ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/Coro/Coro.pm
(Generate patch)

Comparing Coro/Coro.pm (file contents):
Revision 1.11 by root, Sun Jul 15 03:24:18 2001 UTC vs.
Revision 1.226 by root, Wed Nov 19 16:01:32 2008 UTC

2 2
3Coro - coroutine process abstraction 3Coro - coroutine process abstraction
4 4
5=head1 SYNOPSIS 5=head1 SYNOPSIS
6 6
7 use Coro; 7 use Coro;
8 8
9 async { 9 async {
10 # some asynchronous thread of execution 10 # some asynchronous thread of execution
11 print "2\n";
12 cede; # yield back to main
13 print "4\n";
11 }; 14 };
12 15 print "1\n";
13 # alternatively create an async process like this: 16 cede; # yield to coroutine
14 17 print "3\n";
15 sub some_func : Coro { 18 cede; # and again
16 # some more async code 19
17 } 20 # use locking
18 21 use Coro::Semaphore;
19 yield; 22 my $lock = new Coro::Semaphore;
23 my $locked;
24
25 $lock->down;
26 $locked = 1;
27 $lock->up;
20 28
21=head1 DESCRIPTION 29=head1 DESCRIPTION
22 30
31This module collection manages coroutines. Coroutines are similar to
32threads but don't (in general) run in parallel at the same time even
33on SMP machines. The specific flavor of coroutine used in this module
34also guarantees you that it will not switch between coroutines unless
35necessary, at easily-identified points in your program, so locking and
36parallel access are rarely an issue, making coroutine programming much
37safer and easier than threads programming.
38
39Unlike a normal perl program, however, coroutines allow you to have
40multiple running interpreters that share data, which is especially useful
41to code pseudo-parallel processes and for event-based programming, such as
42multiple HTTP-GET requests running concurrently. See L<Coro::AnyEvent> to
43learn more.
44
45Coroutines are also useful because Perl has no support for threads (the so
46called "threads" that perl offers are nothing more than the (bad) process
47emulation coming from the Windows platform: On standard operating systems
48they serve no purpose whatsoever, except by making your programs slow and
49making them use a lot of memory. Best disable them when building perl, or
50aks your software vendor/distributor to do it for you).
51
52In this module, coroutines are defined as "callchain + lexical variables +
53@_ + $_ + $@ + $/ + C stack), that is, a coroutine has its own callchain,
54its own set of lexicals and its own set of perls most important global
55variables (see L<Coro::State> for more configuration).
56
23=cut 57=cut
24 58
25package Coro; 59package Coro;
26 60
61use strict qw(vars subs);
62no warnings "uninitialized";
63
27use Coro::State; 64use Coro::State;
28 65
29use base Exporter; 66use base qw(Coro::State Exporter);
30 67
68our $idle; # idle handler
69our $main; # main coroutine
70our $current; # current coroutine
71
31$VERSION = 0.04; 72our $VERSION = 5.0;
32 73
33@EXPORT = qw(async yield schedule); 74our @EXPORT = qw(async async_pool cede schedule terminate current unblock_sub);
34@EXPORT_OK = qw($current); 75our %EXPORT_TAGS = (
76 prio => [qw(PRIO_MAX PRIO_HIGH PRIO_NORMAL PRIO_LOW PRIO_IDLE PRIO_MIN)],
77);
78our @EXPORT_OK = (@{$EXPORT_TAGS{prio}}, qw(nready));
35 79
36{ 80=over 4
37 use subs 'async';
38 81
39 my @async; 82=item $Coro::main
40 83
41 # this way of handling attributes simply is NOT scalable ;() 84This variable stores the coroutine object that represents the main
42 sub import { 85program. While you cna C<ready> it and do most other things you can do to
43 Coro->export_to_level(1, @_); 86coroutines, it is mainly useful to compare again C<$Coro::current>, to see
44 my $old = *{(caller)[0]."::MODIFY_CODE_ATTRIBUTES"}{CODE}; 87whether you are running in the main program or not.
45 *{(caller)[0]."::MODIFY_CODE_ATTRIBUTES"} = sub { 88
46 my ($package, $ref) = (shift, shift); 89=cut
47 my @attrs; 90
48 for (@_) { 91# $main is now being initialised by Coro::State
49 if ($_ eq "Coro") { 92
50 push @async, $ref; 93=item $Coro::current
51 } else { 94
52 push @attrs, @_; 95The coroutine object representing the current coroutine (the last
96coroutine that the Coro scheduler switched to). The initial value is
97C<$Coro::main> (of course).
98
99This variable is B<strictly> I<read-only>. You can take copies of the
100value stored in it and use it as any other coroutine object, but you must
101not otherwise modify the variable itself.
102
103=cut
104
105sub current() { $current } # [DEPRECATED]
106
107=item $Coro::idle
108
109This variable is mainly useful to integrate Coro into event loops. It is
110usually better to rely on L<Coro::AnyEvent> or LC<Coro::EV>, as this is
111pretty low-level functionality.
112
113This variable stores a callback that is called whenever the scheduler
114finds no ready coroutines to run. The default implementation prints
115"FATAL: deadlock detected" and exits, because the program has no other way
116to continue.
117
118This hook is overwritten by modules such as C<Coro::Timer> and
119C<Coro::AnyEvent> to wait on an external event that hopefully wake up a
120coroutine so the scheduler can run it.
121
122Note that the callback I<must not>, under any circumstances, block
123the current coroutine. Normally, this is achieved by having an "idle
124coroutine" that calls the event loop and then blocks again, and then
125readying that coroutine in the idle handler.
126
127See L<Coro::Event> or L<Coro::AnyEvent> for examples of using this
128technique.
129
130Please note that if your callback recursively invokes perl (e.g. for event
131handlers), then it must be prepared to be called recursively itself.
132
133=cut
134
135$idle = sub {
136 require Carp;
137 Carp::croak ("FATAL: deadlock detected");
138};
139
140sub _cancel {
141 my ($self) = @_;
142
143 # free coroutine data and mark as destructed
144 $self->_destroy
145 or return;
146
147 # call all destruction callbacks
148 $_->(@{$self->{_status}})
149 for @{ delete $self->{_on_destroy} || [] };
150}
151
152# this coroutine is necessary because a coroutine
153# cannot destroy itself.
154our @destroy;
155our $manager;
156
157$manager = new Coro sub {
158 while () {
159 (shift @destroy)->_cancel
160 while @destroy;
161
162 &schedule;
163 }
164};
165$manager->{desc} = "[coro manager]";
166$manager->prio (PRIO_MAX);
167
168=back
169
170=head2 SIMPLE COROUTINE CREATION
171
172=over 4
173
174=item async { ... } [@args...]
175
176Create a new coroutine and return it's coroutine object (usually
177unused). The coroutine will be put into the ready queue, so
178it will start running automatically on the next scheduler run.
179
180The first argument is a codeblock/closure that should be executed in the
181coroutine. When it returns argument returns the coroutine is automatically
182terminated.
183
184The remaining arguments are passed as arguments to the closure.
185
186See the C<Coro::State::new> constructor for info about the coroutine
187environment in which coroutines are executed.
188
189Calling C<exit> in a coroutine will do the same as calling exit outside
190the coroutine. Likewise, when the coroutine dies, the program will exit,
191just as it would in the main program.
192
193If you do not want that, you can provide a default C<die> handler, or
194simply avoid dieing (by use of C<eval>).
195
196Example: Create a new coroutine that just prints its arguments.
197
198 async {
199 print "@_\n";
200 } 1,2,3,4;
201
202=cut
203
204sub async(&@) {
205 my $coro = new Coro @_;
206 $coro->ready;
207 $coro
208}
209
210=item async_pool { ... } [@args...]
211
212Similar to C<async>, but uses a coroutine pool, so you should not call
213terminate or join on it (although you are allowed to), and you get a
214coroutine that might have executed other code already (which can be good
215or bad :).
216
217On the plus side, this function is faster than creating (and destroying)
218a completly new coroutine, so if you need a lot of generic coroutines in
219quick successsion, use C<async_pool>, not C<async>.
220
221The code block is executed in an C<eval> context and a warning will be
222issued in case of an exception instead of terminating the program, as
223C<async> does. As the coroutine is being reused, stuff like C<on_destroy>
224will not work in the expected way, unless you call terminate or cancel,
225which somehow defeats the purpose of pooling (but is fine in the
226exceptional case).
227
228The priority will be reset to C<0> after each run, tracing will be
229disabled, the description will be reset and the default output filehandle
230gets restored, so you can change all these. Otherwise the coroutine will
231be re-used "as-is": most notably if you change other per-coroutine global
232stuff such as C<$/> you I<must needs> revert that change, which is most
233simply done by using local as in: C<< local $/ >>.
234
235The idle pool size is limited to C<8> idle coroutines (this can be
236adjusted by changing $Coro::POOL_SIZE), but there can be as many non-idle
237coros as required.
238
239If you are concerned about pooled coroutines growing a lot because a
240single C<async_pool> used a lot of stackspace you can e.g. C<async_pool
241{ terminate }> once per second or so to slowly replenish the pool. In
242addition to that, when the stacks used by a handler grows larger than 16kb
243(adjustable via $Coro::POOL_RSS) it will also be destroyed.
244
245=cut
246
247our $POOL_SIZE = 8;
248our $POOL_RSS = 16 * 1024;
249our @async_pool;
250
251sub pool_handler {
252 my $cb;
253
254 while () {
255 eval {
256 while () {
257 _pool_1 $cb;
53 } 258 &$cb;
259 _pool_2 $cb;
260 &schedule;
54 } 261 }
55 return $old ? $old->($package, $name, @attrs) : @attrs;
56 }; 262 };
57 }
58 263
59 sub INIT { 264 if ($@) {
60 async pop @async while @async; 265 last if $@ eq "\3async_pool terminate\2\n";
266 warn $@;
267 }
61 } 268 }
62} 269}
63 270
64=item $main 271sub async_pool(&@) {
272 # this is also inlined into the unblock_scheduler
273 my $coro = (pop @async_pool) || new Coro \&pool_handler;
65 274
66This coroutine represents the main program. 275 $coro->{_invoke} = [@_];
276 $coro->ready;
67 277
68=cut 278 $coro
69
70our $main = new Coro;
71
72=item $current
73
74The current coroutine (the last coroutine switched to). The initial value is C<$main> (of course).
75
76=cut
77
78# maybe some other module used Coro::Specific before...
79if ($current) {
80 $main->{specific} = $current->{specific};
81} 279}
82 280
83our $current = $main; 281=back
84 282
283=head2 STATIC METHODS
284
285Static methods are actually functions that operate on the current coroutine.
286
287=over 4
288
289=item schedule
290
291Calls the scheduler. The scheduler will find the next coroutine that is
292to be run from the ready queue and switches to it. The next coroutine
293to be run is simply the one with the highest priority that is longest
294in its ready queue. If there is no coroutine ready, it will clal the
295C<$Coro::idle> hook.
296
297Please note that the current coroutine will I<not> be put into the ready
298queue, so calling this function usually means you will never be called
299again unless something else (e.g. an event handler) calls C<< ->ready >>,
300thus waking you up.
301
302This makes C<schedule> I<the> generic method to use to block the current
303coroutine and wait for events: first you remember the current coroutine in
304a variable, then arrange for some callback of yours to call C<< ->ready
305>> on that once some event happens, and last you call C<schedule> to put
306yourself to sleep. Note that a lot of things can wake your coroutine up,
307so you need to check whether the event indeed happened, e.g. by storing the
308status in a variable.
309
310See B<HOW TO WAIT FOR A CALLBACK>, below, for some ways to wait for callbacks.
311
85=item $idle 312=item cede
86 313
87The coroutine to switch to when no other coroutine is running. The default 314"Cede" to other coroutines. This function puts the current coroutine into
88implementation prints "FATAL: deadlock detected" and exits. 315the ready queue and calls C<schedule>, which has the effect of giving
316up the current "timeslice" to other coroutines of the same or higher
317priority. Once your coroutine gets its turn again it will automatically be
318resumed.
89 319
90=cut 320This function is often called C<yield> in other languages.
91 321
92# should be done using priorities :( 322=item Coro::cede_notself
323
324Works like cede, but is not exported by default and will cede to I<any>
325coroutine, regardless of priority. This is useful sometimes to ensure
326progress is made.
327
328=item terminate [arg...]
329
330Terminates the current coroutine with the given status values (see L<cancel>).
331
332=item killall
333
334Kills/terminates/cancels all coroutines except the currently running
335one. This is useful after a fork, either in the child or the parent, as
336usually only one of them should inherit the running coroutines.
337
338Note that while this will try to free some of the main programs resources,
339you cannot free all of them, so if a coroutine that is not the main
340program calls this function, there will be some one-time resource leak.
341
342=cut
343
344sub terminate {
345 $current->{_status} = [@_];
346 push @destroy, $current;
347 $manager->ready;
348 do { &schedule } while 1;
349}
350
351sub killall {
352 for (Coro::State::list) {
353 $_->cancel
354 if $_ != $current && UNIVERSAL::isa $_, "Coro";
355 }
356}
357
358=back
359
360=head2 COROUTINE METHODS
361
362These are the methods you can call on coroutine objects (or to create
363them).
364
365=over 4
366
367=item new Coro \&sub [, @args...]
368
369Create a new coroutine and return it. When the sub returns, the coroutine
370automatically terminates as if C<terminate> with the returned values were
371called. To make the coroutine run you must first put it into the ready
372queue by calling the ready method.
373
374See C<async> and C<Coro::State::new> for additional info about the
375coroutine environment.
376
377=cut
378
379sub _terminate {
380 terminate &{+shift};
381}
382
383=item $success = $coroutine->ready
384
385Put the given coroutine into the end of its ready queue (there is one
386queue for each priority) and return true. If the coroutine is already in
387the ready queue, do nothing and return false.
388
389This ensures that the scheduler will resume this coroutine automatically
390once all the coroutines of higher priority and all coroutines of the same
391priority that were put into the ready queue earlier have been resumed.
392
393=item $is_ready = $coroutine->is_ready
394
395Return whether the coroutine is currently the ready queue or not,
396
397=item $coroutine->cancel (arg...)
398
399Terminates the given coroutine and makes it return the given arguments as
400status (default: the empty list). Never returns if the coroutine is the
401current coroutine.
402
403=cut
404
405sub cancel {
406 my $self = shift;
407
408 if ($current == $self) {
409 terminate @_;
410 } else {
411 $self->{_status} = [@_];
412 $self->_cancel;
413 }
414}
415
416=item $coroutine->throw ([$scalar])
417
418If C<$throw> is specified and defined, it will be thrown as an exception
419inside the coroutine at the next convenient point in time. Otherwise
420clears the exception object.
421
422Coro will check for the exception each time a schedule-like-function
423returns, i.e. after each C<schedule>, C<cede>, C<< Coro::Semaphore->down
424>>, C<< Coro::Handle->readable >> and so on. Most of these functions
425detect this case and return early in case an exception is pending.
426
427The exception object will be thrown "as is" with the specified scalar in
428C<$@>, i.e. if it is a string, no line number or newline will be appended
429(unlike with C<die>).
430
431This can be used as a softer means than C<cancel> to ask a coroutine to
432end itself, although there is no guarantee that the exception will lead to
433termination, and if the exception isn't caught it might well end the whole
434program.
435
436You might also think of C<throw> as being the moral equivalent of
437C<kill>ing a coroutine with a signal (in this case, a scalar).
438
439=item $coroutine->join
440
441Wait until the coroutine terminates and return any values given to the
442C<terminate> or C<cancel> functions. C<join> can be called concurrently
443from multiple coroutines, and all will be resumed and given the status
444return once the C<$coroutine> terminates.
445
446=cut
447
448sub join {
449 my $self = shift;
450
451 unless ($self->{_status}) {
452 my $current = $current;
453
454 push @{$self->{_on_destroy}}, sub {
455 $current->ready;
456 undef $current;
457 };
458
459 &schedule while $current;
460 }
461
462 wantarray ? @{$self->{_status}} : $self->{_status}[0];
463}
464
465=item $coroutine->on_destroy (\&cb)
466
467Registers a callback that is called when this coroutine gets destroyed,
468but before it is joined. The callback gets passed the terminate arguments,
469if any, and I<must not> die, under any circumstances.
470
471=cut
472
473sub on_destroy {
474 my ($self, $cb) = @_;
475
476 push @{ $self->{_on_destroy} }, $cb;
477}
478
479=item $oldprio = $coroutine->prio ($newprio)
480
481Sets (or gets, if the argument is missing) the priority of the
482coroutine. Higher priority coroutines get run before lower priority
483coroutines. Priorities are small signed integers (currently -4 .. +3),
484that you can refer to using PRIO_xxx constants (use the import tag :prio
485to get then):
486
487 PRIO_MAX > PRIO_HIGH > PRIO_NORMAL > PRIO_LOW > PRIO_IDLE > PRIO_MIN
488 3 > 1 > 0 > -1 > -3 > -4
489
490 # set priority to HIGH
491 current->prio(PRIO_HIGH);
492
493The idle coroutine ($Coro::idle) always has a lower priority than any
494existing coroutine.
495
496Changing the priority of the current coroutine will take effect immediately,
497but changing the priority of coroutines in the ready queue (but not
498running) will only take effect after the next schedule (of that
499coroutine). This is a bug that will be fixed in some future version.
500
501=item $newprio = $coroutine->nice ($change)
502
503Similar to C<prio>, but subtract the given value from the priority (i.e.
504higher values mean lower priority, just as in unix).
505
506=item $olddesc = $coroutine->desc ($newdesc)
507
508Sets (or gets in case the argument is missing) the description for this
509coroutine. This is just a free-form string you can associate with a
510coroutine.
511
512This method simply sets the C<< $coroutine->{desc} >> member to the given
513string. You can modify this member directly if you wish.
514
515=cut
516
517sub desc {
518 my $old = $_[0]{desc};
519 $_[0]{desc} = $_[1] if @_ > 1;
520 $old;
521}
522
523=back
524
525=head2 GLOBAL FUNCTIONS
526
527=over 4
528
529=item Coro::nready
530
531Returns the number of coroutines that are currently in the ready state,
532i.e. that can be switched to by calling C<schedule> directory or
533indirectly. The value C<0> means that the only runnable coroutine is the
534currently running one, so C<cede> would have no effect, and C<schedule>
535would cause a deadlock unless there is an idle handler that wakes up some
536coroutines.
537
538=item my $guard = Coro::guard { ... }
539
540This creates and returns a guard object. Nothing happens until the object
541gets destroyed, in which case the codeblock given as argument will be
542executed. This is useful to free locks or other resources in case of a
543runtime error or when the coroutine gets canceled, as in both cases the
544guard block will be executed. The guard object supports only one method,
545C<< ->cancel >>, which will keep the codeblock from being executed.
546
547Example: set some flag and clear it again when the coroutine gets canceled
548or the function returns:
549
550 sub do_something {
551 my $guard = Coro::guard { $busy = 0 };
552 $busy = 1;
553
554 # do something that requires $busy to be true
555 }
556
557=cut
558
559sub guard(&) {
560 bless \(my $cb = $_[0]), "Coro::guard"
561}
562
563sub Coro::guard::cancel {
564 ${$_[0]} = sub { };
565}
566
567sub Coro::guard::DESTROY {
568 ${$_[0]}->();
569}
570
571
572=item unblock_sub { ... }
573
574This utility function takes a BLOCK or code reference and "unblocks" it,
575returning a new coderef. Unblocking means that calling the new coderef
576will return immediately without blocking, returning nothing, while the
577original code ref will be called (with parameters) from within another
578coroutine.
579
580The reason this function exists is that many event libraries (such as the
581venerable L<Event|Event> module) are not coroutine-safe (a weaker form
582of thread-safety). This means you must not block within event callbacks,
583otherwise you might suffer from crashes or worse. The only event library
584currently known that is safe to use without C<unblock_sub> is L<EV>.
585
586This function allows your callbacks to block by executing them in another
587coroutine where it is safe to block. One example where blocking is handy
588is when you use the L<Coro::AIO|Coro::AIO> functions to save results to
589disk, for example.
590
591In short: simply use C<unblock_sub { ... }> instead of C<sub { ... }> when
592creating event callbacks that want to block.
593
594If your handler does not plan to block (e.g. simply sends a message to
595another coroutine, or puts some other coroutine into the ready queue),
596there is no reason to use C<unblock_sub>.
597
598Note that you also need to use C<unblock_sub> for any other callbacks that
599are indirectly executed by any C-based event loop. For example, when you
600use a module that uses L<AnyEvent> (and you use L<Coro::AnyEvent>) and it
601provides callbacks that are the result of some event callback, then you
602must not block either, or use C<unblock_sub>.
603
604=cut
605
606our @unblock_queue;
607
608# we create a special coro because we want to cede,
609# to reduce pressure on the coro pool (because most callbacks
610# return immediately and can be reused) and because we cannot cede
611# inside an event callback.
93our $idle = new Coro sub { 612our $unblock_scheduler = new Coro sub {
94 print STDERR "FATAL: deadlock detected\n"; 613 while () {
95 exit(51); 614 while (my $cb = pop @unblock_queue) {
615 # this is an inlined copy of async_pool
616 my $coro = (pop @async_pool) || new Coro \&pool_handler;
617
618 $coro->{_invoke} = $cb;
619 $coro->ready;
620 cede; # for short-lived callbacks, this reduces pressure on the coro pool
621 }
622 schedule; # sleep well
623 }
96}; 624};
625$unblock_scheduler->{desc} = "[unblock_sub scheduler]";
97 626
98# we really need priorities... 627sub unblock_sub(&) {
99my @ready = (); # the ready queue. hehe, rather broken ;) 628 my $cb = shift;
100 629
101# static methods. not really. 630 sub {
631 unshift @unblock_queue, [$cb, @_];
632 $unblock_scheduler->ready;
633 }
634}
102 635
103=head2 STATIC METHODS 636=item $cb = Coro::rouse_cb
104 637
105Static methods are actually functions that operate on the current process only. 638Create and return a "rouse callback". That's a code reference that, when
639called, will save its arguments and notify the owner coroutine of the
640callback.
641
642See the next function.
643
644=item @args = Coro::rouse_wait [$cb]
645
646Wait for the specified rouse callback (or the last one tht was created in
647this coroutine).
648
649As soon as the callback is invoked (or when the calback was invoked before
650C<rouse_wait>), it will return a copy of the arguments originally passed
651to the rouse callback.
652
653See the section B<HOW TO WAIT FOR A CALLBACK> for an actual usage example.
654
655=back
656
657=cut
658
6591;
660
661=head1 HOW TO WAIT FOR A CALLBACK
662
663It is very common for a coroutine to wait for some callback to be
664called. This occurs naturally when you use coroutines in an otherwise
665event-based program, or when you use event-based libraries.
666
667These typically register a callback for some event, and call that callback
668when the event occured. In a coroutine, however, you typically want to
669just wait for the event, simplyifying things.
670
671For example C<< AnyEvent->child >> registers a callback to be called when
672a specific child has exited:
673
674 my $child_watcher = AnyEvent->child (pid => $pid, cb => sub { ... });
675
676But from withina coroutine, you often just want to write this:
677
678 my $status = wait_for_child $pid;
679
680Coro offers two functions specifically designed to make this easy,
681C<Coro::rouse_cb> and C<Coro::rouse_wait>.
682
683The first function, C<rouse_cb>, generates and returns a callback that,
684when invoked, will save it's arguments and notify the coroutine that
685created the callback.
686
687The second function, C<rouse_wait>, waits for the callback to be called
688(by calling C<schedule> to go to sleep) and returns the arguments
689originally passed to the callback.
690
691Using these functions, it becomes easy to write the C<wait_for_child>
692function mentioned above:
693
694 sub wait_for_child($) {
695 my ($pid) = @_;
696
697 my $watcher = AnyEvent->child (pid => $pid, cb => Coro::rouse_cb);
698
699 my ($rpid, $rstatus) = Coro::rouse_wait;
700 $rstatus
701 }
702
703In the case where C<rouse_cb> and C<rouse_wait> are not flexible enough,
704you can roll your own, using C<schedule>:
705
706 sub wait_for_child($) {
707 my ($pid) = @_;
708
709 # store the current coroutine in $current,
710 # and provide result variables for the closure passed to ->child
711 my $current = $Coro::current;
712 my ($done, $rstatus);
713
714 # pass a closure to ->child
715 my $watcher = AnyEvent->child (pid => $pid, cb => sub {
716 $rstatus = $_[1]; # remember rstatus
717 $done = 1; # mark $rstatus as valud
718 });
719
720 # wait until the closure has been called
721 schedule while !$done;
722
723 $rstatus
724 }
725
726
727=head1 BUGS/LIMITATIONS
106 728
107=over 4 729=over 4
108 730
109=item async { ... }; 731=item fork with pthread backend
110 732
111Create a new asynchronous process and return it's process object 733When Coro is compiled using the pthread backend (which isn't recommended
112(usually unused). When the sub returns the new process is automatically 734but required on many BSDs as their libcs are completely broken), then
113terminated. 735coroutines will not survive a fork. There is no known workaround except to
736fix your libc and use a saner backend.
114 737
115=cut 738=item perl process emulation ("threads")
116 739
117sub async(&) { 740This module is not perl-pseudo-thread-safe. You should only ever use this
118 my $pid = new Coro $_[0]; 741module from the same thread (this requirement might be removed in the
119 $pid->ready; 742future to allow per-thread schedulers, but Coro::State does not yet allow
120 $pid; 743this). I recommend disabling thread support and using processes, as having
121} 744the windows process emulation enabled under unix roughly halves perl
745performance, even when not used.
122 746
123=item schedule 747=item coroutine switching not signal safe
124 748
125Calls the scheduler. Please note that the current process will not be put 749You must not switch to another coroutine from within a signal handler
126into the ready queue, so calling this function usually means you will 750(only relevant with %SIG - most event libraries provide safe signals).
127never be called again.
128 751
129=cut 752That means you I<MUST NOT> call any function that might "block" the
130 753current coroutine - C<cede>, C<schedule> C<< Coro::Semaphore->down >> or
131my $prev; 754anything that calls those. Everything else, including calling C<ready>,
132 755works.
133sub schedule {
134 # should be done using priorities :(
135 ($prev, $current) = ($current, shift @ready || $idle);
136 Coro::State::transfer($prev, $current);
137}
138
139=item yield
140
141Yield to other processes. This function puts the current process into the
142ready queue and calls C<schedule>.
143
144=cut
145
146sub yield {
147 $current->ready;
148 &schedule;
149}
150
151=item terminate
152
153Terminates the current process.
154
155=cut
156
157sub terminate {
158 &schedule;
159}
160 756
161=back 757=back
162 758
163# dynamic methods
164
165=head2 PROCESS METHODS
166
167These are the methods you can call on process objects.
168
169=over 4
170
171=item new Coro \&sub;
172
173Create a new process and return it. When the sub returns the process
174automatically terminates. To start the process you must first put it into
175the ready queue by calling the ready method.
176
177=cut
178
179sub new {
180 my $class = shift;
181 my $proc = $_[0];
182 bless {
183 _coro_state => new Coro::State ($proc ? sub { &$proc; &terminate } : $proc),
184 }, $class;
185}
186
187=item $process->ready
188
189Put the current process into the ready queue.
190
191=cut
192
193sub ready {
194 push @ready, $_[0];
195}
196
197=back
198
199=cut
200
2011;
202 759
203=head1 SEE ALSO 760=head1 SEE ALSO
204 761
205L<Coro::Channel>, L<Coro::Cont>, L<Coro::Specific>, L<Coro::Semaphore>, 762Event-Loop integration: L<Coro::AnyEvent>, L<Coro::EV>, L<Coro::Event>.
206L<Coro::Signal>, L<Coro::State>, L<Coro::Event>. 763
764Debugging: L<Coro::Debug>.
765
766Support/Utility: L<Coro::Specific>, L<Coro::Util>.
767
768Locking/IPC: L<Coro::Signal>, L<Coro::Channel>, L<Coro::Semaphore>, L<Coro::SemaphoreSet>, L<Coro::RWLock>.
769
770IO/Timers: L<Coro::Timer>, L<Coro::Handle>, L<Coro::Socket>, L<Coro::AIO>.
771
772Compatibility: L<Coro::LWP>, L<Coro::BDB>, L<Coro::Storable>, L<Coro::Select>.
773
774XS API: L<Coro::MakeMaker>.
775
776Low level Configuration, Coroutine Environment: L<Coro::State>.
207 777
208=head1 AUTHOR 778=head1 AUTHOR
209 779
210 Marc Lehmann <pcg@goof.com> 780 Marc Lehmann <schmorp@schmorp.de>
211 http://www.goof.com/pcg/marc/ 781 http://home.schmorp.de/
212 782
213=cut 783=cut
214 784

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines