1 |
/*************************************************************************** |
2 |
TABLE.H -- Tables, macros, constants for Twofish S-boxes and MDS matrix |
3 |
|
4 |
Submitters: |
5 |
Bruce Schneier, Counterpane Systems |
6 |
Doug Whiting, Hi/fn |
7 |
John Kelsey, Counterpane Systems |
8 |
Chris Hall, Counterpane Systems |
9 |
David Wagner, UC Berkeley |
10 |
|
11 |
Code Author: Doug Whiting, Hi/fn |
12 |
|
13 |
Version 1.00 April 1998 |
14 |
|
15 |
Copyright 1998, Hi/fn and Counterpane Systems. All rights reserved. |
16 |
|
17 |
Notes: |
18 |
* Tab size is set to 4 characters in this file |
19 |
* These definitions should be used in optimized and unoptimized |
20 |
versions to insure consistency. |
21 |
|
22 |
***************************************************************************/ |
23 |
|
24 |
/* for computing subkeys */ |
25 |
#define SK_STEP 0x02020202u |
26 |
#define SK_BUMP 0x01010101u |
27 |
#define SK_ROTL 9 |
28 |
|
29 |
/* Reed-Solomon code parameters: (12,8) reversible code |
30 |
g(x) = x**4 + (a + 1/a) x**3 + a x**2 + (a + 1/a) x + 1 |
31 |
where a = primitive root of field generator 0x14D */ |
32 |
#define RS_GF_FDBK 0x14D /* field generator */ |
33 |
#define RS_rem(x) \ |
34 |
{ BYTE b = (BYTE) (x >> 24); \ |
35 |
DWORD g2 = ((b << 1) ^ ((b & 0x80) ? RS_GF_FDBK : 0 )) & 0xFF; \ |
36 |
DWORD g3 = ((b >> 1) & 0x7F) ^ ((b & 1) ? RS_GF_FDBK >> 1 : 0 ) ^ g2 ; \ |
37 |
x = (x << 8) ^ (g3 << 24) ^ (g2 << 16) ^ (g3 << 8) ^ b; \ |
38 |
} |
39 |
|
40 |
/* Macros for the MDS matrix |
41 |
* The MDS matrix is (using primitive polynomial 169): |
42 |
* 01 EF 5B 5B |
43 |
* 5B EF EF 01 |
44 |
* EF 5B 01 EF |
45 |
* EF 01 EF 5B |
46 |
*---------------------------------------------------------------- |
47 |
* More statistical properties of this matrix (from MDS.EXE output): |
48 |
* |
49 |
* Min Hamming weight (one byte difference) = 8. Max=26. Total = 1020. |
50 |
* Prob[8]: 7 23 42 20 52 95 88 94 121 128 91 |
51 |
* 102 76 41 24 8 4 1 3 0 0 0 |
52 |
* Runs[8]: 2 4 5 6 7 8 9 11 |
53 |
* MSBs[8]: 1 4 15 8 18 38 40 43 |
54 |
* HW= 8: 05040705 0A080E0A 14101C14 28203828 50407050 01499101 A080E0A0 |
55 |
* HW= 9: 04050707 080A0E0E 10141C1C 20283838 40507070 80A0E0E0 C6432020 07070504 |
56 |
* 0E0E0A08 1C1C1410 38382820 70705040 E0E0A080 202043C6 05070407 0A0E080E |
57 |
* 141C101C 28382038 50704070 A0E080E0 4320C620 02924B02 089A4508 |
58 |
* Min Hamming weight (two byte difference) = 3. Max=28. Total = 390150. |
59 |
* Prob[3]: 7 18 55 149 270 914 2185 5761 11363 20719 32079 |
60 |
* 43492 51612 53851 52098 42015 31117 20854 11538 6223 2492 1033 |
61 |
* MDS OK, ROR: 6+ 7+ 8+ 9+ 10+ 11+ 12+ 13+ 14+ 15+ 16+ |
62 |
* 17+ 18+ 19+ 20+ 21+ 22+ 23+ 24+ 25+ 26+ |
63 |
*/ |
64 |
#define MDS_GF_FDBK 0x169 /* primitive polynomial for GF(256) */ |
65 |
#define LFSR1(x) ( ((x) >> 1) ^ (((x) & 0x01) ? MDS_GF_FDBK/2 : 0)) |
66 |
#define LFSR2(x) ( ((x) >> 2) ^ (((x) & 0x02) ? MDS_GF_FDBK/2 : 0) \ |
67 |
^ (((x) & 0x01) ? MDS_GF_FDBK/4 : 0)) |
68 |
|
69 |
#define Mx_1(x) ((DWORD) (x)) /* force result to dword so << will work */ |
70 |
#define Mx_X(x) ((DWORD) ((x) ^ LFSR2(x))) /* 5B */ |
71 |
#define Mx_Y(x) ((DWORD) ((x) ^ LFSR1(x) ^ LFSR2(x))) /* EF */ |
72 |
|
73 |
#define M00 Mul_1 |
74 |
#define M01 Mul_Y |
75 |
#define M02 Mul_X |
76 |
#define M03 Mul_X |
77 |
|
78 |
#define M10 Mul_X |
79 |
#define M11 Mul_Y |
80 |
#define M12 Mul_Y |
81 |
#define M13 Mul_1 |
82 |
|
83 |
#define M20 Mul_Y |
84 |
#define M21 Mul_X |
85 |
#define M22 Mul_1 |
86 |
#define M23 Mul_Y |
87 |
|
88 |
#define M30 Mul_Y |
89 |
#define M31 Mul_1 |
90 |
#define M32 Mul_Y |
91 |
#define M33 Mul_X |
92 |
|
93 |
#define Mul_1 Mx_1 |
94 |
#define Mul_X Mx_X |
95 |
#define Mul_Y Mx_Y |
96 |
|
97 |
/* Define the fixed p0/p1 permutations used in keyed S-box lookup. |
98 |
By changing the following constant definitions for P_ij, the S-boxes will |
99 |
automatically get changed in all the Twofish source code. Note that P_i0 is |
100 |
the "outermost" 8x8 permutation applied. See the f32() function to see |
101 |
how these constants are to be used. |
102 |
*/ |
103 |
#define P_00 1 /* "outermost" permutation */ |
104 |
#define P_01 0 |
105 |
#define P_02 0 |
106 |
#define P_03 (P_01^1) /* "extend" to larger key sizes */ |
107 |
#define P_04 1 |
108 |
|
109 |
#define P_10 0 |
110 |
#define P_11 0 |
111 |
#define P_12 1 |
112 |
#define P_13 (P_11^1) |
113 |
#define P_14 0 |
114 |
|
115 |
#define P_20 1 |
116 |
#define P_21 1 |
117 |
#define P_22 0 |
118 |
#define P_23 (P_21^1) |
119 |
#define P_24 0 |
120 |
|
121 |
#define P_30 0 |
122 |
#define P_31 1 |
123 |
#define P_32 1 |
124 |
#define P_33 (P_31^1) |
125 |
#define P_34 1 |
126 |
|
127 |
#define p8(N) P8x8[P_##N] /* some syntax shorthand */ |
128 |
|
129 |
/* fixed 8x8 permutation S-boxes */ |
130 |
|
131 |
/*********************************************************************** |
132 |
* 07:07:14 05/30/98 [4x4] TestCnt=256. keySize=128. CRC=4BD14D9E. |
133 |
* maxKeyed: dpMax = 18. lpMax =100. fixPt = 8. skXor = 0. skDup = 6. |
134 |
* log2(dpMax[ 6..18])= --- 15.42 1.33 0.89 4.05 7.98 12.05 |
135 |
* log2(lpMax[ 7..12])= 9.32 1.01 1.16 4.23 8.02 12.45 |
136 |
* log2(fixPt[ 0.. 8])= 1.44 1.44 2.44 4.06 6.01 8.21 11.07 14.09 17.00 |
137 |
* log2(skXor[ 0.. 0]) |
138 |
* log2(skDup[ 0.. 6])= --- 2.37 0.44 3.94 8.36 13.04 17.99 |
139 |
***********************************************************************/ |
140 |
static CONST BYTE P8x8[2][256] = |
141 |
{ |
142 |
/* p0: */ |
143 |
/* dpMax = 10. lpMax = 64. cycleCnt= 1 1 1 0. */ |
144 |
/* 817D6F320B59ECA4.ECB81235F4A6709D.BA5E6D90C8F32471.D7F4126E9B3085CA. */ |
145 |
/* Karnaugh maps: |
146 |
* 0111 0001 0011 1010. 0001 1001 1100 1111. 1001 1110 0011 1110. 1101 0101 1111 1001. |
147 |
* 0101 1111 1100 0100. 1011 0101 0010 0000. 0101 1000 1100 0101. 1000 0111 0011 0010. |
148 |
* 0000 1001 1110 1101. 1011 1000 1010 0011. 0011 1001 0101 0000. 0100 0010 0101 1011. |
149 |
* 0111 0100 0001 0110. 1000 1011 1110 1001. 0011 0011 1001 1101. 1101 0101 0000 1100. |
150 |
*/ |
151 |
{ |
152 |
0xA9, 0x67, 0xB3, 0xE8, 0x04, 0xFD, 0xA3, 0x76, |
153 |
0x9A, 0x92, 0x80, 0x78, 0xE4, 0xDD, 0xD1, 0x38, |
154 |
0x0D, 0xC6, 0x35, 0x98, 0x18, 0xF7, 0xEC, 0x6C, |
155 |
0x43, 0x75, 0x37, 0x26, 0xFA, 0x13, 0x94, 0x48, |
156 |
0xF2, 0xD0, 0x8B, 0x30, 0x84, 0x54, 0xDF, 0x23, |
157 |
0x19, 0x5B, 0x3D, 0x59, 0xF3, 0xAE, 0xA2, 0x82, |
158 |
0x63, 0x01, 0x83, 0x2E, 0xD9, 0x51, 0x9B, 0x7C, |
159 |
0xA6, 0xEB, 0xA5, 0xBE, 0x16, 0x0C, 0xE3, 0x61, |
160 |
0xC0, 0x8C, 0x3A, 0xF5, 0x73, 0x2C, 0x25, 0x0B, |
161 |
0xBB, 0x4E, 0x89, 0x6B, 0x53, 0x6A, 0xB4, 0xF1, |
162 |
0xE1, 0xE6, 0xBD, 0x45, 0xE2, 0xF4, 0xB6, 0x66, |
163 |
0xCC, 0x95, 0x03, 0x56, 0xD4, 0x1C, 0x1E, 0xD7, |
164 |
0xFB, 0xC3, 0x8E, 0xB5, 0xE9, 0xCF, 0xBF, 0xBA, |
165 |
0xEA, 0x77, 0x39, 0xAF, 0x33, 0xC9, 0x62, 0x71, |
166 |
0x81, 0x79, 0x09, 0xAD, 0x24, 0xCD, 0xF9, 0xD8, |
167 |
0xE5, 0xC5, 0xB9, 0x4D, 0x44, 0x08, 0x86, 0xE7, |
168 |
0xA1, 0x1D, 0xAA, 0xED, 0x06, 0x70, 0xB2, 0xD2, |
169 |
0x41, 0x7B, 0xA0, 0x11, 0x31, 0xC2, 0x27, 0x90, |
170 |
0x20, 0xF6, 0x60, 0xFF, 0x96, 0x5C, 0xB1, 0xAB, |
171 |
0x9E, 0x9C, 0x52, 0x1B, 0x5F, 0x93, 0x0A, 0xEF, |
172 |
0x91, 0x85, 0x49, 0xEE, 0x2D, 0x4F, 0x8F, 0x3B, |
173 |
0x47, 0x87, 0x6D, 0x46, 0xD6, 0x3E, 0x69, 0x64, |
174 |
0x2A, 0xCE, 0xCB, 0x2F, 0xFC, 0x97, 0x05, 0x7A, |
175 |
0xAC, 0x7F, 0xD5, 0x1A, 0x4B, 0x0E, 0xA7, 0x5A, |
176 |
0x28, 0x14, 0x3F, 0x29, 0x88, 0x3C, 0x4C, 0x02, |
177 |
0xB8, 0xDA, 0xB0, 0x17, 0x55, 0x1F, 0x8A, 0x7D, |
178 |
0x57, 0xC7, 0x8D, 0x74, 0xB7, 0xC4, 0x9F, 0x72, |
179 |
0x7E, 0x15, 0x22, 0x12, 0x58, 0x07, 0x99, 0x34, |
180 |
0x6E, 0x50, 0xDE, 0x68, 0x65, 0xBC, 0xDB, 0xF8, |
181 |
0xC8, 0xA8, 0x2B, 0x40, 0xDC, 0xFE, 0x32, 0xA4, |
182 |
0xCA, 0x10, 0x21, 0xF0, 0xD3, 0x5D, 0x0F, 0x00, |
183 |
0x6F, 0x9D, 0x36, 0x42, 0x4A, 0x5E, 0xC1, 0xE0 |
184 |
}, |
185 |
/* p1: */ |
186 |
/* dpMax = 10. lpMax = 64. cycleCnt= 2 0 0 1. */ |
187 |
/* 28BDF76E31940AC5.1E2B4C376DA5F908.4C75169A0ED82B3F.B951C3DE647F208A. */ |
188 |
/* Karnaugh maps: |
189 |
* 0011 1001 0010 0111. 1010 0111 0100 0110. 0011 0001 1111 0100. 1111 1000 0001 1100. |
190 |
* 1100 1111 1111 1010. 0011 0011 1110 0100. 1001 0110 0100 0011. 0101 0110 1011 1011. |
191 |
* 0010 0100 0011 0101. 1100 1000 1000 1110. 0111 1111 0010 0110. 0000 1010 0000 0011. |
192 |
* 1101 1000 0010 0001. 0110 1001 1110 0101. 0001 0100 0101 0111. 0011 1011 1111 0010. |
193 |
*/ |
194 |
{ |
195 |
0x75, 0xF3, 0xC6, 0xF4, 0xDB, 0x7B, 0xFB, 0xC8, |
196 |
0x4A, 0xD3, 0xE6, 0x6B, 0x45, 0x7D, 0xE8, 0x4B, |
197 |
0xD6, 0x32, 0xD8, 0xFD, 0x37, 0x71, 0xF1, 0xE1, |
198 |
0x30, 0x0F, 0xF8, 0x1B, 0x87, 0xFA, 0x06, 0x3F, |
199 |
0x5E, 0xBA, 0xAE, 0x5B, 0x8A, 0x00, 0xBC, 0x9D, |
200 |
0x6D, 0xC1, 0xB1, 0x0E, 0x80, 0x5D, 0xD2, 0xD5, |
201 |
0xA0, 0x84, 0x07, 0x14, 0xB5, 0x90, 0x2C, 0xA3, |
202 |
0xB2, 0x73, 0x4C, 0x54, 0x92, 0x74, 0x36, 0x51, |
203 |
0x38, 0xB0, 0xBD, 0x5A, 0xFC, 0x60, 0x62, 0x96, |
204 |
0x6C, 0x42, 0xF7, 0x10, 0x7C, 0x28, 0x27, 0x8C, |
205 |
0x13, 0x95, 0x9C, 0xC7, 0x24, 0x46, 0x3B, 0x70, |
206 |
0xCA, 0xE3, 0x85, 0xCB, 0x11, 0xD0, 0x93, 0xB8, |
207 |
0xA6, 0x83, 0x20, 0xFF, 0x9F, 0x77, 0xC3, 0xCC, |
208 |
0x03, 0x6F, 0x08, 0xBF, 0x40, 0xE7, 0x2B, 0xE2, |
209 |
0x79, 0x0C, 0xAA, 0x82, 0x41, 0x3A, 0xEA, 0xB9, |
210 |
0xE4, 0x9A, 0xA4, 0x97, 0x7E, 0xDA, 0x7A, 0x17, |
211 |
0x66, 0x94, 0xA1, 0x1D, 0x3D, 0xF0, 0xDE, 0xB3, |
212 |
0x0B, 0x72, 0xA7, 0x1C, 0xEF, 0xD1, 0x53, 0x3E, |
213 |
0x8F, 0x33, 0x26, 0x5F, 0xEC, 0x76, 0x2A, 0x49, |
214 |
0x81, 0x88, 0xEE, 0x21, 0xC4, 0x1A, 0xEB, 0xD9, |
215 |
0xC5, 0x39, 0x99, 0xCD, 0xAD, 0x31, 0x8B, 0x01, |
216 |
0x18, 0x23, 0xDD, 0x1F, 0x4E, 0x2D, 0xF9, 0x48, |
217 |
0x4F, 0xF2, 0x65, 0x8E, 0x78, 0x5C, 0x58, 0x19, |
218 |
0x8D, 0xE5, 0x98, 0x57, 0x67, 0x7F, 0x05, 0x64, |
219 |
0xAF, 0x63, 0xB6, 0xFE, 0xF5, 0xB7, 0x3C, 0xA5, |
220 |
0xCE, 0xE9, 0x68, 0x44, 0xE0, 0x4D, 0x43, 0x69, |
221 |
0x29, 0x2E, 0xAC, 0x15, 0x59, 0xA8, 0x0A, 0x9E, |
222 |
0x6E, 0x47, 0xDF, 0x34, 0x35, 0x6A, 0xCF, 0xDC, |
223 |
0x22, 0xC9, 0xC0, 0x9B, 0x89, 0xD4, 0xED, 0xAB, |
224 |
0x12, 0xA2, 0x0D, 0x52, 0xBB, 0x02, 0x2F, 0xA9, |
225 |
0xD7, 0x61, 0x1E, 0xB4, 0x50, 0x04, 0xF6, 0xC2, |
226 |
0x16, 0x25, 0x86, 0x56, 0x55, 0x09, 0xBE, 0x91 |
227 |
} |
228 |
}; |