ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/Coro/Coro.pm
(Generate patch)

Comparing Coro/Coro.pm (file contents):
Revision 1.6 by root, Tue Jul 10 21:19:47 2001 UTC vs.
Revision 1.137 by root, Wed Sep 26 19:26:48 2007 UTC

1=head1 NAME 1=head1 NAME
2 2
3Coro - create and manage simple coroutines 3Coro - coroutine process abstraction
4 4
5=head1 SYNOPSIS 5=head1 SYNOPSIS
6 6
7 use Coro; 7 use Coro;
8 8
9 $new = new Coro sub { 9 async {
10 print "in coroutine, switching back\n"; 10 # some asynchronous thread of execution
11 $new->transfer($main);
12 print "in coroutine again, switching back\n";
13 $new->transfer($main);
14 }; 11 };
15 12
16 $main = new Coro; 13 # alternatively create an async coroutine like this:
17 14
18 print "in main, switching to coroutine\n"; 15 sub some_func : Coro {
19 $main->transfer($new); 16 # some more async code
20 print "back in main, switch to coroutine again\n"; 17 }
21 $main->transfer($new); 18
22 print "back in main\n"; 19 cede;
23 20
24=head1 DESCRIPTION 21=head1 DESCRIPTION
25 22
26This module implements coroutines. Coroutines, similar to continuations, 23This module collection manages coroutines. Coroutines are similar
27allow you to run more than one "thread of execution" in parallel. Unlike 24to threads but don't run in parallel at the same time even on SMP
28threads this, only voluntary switching is used so locking problems are 25machines. The specific flavor of coroutine used in this module also
29greatly reduced. 26guarantees you that it will not switch between coroutines unless
27necessary, at easily-identified points in your program, so locking and
28parallel access are rarely an issue, making coroutine programming much
29safer than threads programming.
30 30
31Although this is the "main" module of the Coro family it provides only 31(Perl, however, does not natively support real threads but instead does a
32low-level functionality. See L<Coro::Process> and related modules for a 32very slow and memory-intensive emulation of processes using threads. This
33more useful process abstraction including scheduling. 33is a performance win on Windows machines, and a loss everywhere else).
34
35In this module, coroutines are defined as "callchain + lexical variables +
36@_ + $_ + $@ + $/ + C stack), that is, a coroutine has its own callchain,
37its own set of lexicals and its own set of perls most important global
38variables.
39
40=cut
41
42package Coro;
43
44use strict;
45no warnings "uninitialized";
46
47use Coro::State;
48
49use base qw(Coro::State Exporter);
50
51our $idle; # idle handler
52our $main; # main coroutine
53our $current; # current coroutine
54
55our $VERSION = '3.7';
56
57our @EXPORT = qw(async async_pool cede schedule terminate current unblock_sub);
58our %EXPORT_TAGS = (
59 prio => [qw(PRIO_MAX PRIO_HIGH PRIO_NORMAL PRIO_LOW PRIO_IDLE PRIO_MIN)],
60);
61our @EXPORT_OK = (@{$EXPORT_TAGS{prio}}, qw(nready));
62
63{
64 my @async;
65 my $init;
66
67 # this way of handling attributes simply is NOT scalable ;()
68 sub import {
69 no strict 'refs';
70
71 Coro->export_to_level (1, @_);
72
73 my $old = *{(caller)[0]."::MODIFY_CODE_ATTRIBUTES"}{CODE};
74 *{(caller)[0]."::MODIFY_CODE_ATTRIBUTES"} = sub {
75 my ($package, $ref) = (shift, shift);
76 my @attrs;
77 for (@_) {
78 if ($_ eq "Coro") {
79 push @async, $ref;
80 unless ($init++) {
81 eval q{
82 sub INIT {
83 &async(pop @async) while @async;
84 }
85 };
86 }
87 } else {
88 push @attrs, $_;
89 }
90 }
91 return $old ? $old->($package, $ref, @attrs) : @attrs;
92 };
93 }
94
95}
34 96
35=over 4 97=over 4
36 98
37=cut 99=item $main
38 100
39package Coro; 101This coroutine represents the main program.
40 102
41BEGIN { 103=cut
42 $VERSION = 0.03;
43 104
105$main = new Coro;
106
107=item $current (or as function: current)
108
109The current coroutine (the last coroutine switched to). The initial value
110is C<$main> (of course).
111
112This variable is B<strictly> I<read-only>. It is provided for performance
113reasons. If performance is not essential you are encouraged to use the
114C<Coro::current> function instead.
115
116=cut
117
118$main->{desc} = "[main::]";
119
120# maybe some other module used Coro::Specific before...
121$main->{specific} = $current->{specific}
122 if $current;
123
124_set_current $main;
125
126sub current() { $current }
127
128=item $idle
129
130A callback that is called whenever the scheduler finds no ready coroutines
131to run. The default implementation prints "FATAL: deadlock detected" and
132exits, because the program has no other way to continue.
133
134This hook is overwritten by modules such as C<Coro::Timer> and
135C<Coro::Event> to wait on an external event that hopefully wake up a
136coroutine so the scheduler can run it.
137
138Please note that if your callback recursively invokes perl (e.g. for event
139handlers), then it must be prepared to be called recursively.
140
141=cut
142
143$idle = sub {
44 require XSLoader; 144 require Carp;
45 XSLoader::load Coro, $VERSION; 145 Carp::croak ("FATAL: deadlock detected");
46} 146};
47 147
48=item $coro = new [$coderef [, @args]] 148sub _cancel {
149 my ($self) = @_;
49 150
50Create a new coroutine and return it. The first C<transfer> call to this 151 # free coroutine data and mark as destructed
51coroutine will start execution at the given coderef. If, the subroutine 152 $self->_destroy
52returns it will be executed again. 153 or return;
53 154
54If the coderef is omitted this function will create a new "empty" 155 # call all destruction callbacks
55coroutine, i.e. a coroutine that cannot be transfered to but can be used 156 $_->(@{$self->{status}})
56to save the current coroutine in. 157 for @{(delete $self->{destroy_cb}) || []};
158}
57 159
160sub _do_trace {
161 $current->{_trace_cb}->();
162}
163
164# this coroutine is necessary because a coroutine
165# cannot destroy itself.
166my @destroy;
167my $manager;
168
169$manager = new Coro sub {
170 while () {
171 (shift @destroy)->_cancel
172 while @destroy;
173
174 &schedule;
175 }
176};
177$manager->desc ("[coro manager]");
178$manager->prio (PRIO_MAX);
179
180# static methods. not really.
181
182=back
183
184=head2 STATIC METHODS
185
186Static methods are actually functions that operate on the current coroutine only.
187
188=over 4
189
190=item async { ... } [@args...]
191
192Create a new asynchronous coroutine and return it's coroutine object
193(usually unused). When the sub returns the new coroutine is automatically
194terminated.
195
196Calling C<exit> in a coroutine will do the same as calling exit outside
197the coroutine. Likewise, when the coroutine dies, the program will exit,
198just as it would in the main program.
199
200 # create a new coroutine that just prints its arguments
201 async {
202 print "@_\n";
203 } 1,2,3,4;
204
58=cut 205=cut
206
207sub async(&@) {
208 my $coro = new Coro @_;
209 $coro->ready;
210 $coro
211}
212
213=item async_pool { ... } [@args...]
214
215Similar to C<async>, but uses a coroutine pool, so you should not call
216terminate or join (although you are allowed to), and you get a coroutine
217that might have executed other code already (which can be good or bad :).
218
219Also, the block is executed in an C<eval> context and a warning will be
220issued in case of an exception instead of terminating the program, as
221C<async> does. As the coroutine is being reused, stuff like C<on_destroy>
222will not work in the expected way, unless you call terminate or cancel,
223which somehow defeats the purpose of pooling.
224
225The priority will be reset to C<0> after each job, otherwise the coroutine
226will be re-used "as-is".
227
228The pool size is limited to 8 idle coroutines (this can be adjusted by
229changing $Coro::POOL_SIZE), and there can be as many non-idle coros as
230required.
231
232If you are concerned about pooled coroutines growing a lot because a
233single C<async_pool> used a lot of stackspace you can e.g. C<async_pool
234{ terminate }> once per second or so to slowly replenish the pool. In
235addition to that, when the stacks used by a handler grows larger than 16kb
236(adjustable with $Coro::POOL_RSS) it will also exit.
237
238=cut
239
240our $POOL_SIZE = 8;
241our $POOL_RSS = 16 * 1024;
242our @async_pool;
243
244sub pool_handler {
245 my $cb;
246
247 while () {
248 eval {
249 while () {
250 _pool_1 $cb;
251 &$cb;
252 _pool_2 $cb;
253 &schedule;
254 }
255 };
256
257 last if $@ eq "\3terminate\2\n";
258 warn $@ if $@;
259 }
260}
261
262sub async_pool(&@) {
263 # this is also inlined into the unlock_scheduler
264 my $coro = (pop @async_pool) || new Coro \&pool_handler;
265
266 $coro->{_invoke} = [@_];
267 $coro->ready;
268
269 $coro
270}
271
272=item schedule
273
274Calls the scheduler. Please note that the current coroutine will not be put
275into the ready queue, so calling this function usually means you will
276never be called again unless something else (e.g. an event handler) calls
277ready.
278
279The canonical way to wait on external events is this:
280
281 {
282 # remember current coroutine
283 my $current = $Coro::current;
284
285 # register a hypothetical event handler
286 on_event_invoke sub {
287 # wake up sleeping coroutine
288 $current->ready;
289 undef $current;
290 };
291
292 # call schedule until event occurred.
293 # in case we are woken up for other reasons
294 # (current still defined), loop.
295 Coro::schedule while $current;
296 }
297
298=item cede
299
300"Cede" to other coroutines. This function puts the current coroutine into the
301ready queue and calls C<schedule>, which has the effect of giving up the
302current "timeslice" to other coroutines of the same or higher priority.
303
304Returns true if at least one coroutine switch has happened.
305
306=item Coro::cede_notself
307
308Works like cede, but is not exported by default and will cede to any
309coroutine, regardless of priority, once.
310
311Returns true if at least one coroutine switch has happened.
312
313=item terminate [arg...]
314
315Terminates the current coroutine with the given status values (see L<cancel>).
316
317=cut
318
319sub terminate {
320 $current->cancel (@_);
321}
322
323=back
324
325# dynamic methods
326
327=head2 COROUTINE METHODS
328
329These are the methods you can call on coroutine objects.
330
331=over 4
332
333=item new Coro \&sub [, @args...]
334
335Create a new coroutine and return it. When the sub returns the coroutine
336automatically terminates as if C<terminate> with the returned values were
337called. To make the coroutine run you must first put it into the ready queue
338by calling the ready method.
339
340See C<async> for additional discussion.
341
342=cut
343
344sub _run_coro {
345 terminate &{+shift};
346}
59 347
60sub new { 348sub new {
61 my $class = $_[0]; 349 my $class = shift;
62 my $proc = $_[1] || sub { die "tried to transfer to an empty coroutine" }; 350
63 bless _newprocess { 351 $class->SUPER::new (\&_run_coro, @_)
64 do { 352}
65 eval { &$proc }; 353
66 if ($@) { 354=item $success = $coroutine->ready
67 $error_msg = $@; 355
68 $error_coro = _newprocess { }; 356Put the given coroutine into the ready queue (according to it's priority)
69 &transfer($error_coro, $error); 357and return true. If the coroutine is already in the ready queue, do nothing
358and return false.
359
360=item $is_ready = $coroutine->is_ready
361
362Return wether the coroutine is currently the ready queue or not,
363
364=item $coroutine->cancel (arg...)
365
366Terminates the given coroutine and makes it return the given arguments as
367status (default: the empty list). Never returns if the coroutine is the
368current coroutine.
369
370=cut
371
372sub cancel {
373 my $self = shift;
374 $self->{status} = [@_];
375
376 if ($current == $self) {
377 push @destroy, $self;
378 $manager->ready;
379 &schedule while 1;
380 } else {
381 $self->_cancel;
382 }
383}
384
385=item $coroutine->join
386
387Wait until the coroutine terminates and return any values given to the
388C<terminate> or C<cancel> functions. C<join> can be called multiple times
389from multiple coroutine.
390
391=cut
392
393sub join {
394 my $self = shift;
395
396 unless ($self->{status}) {
397 my $current = $current;
398
399 push @{$self->{destroy_cb}}, sub {
400 $current->ready;
401 undef $current;
402 };
403
404 &schedule while $current;
405 }
406
407 wantarray ? @{$self->{status}} : $self->{status}[0];
408}
409
410=item $coroutine->on_destroy (\&cb)
411
412Registers a callback that is called when this coroutine gets destroyed,
413but before it is joined. The callback gets passed the terminate arguments,
414if any.
415
416=cut
417
418sub on_destroy {
419 my ($self, $cb) = @_;
420
421 push @{ $self->{destroy_cb} }, $cb;
422}
423
424=item $oldprio = $coroutine->prio ($newprio)
425
426Sets (or gets, if the argument is missing) the priority of the
427coroutine. Higher priority coroutines get run before lower priority
428coroutines. Priorities are small signed integers (currently -4 .. +3),
429that you can refer to using PRIO_xxx constants (use the import tag :prio
430to get then):
431
432 PRIO_MAX > PRIO_HIGH > PRIO_NORMAL > PRIO_LOW > PRIO_IDLE > PRIO_MIN
433 3 > 1 > 0 > -1 > -3 > -4
434
435 # set priority to HIGH
436 current->prio(PRIO_HIGH);
437
438The idle coroutine ($Coro::idle) always has a lower priority than any
439existing coroutine.
440
441Changing the priority of the current coroutine will take effect immediately,
442but changing the priority of coroutines in the ready queue (but not
443running) will only take effect after the next schedule (of that
444coroutine). This is a bug that will be fixed in some future version.
445
446=item $newprio = $coroutine->nice ($change)
447
448Similar to C<prio>, but subtract the given value from the priority (i.e.
449higher values mean lower priority, just as in unix).
450
451=item $olddesc = $coroutine->desc ($newdesc)
452
453Sets (or gets in case the argument is missing) the description for this
454coroutine. This is just a free-form string you can associate with a coroutine.
455
456=cut
457
458sub desc {
459 my $old = $_[0]{desc};
460 $_[0]{desc} = $_[1] if @_ > 1;
461 $old;
462}
463
464=back
465
466=head2 GLOBAL FUNCTIONS
467
468=over 4
469
470=item Coro::nready
471
472Returns the number of coroutines that are currently in the ready state,
473i.e. that can be switched to. The value C<0> means that the only runnable
474coroutine is the currently running one, so C<cede> would have no effect,
475and C<schedule> would cause a deadlock unless there is an idle handler
476that wakes up some coroutines.
477
478=item my $guard = Coro::guard { ... }
479
480This creates and returns a guard object. Nothing happens until the object
481gets destroyed, in which case the codeblock given as argument will be
482executed. This is useful to free locks or other resources in case of a
483runtime error or when the coroutine gets canceled, as in both cases the
484guard block will be executed. The guard object supports only one method,
485C<< ->cancel >>, which will keep the codeblock from being executed.
486
487Example: set some flag and clear it again when the coroutine gets canceled
488or the function returns:
489
490 sub do_something {
491 my $guard = Coro::guard { $busy = 0 };
492 $busy = 1;
493
494 # do something that requires $busy to be true
495 }
496
497=cut
498
499sub guard(&) {
500 bless \(my $cb = $_[0]), "Coro::guard"
501}
502
503sub Coro::guard::cancel {
504 ${$_[0]} = sub { };
505}
506
507sub Coro::guard::DESTROY {
508 ${$_[0]}->();
509}
510
511
512=item unblock_sub { ... }
513
514This utility function takes a BLOCK or code reference and "unblocks" it,
515returning the new coderef. This means that the new coderef will return
516immediately without blocking, returning nothing, while the original code
517ref will be called (with parameters) from within its own coroutine.
518
519The reason this function exists is that many event libraries (such as the
520venerable L<Event|Event> module) are not coroutine-safe (a weaker form
521of thread-safety). This means you must not block within event callbacks,
522otherwise you might suffer from crashes or worse.
523
524This function allows your callbacks to block by executing them in another
525coroutine where it is safe to block. One example where blocking is handy
526is when you use the L<Coro::AIO|Coro::AIO> functions to save results to
527disk.
528
529In short: simply use C<unblock_sub { ... }> instead of C<sub { ... }> when
530creating event callbacks that want to block.
531
532=cut
533
534our @unblock_queue;
535
536# we create a special coro because we want to cede,
537# to reduce pressure on the coro pool (because most callbacks
538# return immediately and can be reused) and because we cannot cede
539# inside an event callback.
540our $unblock_scheduler = new Coro sub {
541 while () {
542 while (my $cb = pop @unblock_queue) {
543 # this is an inlined copy of async_pool
544 my $coro = (pop @async_pool) || new Coro \&pool_handler;
545
546 $coro->{_invoke} = $cb;
547 $coro->ready;
548 cede; # for short-lived callbacks, this reduces pressure on the coro pool
70 } 549 }
71 } while (1); 550 schedule; # sleep well
72 }, $class; 551 }
73}
74
75=item $prev->transfer($next)
76
77Save the state of the current subroutine in $prev and switch to the
78coroutine saved in $next.
79
80=cut
81
82# I call the _transfer function from a perl function
83# because that way perl saves all important things on
84# the stack.
85sub transfer {
86 _transfer($_[0], $_[1]);
87}
88
89=item $error, $error_msg, $error_coro
90
91This coroutine will be called on fatal errors. C<$error_msg> and
92C<$error_coro> return the error message and the error-causing coroutine
93(NOT an object) respectively. This API might change.
94
95=cut
96
97$error_msg =
98$error_coro = undef;
99
100$error = _newprocess {
101 print STDERR "FATAL: $error_msg\nprogram aborted\n";
102 exit 50;
103}; 552};
553$unblock_scheduler->desc ("[unblock_sub scheduler]");
554
555sub unblock_sub(&) {
556 my $cb = shift;
557
558 sub {
559 unshift @unblock_queue, [$cb, @_];
560 $unblock_scheduler->ready;
561 }
562}
563
564=back
565
566=cut
104 567
1051; 5681;
106 569
107=back 570=head1 BUGS/LIMITATIONS
108 571
109=head1 BUGS 572 - you must make very sure that no coro is still active on global
573 destruction. very bad things might happen otherwise (usually segfaults).
110 574
111This module has not yet been extensively tested. 575 - this module is not thread-safe. You should only ever use this module
576 from the same thread (this requirement might be loosened in the future
577 to allow per-thread schedulers, but Coro::State does not yet allow
578 this).
112 579
113=head1 SEE ALSO 580=head1 SEE ALSO
114 581
115L<Coro::Process>, L<Coro::Signal>. 582Support/Utility: L<Coro::Cont>, L<Coro::Specific>, L<Coro::State>, L<Coro::Util>.
583
584Locking/IPC: L<Coro::Signal>, L<Coro::Channel>, L<Coro::Semaphore>, L<Coro::SemaphoreSet>, L<Coro::RWLock>.
585
586Event/IO: L<Coro::Timer>, L<Coro::Event>, L<Coro::Handle>, L<Coro::Socket>, L<Coro::Select>.
587
588Embedding: L<Coro:MakeMaker>
116 589
117=head1 AUTHOR 590=head1 AUTHOR
118 591
119 Marc Lehmann <pcg@goof.com> 592 Marc Lehmann <schmorp@schmorp.de>
120 http://www.goof.com/pcg/marc/ 593 http://home.schmorp.de/
121 594
122=cut 595=cut
123 596

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines