#include "EXTERN.h" #include "perl.h" #include "XSUB.h" #include #include #include /* NIST Secure Hash Algorithm */ /* heavily modified by Uwe Hollerbach */ /* from Peter C. Gutmann's implementation as found in */ /* Applied Cryptography by Bruce Schneier */ /* Further modifications to include the "UNRAVEL" stuff, below */ /* This code is in the public domain */ /* pcg: I was tempted to just rip this code off, after all, if you don't * demand anything I am inclined not to give anything. *Sigh* something * kept me from doing it, so here's the truth: I took this code from the * SHA1 perl module, since it looked reasonably well-crafted. I modified * it here and there, though. */ /* don't expect _too_ much from compilers for now. */ #if __GNUC_MAJOR > 2 # define restrict __restrict__ #elif __STDC_VERSION__ < 199900 # define restrict #endif /* Useful defines & typedefs */ #if defined(U64TYPE) && (defined(USE_64_BIT_INT) || ((BYTEORDER != 0x1234) && (BYTEORDER != 0x4321))) typedef U64TYPE ULONG; # if BYTEORDER == 0x1234 # undef BYTEORDER # define BYTEORDER 0x12345678 # elif BYTEORDER == 0x4321 # undef BYTEORDER # define BYTEORDER 0x87654321 # endif #else typedef uint_fast32_t ULONG; /* 32-or-more-bit quantity */ #endif #define SHA_BLOCKSIZE 64 #define SHA_DIGESTSIZE 20 typedef struct { ULONG digest[5]; /* message digest */ ULONG count; /* 32-bit bit count */ U8 data[SHA_BLOCKSIZE]; /* SHA data buffer */ int local; /* unprocessed amount in data */ } SHA_INFO; /* UNRAVEL should be fastest & biggest */ /* UNROLL_LOOPS should be just as big, but slightly slower */ /* both undefined should be smallest and slowest */ #define SHA_VERSION 1 #define UNRAVEL /* #define UNROLL_LOOPS */ /* SHA f()-functions */ #define f1(x,y,z) ((x & y) | (~x & z)) #define f2(x,y,z) (x ^ y ^ z) #define f3(x,y,z) ((x & y) | (x & z) | (y & z)) #define f4(x,y,z) (x ^ y ^ z) /* SHA constants */ #define CONST1 0x5a827999L #define CONST2 0x6ed9eba1L #define CONST3 0x8f1bbcdcL #define CONST4 0xca62c1d6L /* truncate to 32 bits -- should be a null op on 32-bit machines */ #define T32(x) ((x) & 0xffffffffL) /* 32-bit rotate */ #define R32(x,n) T32(((x << n) | (x >> (32 - n)))) /* the generic case, for when the overall rotation is not unraveled */ #define FG(n) \ T = T32(R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n); \ E = D; D = C; C = R32(B,30); B = A; A = T /* specific cases, for when the overall rotation is unraveled */ #define FA(n) \ T = T32(R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n); B = R32(B,30) #define FB(n) \ E = T32(R32(T,5) + f##n(A,B,C) + D + *WP++ + CONST##n); A = R32(A,30) #define FC(n) \ D = T32(R32(E,5) + f##n(T,A,B) + C + *WP++ + CONST##n); T = R32(T,30) #define FD(n) \ C = T32(R32(D,5) + f##n(E,T,A) + B + *WP++ + CONST##n); E = R32(E,30) #define FE(n) \ B = T32(R32(C,5) + f##n(D,E,T) + A + *WP++ + CONST##n); D = R32(D,30) #define FT(n) \ A = T32(R32(B,5) + f##n(C,D,E) + T + *WP++ + CONST##n); C = R32(C,30) static void sha_transform(restrict SHA_INFO *sha_info) { int i; U8 *dp; ULONG T, A, B, C, D, E, W[80], *WP; dp = sha_info->data; /* the following makes sure that at least one code block below is traversed or an error is reported, without the necessity for nested preprocessor if/else/endif blocks, which are a great pain in the nether regions of the anatomy... */ #undef SWAP_DONE #if BYTEORDER == 0x1234 #define SWAP_DONE assert(sizeof(ULONG) == 4); for (i = 0; i < 16; ++i) { T = *((ULONG *) dp); dp += 4; W[i] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) | ((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff); } #endif #if BYTEORDER == 0x4321 #define SWAP_DONE assert(sizeof(ULONG) == 4); for (i = 0; i < 16; ++i) { T = *((ULONG *) dp); dp += 4; W[i] = T32(T); } #endif #if BYTEORDER == 0x12345678 #define SWAP_DONE assert(sizeof(ULONG) == 8); for (i = 0; i < 16; i += 2) { T = *((ULONG *) dp); dp += 8; W[i] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) | ((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff); T >>= 32; W[i+1] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) | ((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff); } #endif #if BYTEORDER == 0x87654321 #define SWAP_DONE assert(sizeof(ULONG) == 8); for (i = 0; i < 16; i += 2) { T = *((ULONG *) dp); dp += 8; W[i] = T32(T >> 32); W[i+1] = T32(T); } #endif #ifndef SWAP_DONE #error Unknown byte order -- you need to add code here #endif /* SWAP_DONE */ for (i = 16; i < 80; ++i) { W[i] = W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16]; #if (SHA_VERSION == 1) W[i] = R32(W[i], 1); #endif /* SHA_VERSION */ } A = sha_info->digest[0]; B = sha_info->digest[1]; C = sha_info->digest[2]; D = sha_info->digest[3]; E = sha_info->digest[4]; WP = W; #ifdef UNRAVEL FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); sha_info->digest[0] = T32(sha_info->digest[0] + E); sha_info->digest[1] = T32(sha_info->digest[1] + T); sha_info->digest[2] = T32(sha_info->digest[2] + A); sha_info->digest[3] = T32(sha_info->digest[3] + B); sha_info->digest[4] = T32(sha_info->digest[4] + C); #else /* !UNRAVEL */ #ifdef UNROLL_LOOPS FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(1); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(2); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(3); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); FG(4); #else /* !UNROLL_LOOPS */ for (i = 0; i < 20; ++i) { FG(1); } for (i = 20; i < 40; ++i) { FG(2); } for (i = 40; i < 60; ++i) { FG(3); } for (i = 60; i < 80; ++i) { FG(4); } #endif /* !UNROLL_LOOPS */ sha_info->digest[0] = T32(sha_info->digest[0] + A); sha_info->digest[1] = T32(sha_info->digest[1] + B); sha_info->digest[2] = T32(sha_info->digest[2] + C); sha_info->digest[3] = T32(sha_info->digest[3] + D); sha_info->digest[4] = T32(sha_info->digest[4] + E); #endif /* !UNRAVEL */ } /* initialize the SHA digest */ static void sha_init(restrict SHA_INFO *sha_info) { sha_info->digest[0] = 0x67452301L; sha_info->digest[1] = 0xefcdab89L; sha_info->digest[2] = 0x98badcfeL; sha_info->digest[3] = 0x10325476L; sha_info->digest[4] = 0xc3d2e1f0L; sha_info->count = 0L; sha_info->local = 0; } /* update the SHA digest */ static void sha_update(restrict SHA_INFO *sha_info, restrict U8 *buffer, int count) { int i; sha_info->count += count << 3; if (sha_info->local) { i = SHA_BLOCKSIZE - sha_info->local; if (i > count) { i = count; } memcpy(((U8 *) sha_info->data) + sha_info->local, buffer, i); count -= i; buffer += i; sha_info->local += i; if (sha_info->local == SHA_BLOCKSIZE) { sha_transform(sha_info); } else { return; } } while (count >= SHA_BLOCKSIZE) { memcpy(sha_info->data, buffer, SHA_BLOCKSIZE); buffer += SHA_BLOCKSIZE; count -= SHA_BLOCKSIZE; sha_transform(sha_info); } memcpy(sha_info->data, buffer, count); sha_info->local = count; } #if 0 static void sha_transform_and_copy (unsigned char digest[20], restrict SHA_INFO *sha_info) { sha_transform (sha_info); digest[ 0] = (unsigned char) ((sha_info->digest[0] >> 24) & 0xff); digest[ 1] = (unsigned char) ((sha_info->digest[0] >> 16) & 0xff); digest[ 2] = (unsigned char) ((sha_info->digest[0] >> 8) & 0xff); digest[ 3] = (unsigned char) ((sha_info->digest[0] ) & 0xff); digest[ 4] = (unsigned char) ((sha_info->digest[1] >> 24) & 0xff); digest[ 5] = (unsigned char) ((sha_info->digest[1] >> 16) & 0xff); digest[ 6] = (unsigned char) ((sha_info->digest[1] >> 8) & 0xff); digest[ 7] = (unsigned char) ((sha_info->digest[1] ) & 0xff); digest[ 8] = (unsigned char) ((sha_info->digest[2] >> 24) & 0xff); digest[ 9] = (unsigned char) ((sha_info->digest[2] >> 16) & 0xff); digest[10] = (unsigned char) ((sha_info->digest[2] >> 8) & 0xff); digest[11] = (unsigned char) ((sha_info->digest[2] ) & 0xff); digest[12] = (unsigned char) ((sha_info->digest[3] >> 24) & 0xff); digest[13] = (unsigned char) ((sha_info->digest[3] >> 16) & 0xff); digest[14] = (unsigned char) ((sha_info->digest[3] >> 8) & 0xff); digest[15] = (unsigned char) ((sha_info->digest[3] ) & 0xff); digest[16] = (unsigned char) ((sha_info->digest[4] >> 24) & 0xff); digest[17] = (unsigned char) ((sha_info->digest[4] >> 16) & 0xff); digest[18] = (unsigned char) ((sha_info->digest[4] >> 8) & 0xff); digest[19] = (unsigned char) ((sha_info->digest[4] ) & 0xff); } #endif /* finish computing the SHA digest */ static void sha_final(SHA_INFO *sha_info) { int count; U32 bit_count; bit_count = sha_info->count; count = (int) ((bit_count >> 3) & 0x3f); ((U8 *) sha_info->data)[count++] = 0x80; if (count > SHA_BLOCKSIZE - 8) { memset(((U8 *) sha_info->data) + count, 0, SHA_BLOCKSIZE - count); sha_transform(sha_info); memset((U8 *) sha_info->data, 0, SHA_BLOCKSIZE - 8); } else { memset(((U8 *) sha_info->data) + count, 0, SHA_BLOCKSIZE - 8 - count); } sha_info->data[56] = 0; sha_info->data[57] = 0; sha_info->data[58] = 0; sha_info->data[59] = 0; sha_info->data[60] = (bit_count >> 24) & 0xff; sha_info->data[61] = (bit_count >> 16) & 0xff; sha_info->data[62] = (bit_count >> 8) & 0xff; sha_info->data[63] = (bit_count >> 0) & 0xff; sha_transform (sha_info); } #define TRIALCHAR "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!#$%&()*+,-./;<=>?@[]{}^_|" static char nextenc[256]; static char rand_char () { return TRIALCHAR[rand () % sizeof (TRIALCHAR)]; } static int zprefix (ULONG n) { static char zp[256] = { 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; return n > 0xffffff ? zp[n >> 24] : n > 0xffff ? 8 + zp[n >> 16] : n > 0xff ? 16 + zp[n >> 8] : 24 + zp[n]; } MODULE = Digest::Hashcash PACKAGE = Digest::Hashcash BOOT: { int i; for (i = 0; i < sizeof (TRIALCHAR); i++) nextenc[TRIALCHAR[i]] = TRIALCHAR[(i + 1) % sizeof (TRIALCHAR)]; } PROTOTYPES: ENABLE int _estimate_time (float seconds = 2, float minfactor = 1) CODE: RETVAL = minfactor; OUTPUT: RETVAL SV * _gentoken (int collisions, IV timestamp, char *resource, char *trial = "", int extrarand = 0) CODE: SHA_INFO ctx1, ctx; char *token, *seq, *s; int toklen, i; time_t tstamp = timestamp ? timestamp : time (0); struct tm *tm = gmtime (&tstamp); New (0, token, 1 + 1 // version + 12 + 1 // time field sans century + strlen (resource) + 1 // ressource + strlen (trial) + extrarand + 8 + 1 // trial + 1, char); if (!token) croak ("out of memory"); if (collisions > 32) croak ("collisions must be <= 32 in this implementation\n"); toklen = sprintf (token, "%d:%02d%02d%02d%02d%02d%02d:%s:%s", 0, tm->tm_year % 100, tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec, resource, trial); i = toklen + extrarand; while (toklen < i) token[toklen++] = rand_char (); sha_init (&ctx1); sha_update (&ctx1, token, toklen); seq = token + toklen; i += 8; while (toklen < i) token[toklen++] = rand_char (); for (;;) { ctx = ctx1; // this "optimization" can help a lot for longer resource strings sha_update (&ctx, seq, 8); sha_final (&ctx); i = zprefix (ctx.digest[0]); if (i >= collisions) break; s = seq; do { *s = nextenc [*s]; } while (*s++ == 'a'); } RETVAL = newSVpvn (token, toklen); OUTPUT: RETVAL int _prefixlen (SV *tok) CODE: STRLEN toklen; char *token = SvPV (tok, toklen); SHA_INFO ctx; sha_init (&ctx); sha_update (&ctx, token, toklen); sha_final (&ctx); RETVAL = zprefix (ctx.digest[0]); OUTPUT: RETVAL