ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/Coro/Coro.pm
(Generate patch)

Comparing Coro/Coro.pm (file contents):
Revision 1.58 by pcg, Fri Feb 13 23:17:41 2004 UTC vs.
Revision 1.229 by root, Thu Nov 20 06:32:55 2008 UTC

2 2
3Coro - coroutine process abstraction 3Coro - coroutine process abstraction
4 4
5=head1 SYNOPSIS 5=head1 SYNOPSIS
6 6
7 use Coro; 7 use Coro;
8 8
9 async { 9 async {
10 # some asynchronous thread of execution 10 # some asynchronous thread of execution
11 print "2\n";
12 cede; # yield back to main
13 print "4\n";
11 }; 14 };
12 15 print "1\n";
13 # alternatively create an async process like this: 16 cede; # yield to coroutine
14 17 print "3\n";
15 sub some_func : Coro { 18 cede; # and again
16 # some more async code 19
17 } 20 # use locking
18 21 use Coro::Semaphore;
19 cede; 22 my $lock = new Coro::Semaphore;
23 my $locked;
24
25 $lock->down;
26 $locked = 1;
27 $lock->up;
20 28
21=head1 DESCRIPTION 29=head1 DESCRIPTION
22 30
23This module collection manages coroutines. Coroutines are similar to 31This module collection manages coroutines. Coroutines are similar to
24threads but don't run in parallel. 32threads but don't (in general) run in parallel at the same time even
33on SMP machines. The specific flavor of coroutine used in this module
34also guarantees you that it will not switch between coroutines unless
35necessary, at easily-identified points in your program, so locking and
36parallel access are rarely an issue, making coroutine programming much
37safer and easier than threads programming.
25 38
39Unlike a normal perl program, however, coroutines allow you to have
40multiple running interpreters that share data, which is especially useful
41to code pseudo-parallel processes and for event-based programming, such as
42multiple HTTP-GET requests running concurrently. See L<Coro::AnyEvent> to
43learn more.
44
45Coroutines are also useful because Perl has no support for threads (the so
46called "threads" that perl offers are nothing more than the (bad) process
47emulation coming from the Windows platform: On standard operating systems
48they serve no purpose whatsoever, except by making your programs slow and
49making them use a lot of memory. Best disable them when building perl, or
50aks your software vendor/distributor to do it for you).
51
26In this module, coroutines are defined as "callchain + lexical variables 52In this module, coroutines are defined as "callchain + lexical variables +
27+ @_ + $_ + $@ + $^W + C stack), that is, a coroutine has it's own 53@_ + $_ + $@ + $/ + C stack), that is, a coroutine has its own callchain,
28callchain, it's own set of lexicals and it's own set of perl's most 54its own set of lexicals and its own set of perls most important global
29important global variables. 55variables (see L<Coro::State> for more configuration).
30 56
31=cut 57=cut
32 58
33package Coro; 59package Coro;
34 60
35BEGIN { eval { require warnings } && warnings->unimport ("uninitialized") } 61use strict qw(vars subs);
62no warnings "uninitialized";
36 63
37use Coro::State; 64use Coro::State;
38 65
39use vars qw($idle $main $current); 66use base qw(Coro::State Exporter);
40 67
41use base Exporter; 68our $idle; # idle handler
69our $main; # main coroutine
70our $current; # current coroutine
42 71
43$VERSION = 0.95; 72our $VERSION = 5.0;
44 73
45@EXPORT = qw(async cede schedule terminate current); 74our @EXPORT = qw(async async_pool cede schedule terminate current unblock_sub);
46%EXPORT_TAGS = ( 75our %EXPORT_TAGS = (
47 prio => [qw(PRIO_MAX PRIO_HIGH PRIO_NORMAL PRIO_LOW PRIO_IDLE PRIO_MIN)], 76 prio => [qw(PRIO_MAX PRIO_HIGH PRIO_NORMAL PRIO_LOW PRIO_IDLE PRIO_MIN)],
48); 77);
49@EXPORT_OK = @{$EXPORT_TAGS{prio}}; 78our @EXPORT_OK = (@{$EXPORT_TAGS{prio}}, qw(nready));
50
51{
52 my @async;
53 my $init;
54
55 # this way of handling attributes simply is NOT scalable ;()
56 sub import {
57 Coro->export_to_level(1, @_);
58 my $old = *{(caller)[0]."::MODIFY_CODE_ATTRIBUTES"}{CODE};
59 *{(caller)[0]."::MODIFY_CODE_ATTRIBUTES"} = sub {
60 my ($package, $ref) = (shift, shift);
61 my @attrs;
62 for (@_) {
63 if ($_ eq "Coro") {
64 push @async, $ref;
65 unless ($init++) {
66 eval q{
67 sub INIT {
68 &async(pop @async) while @async;
69 }
70 };
71 }
72 } else {
73 push @attrs, $_;
74 }
75 }
76 return $old ? $old->($package, $ref, @attrs) : @attrs;
77 };
78 }
79
80}
81 79
82=over 4 80=over 4
83 81
84=item $main 82=item $Coro::main
85 83
86This coroutine represents the main program. 84This variable stores the coroutine object that represents the main
85program. While you cna C<ready> it and do most other things you can do to
86coroutines, it is mainly useful to compare again C<$Coro::current>, to see
87whether you are running in the main program or not.
87 88
88=cut 89=cut
89 90
90$main = new Coro; 91# $main is now being initialised by Coro::State
91 92
92=item $current (or as function: current) 93=item $Coro::current
93 94
94The current coroutine (the last coroutine switched to). The initial value is C<$main> (of course). 95The coroutine object representing the current coroutine (the last
96coroutine that the Coro scheduler switched to). The initial value is
97C<$Coro::main> (of course).
95 98
96=cut 99This variable is B<strictly> I<read-only>. You can take copies of the
100value stored in it and use it as any other coroutine object, but you must
101not otherwise modify the variable itself.
97 102
98# maybe some other module used Coro::Specific before... 103=cut
99if ($current) {
100 $main->{specific} = $current->{specific};
101}
102 104
103$current = $main;
104
105sub current() { $current } 105sub current() { $current } # [DEPRECATED]
106 106
107=item $idle 107=item $Coro::idle
108 108
109The coroutine to switch to when no other coroutine is running. The default 109This variable is mainly useful to integrate Coro into event loops. It is
110implementation prints "FATAL: deadlock detected" and exits. 110usually better to rely on L<Coro::AnyEvent> or LC<Coro::EV>, as this is
111pretty low-level functionality.
111 112
112=cut 113This variable stores a callback that is called whenever the scheduler
114finds no ready coroutines to run. The default implementation prints
115"FATAL: deadlock detected" and exits, because the program has no other way
116to continue.
113 117
114# should be done using priorities :( 118This hook is overwritten by modules such as C<Coro::Timer> and
115$idle = new Coro sub { 119C<Coro::AnyEvent> to wait on an external event that hopefully wake up a
116 print STDERR "FATAL: deadlock detected\n"; 120coroutine so the scheduler can run it.
117 exit(51); 121
122Note that the callback I<must not>, under any circumstances, block
123the current coroutine. Normally, this is achieved by having an "idle
124coroutine" that calls the event loop and then blocks again, and then
125readying that coroutine in the idle handler.
126
127See L<Coro::Event> or L<Coro::AnyEvent> for examples of using this
128technique.
129
130Please note that if your callback recursively invokes perl (e.g. for event
131handlers), then it must be prepared to be called recursively itself.
132
133=cut
134
135$idle = sub {
136 require Carp;
137 Carp::croak ("FATAL: deadlock detected");
118}; 138};
139
140sub _cancel {
141 my ($self) = @_;
142
143 # free coroutine data and mark as destructed
144 $self->_destroy
145 or return;
146
147 # call all destruction callbacks
148 $_->(@{$self->{_status}})
149 for @{ delete $self->{_on_destroy} || [] };
150}
119 151
120# this coroutine is necessary because a coroutine 152# this coroutine is necessary because a coroutine
121# cannot destroy itself. 153# cannot destroy itself.
122my @destroy; 154our @destroy;
123my $manager; 155our $manager;
156
124$manager = new Coro sub { 157$manager = new Coro sub {
125 while () { 158 while () {
126 # by overwriting the state object with the manager we destroy it 159 (shift @destroy)->_cancel
127 # while still being able to schedule this coroutine (in case it has
128 # been readied multiple times. this is harmless since the manager
129 # can be called as many times as neccessary and will always
130 # remove itself from the runqueue
131 while (@destroy) { 160 while @destroy;
132 my $coro = pop @destroy; 161
133 $coro->{status} ||= [];
134 $_->ready for @{delete $coro->{join} || []};
135 $coro->{_coro_state} = $manager->{_coro_state};
136 }
137 &schedule; 162 &schedule;
138 } 163 }
139}; 164};
140 165$manager->{desc} = "[coro manager]";
141# static methods. not really. 166$manager->prio (PRIO_MAX);
142 167
143=back 168=back
144 169
145=head2 STATIC METHODS 170=head2 SIMPLE COROUTINE CREATION
146
147Static methods are actually functions that operate on the current process only.
148 171
149=over 4 172=over 4
150 173
151=item async { ... } [@args...] 174=item async { ... } [@args...]
152 175
153Create a new asynchronous process and return it's process object 176Create a new coroutine and return it's coroutine object (usually
154(usually unused). When the sub returns the new process is automatically 177unused). The coroutine will be put into the ready queue, so
178it will start running automatically on the next scheduler run.
179
180The first argument is a codeblock/closure that should be executed in the
181coroutine. When it returns argument returns the coroutine is automatically
155terminated. 182terminated.
156 183
184The remaining arguments are passed as arguments to the closure.
185
186See the C<Coro::State::new> constructor for info about the coroutine
187environment in which coroutines are executed.
188
189Calling C<exit> in a coroutine will do the same as calling exit outside
190the coroutine. Likewise, when the coroutine dies, the program will exit,
191just as it would in the main program.
192
193If you do not want that, you can provide a default C<die> handler, or
194simply avoid dieing (by use of C<eval>).
195
157 # create a new coroutine that just prints its arguments 196Example: Create a new coroutine that just prints its arguments.
197
158 async { 198 async {
159 print "@_\n"; 199 print "@_\n";
160 } 1,2,3,4; 200 } 1,2,3,4;
161 201
162=cut 202=cut
163 203
164sub async(&@) { 204sub async(&@) {
165 my $pid = new Coro @_; 205 my $coro = new Coro @_;
166 $manager->ready; # this ensures that the stack is cloned from the manager
167 $pid->ready; 206 $coro->ready;
168 $pid; 207 $coro
169} 208}
209
210=item async_pool { ... } [@args...]
211
212Similar to C<async>, but uses a coroutine pool, so you should not call
213terminate or join on it (although you are allowed to), and you get a
214coroutine that might have executed other code already (which can be good
215or bad :).
216
217On the plus side, this function is about twice as fast as creating (and
218destroying) a completely new coroutine, so if you need a lot of generic
219coroutines in quick successsion, use C<async_pool>, not C<async>.
220
221The code block is executed in an C<eval> context and a warning will be
222issued in case of an exception instead of terminating the program, as
223C<async> does. As the coroutine is being reused, stuff like C<on_destroy>
224will not work in the expected way, unless you call terminate or cancel,
225which somehow defeats the purpose of pooling (but is fine in the
226exceptional case).
227
228The priority will be reset to C<0> after each run, tracing will be
229disabled, the description will be reset and the default output filehandle
230gets restored, so you can change all these. Otherwise the coroutine will
231be re-used "as-is": most notably if you change other per-coroutine global
232stuff such as C<$/> you I<must needs> revert that change, which is most
233simply done by using local as in: C<< local $/ >>.
234
235The idle pool size is limited to C<8> idle coroutines (this can be
236adjusted by changing $Coro::POOL_SIZE), but there can be as many non-idle
237coros as required.
238
239If you are concerned about pooled coroutines growing a lot because a
240single C<async_pool> used a lot of stackspace you can e.g. C<async_pool
241{ terminate }> once per second or so to slowly replenish the pool. In
242addition to that, when the stacks used by a handler grows larger than 16kb
243(adjustable via $Coro::POOL_RSS) it will also be destroyed.
244
245=cut
246
247our $POOL_SIZE = 8;
248our $POOL_RSS = 16 * 1024;
249our @async_pool;
250
251sub pool_handler {
252 while () {
253 eval {
254 &{&_pool_handler} while 1;
255 };
256
257 warn $@ if $@;
258 }
259}
260
261=back
262
263=head2 STATIC METHODS
264
265Static methods are actually functions that operate on the current coroutine.
266
267=over 4
170 268
171=item schedule 269=item schedule
172 270
173Calls the scheduler. Please note that the current process will not be put 271Calls the scheduler. The scheduler will find the next coroutine that is
272to be run from the ready queue and switches to it. The next coroutine
273to be run is simply the one with the highest priority that is longest
274in its ready queue. If there is no coroutine ready, it will clal the
275C<$Coro::idle> hook.
276
277Please note that the current coroutine will I<not> be put into the ready
174into the ready queue, so calling this function usually means you will 278queue, so calling this function usually means you will never be called
175never be called again. 279again unless something else (e.g. an event handler) calls C<< ->ready >>,
280thus waking you up.
176 281
177=cut 282This makes C<schedule> I<the> generic method to use to block the current
283coroutine and wait for events: first you remember the current coroutine in
284a variable, then arrange for some callback of yours to call C<< ->ready
285>> on that once some event happens, and last you call C<schedule> to put
286yourself to sleep. Note that a lot of things can wake your coroutine up,
287so you need to check whether the event indeed happened, e.g. by storing the
288status in a variable.
289
290See B<HOW TO WAIT FOR A CALLBACK>, below, for some ways to wait for callbacks.
178 291
179=item cede 292=item cede
180 293
181"Cede" to other processes. This function puts the current process into the 294"Cede" to other coroutines. This function puts the current coroutine into
182ready queue and calls C<schedule>, which has the effect of giving up the 295the ready queue and calls C<schedule>, which has the effect of giving
183current "timeslice" to other coroutines of the same or higher priority. 296up the current "timeslice" to other coroutines of the same or higher
297priority. Once your coroutine gets its turn again it will automatically be
298resumed.
184 299
185=cut 300This function is often called C<yield> in other languages.
301
302=item Coro::cede_notself
303
304Works like cede, but is not exported by default and will cede to I<any>
305coroutine, regardless of priority. This is useful sometimes to ensure
306progress is made.
186 307
187=item terminate [arg...] 308=item terminate [arg...]
188 309
189Terminates the current process. 310Terminates the current coroutine with the given status values (see L<cancel>).
190 311
191Future versions of this function will allow result arguments. 312=item killall
313
314Kills/terminates/cancels all coroutines except the currently running
315one. This is useful after a fork, either in the child or the parent, as
316usually only one of them should inherit the running coroutines.
317
318Note that while this will try to free some of the main programs resources,
319you cannot free all of them, so if a coroutine that is not the main
320program calls this function, there will be some one-time resource leak.
192 321
193=cut 322=cut
194 323
195sub terminate { 324sub terminate {
196 $current->{status} = [@_]; 325 $current->{_status} = [@_];
197 $current->cancel; 326 push @destroy, $current;
198 &schedule; 327 $manager->ready;
199 die; # NORETURN 328 do { &schedule } while 1;
329}
330
331sub killall {
332 for (Coro::State::list) {
333 $_->cancel
334 if $_ != $current && UNIVERSAL::isa $_, "Coro";
335 }
200} 336}
201 337
202=back 338=back
203 339
204# dynamic methods
205
206=head2 PROCESS METHODS 340=head2 COROUTINE METHODS
207 341
208These are the methods you can call on process objects. 342These are the methods you can call on coroutine objects (or to create
343them).
209 344
210=over 4 345=over 4
211 346
212=item new Coro \&sub [, @args...] 347=item new Coro \&sub [, @args...]
213 348
214Create a new process and return it. When the sub returns the process 349Create a new coroutine and return it. When the sub returns, the coroutine
215automatically terminates as if C<terminate> with the returned values were 350automatically terminates as if C<terminate> with the returned values were
216called. To make the process run you must first put it into the ready queue 351called. To make the coroutine run you must first put it into the ready
217by calling the ready method. 352queue by calling the ready method.
218 353
219=cut 354See C<async> and C<Coro::State::new> for additional info about the
355coroutine environment.
220 356
221sub _newcoro { 357=cut
358
359sub _terminate {
222 terminate &{+shift}; 360 terminate &{+shift};
223} 361}
224 362
225sub new { 363=item $success = $coroutine->ready
226 my $class = shift;
227 bless {
228 _coro_state => (new Coro::State $_[0] && \&_newcoro, @_),
229 }, $class;
230}
231 364
232=item $process->ready 365Put the given coroutine into the end of its ready queue (there is one
366queue for each priority) and return true. If the coroutine is already in
367the ready queue, do nothing and return false.
233 368
234Put the given process into the ready queue. 369This ensures that the scheduler will resume this coroutine automatically
370once all the coroutines of higher priority and all coroutines of the same
371priority that were put into the ready queue earlier have been resumed.
235 372
236=cut 373=item $is_ready = $coroutine->is_ready
237 374
238=item $process->cancel 375Return whether the coroutine is currently the ready queue or not,
239 376
240Like C<terminate>, but terminates the specified process instead. 377=item $coroutine->cancel (arg...)
378
379Terminates the given coroutine and makes it return the given arguments as
380status (default: the empty list). Never returns if the coroutine is the
381current coroutine.
241 382
242=cut 383=cut
243 384
244sub cancel { 385sub cancel {
245 push @destroy, $_[0]; 386 my $self = shift;
246 $manager->ready;
247 &schedule if $current == $_[0];
248}
249 387
388 if ($current == $self) {
389 terminate @_;
390 } else {
391 $self->{_status} = [@_];
392 $self->_cancel;
393 }
394}
395
396=item $coroutine->schedule_to
397
398Puts the current coroutine to sleep (like C<Coro::schedule>), but instead
399of continuing with the next coro from the ready queue, always switch to
400the given coroutine object (regardless of priority etc.). The readyness
401state of that coroutine isn't changed.
402
403This is an advanced method for special cases - I'd love to hear about any
404uses for this one.
405
406=item $coroutine->cede_to
407
408Like C<schedule_to>, but puts the current coroutine into the ready
409queue. This has the effect of temporarily switching to the given
410coroutine, and continuing some time later.
411
412This is an advanced method for special cases - I'd love to hear about any
413uses for this one.
414
415=item $coroutine->throw ([$scalar])
416
417If C<$throw> is specified and defined, it will be thrown as an exception
418inside the coroutine at the next convenient point in time. Otherwise
419clears the exception object.
420
421Coro will check for the exception each time a schedule-like-function
422returns, i.e. after each C<schedule>, C<cede>, C<< Coro::Semaphore->down
423>>, C<< Coro::Handle->readable >> and so on. Most of these functions
424detect this case and return early in case an exception is pending.
425
426The exception object will be thrown "as is" with the specified scalar in
427C<$@>, i.e. if it is a string, no line number or newline will be appended
428(unlike with C<die>).
429
430This can be used as a softer means than C<cancel> to ask a coroutine to
431end itself, although there is no guarantee that the exception will lead to
432termination, and if the exception isn't caught it might well end the whole
433program.
434
435You might also think of C<throw> as being the moral equivalent of
436C<kill>ing a coroutine with a signal (in this case, a scalar).
437
250=item $process->join 438=item $coroutine->join
251 439
252Wait until the coroutine terminates and return any values given to the 440Wait until the coroutine terminates and return any values given to the
253C<terminate> function. C<join> can be called multiple times from multiple 441C<terminate> or C<cancel> functions. C<join> can be called concurrently
254processes. 442from multiple coroutines, and all will be resumed and given the status
443return once the C<$coroutine> terminates.
255 444
256=cut 445=cut
257 446
258sub join { 447sub join {
259 my $self = shift; 448 my $self = shift;
449
260 unless ($self->{status}) { 450 unless ($self->{_status}) {
261 push @{$self->{join}}, $current; 451 my $current = $current;
262 &schedule; 452
453 push @{$self->{_on_destroy}}, sub {
454 $current->ready;
455 undef $current;
456 };
457
458 &schedule while $current;
263 } 459 }
460
264 wantarray ? @{$self->{status}} : $self->{status}[0]; 461 wantarray ? @{$self->{_status}} : $self->{_status}[0];
265} 462}
266 463
464=item $coroutine->on_destroy (\&cb)
465
466Registers a callback that is called when this coroutine gets destroyed,
467but before it is joined. The callback gets passed the terminate arguments,
468if any, and I<must not> die, under any circumstances.
469
470=cut
471
472sub on_destroy {
473 my ($self, $cb) = @_;
474
475 push @{ $self->{_on_destroy} }, $cb;
476}
477
267=item $oldprio = $process->prio($newprio) 478=item $oldprio = $coroutine->prio ($newprio)
268 479
269Sets (or gets, if the argument is missing) the priority of the 480Sets (or gets, if the argument is missing) the priority of the
270process. Higher priority processes get run before lower priority 481coroutine. Higher priority coroutines get run before lower priority
271processes. Priorities are small signed integers (currently -4 .. +3), 482coroutines. Priorities are small signed integers (currently -4 .. +3),
272that you can refer to using PRIO_xxx constants (use the import tag :prio 483that you can refer to using PRIO_xxx constants (use the import tag :prio
273to get then): 484to get then):
274 485
275 PRIO_MAX > PRIO_HIGH > PRIO_NORMAL > PRIO_LOW > PRIO_IDLE > PRIO_MIN 486 PRIO_MAX > PRIO_HIGH > PRIO_NORMAL > PRIO_LOW > PRIO_IDLE > PRIO_MIN
276 3 > 1 > 0 > -1 > -3 > -4 487 3 > 1 > 0 > -1 > -3 > -4
279 current->prio(PRIO_HIGH); 490 current->prio(PRIO_HIGH);
280 491
281The idle coroutine ($Coro::idle) always has a lower priority than any 492The idle coroutine ($Coro::idle) always has a lower priority than any
282existing coroutine. 493existing coroutine.
283 494
284Changing the priority of the current process will take effect immediately, 495Changing the priority of the current coroutine will take effect immediately,
285but changing the priority of processes in the ready queue (but not 496but changing the priority of coroutines in the ready queue (but not
286running) will only take effect after the next schedule (of that 497running) will only take effect after the next schedule (of that
287process). This is a bug that will be fixed in some future version. 498coroutine). This is a bug that will be fixed in some future version.
288 499
289=cut
290
291sub prio {
292 my $old = $_[0]{prio};
293 $_[0]{prio} = $_[1] if @_ > 1;
294 $old;
295}
296
297=item $newprio = $process->nice($change) 500=item $newprio = $coroutine->nice ($change)
298 501
299Similar to C<prio>, but subtract the given value from the priority (i.e. 502Similar to C<prio>, but subtract the given value from the priority (i.e.
300higher values mean lower priority, just as in unix). 503higher values mean lower priority, just as in unix).
301 504
302=cut
303
304sub nice {
305 $_[0]{prio} -= $_[1];
306}
307
308=item $olddesc = $process->desc($newdesc) 505=item $olddesc = $coroutine->desc ($newdesc)
309 506
310Sets (or gets in case the argument is missing) the description for this 507Sets (or gets in case the argument is missing) the description for this
311process. This is just a free-form string you can associate with a process. 508coroutine. This is just a free-form string you can associate with a
509coroutine.
510
511This method simply sets the C<< $coroutine->{desc} >> member to the given
512string. You can modify this member directly if you wish.
312 513
313=cut 514=cut
314 515
315sub desc { 516sub desc {
316 my $old = $_[0]{desc}; 517 my $old = $_[0]{desc};
318 $old; 519 $old;
319} 520}
320 521
321=back 522=back
322 523
524=head2 GLOBAL FUNCTIONS
525
526=over 4
527
528=item Coro::nready
529
530Returns the number of coroutines that are currently in the ready state,
531i.e. that can be switched to by calling C<schedule> directory or
532indirectly. The value C<0> means that the only runnable coroutine is the
533currently running one, so C<cede> would have no effect, and C<schedule>
534would cause a deadlock unless there is an idle handler that wakes up some
535coroutines.
536
537=item my $guard = Coro::guard { ... }
538
539This creates and returns a guard object. Nothing happens until the object
540gets destroyed, in which case the codeblock given as argument will be
541executed. This is useful to free locks or other resources in case of a
542runtime error or when the coroutine gets canceled, as in both cases the
543guard block will be executed. The guard object supports only one method,
544C<< ->cancel >>, which will keep the codeblock from being executed.
545
546Example: set some flag and clear it again when the coroutine gets canceled
547or the function returns:
548
549 sub do_something {
550 my $guard = Coro::guard { $busy = 0 };
551 $busy = 1;
552
553 # do something that requires $busy to be true
554 }
555
556=cut
557
558sub guard(&) {
559 bless \(my $cb = $_[0]), "Coro::guard"
560}
561
562sub Coro::guard::cancel {
563 ${$_[0]} = sub { };
564}
565
566sub Coro::guard::DESTROY {
567 ${$_[0]}->();
568}
569
570
571=item unblock_sub { ... }
572
573This utility function takes a BLOCK or code reference and "unblocks" it,
574returning a new coderef. Unblocking means that calling the new coderef
575will return immediately without blocking, returning nothing, while the
576original code ref will be called (with parameters) from within another
577coroutine.
578
579The reason this function exists is that many event libraries (such as the
580venerable L<Event|Event> module) are not coroutine-safe (a weaker form
581of thread-safety). This means you must not block within event callbacks,
582otherwise you might suffer from crashes or worse. The only event library
583currently known that is safe to use without C<unblock_sub> is L<EV>.
584
585This function allows your callbacks to block by executing them in another
586coroutine where it is safe to block. One example where blocking is handy
587is when you use the L<Coro::AIO|Coro::AIO> functions to save results to
588disk, for example.
589
590In short: simply use C<unblock_sub { ... }> instead of C<sub { ... }> when
591creating event callbacks that want to block.
592
593If your handler does not plan to block (e.g. simply sends a message to
594another coroutine, or puts some other coroutine into the ready queue),
595there is no reason to use C<unblock_sub>.
596
597Note that you also need to use C<unblock_sub> for any other callbacks that
598are indirectly executed by any C-based event loop. For example, when you
599use a module that uses L<AnyEvent> (and you use L<Coro::AnyEvent>) and it
600provides callbacks that are the result of some event callback, then you
601must not block either, or use C<unblock_sub>.
602
603=cut
604
605our @unblock_queue;
606
607# we create a special coro because we want to cede,
608# to reduce pressure on the coro pool (because most callbacks
609# return immediately and can be reused) and because we cannot cede
610# inside an event callback.
611our $unblock_scheduler = new Coro sub {
612 while () {
613 while (my $cb = pop @unblock_queue) {
614 &async_pool (@$cb);
615
616 # for short-lived callbacks, this reduces pressure on the coro pool
617 # as the chance is very high that the async_poll coro will be back
618 # in the idle state when cede returns
619 cede;
620 }
621 schedule; # sleep well
622 }
623};
624$unblock_scheduler->{desc} = "[unblock_sub scheduler]";
625
626sub unblock_sub(&) {
627 my $cb = shift;
628
629 sub {
630 unshift @unblock_queue, [$cb, @_];
631 $unblock_scheduler->ready;
632 }
633}
634
635=item $cb = Coro::rouse_cb
636
637Create and return a "rouse callback". That's a code reference that, when
638called, will save its arguments and notify the owner coroutine of the
639callback.
640
641See the next function.
642
643=item @args = Coro::rouse_wait [$cb]
644
645Wait for the specified rouse callback (or the last one tht was created in
646this coroutine).
647
648As soon as the callback is invoked (or when the calback was invoked before
649C<rouse_wait>), it will return a copy of the arguments originally passed
650to the rouse callback.
651
652See the section B<HOW TO WAIT FOR A CALLBACK> for an actual usage example.
653
654=back
655
323=cut 656=cut
324 657
3251; 6581;
326 659
660=head1 HOW TO WAIT FOR A CALLBACK
661
662It is very common for a coroutine to wait for some callback to be
663called. This occurs naturally when you use coroutines in an otherwise
664event-based program, or when you use event-based libraries.
665
666These typically register a callback for some event, and call that callback
667when the event occured. In a coroutine, however, you typically want to
668just wait for the event, simplyifying things.
669
670For example C<< AnyEvent->child >> registers a callback to be called when
671a specific child has exited:
672
673 my $child_watcher = AnyEvent->child (pid => $pid, cb => sub { ... });
674
675But from withina coroutine, you often just want to write this:
676
677 my $status = wait_for_child $pid;
678
679Coro offers two functions specifically designed to make this easy,
680C<Coro::rouse_cb> and C<Coro::rouse_wait>.
681
682The first function, C<rouse_cb>, generates and returns a callback that,
683when invoked, will save it's arguments and notify the coroutine that
684created the callback.
685
686The second function, C<rouse_wait>, waits for the callback to be called
687(by calling C<schedule> to go to sleep) and returns the arguments
688originally passed to the callback.
689
690Using these functions, it becomes easy to write the C<wait_for_child>
691function mentioned above:
692
693 sub wait_for_child($) {
694 my ($pid) = @_;
695
696 my $watcher = AnyEvent->child (pid => $pid, cb => Coro::rouse_cb);
697
698 my ($rpid, $rstatus) = Coro::rouse_wait;
699 $rstatus
700 }
701
702In the case where C<rouse_cb> and C<rouse_wait> are not flexible enough,
703you can roll your own, using C<schedule>:
704
705 sub wait_for_child($) {
706 my ($pid) = @_;
707
708 # store the current coroutine in $current,
709 # and provide result variables for the closure passed to ->child
710 my $current = $Coro::current;
711 my ($done, $rstatus);
712
713 # pass a closure to ->child
714 my $watcher = AnyEvent->child (pid => $pid, cb => sub {
715 $rstatus = $_[1]; # remember rstatus
716 $done = 1; # mark $rstatus as valud
717 });
718
719 # wait until the closure has been called
720 schedule while !$done;
721
722 $rstatus
723 }
724
725
327=head1 BUGS/LIMITATIONS 726=head1 BUGS/LIMITATIONS
328 727
329 - you must make very sure that no coro is still active on global 728=over 4
330 destruction. very bad things might happen otherwise (usually segfaults).
331 729
730=item fork with pthread backend
731
732When Coro is compiled using the pthread backend (which isn't recommended
733but required on many BSDs as their libcs are completely broken), then
734coroutines will not survive a fork. There is no known workaround except to
735fix your libc and use a saner backend.
736
737=item perl process emulation ("threads")
738
332 - this module is not thread-safe. You should only ever use this module 739This module is not perl-pseudo-thread-safe. You should only ever use this
333 from the same thread (this requirement might be losened in the future 740module from the same thread (this requirement might be removed in the
334 to allow per-thread schedulers, but Coro::State does not yet allow 741future to allow per-thread schedulers, but Coro::State does not yet allow
335 this). 742this). I recommend disabling thread support and using processes, as having
743the windows process emulation enabled under unix roughly halves perl
744performance, even when not used.
745
746=item coroutine switching not signal safe
747
748You must not switch to another coroutine from within a signal handler
749(only relevant with %SIG - most event libraries provide safe signals).
750
751That means you I<MUST NOT> call any function that might "block" the
752current coroutine - C<cede>, C<schedule> C<< Coro::Semaphore->down >> or
753anything that calls those. Everything else, including calling C<ready>,
754works.
755
756=back
757
336 758
337=head1 SEE ALSO 759=head1 SEE ALSO
338 760
339L<Coro::Channel>, L<Coro::Cont>, L<Coro::Specific>, L<Coro::Semaphore>, 761Event-Loop integration: L<Coro::AnyEvent>, L<Coro::EV>, L<Coro::Event>.
340L<Coro::Signal>, L<Coro::State>, L<Coro::Timer>, L<Coro::Event>, 762
341L<Coro::L<Coro::RWLock>, Handle>, L<Coro::Socket>. 763Debugging: L<Coro::Debug>.
764
765Support/Utility: L<Coro::Specific>, L<Coro::Util>.
766
767Locking/IPC: L<Coro::Signal>, L<Coro::Channel>, L<Coro::Semaphore>, L<Coro::SemaphoreSet>, L<Coro::RWLock>.
768
769IO/Timers: L<Coro::Timer>, L<Coro::Handle>, L<Coro::Socket>, L<Coro::AIO>.
770
771Compatibility: L<Coro::LWP>, L<Coro::BDB>, L<Coro::Storable>, L<Coro::Select>.
772
773XS API: L<Coro::MakeMaker>.
774
775Low level Configuration, Coroutine Environment: L<Coro::State>.
342 776
343=head1 AUTHOR 777=head1 AUTHOR
344 778
345 Marc Lehmann <pcg@goof.com> 779 Marc Lehmann <schmorp@schmorp.de>
346 http://www.goof.com/pcg/marc/ 780 http://home.schmorp.de/
347 781
348=cut 782=cut
349 783

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines