ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/Coro/Coro.pm
(Generate patch)

Comparing Coro/Coro.pm (file contents):
Revision 1.8 by root, Sat Jul 14 22:14:21 2001 UTC vs.
Revision 1.133 by root, Fri Sep 21 01:23:58 2007 UTC

8 8
9 async { 9 async {
10 # some asynchronous thread of execution 10 # some asynchronous thread of execution
11 }; 11 };
12 12
13 # alternatively create an async process like this: 13 # alternatively create an async coroutine like this:
14 14
15 sub some_func : Coro { 15 sub some_func : Coro {
16 # some more async code 16 # some more async code
17 } 17 }
18 18
19 yield; 19 cede;
20 20
21=head1 DESCRIPTION 21=head1 DESCRIPTION
22 22
23This module collection manages coroutines. Coroutines are similar
24to threads but don't run in parallel at the same time even on SMP
25machines. The specific flavor of coroutine used in this module also
26guarantees you that it will not switch between coroutines unless
27necessary, at easily-identified points in your program, so locking and
28parallel access are rarely an issue, making coroutine programming much
29safer than threads programming.
30
31(Perl, however, does not natively support real threads but instead does a
32very slow and memory-intensive emulation of processes using threads. This
33is a performance win on Windows machines, and a loss everywhere else).
34
35In this module, coroutines are defined as "callchain + lexical variables +
36@_ + $_ + $@ + $/ + C stack), that is, a coroutine has its own callchain,
37its own set of lexicals and its own set of perls most important global
38variables.
39
23=cut 40=cut
24 41
25package Coro; 42package Coro;
26 43
44use strict;
45no warnings "uninitialized";
46
27use Coro::State; 47use Coro::State;
28 48
29use base Exporter; 49use base qw(Coro::State Exporter);
30 50
31$VERSION = 0.03; 51our $idle; # idle handler
52our $main; # main coroutine
53our $current; # current coroutine
32 54
33@EXPORT = qw(async yield schedule); 55our $VERSION = '3.7';
34@EXPORT_OK = qw($current); 56
57our @EXPORT = qw(async async_pool cede schedule terminate current unblock_sub);
58our %EXPORT_TAGS = (
59 prio => [qw(PRIO_MAX PRIO_HIGH PRIO_NORMAL PRIO_LOW PRIO_IDLE PRIO_MIN)],
60);
61our @EXPORT_OK = (@{$EXPORT_TAGS{prio}}, qw(nready));
35 62
36{ 63{
37 use subs 'async';
38
39 my @async; 64 my @async;
65 my $init;
40 66
41 # this way of handling attributes simply is NOT scalable ;() 67 # this way of handling attributes simply is NOT scalable ;()
42 sub import { 68 sub import {
69 no strict 'refs';
70
43 Coro->export_to_level(1, @_); 71 Coro->export_to_level (1, @_);
72
44 my $old = *{(caller)[0]."::MODIFY_CODE_ATTRIBUTES"}{CODE}; 73 my $old = *{(caller)[0]."::MODIFY_CODE_ATTRIBUTES"}{CODE};
45 *{(caller)[0]."::MODIFY_CODE_ATTRIBUTES"} = sub { 74 *{(caller)[0]."::MODIFY_CODE_ATTRIBUTES"} = sub {
46 my ($package, $ref) = (shift, shift); 75 my ($package, $ref) = (shift, shift);
47 my @attrs; 76 my @attrs;
48 for (@_) { 77 for (@_) {
49 if ($_ eq "Coro") { 78 if ($_ eq "Coro") {
50 push @async, $ref; 79 push @async, $ref;
80 unless ($init++) {
81 eval q{
82 sub INIT {
83 &async(pop @async) while @async;
84 }
85 };
86 }
51 } else { 87 } else {
52 push @attrs, @_; 88 push @attrs, $_;
53 } 89 }
54 } 90 }
55 return $old ? $old->($package, $name, @attrs) : @attrs; 91 return $old ? $old->($package, $ref, @attrs) : @attrs;
56 }; 92 };
57 } 93 }
58 94
59 sub INIT {
60 async pop @async while @async;
61 }
62} 95}
63 96
64my $idle = new Coro sub { 97=over 4
65 &yield while 1; 98
99=item $main
100
101This coroutine represents the main program.
102
103=cut
104
105$main = new Coro;
106
107=item $current (or as function: current)
108
109The current coroutine (the last coroutine switched to). The initial value
110is C<$main> (of course).
111
112This variable is B<strictly> I<read-only>. It is provided for performance
113reasons. If performance is not essential you are encouraged to use the
114C<Coro::current> function instead.
115
116=cut
117
118$main->{desc} = "[main::]";
119
120# maybe some other module used Coro::Specific before...
121$main->{specific} = $current->{specific}
122 if $current;
123
124_set_current $main;
125
126sub current() { $current }
127
128=item $idle
129
130A callback that is called whenever the scheduler finds no ready coroutines
131to run. The default implementation prints "FATAL: deadlock detected" and
132exits, because the program has no other way to continue.
133
134This hook is overwritten by modules such as C<Coro::Timer> and
135C<Coro::Event> to wait on an external event that hopefully wake up a
136coroutine so the scheduler can run it.
137
138Please note that if your callback recursively invokes perl (e.g. for event
139handlers), then it must be prepared to be called recursively.
140
141=cut
142
143$idle = sub {
144 require Carp;
145 Carp::croak ("FATAL: deadlock detected");
66}; 146};
67 147
68=item $main 148sub _cancel {
149 my ($self) = @_;
69 150
70This coroutine represents the main program. 151 # free coroutine data and mark as destructed
152 $self->_destroy
153 or return;
71 154
72=cut 155 # call all destruction callbacks
73 156 $_->(@{$self->{status}})
74$main = new Coro; 157 for @{(delete $self->{destroy_cb}) || []};
75
76=item $current
77
78The current coroutine (the last coroutine switched to). The initial value is C<$main> (of course).
79
80=cut
81
82# maybe some other module used Coro::Specific before...
83if ($current) {
84 $main->{specific} = $current->{specific};
85} 158}
86 159
87$current = $main; 160# this coroutine is necessary because a coroutine
161# cannot destroy itself.
162my @destroy;
163my $manager;
88 164
89# we really need priorities... 165$manager = new Coro sub {
90my @ready = (); # the ready queue. hehe, rather broken ;) 166 while () {
167 (shift @destroy)->_cancel
168 while @destroy;
169
170 &schedule;
171 }
172};
173$manager->desc ("[coro manager]");
174$manager->prio (PRIO_MAX);
91 175
92# static methods. not really. 176# static methods. not really.
93 177
178=back
179
94=head2 STATIC METHODS 180=head2 STATIC METHODS
95 181
96Static methods are actually functions that operate on the current process only. 182Static methods are actually functions that operate on the current coroutine only.
97 183
98=over 4 184=over 4
99 185
100=item async { ... }; 186=item async { ... } [@args...]
101 187
102Create a new asynchronous process and return it's process object 188Create a new asynchronous coroutine and return it's coroutine object
103(usually unused). When the sub returns the new process is automatically 189(usually unused). When the sub returns the new coroutine is automatically
104terminated. 190terminated.
105 191
106=cut 192Calling C<exit> in a coroutine will do the same as calling exit outside
193the coroutine. Likewise, when the coroutine dies, the program will exit,
194just as it would in the main program.
107 195
196 # create a new coroutine that just prints its arguments
197 async {
198 print "@_\n";
199 } 1,2,3,4;
200
201=cut
202
108sub async(&) { 203sub async(&@) {
109 (new Coro $_[0])->ready; 204 my $coro = new Coro @_;
205 $coro->ready;
206 $coro
207}
208
209=item async_pool { ... } [@args...]
210
211Similar to C<async>, but uses a coroutine pool, so you should not call
212terminate or join (although you are allowed to), and you get a coroutine
213that might have executed other code already (which can be good or bad :).
214
215Also, the block is executed in an C<eval> context and a warning will be
216issued in case of an exception instead of terminating the program, as
217C<async> does. As the coroutine is being reused, stuff like C<on_destroy>
218will not work in the expected way, unless you call terminate or cancel,
219which somehow defeats the purpose of pooling.
220
221The priority will be reset to C<0> after each job, otherwise the coroutine
222will be re-used "as-is".
223
224The pool size is limited to 8 idle coroutines (this can be adjusted by
225changing $Coro::POOL_SIZE), and there can be as many non-idle coros as
226required.
227
228If you are concerned about pooled coroutines growing a lot because a
229single C<async_pool> used a lot of stackspace you can e.g. C<async_pool
230{ terminate }> once per second or so to slowly replenish the pool. In
231addition to that, when the stacks used by a handler grows larger than 16kb
232(adjustable with $Coro::MAX_POOL_RSS) it will also exit.
233
234=cut
235
236our $POOL_SIZE = 8;
237our $MAX_POOL_RSS = 16 * 1024;
238our @pool;
239
240sub pool_handler {
241 while () {
242 $current->{desc} = "[async_pool]";
243
244 eval {
245 my ($cb, @arg) = @{ delete $current->{_invoke} or return };
246 $cb->(@arg);
247 };
248 warn $@ if $@;
249
250 last if @pool >= $POOL_SIZE || $current->rss >= $MAX_POOL_RSS;
251
252 push @pool, $current;
253 $current->{desc} = "[async_pool idle]";
254 $current->save (Coro::State::SAVE_DEF);
255 $current->prio (0);
256 schedule;
257 }
258}
259
260sub async_pool(&@) {
261 # this is also inlined into the unlock_scheduler
262 my $coro = (pop @pool) || new Coro \&pool_handler;;
263
264 $coro->{_invoke} = [@_];
265 $coro->ready;
266
267 $coro
110} 268}
111 269
112=item schedule 270=item schedule
113 271
114Calls the scheduler. Please note that the current process will not be put 272Calls the scheduler. Please note that the current coroutine will not be put
115into the ready queue, so calling this function usually means you will 273into the ready queue, so calling this function usually means you will
116never be called again. 274never be called again unless something else (e.g. an event handler) calls
275ready.
117 276
118=cut 277The canonical way to wait on external events is this:
119 278
120my $prev; 279 {
280 # remember current coroutine
281 my $current = $Coro::current;
121 282
122sub schedule { 283 # register a hypothetical event handler
123 ($prev, $current) = ($current, shift @ready); 284 on_event_invoke sub {
124 Coro::State::transfer($prev, $current); 285 # wake up sleeping coroutine
125}
126
127=item yield
128
129Yield to other processes. This function puts the current process into the
130ready queue and calls C<schedule>.
131
132=cut
133
134sub yield {
135 $current->ready; 286 $current->ready;
136 &schedule; 287 undef $current;
137} 288 };
138 289
290 # call schedule until event occurred.
291 # in case we are woken up for other reasons
292 # (current still defined), loop.
293 Coro::schedule while $current;
294 }
295
296=item cede
297
298"Cede" to other coroutines. This function puts the current coroutine into the
299ready queue and calls C<schedule>, which has the effect of giving up the
300current "timeslice" to other coroutines of the same or higher priority.
301
302Returns true if at least one coroutine switch has happened.
303
304=item Coro::cede_notself
305
306Works like cede, but is not exported by default and will cede to any
307coroutine, regardless of priority, once.
308
309Returns true if at least one coroutine switch has happened.
310
139=item terminate 311=item terminate [arg...]
140 312
141Terminates the current process. 313Terminates the current coroutine with the given status values (see L<cancel>).
142 314
143=cut 315=cut
144 316
145sub terminate { 317sub terminate {
146 &schedule; 318 $current->cancel (@_);
147} 319}
148 320
149=back 321=back
150 322
151# dynamic methods 323# dynamic methods
152 324
153=head2 PROCESS METHODS 325=head2 COROUTINE METHODS
154 326
155These are the methods you can call on process objects. 327These are the methods you can call on coroutine objects.
156 328
157=over 4 329=over 4
158 330
159=item new Coro \&sub; 331=item new Coro \&sub [, @args...]
160 332
161Create a new process and return it. When the sub returns the process 333Create a new coroutine and return it. When the sub returns the coroutine
162automatically terminates. To start the process you must first put it into 334automatically terminates as if C<terminate> with the returned values were
335called. To make the coroutine run you must first put it into the ready queue
163the ready queue by calling the ready method. 336by calling the ready method.
164 337
338See C<async> for additional discussion.
339
165=cut 340=cut
341
342sub _run_coro {
343 terminate &{+shift};
344}
166 345
167sub new { 346sub new {
168 my $class = shift; 347 my $class = shift;
348
349 $class->SUPER::new (\&_run_coro, @_)
350}
351
352=item $success = $coroutine->ready
353
354Put the given coroutine into the ready queue (according to it's priority)
355and return true. If the coroutine is already in the ready queue, do nothing
356and return false.
357
358=item $is_ready = $coroutine->is_ready
359
360Return wether the coroutine is currently the ready queue or not,
361
362=item $coroutine->cancel (arg...)
363
364Terminates the given coroutine and makes it return the given arguments as
365status (default: the empty list). Never returns if the coroutine is the
366current coroutine.
367
368=cut
369
370sub cancel {
371 my $self = shift;
372 $self->{status} = [@_];
373
374 if ($current == $self) {
375 push @destroy, $self;
376 $manager->ready;
377 &schedule while 1;
378 } else {
379 $self->_cancel;
380 }
381}
382
383=item $coroutine->join
384
385Wait until the coroutine terminates and return any values given to the
386C<terminate> or C<cancel> functions. C<join> can be called multiple times
387from multiple coroutine.
388
389=cut
390
391sub join {
392 my $self = shift;
393
394 unless ($self->{status}) {
395 my $current = $current;
396
397 push @{$self->{destroy_cb}}, sub {
398 $current->ready;
399 undef $current;
400 };
401
402 &schedule while $current;
403 }
404
405 wantarray ? @{$self->{status}} : $self->{status}[0];
406}
407
408=item $coroutine->on_destroy (\&cb)
409
410Registers a callback that is called when this coroutine gets destroyed,
411but before it is joined. The callback gets passed the terminate arguments,
412if any.
413
414=cut
415
416sub on_destroy {
417 my ($self, $cb) = @_;
418
419 push @{ $self->{destroy_cb} }, $cb;
420}
421
422=item $oldprio = $coroutine->prio ($newprio)
423
424Sets (or gets, if the argument is missing) the priority of the
425coroutine. Higher priority coroutines get run before lower priority
426coroutines. Priorities are small signed integers (currently -4 .. +3),
427that you can refer to using PRIO_xxx constants (use the import tag :prio
428to get then):
429
430 PRIO_MAX > PRIO_HIGH > PRIO_NORMAL > PRIO_LOW > PRIO_IDLE > PRIO_MIN
431 3 > 1 > 0 > -1 > -3 > -4
432
433 # set priority to HIGH
434 current->prio(PRIO_HIGH);
435
436The idle coroutine ($Coro::idle) always has a lower priority than any
437existing coroutine.
438
439Changing the priority of the current coroutine will take effect immediately,
440but changing the priority of coroutines in the ready queue (but not
441running) will only take effect after the next schedule (of that
442coroutine). This is a bug that will be fixed in some future version.
443
444=item $newprio = $coroutine->nice ($change)
445
446Similar to C<prio>, but subtract the given value from the priority (i.e.
447higher values mean lower priority, just as in unix).
448
449=item $olddesc = $coroutine->desc ($newdesc)
450
451Sets (or gets in case the argument is missing) the description for this
452coroutine. This is just a free-form string you can associate with a coroutine.
453
454=cut
455
456sub desc {
169 my $proc = $_[0]; 457 my $old = $_[0]{desc};
170 bless { 458 $_[0]{desc} = $_[1] if @_ > 1;
171 _coro_state => new Coro::State ($proc ? sub { &$proc; &terminate } : $proc), 459 $old;
172 }, $class;
173}
174
175=item $process->ready
176
177Put the current process into the ready queue.
178
179=cut
180
181sub ready {
182 push @ready, $_[0];
183} 460}
184 461
185=back 462=back
186 463
464=head2 GLOBAL FUNCTIONS
465
466=over 4
467
468=item Coro::nready
469
470Returns the number of coroutines that are currently in the ready state,
471i.e. that can be switched to. The value C<0> means that the only runnable
472coroutine is the currently running one, so C<cede> would have no effect,
473and C<schedule> would cause a deadlock unless there is an idle handler
474that wakes up some coroutines.
475
476=item my $guard = Coro::guard { ... }
477
478This creates and returns a guard object. Nothing happens until the object
479gets destroyed, in which case the codeblock given as argument will be
480executed. This is useful to free locks or other resources in case of a
481runtime error or when the coroutine gets canceled, as in both cases the
482guard block will be executed. The guard object supports only one method,
483C<< ->cancel >>, which will keep the codeblock from being executed.
484
485Example: set some flag and clear it again when the coroutine gets canceled
486or the function returns:
487
488 sub do_something {
489 my $guard = Coro::guard { $busy = 0 };
490 $busy = 1;
491
492 # do something that requires $busy to be true
493 }
494
495=cut
496
497sub guard(&) {
498 bless \(my $cb = $_[0]), "Coro::guard"
499}
500
501sub Coro::guard::cancel {
502 ${$_[0]} = sub { };
503}
504
505sub Coro::guard::DESTROY {
506 ${$_[0]}->();
507}
508
509
510=item unblock_sub { ... }
511
512This utility function takes a BLOCK or code reference and "unblocks" it,
513returning the new coderef. This means that the new coderef will return
514immediately without blocking, returning nothing, while the original code
515ref will be called (with parameters) from within its own coroutine.
516
517The reason this function exists is that many event libraries (such as the
518venerable L<Event|Event> module) are not coroutine-safe (a weaker form
519of thread-safety). This means you must not block within event callbacks,
520otherwise you might suffer from crashes or worse.
521
522This function allows your callbacks to block by executing them in another
523coroutine where it is safe to block. One example where blocking is handy
524is when you use the L<Coro::AIO|Coro::AIO> functions to save results to
525disk.
526
527In short: simply use C<unblock_sub { ... }> instead of C<sub { ... }> when
528creating event callbacks that want to block.
529
530=cut
531
532our @unblock_queue;
533
534# we create a special coro because we want to cede,
535# to reduce pressure on the coro pool (because most callbacks
536# return immediately and can be reused) and because we cannot cede
537# inside an event callback.
538our $unblock_scheduler = new Coro sub {
539 while () {
540 while (my $cb = pop @unblock_queue) {
541 # this is an inlined copy of async_pool
542 my $coro = (pop @pool or new Coro \&pool_handler);
543
544 $coro->{_invoke} = $cb;
545 $coro->ready;
546 cede; # for short-lived callbacks, this reduces pressure on the coro pool
547 }
548 schedule; # sleep well
549 }
550};
551$unblock_scheduler->desc ("[unblock_sub scheduler]");
552
553sub unblock_sub(&) {
554 my $cb = shift;
555
556 sub {
557 unshift @unblock_queue, [$cb, @_];
558 $unblock_scheduler->ready;
559 }
560}
561
562=back
563
187=cut 564=cut
188 565
1891; 5661;
190 567
568=head1 BUGS/LIMITATIONS
569
570 - you must make very sure that no coro is still active on global
571 destruction. very bad things might happen otherwise (usually segfaults).
572
573 - this module is not thread-safe. You should only ever use this module
574 from the same thread (this requirement might be loosened in the future
575 to allow per-thread schedulers, but Coro::State does not yet allow
576 this).
577
578=head1 SEE ALSO
579
580Support/Utility: L<Coro::Cont>, L<Coro::Specific>, L<Coro::State>, L<Coro::Util>.
581
582Locking/IPC: L<Coro::Signal>, L<Coro::Channel>, L<Coro::Semaphore>, L<Coro::SemaphoreSet>, L<Coro::RWLock>.
583
584Event/IO: L<Coro::Timer>, L<Coro::Event>, L<Coro::Handle>, L<Coro::Socket>, L<Coro::Select>.
585
586Embedding: L<Coro:MakeMaker>
587
191=head1 AUTHOR 588=head1 AUTHOR
192 589
193 Marc Lehmann <pcg@goof.com> 590 Marc Lehmann <schmorp@schmorp.de>
194 http://www.goof.com/pcg/marc/ 591 http://home.schmorp.de/
195 592
196=cut 593=cut
197 594

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines