ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/Coro/Coro.pm
(Generate patch)

Comparing Coro/Coro.pm (file contents):
Revision 1.5 by root, Tue Jul 10 01:43:21 2001 UTC vs.
Revision 1.114 by root, Wed Jan 24 16:22:08 2007 UTC

1=head1 NAME 1=head1 NAME
2 2
3Coro - create and manage coroutines 3Coro - coroutine process abstraction
4 4
5=head1 SYNOPSIS 5=head1 SYNOPSIS
6 6
7 use Coro; 7 use Coro;
8 8
9 $new = new Coro sub { 9 async {
10 print "in coroutine, switching back\n"; 10 # some asynchronous thread of execution
11 $Coro::main->resume;
12 print "in coroutine again, switching back\n";
13 $Coro::main->resume;
14 }; 11 };
15 12
16 print "in main, switching to coroutine\n"; 13 # alternatively create an async coroutine like this:
17 $new->resume; 14
18 print "back in main, switch to coroutine again\n"; 15 sub some_func : Coro {
19 $new->resume; 16 # some more async code
20 print "back in main\n"; 17 }
18
19 cede;
21 20
22=head1 DESCRIPTION 21=head1 DESCRIPTION
23 22
24This module implements coroutines. Coroutines, similar to continuations, 23This module collection manages coroutines. Coroutines are similar
25allow you to run more than one "thread of execution" in parallel. Unlike 24to threads but don't run in parallel at the same time even on SMP
26threads this, only voluntary switching is used so locking problems are 25machines. The specific flavor of coroutine use din this module also
27greatly reduced. 26guarentees you that it will not switch between coroutines unless
27necessary, at easily-identified points in your program, so locking and
28parallel access are rarely an issue, making coroutine programming much
29safer than threads programming.
28 30
29Although this is the "main" module of the Coro family it provides only 31(Perl, however, does not natively support real threads but instead does a
30low-level functionality. See L<Coro::Process> and related modules for a 32very slow and memory-intensive emulation of processes using threads. This
31more useful process abstraction including scheduling. 33is a performance win on Windows machines, and a loss everywhere else).
34
35In this module, coroutines are defined as "callchain + lexical variables +
36@_ + $_ + $@ + $/ + C stack), that is, a coroutine has its own callchain,
37its own set of lexicals and its own set of perls most important global
38variables.
39
40=cut
41
42package Coro;
43
44use strict;
45no warnings "uninitialized";
46
47use Coro::State;
48
49use base qw(Coro::State Exporter);
50
51our $idle; # idle handler
52our $main; # main coroutine
53our $current; # current coroutine
54
55our $VERSION = '3.5';
56
57our @EXPORT = qw(async async_pool cede schedule terminate current unblock_sub);
58our %EXPORT_TAGS = (
59 prio => [qw(PRIO_MAX PRIO_HIGH PRIO_NORMAL PRIO_LOW PRIO_IDLE PRIO_MIN)],
60);
61our @EXPORT_OK = (@{$EXPORT_TAGS{prio}}, qw(nready));
62
63{
64 my @async;
65 my $init;
66
67 # this way of handling attributes simply is NOT scalable ;()
68 sub import {
69 no strict 'refs';
70
71 Coro->export_to_level (1, @_);
72
73 my $old = *{(caller)[0]."::MODIFY_CODE_ATTRIBUTES"}{CODE};
74 *{(caller)[0]."::MODIFY_CODE_ATTRIBUTES"} = sub {
75 my ($package, $ref) = (shift, shift);
76 my @attrs;
77 for (@_) {
78 if ($_ eq "Coro") {
79 push @async, $ref;
80 unless ($init++) {
81 eval q{
82 sub INIT {
83 &async(pop @async) while @async;
84 }
85 };
86 }
87 } else {
88 push @attrs, $_;
89 }
90 }
91 return $old ? $old->($package, $ref, @attrs) : @attrs;
92 };
93 }
94
95}
32 96
33=over 4 97=over 4
34 98
35=cut
36
37package Coro;
38
39BEGIN {
40 $VERSION = 0.03;
41
42 require XSLoader;
43 XSLoader::load Coro, $VERSION;
44}
45
46=item $main 99=item $main
47 100
48This coroutine represents the main program. 101This coroutine represents the main program.
49 102
50=item $current 103=cut
51 104
105$main = new Coro;
106
107=item $current (or as function: current)
108
52The current coroutine (the last coroutine switched to). The initial value is C<$main> (of course). 109The current coroutine (the last coroutine switched to). The initial value
110is C<$main> (of course).
53 111
54=cut 112This variable is B<strictly> I<read-only>. It is provided for performance
113reasons. If performance is not essentiel you are encouraged to use the
114C<Coro::current> function instead.
55 115
56$main = $current = _newprocess { 116=cut
57 # never being called 117
118# maybe some other module used Coro::Specific before...
119$main->{specific} = $current->{specific}
120 if $current;
121
122_set_current $main;
123
124sub current() { $current }
125
126=item $idle
127
128A callback that is called whenever the scheduler finds no ready coroutines
129to run. The default implementation prints "FATAL: deadlock detected" and
130exits, because the program has no other way to continue.
131
132This hook is overwritten by modules such as C<Coro::Timer> and
133C<Coro::Event> to wait on an external event that hopefully wake up a
134coroutine so the scheduler can run it.
135
136Please note that if your callback recursively invokes perl (e.g. for event
137handlers), then it must be prepared to be called recursively.
138
139=cut
140
141$idle = sub {
142 require Carp;
143 Carp::croak ("FATAL: deadlock detected");
58}; 144};
59 145
60=item $error, $error_msg, $error_coro 146sub _cancel {
147 my ($self) = @_;
61 148
62This coroutine will be called on fatal errors. C<$error_msg> and 149 # free coroutine data and mark as destructed
63C<$error_coro> return the error message and the error-causing coroutine, 150 $self->_destroy
64respectively. 151 or return;
65 152
66=cut 153 # call all destruction callbacks
154 $_->(@{$self->{status}})
155 for @{(delete $self->{destroy_cb}) || []};
156}
67 157
68$error_msg = 158# this coroutine is necessary because a coroutine
69$error_coro = undef; 159# cannot destroy itself.
160my @destroy;
161my $manager;
70 162
71$error = _newprocess { 163$manager = new Coro sub {
72 print STDERR "FATAL: $error_msg\nprogram aborted\n"; 164 while () {
73 exit 250; 165 (shift @destroy)->_cancel
166 while @destroy;
167
168 &schedule;
169 }
74}; 170};
75 171
76=item $coro = new $coderef [, @args] 172$manager->prio (PRIO_MAX);
77 173
78Create a new coroutine and return it. The first C<resume> call to this 174# static methods. not really.
79coroutine will start execution at the given coderef. If it returns it
80should return a coroutine to switch to. If, after returning, the coroutine
81is C<resume>d again it starts execution again at the givne coderef.
82 175
176=back
177
178=head2 STATIC METHODS
179
180Static methods are actually functions that operate on the current coroutine only.
181
182=over 4
183
184=item async { ... } [@args...]
185
186Create a new asynchronous coroutine and return it's coroutine object
187(usually unused). When the sub returns the new coroutine is automatically
188terminated.
189
190Calling C<exit> in a coroutine will not work correctly, so do not do that.
191
192When the coroutine dies, the program will exit, just as in the main
193program.
194
195 # create a new coroutine that just prints its arguments
196 async {
197 print "@_\n";
198 } 1,2,3,4;
199
83=cut 200=cut
201
202sub async(&@) {
203 my $coro = new Coro @_;
204 $coro->ready;
205 $coro
206}
207
208=item async_pool { ... } [@args...]
209
210Similar to C<async>, but uses a coroutine pool, so you should not call
211terminate or join (although you are allowed to), and you get a coroutine
212that might have executed other code already (which can be good or bad :).
213
214Also, the block is executed in an C<eval> context and a warning will be
215issued in case of an exception instead of terminating the program, as
216C<async> does. As the coroutine is being reused, stuff like C<on_destroy>
217will not work in the expected way, unless you call terminate or cancel,
218which somehow defeats the purpose of pooling.
219
220The priority will be reset to C<0> after each job, otherwise the coroutine
221will be re-used "as-is".
222
223The pool size is limited to 8 idle coroutines (this can be adjusted by
224changing $Coro::POOL_SIZE), and there can be as many non-idle coros as
225required.
226
227If you are concerned about pooled coroutines growing a lot because a
228single C<async_pool> used a lot of stackspace you can e.g. C<async_pool {
229terminate }> once per second or so to slowly replenish the pool.
230
231=cut
232
233our $POOL_SIZE = 8;
234our @pool;
235
236sub pool_handler {
237 while () {
238 eval {
239 my ($cb, @arg) = @{ delete $current->{_invoke} or return };
240 $cb->(@arg);
241 };
242 warn $@ if $@;
243
244 last if @pool >= $POOL_SIZE;
245 push @pool, $current;
246
247 $current->prio (0);
248 schedule;
249 }
250}
251
252sub async_pool(&@) {
253 # this is also inlined into the unlock_scheduler
254 my $coro = (pop @pool or new Coro \&pool_handler);
255
256 $coro->{_invoke} = [@_];
257 $coro->ready;
258
259 $coro
260}
261
262=item schedule
263
264Calls the scheduler. Please note that the current coroutine will not be put
265into the ready queue, so calling this function usually means you will
266never be called again unless something else (e.g. an event handler) calls
267ready.
268
269The canonical way to wait on external events is this:
270
271 {
272 # remember current coroutine
273 my $current = $Coro::current;
274
275 # register a hypothetical event handler
276 on_event_invoke sub {
277 # wake up sleeping coroutine
278 $current->ready;
279 undef $current;
280 };
281
282 # call schedule until event occured.
283 # in case we are woken up for other reasons
284 # (current still defined), loop.
285 Coro::schedule while $current;
286 }
287
288=item cede
289
290"Cede" to other coroutines. This function puts the current coroutine into the
291ready queue and calls C<schedule>, which has the effect of giving up the
292current "timeslice" to other coroutines of the same or higher priority.
293
294Returns true if at least one coroutine switch has happened.
295
296=item Coro::cede_notself
297
298Works like cede, but is not exported by default and will cede to any
299coroutine, regardless of priority, once.
300
301Returns true if at least one coroutine switch has happened.
302
303=item terminate [arg...]
304
305Terminates the current coroutine with the given status values (see L<cancel>).
306
307=cut
308
309sub terminate {
310 $current->cancel (@_);
311}
312
313=back
314
315# dynamic methods
316
317=head2 COROUTINE METHODS
318
319These are the methods you can call on coroutine objects.
320
321=over 4
322
323=item new Coro \&sub [, @args...]
324
325Create a new coroutine and return it. When the sub returns the coroutine
326automatically terminates as if C<terminate> with the returned values were
327called. To make the coroutine run you must first put it into the ready queue
328by calling the ready method.
329
330Calling C<exit> in a coroutine will not work correctly, so do not do that.
331
332=cut
333
334sub _run_coro {
335 terminate &{+shift};
336}
84 337
85sub new { 338sub new {
86 my $class = $_[0]; 339 my $class = shift;
87 my $proc = $_[1]; 340
88 bless _newprocess { 341 $class->SUPER::new (\&_run_coro, @_)
89 do { 342}
90 eval { &$proc->resume }; 343
91 if ($@) { 344=item $success = $coroutine->ready
92 ($error_msg, $error_coro) = ($@, $current); 345
93 $error->resume; 346Put the given coroutine into the ready queue (according to it's priority)
347and return true. If the coroutine is already in the ready queue, do nothing
348and return false.
349
350=item $is_ready = $coroutine->is_ready
351
352Return wether the coroutine is currently the ready queue or not,
353
354=item $coroutine->cancel (arg...)
355
356Terminates the given coroutine and makes it return the given arguments as
357status (default: the empty list). Never returns if the coroutine is the
358current coroutine.
359
360=cut
361
362sub cancel {
363 my $self = shift;
364 $self->{status} = [@_];
365
366 if ($current == $self) {
367 push @destroy, $self;
368 $manager->ready;
369 &schedule while 1;
370 } else {
371 $self->_cancel;
372 }
373}
374
375=item $coroutine->join
376
377Wait until the coroutine terminates and return any values given to the
378C<terminate> or C<cancel> functions. C<join> can be called multiple times
379from multiple coroutine.
380
381=cut
382
383sub join {
384 my $self = shift;
385
386 unless ($self->{status}) {
387 my $current = $current;
388
389 push @{$self->{destroy_cb}}, sub {
390 $current->ready;
391 undef $current;
392 };
393
394 &schedule while $current;
395 }
396
397 wantarray ? @{$self->{status}} : $self->{status}[0];
398}
399
400=item $coroutine->on_destroy (\&cb)
401
402Registers a callback that is called when this coroutine gets destroyed,
403but before it is joined. The callback gets passed the terminate arguments,
404if any.
405
406=cut
407
408sub on_destroy {
409 my ($self, $cb) = @_;
410
411 push @{ $self->{destroy_cb} }, $cb;
412}
413
414=item $oldprio = $coroutine->prio ($newprio)
415
416Sets (or gets, if the argument is missing) the priority of the
417coroutine. Higher priority coroutines get run before lower priority
418coroutines. Priorities are small signed integers (currently -4 .. +3),
419that you can refer to using PRIO_xxx constants (use the import tag :prio
420to get then):
421
422 PRIO_MAX > PRIO_HIGH > PRIO_NORMAL > PRIO_LOW > PRIO_IDLE > PRIO_MIN
423 3 > 1 > 0 > -1 > -3 > -4
424
425 # set priority to HIGH
426 current->prio(PRIO_HIGH);
427
428The idle coroutine ($Coro::idle) always has a lower priority than any
429existing coroutine.
430
431Changing the priority of the current coroutine will take effect immediately,
432but changing the priority of coroutines in the ready queue (but not
433running) will only take effect after the next schedule (of that
434coroutine). This is a bug that will be fixed in some future version.
435
436=item $newprio = $coroutine->nice ($change)
437
438Similar to C<prio>, but subtract the given value from the priority (i.e.
439higher values mean lower priority, just as in unix).
440
441=item $olddesc = $coroutine->desc ($newdesc)
442
443Sets (or gets in case the argument is missing) the description for this
444coroutine. This is just a free-form string you can associate with a coroutine.
445
446=cut
447
448sub desc {
449 my $old = $_[0]{desc};
450 $_[0]{desc} = $_[1] if @_ > 1;
451 $old;
452}
453
454=back
455
456=head2 GLOBAL FUNCTIONS
457
458=over 4
459
460=item Coro::nready
461
462Returns the number of coroutines that are currently in the ready state,
463i.e. that can be swicthed to. The value C<0> means that the only runnable
464coroutine is the currently running one, so C<cede> would have no effect,
465and C<schedule> would cause a deadlock unless there is an idle handler
466that wakes up some coroutines.
467
468=item my $guard = Coro::guard { ... }
469
470This creates and returns a guard object. Nothing happens until the objetc
471gets destroyed, in which case the codeblock given as argument will be
472executed. This is useful to free locks or other resources in case of a
473runtime error or when the coroutine gets canceled, as in both cases the
474guard block will be executed. The guard object supports only one method,
475C<< ->cancel >>, which will keep the codeblock from being executed.
476
477Example: set some flag and clear it again when the coroutine gets canceled
478or the function returns:
479
480 sub do_something {
481 my $guard = Coro::guard { $busy = 0 };
482 $busy = 1;
483
484 # do something that requires $busy to be true
485 }
486
487=cut
488
489sub guard(&) {
490 bless \(my $cb = $_[0]), "Coro::guard"
491}
492
493sub Coro::guard::cancel {
494 ${$_[0]} = sub { };
495}
496
497sub Coro::guard::DESTROY {
498 ${$_[0]}->();
499}
500
501
502=item unblock_sub { ... }
503
504This utility function takes a BLOCK or code reference and "unblocks" it,
505returning the new coderef. This means that the new coderef will return
506immediately without blocking, returning nothing, while the original code
507ref will be called (with parameters) from within its own coroutine.
508
509The reason this fucntion exists is that many event libraries (such as the
510venerable L<Event|Event> module) are not coroutine-safe (a weaker form
511of thread-safety). This means you must not block within event callbacks,
512otherwise you might suffer from crashes or worse.
513
514This function allows your callbacks to block by executing them in another
515coroutine where it is safe to block. One example where blocking is handy
516is when you use the L<Coro::AIO|Coro::AIO> functions to save results to
517disk.
518
519In short: simply use C<unblock_sub { ... }> instead of C<sub { ... }> when
520creating event callbacks that want to block.
521
522=cut
523
524our @unblock_queue;
525
526# we create a special coro because we want to cede,
527# to reduce pressure on the coro pool (because most callbacks
528# return immediately and can be reused) and because we cannot cede
529# inside an event callback.
530our $unblock_scheduler = async {
531 while () {
532 while (my $cb = pop @unblock_queue) {
533 # this is an inlined copy of async_pool
534 my $coro = (pop @pool or new Coro \&pool_handler);
535
536 $coro->{_invoke} = $cb;
537 $coro->ready;
538 cede; # for short-lived callbacks, this reduces pressure on the coro pool
94 } 539 }
95 } while (1); 540 schedule; # sleep well
96 }, $class; 541 }
97} 542};
98 543
99=item $coro->resume 544sub unblock_sub(&) {
545 my $cb = shift;
100 546
101Resume execution at the given coroutine. 547 sub {
102 548 unshift @unblock_queue, [$cb, @_];
103=cut 549 $unblock_scheduler->ready;
104 550 }
105my $prev;
106
107# I call the _transfer function from a pelr function
108# because that way perl saves all important things on
109# the stack.
110sub resume {
111 $prev = $current; $current = $_[0];
112 _transfer($prev, $current);
113} 551}
552
553=back
554
555=cut
114 556
1151; 5571;
116 558
117=back 559=head1 BUGS/LIMITATIONS
118 560
119=head1 BUGS 561 - you must make very sure that no coro is still active on global
562 destruction. very bad things might happen otherwise (usually segfaults).
120 563
121This module has not yet been extensively tested. 564 - this module is not thread-safe. You should only ever use this module
565 from the same thread (this requirement might be losened in the future
566 to allow per-thread schedulers, but Coro::State does not yet allow
567 this).
122 568
123=head1 SEE ALSO 569=head1 SEE ALSO
124 570
125L<Coro::Process>, L<Coro::Signal>. 571Support/Utility: L<Coro::Cont>, L<Coro::Specific>, L<Coro::State>, L<Coro::Util>.
572
573Locking/IPC: L<Coro::Signal>, L<Coro::Channel>, L<Coro::Semaphore>, L<Coro::SemaphoreSet>, L<Coro::RWLock>.
574
575Event/IO: L<Coro::Timer>, L<Coro::Event>, L<Coro::Handle>, L<Coro::Socket>, L<Coro::Select>.
576
577Embedding: L<Coro:MakeMaker>
126 578
127=head1 AUTHOR 579=head1 AUTHOR
128 580
129 Marc Lehmann <pcg@goof.com> 581 Marc Lehmann <schmorp@schmorp.de>
130 http://www.goof.com/pcg/marc/ 582 http://home.schmorp.de/
131 583
132=cut 584=cut
133 585

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines