ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/Coro/Coro.pm
(Generate patch)

Comparing Coro/Coro.pm (file contents):
Revision 1.4 by root, Tue Jul 3 05:05:45 2001 UTC vs.
Revision 1.141 by root, Tue Oct 2 10:38:17 2007 UTC

1=head1 NAME 1=head1 NAME
2 2
3Coro - create and manage coroutines 3Coro - coroutine process abstraction
4 4
5=head1 SYNOPSIS 5=head1 SYNOPSIS
6 6
7 use Coro; 7 use Coro;
8 8
9 $new = new Coro sub { 9 async {
10 print "in coroutine, switching back\n"; 10 # some asynchronous thread of execution
11 $Coro::main->resume;
12 print "in coroutine again, switching back\n";
13 $Coro::main->resume;
14 }; 11 };
15 12
16 print "in main, switching to coroutine\n"; 13 # alternatively create an async coroutine like this:
17 $new->resume; 14
18 print "back in main, switch to coroutine again\n"; 15 sub some_func : Coro {
19 $new->resume; 16 # some more async code
20 print "back in main\n"; 17 }
18
19 cede;
21 20
22=head1 DESCRIPTION 21=head1 DESCRIPTION
23 22
24This module implements coroutines. Coroutines, similar to continuations, 23This module collection manages coroutines. Coroutines are similar
25allow you to run more than one "thread of execution" in parallel. Unlike 24to threads but don't run in parallel at the same time even on SMP
26threads this, only voluntary switching is used so locking problems are 25machines. The specific flavor of coroutine used in this module also
27greatly reduced. 26guarantees you that it will not switch between coroutines unless
27necessary, at easily-identified points in your program, so locking and
28parallel access are rarely an issue, making coroutine programming much
29safer than threads programming.
28 30
29Although this is the "main" module of the Coro family it provides only 31(Perl, however, does not natively support real threads but instead does a
30low-level functionality. See L<Coro::Process> and related modules for a 32very slow and memory-intensive emulation of processes using threads. This
31more useful process abstraction including scheduling. 33is a performance win on Windows machines, and a loss everywhere else).
34
35In this module, coroutines are defined as "callchain + lexical variables +
36@_ + $_ + $@ + $/ + C stack), that is, a coroutine has its own callchain,
37its own set of lexicals and its own set of perls most important global
38variables.
39
40=cut
41
42package Coro;
43
44use strict;
45no warnings "uninitialized";
46
47use Coro::State;
48
49use base qw(Coro::State Exporter);
50
51our $idle; # idle handler
52our $main; # main coroutine
53our $current; # current coroutine
54
55our $VERSION = '3.8';
56
57our @EXPORT = qw(async async_pool cede schedule terminate current unblock_sub);
58our %EXPORT_TAGS = (
59 prio => [qw(PRIO_MAX PRIO_HIGH PRIO_NORMAL PRIO_LOW PRIO_IDLE PRIO_MIN)],
60);
61our @EXPORT_OK = (@{$EXPORT_TAGS{prio}}, qw(nready));
62
63{
64 my @async;
65 my $init;
66
67 # this way of handling attributes simply is NOT scalable ;()
68 sub import {
69 no strict 'refs';
70
71 Coro->export_to_level (1, @_);
72
73 my $old = *{(caller)[0]."::MODIFY_CODE_ATTRIBUTES"}{CODE};
74 *{(caller)[0]."::MODIFY_CODE_ATTRIBUTES"} = sub {
75 my ($package, $ref) = (shift, shift);
76 my @attrs;
77 for (@_) {
78 if ($_ eq "Coro") {
79 push @async, $ref;
80 unless ($init++) {
81 eval q{
82 sub INIT {
83 &async(pop @async) while @async;
84 }
85 };
86 }
87 } else {
88 push @attrs, $_;
89 }
90 }
91 return $old ? $old->($package, $ref, @attrs) : @attrs;
92 };
93 }
94
95}
32 96
33=over 4 97=over 4
34 98
35=cut
36
37package Coro;
38
39BEGIN {
40 $VERSION = 0.01;
41
42 require XSLoader;
43 XSLoader::load Coro, $VERSION;
44}
45
46=item $main 99=item $main
47 100
48This coroutine represents the main program. 101This coroutine represents the main program.
49 102
50=item $current 103=cut
51 104
105$main = new Coro;
106
107=item $current (or as function: current)
108
52The current coroutine (the last coroutine switched to). The initial value is C<$main> (of course). 109The current coroutine (the last coroutine switched to). The initial value
110is C<$main> (of course).
53 111
54=cut 112This variable is B<strictly> I<read-only>. It is provided for performance
113reasons. If performance is not essential you are encouraged to use the
114C<Coro::current> function instead.
55 115
56$main = $current = _newprocess { 116=cut
57 # never being called 117
118$main->{desc} = "[main::]";
119
120# maybe some other module used Coro::Specific before...
121$main->{specific} = $current->{specific}
122 if $current;
123
124_set_current $main;
125
126sub current() { $current }
127
128=item $idle
129
130A callback that is called whenever the scheduler finds no ready coroutines
131to run. The default implementation prints "FATAL: deadlock detected" and
132exits, because the program has no other way to continue.
133
134This hook is overwritten by modules such as C<Coro::Timer> and
135C<Coro::Event> to wait on an external event that hopefully wake up a
136coroutine so the scheduler can run it.
137
138Please note that if your callback recursively invokes perl (e.g. for event
139handlers), then it must be prepared to be called recursively.
140
141=cut
142
143$idle = sub {
144 require Carp;
145 Carp::croak ("FATAL: deadlock detected");
58}; 146};
59 147
60=item $error, $error_msg, $error_coro 148sub _cancel {
149 my ($self) = @_;
61 150
62This coroutine will be called on fatal errors. C<$error_msg> and 151 # free coroutine data and mark as destructed
63C<$error_coro> return the error message and the error-causing coroutine, 152 $self->_destroy
64respectively. 153 or return;
65 154
66=cut 155 # call all destruction callbacks
156 $_->(@{$self->{status}})
157 for @{(delete $self->{destroy_cb}) || []};
158}
67 159
68$error_msg = 160# this coroutine is necessary because a coroutine
69$error_coro = undef; 161# cannot destroy itself.
162my @destroy;
163my $manager;
70 164
71$error = _newprocess { 165$manager = new Coro sub {
72 print STDERR "FATAL: $error_msg\nprogram aborted\n"; 166 while () {
73 exit 250; 167 (shift @destroy)->_cancel
168 while @destroy;
169
170 &schedule;
171 }
74}; 172};
173$manager->desc ("[coro manager]");
174$manager->prio (PRIO_MAX);
75 175
76=item $coro = new $coderef [, @args] 176# static methods. not really.
77 177
78Create a new coroutine and return it. The first C<resume> call to this 178=back
79coroutine will start execution at the given coderef. If it returns it
80should return a coroutine to switch to. If, after returning, the coroutine
81is C<resume>d again it starts execution again at the givne coderef.
82 179
180=head2 STATIC METHODS
181
182Static methods are actually functions that operate on the current coroutine only.
183
184=over 4
185
186=item async { ... } [@args...]
187
188Create a new asynchronous coroutine and return it's coroutine object
189(usually unused). When the sub returns the new coroutine is automatically
190terminated.
191
192Calling C<exit> in a coroutine will do the same as calling exit outside
193the coroutine. Likewise, when the coroutine dies, the program will exit,
194just as it would in the main program.
195
196 # create a new coroutine that just prints its arguments
197 async {
198 print "@_\n";
199 } 1,2,3,4;
200
83=cut 201=cut
202
203sub async(&@) {
204 my $coro = new Coro @_;
205 $coro->ready;
206 $coro
207}
208
209=item async_pool { ... } [@args...]
210
211Similar to C<async>, but uses a coroutine pool, so you should not call
212terminate or join (although you are allowed to), and you get a coroutine
213that might have executed other code already (which can be good or bad :).
214
215Also, the block is executed in an C<eval> context and a warning will be
216issued in case of an exception instead of terminating the program, as
217C<async> does. As the coroutine is being reused, stuff like C<on_destroy>
218will not work in the expected way, unless you call terminate or cancel,
219which somehow defeats the purpose of pooling.
220
221The priority will be reset to C<0> after each job, otherwise the coroutine
222will be re-used "as-is".
223
224The pool size is limited to 8 idle coroutines (this can be adjusted by
225changing $Coro::POOL_SIZE), and there can be as many non-idle coros as
226required.
227
228If you are concerned about pooled coroutines growing a lot because a
229single C<async_pool> used a lot of stackspace you can e.g. C<async_pool
230{ terminate }> once per second or so to slowly replenish the pool. In
231addition to that, when the stacks used by a handler grows larger than 16kb
232(adjustable with $Coro::POOL_RSS) it will also exit.
233
234=cut
235
236our $POOL_SIZE = 8;
237our $POOL_RSS = 16 * 1024;
238our @async_pool;
239
240sub pool_handler {
241 my $cb;
242
243 while () {
244 eval {
245 while () {
246 _pool_1 $cb;
247 &$cb;
248 _pool_2 $cb;
249 &schedule;
250 }
251 };
252
253 last if $@ eq "\3terminate\2\n";
254 warn $@ if $@;
255 }
256}
257
258sub async_pool(&@) {
259 # this is also inlined into the unlock_scheduler
260 my $coro = (pop @async_pool) || new Coro \&pool_handler;
261
262 $coro->{_invoke} = [@_];
263 $coro->ready;
264
265 $coro
266}
267
268=item schedule
269
270Calls the scheduler. Please note that the current coroutine will not be put
271into the ready queue, so calling this function usually means you will
272never be called again unless something else (e.g. an event handler) calls
273ready.
274
275The canonical way to wait on external events is this:
276
277 {
278 # remember current coroutine
279 my $current = $Coro::current;
280
281 # register a hypothetical event handler
282 on_event_invoke sub {
283 # wake up sleeping coroutine
284 $current->ready;
285 undef $current;
286 };
287
288 # call schedule until event occurred.
289 # in case we are woken up for other reasons
290 # (current still defined), loop.
291 Coro::schedule while $current;
292 }
293
294=item cede
295
296"Cede" to other coroutines. This function puts the current coroutine into the
297ready queue and calls C<schedule>, which has the effect of giving up the
298current "timeslice" to other coroutines of the same or higher priority.
299
300Returns true if at least one coroutine switch has happened.
301
302=item Coro::cede_notself
303
304Works like cede, but is not exported by default and will cede to any
305coroutine, regardless of priority, once.
306
307Returns true if at least one coroutine switch has happened.
308
309=item terminate [arg...]
310
311Terminates the current coroutine with the given status values (see L<cancel>).
312
313=item killall
314
315Kills/terminates/cancels all coroutines except the currently running
316one. This is useful after a fork, either in the child or the parent, as
317usually only one of them should inherit the running coroutines.
318
319=cut
320
321sub terminate {
322 $current->cancel (@_);
323}
324
325sub killall {
326 for (Coro::State::list) {
327 $_->cancel
328 if $_ != $current && UNIVERSAL::isa $_, "Coro";
329 }
330}
331
332=back
333
334# dynamic methods
335
336=head2 COROUTINE METHODS
337
338These are the methods you can call on coroutine objects.
339
340=over 4
341
342=item new Coro \&sub [, @args...]
343
344Create a new coroutine and return it. When the sub returns the coroutine
345automatically terminates as if C<terminate> with the returned values were
346called. To make the coroutine run you must first put it into the ready queue
347by calling the ready method.
348
349See C<async> for additional discussion.
350
351=cut
352
353sub _run_coro {
354 terminate &{+shift};
355}
84 356
85sub new { 357sub new {
86 my $class = $_[0]; 358 my $class = shift;
87 my $proc = $_[1]; 359
88 bless _newprocess { 360 $class->SUPER::new (\&_run_coro, @_)
89 do { 361}
90 eval { &$proc->resume }; 362
91 if ($@) { 363=item $success = $coroutine->ready
92 ($error_msg, $error_coro) = ($@, $current); 364
93 $error->resume; 365Put the given coroutine into the ready queue (according to it's priority)
366and return true. If the coroutine is already in the ready queue, do nothing
367and return false.
368
369=item $is_ready = $coroutine->is_ready
370
371Return wether the coroutine is currently the ready queue or not,
372
373=item $coroutine->cancel (arg...)
374
375Terminates the given coroutine and makes it return the given arguments as
376status (default: the empty list). Never returns if the coroutine is the
377current coroutine.
378
379=cut
380
381sub cancel {
382 my $self = shift;
383 $self->{status} = [@_];
384
385 if ($current == $self) {
386 push @destroy, $self;
387 $manager->ready;
388 &schedule while 1;
389 } else {
390 $self->_cancel;
391 }
392}
393
394=item $coroutine->join
395
396Wait until the coroutine terminates and return any values given to the
397C<terminate> or C<cancel> functions. C<join> can be called multiple times
398from multiple coroutine.
399
400=cut
401
402sub join {
403 my $self = shift;
404
405 unless ($self->{status}) {
406 my $current = $current;
407
408 push @{$self->{destroy_cb}}, sub {
409 $current->ready;
410 undef $current;
411 };
412
413 &schedule while $current;
414 }
415
416 wantarray ? @{$self->{status}} : $self->{status}[0];
417}
418
419=item $coroutine->on_destroy (\&cb)
420
421Registers a callback that is called when this coroutine gets destroyed,
422but before it is joined. The callback gets passed the terminate arguments,
423if any.
424
425=cut
426
427sub on_destroy {
428 my ($self, $cb) = @_;
429
430 push @{ $self->{destroy_cb} }, $cb;
431}
432
433=item $oldprio = $coroutine->prio ($newprio)
434
435Sets (or gets, if the argument is missing) the priority of the
436coroutine. Higher priority coroutines get run before lower priority
437coroutines. Priorities are small signed integers (currently -4 .. +3),
438that you can refer to using PRIO_xxx constants (use the import tag :prio
439to get then):
440
441 PRIO_MAX > PRIO_HIGH > PRIO_NORMAL > PRIO_LOW > PRIO_IDLE > PRIO_MIN
442 3 > 1 > 0 > -1 > -3 > -4
443
444 # set priority to HIGH
445 current->prio(PRIO_HIGH);
446
447The idle coroutine ($Coro::idle) always has a lower priority than any
448existing coroutine.
449
450Changing the priority of the current coroutine will take effect immediately,
451but changing the priority of coroutines in the ready queue (but not
452running) will only take effect after the next schedule (of that
453coroutine). This is a bug that will be fixed in some future version.
454
455=item $newprio = $coroutine->nice ($change)
456
457Similar to C<prio>, but subtract the given value from the priority (i.e.
458higher values mean lower priority, just as in unix).
459
460=item $olddesc = $coroutine->desc ($newdesc)
461
462Sets (or gets in case the argument is missing) the description for this
463coroutine. This is just a free-form string you can associate with a coroutine.
464
465=cut
466
467sub desc {
468 my $old = $_[0]{desc};
469 $_[0]{desc} = $_[1] if @_ > 1;
470 $old;
471}
472
473=back
474
475=head2 GLOBAL FUNCTIONS
476
477=over 4
478
479=item Coro::nready
480
481Returns the number of coroutines that are currently in the ready state,
482i.e. that can be switched to. The value C<0> means that the only runnable
483coroutine is the currently running one, so C<cede> would have no effect,
484and C<schedule> would cause a deadlock unless there is an idle handler
485that wakes up some coroutines.
486
487=item my $guard = Coro::guard { ... }
488
489This creates and returns a guard object. Nothing happens until the object
490gets destroyed, in which case the codeblock given as argument will be
491executed. This is useful to free locks or other resources in case of a
492runtime error or when the coroutine gets canceled, as in both cases the
493guard block will be executed. The guard object supports only one method,
494C<< ->cancel >>, which will keep the codeblock from being executed.
495
496Example: set some flag and clear it again when the coroutine gets canceled
497or the function returns:
498
499 sub do_something {
500 my $guard = Coro::guard { $busy = 0 };
501 $busy = 1;
502
503 # do something that requires $busy to be true
504 }
505
506=cut
507
508sub guard(&) {
509 bless \(my $cb = $_[0]), "Coro::guard"
510}
511
512sub Coro::guard::cancel {
513 ${$_[0]} = sub { };
514}
515
516sub Coro::guard::DESTROY {
517 ${$_[0]}->();
518}
519
520
521=item unblock_sub { ... }
522
523This utility function takes a BLOCK or code reference and "unblocks" it,
524returning the new coderef. This means that the new coderef will return
525immediately without blocking, returning nothing, while the original code
526ref will be called (with parameters) from within its own coroutine.
527
528The reason this function exists is that many event libraries (such as the
529venerable L<Event|Event> module) are not coroutine-safe (a weaker form
530of thread-safety). This means you must not block within event callbacks,
531otherwise you might suffer from crashes or worse.
532
533This function allows your callbacks to block by executing them in another
534coroutine where it is safe to block. One example where blocking is handy
535is when you use the L<Coro::AIO|Coro::AIO> functions to save results to
536disk.
537
538In short: simply use C<unblock_sub { ... }> instead of C<sub { ... }> when
539creating event callbacks that want to block.
540
541=cut
542
543our @unblock_queue;
544
545# we create a special coro because we want to cede,
546# to reduce pressure on the coro pool (because most callbacks
547# return immediately and can be reused) and because we cannot cede
548# inside an event callback.
549our $unblock_scheduler = new Coro sub {
550 while () {
551 while (my $cb = pop @unblock_queue) {
552 # this is an inlined copy of async_pool
553 my $coro = (pop @async_pool) || new Coro \&pool_handler;
554
555 $coro->{_invoke} = $cb;
556 $coro->ready;
557 cede; # for short-lived callbacks, this reduces pressure on the coro pool
94 } 558 }
95 } while (1); 559 schedule; # sleep well
96 }, $class; 560 }
97} 561};
562$unblock_scheduler->desc ("[unblock_sub scheduler]");
98 563
99=item $coro->resume 564sub unblock_sub(&) {
565 my $cb = shift;
100 566
101Resume execution at the given coroutine. 567 sub {
102 568 unshift @unblock_queue, [$cb, @_];
103=cut 569 $unblock_scheduler->ready;
104 570 }
105my $prev;
106
107sub resume {
108 $prev = $current; $current = $_[0];
109 _transfer($prev, $current);
110} 571}
572
573=back
574
575=cut
111 576
1121; 5771;
113 578
114=back 579=head1 BUGS/LIMITATIONS
115 580
116=head1 BUGS 581 - you must make very sure that no coro is still active on global
582 destruction. very bad things might happen otherwise (usually segfaults).
117 583
118This module has not yet been extensively tested. 584 - this module is not thread-safe. You should only ever use this module
585 from the same thread (this requirement might be loosened in the future
586 to allow per-thread schedulers, but Coro::State does not yet allow
587 this).
119 588
120=head1 SEE ALSO 589=head1 SEE ALSO
121 590
122L<Coro::Process>, L<Coro::Signal>. 591Support/Utility: L<Coro::Cont>, L<Coro::Specific>, L<Coro::State>, L<Coro::Util>.
592
593Locking/IPC: L<Coro::Signal>, L<Coro::Channel>, L<Coro::Semaphore>, L<Coro::SemaphoreSet>, L<Coro::RWLock>.
594
595Event/IO: L<Coro::Timer>, L<Coro::Event>, L<Coro::Handle>, L<Coro::Socket>, L<Coro::Select>.
596
597Embedding: L<Coro:MakeMaker>
123 598
124=head1 AUTHOR 599=head1 AUTHOR
125 600
126 Marc Lehmann <pcg@goof.com> 601 Marc Lehmann <schmorp@schmorp.de>
127 http://www.goof.com/pcg/marc/ 602 http://home.schmorp.de/
128 603
129=cut 604=cut
130 605

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines