891; 4281;
190 429
430=head1 BUGS/LIMITATIONS
431
432 - you must make very sure that no coro is still active on global
433 destruction. very bad things might happen otherwise (usually segfaults).
434
435 - this module is not thread-safe. You should only ever use this module
436 from the same thread (this requirement might be losened in the future
437 to allow per-thread schedulers, but Coro::State does not yet allow
438 this).
439
440=head1 SEE ALSO
441
442Support/Utility: L<Coro::Cont>, L<Coro::Specific>, L<Coro::State>, L<Coro::Util>.
443
444Locking/IPC: L<Coro::Signal>, L<Coro::Channel>, L<Coro::Semaphore>, L<Coro::SemaphoreSet>, L<Coro::RWLock>.
445
446Event/IO: L<Coro::Timer>, L<Coro::Event>, L<Coro::Handle>, L<Coro::Socket>, L<Coro::Select>.
447
448Embedding: L<Coro:MakeMaker>
449
191=head1 AUTHOR 450=head1 AUTHOR
192 451
193 Marc Lehmann <pcg@goof.com> 452 Marc Lehmann <schmorp@schmorp.de>
194 http://www.goof.com/pcg/marc/ 453 http://home.schmorp.de/
195 454
196=cut 455=cut
197 456

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines