| 1 |
#include "EXTERN.h" |
| 2 |
#include "perl.h" |
| 3 |
#include "XSUB.h" |
| 4 |
|
| 5 |
#include <time.h> |
| 6 |
#include <stdlib.h> |
| 7 |
#include <stdint.h> |
| 8 |
|
| 9 |
#include "perlmulticore.h" |
| 10 |
|
| 11 |
/* NIST Secure Hash Algorithm */ |
| 12 |
/* heavily modified by Uwe Hollerbach <uh@alumni.caltech edu> */ |
| 13 |
/* from Peter C. Gutmann's implementation as found in */ |
| 14 |
/* Applied Cryptography by Bruce Schneier */ |
| 15 |
/* Further modifications to include the "UNRAVEL" stuff, below */ |
| 16 |
|
| 17 |
/* This code is in the public domain */ |
| 18 |
|
| 19 |
/* pcg: I was tempted to just rip this code off, after all, if you don't |
| 20 |
* demand anything I am inclined not to give anything. *Sigh* something |
| 21 |
* kept me from doing it, so here's the truth: I took this code from the |
| 22 |
* SHA1 perl module, since it looked reasonably well-crafted. I modified |
| 23 |
* it here and there, though. |
| 24 |
*/ |
| 25 |
|
| 26 |
/* |
| 27 |
* we have lots of micro-optimizations here, this is just for toying |
| 28 |
* around... |
| 29 |
*/ |
| 30 |
|
| 31 |
/* don't expect _too_ much from compilers for now. */ |
| 32 |
#if __GNUC__ > 2 |
| 33 |
# define restrict __restrict__ |
| 34 |
# define inline __inline__ |
| 35 |
# ifdef __i386 |
| 36 |
# define GCCX86ASM 1 |
| 37 |
# endif |
| 38 |
#elif __STDC_VERSION__ < 199900 |
| 39 |
# define restrict |
| 40 |
# define inline |
| 41 |
#endif |
| 42 |
|
| 43 |
#if __GNUC__ < 2 |
| 44 |
# define __attribute__(x) |
| 45 |
#endif |
| 46 |
|
| 47 |
#ifdef __i386 |
| 48 |
# define a_regparm(n) __attribute__((__regparm__(n))) |
| 49 |
#else |
| 50 |
# define a_regparm(n) |
| 51 |
#endif |
| 52 |
|
| 53 |
#define a_const __attribute__((__const__)) |
| 54 |
|
| 55 |
/* Useful defines & typedefs */ |
| 56 |
|
| 57 |
#if defined(U64TYPE) && (defined(USE_64_BIT_INT) || ((BYTEORDER != 0x1234) && (BYTEORDER != 0x4321))) |
| 58 |
typedef U64TYPE XULONG; |
| 59 |
# if BYTEORDER == 0x1234 |
| 60 |
# undef BYTEORDER |
| 61 |
# define BYTEORDER 0x12345678 |
| 62 |
# elif BYTEORDER == 0x4321 |
| 63 |
# undef BYTEORDER |
| 64 |
# define BYTEORDER 0x87654321 |
| 65 |
# endif |
| 66 |
#else |
| 67 |
typedef uint_fast32_t XULONG; /* 32-or-more-bit quantity */ |
| 68 |
#endif |
| 69 |
|
| 70 |
#if GCCX86ASM |
| 71 |
# define zprefix(n) ({ int _r; __asm__ ("bsrl %1, %0" : "=r" (_r) : "r" (n)); 31 - _r ; }) |
| 72 |
#elif __GNUC__ > 2 && __GNUC_MINOR__ > 3 |
| 73 |
# define zprefix(n) (__extension__ ({ uint32_t n__ = (n); n ? __builtin_clz (n) : 32; })) |
| 74 |
#else |
| 75 |
static int a_const zprefix (U32 n) |
| 76 |
{ |
| 77 |
static char zp[256] = |
| 78 |
{ |
| 79 |
8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4, |
| 80 |
3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, |
| 81 |
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
| 82 |
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, |
| 83 |
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 84 |
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 85 |
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 86 |
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
| 87 |
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 88 |
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 89 |
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 90 |
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 91 |
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 92 |
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 93 |
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 94 |
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, |
| 95 |
}; |
| 96 |
|
| 97 |
return |
| 98 |
n > 0xffffff ? zp[n >> 24] |
| 99 |
: n > 0xffff ? 8 + zp[n >> 16] |
| 100 |
: n > 0xff ? 16 + zp[n >> 8] |
| 101 |
: 24 + zp[n]; |
| 102 |
} |
| 103 |
#endif |
| 104 |
|
| 105 |
#define SHA_BLOCKSIZE 64 |
| 106 |
#define SHA_DIGESTSIZE 20 |
| 107 |
|
| 108 |
typedef struct { |
| 109 |
U32 digest[5]; /* message digest */ |
| 110 |
U32 count; /* 32-bit bit count */ |
| 111 |
int local; /* unprocessed amount in data */ |
| 112 |
U8 data[SHA_BLOCKSIZE]; /* SHA data buffer */ |
| 113 |
} SHA_INFO; |
| 114 |
|
| 115 |
|
| 116 |
/* SHA f()-functions */ |
| 117 |
#define f1(x,y,z) ((x & y) | (~x & z)) |
| 118 |
#define f2(x,y,z) (x ^ y ^ z) |
| 119 |
#define f3(x,y,z) ((x & y) | (x & z) | (y & z)) |
| 120 |
#define f4(x,y,z) (x ^ y ^ z) |
| 121 |
|
| 122 |
/* SHA constants */ |
| 123 |
#define CONST1 0x5a827999L |
| 124 |
#define CONST2 0x6ed9eba1L |
| 125 |
#define CONST3 0x8f1bbcdcL |
| 126 |
#define CONST4 0xca62c1d6L |
| 127 |
|
| 128 |
/* truncate to 32 bits -- should be a null op on 32-bit machines */ |
| 129 |
#define T32(x) ((x) & 0xffffffffL) |
| 130 |
|
| 131 |
/* 32-bit rotate */ |
| 132 |
#define R32(x,n) T32(((x << n) | (x >> (32 - n)))) |
| 133 |
|
| 134 |
/* specific cases, for when the overall rotation is unraveled */ |
| 135 |
#define FA(n) \ |
| 136 |
T = T32(R32(A,5) + f##n(B,C,D) + E + *WP++ + CONST##n); B = R32(B,30) |
| 137 |
|
| 138 |
#define FB(n) \ |
| 139 |
E = T32(R32(T,5) + f##n(A,B,C) + D + *WP++ + CONST##n); A = R32(A,30) |
| 140 |
|
| 141 |
#define FC(n) \ |
| 142 |
D = T32(R32(E,5) + f##n(T,A,B) + C + *WP++ + CONST##n); T = R32(T,30) |
| 143 |
|
| 144 |
#define FD(n) \ |
| 145 |
C = T32(R32(D,5) + f##n(E,T,A) + B + *WP++ + CONST##n); E = R32(E,30) |
| 146 |
|
| 147 |
#define FE(n) \ |
| 148 |
B = T32(R32(C,5) + f##n(D,E,T) + A + *WP++ + CONST##n); D = R32(D,30) |
| 149 |
|
| 150 |
#define FT(n) \ |
| 151 |
A = T32(R32(B,5) + f##n(C,D,E) + T + *WP++ + CONST##n); C = R32(C,30) |
| 152 |
|
| 153 |
static void a_regparm(1) sha_transform(SHA_INFO *restrict sha_info) |
| 154 |
{ |
| 155 |
int i; |
| 156 |
U8 *restrict dp; |
| 157 |
U32 A, B, C, D, E, W[80], *restrict WP; |
| 158 |
XULONG T; |
| 159 |
|
| 160 |
dp = sha_info->data; |
| 161 |
|
| 162 |
#if BYTEORDER == 0x1234 |
| 163 |
assert(sizeof(XULONG) == 4); |
| 164 |
# ifdef HAS_NTOHL |
| 165 |
for (i = 0; i < 16; ++i) { |
| 166 |
T = *((XULONG *) dp); |
| 167 |
dp += 4; |
| 168 |
W[i] = ntohl (T); |
| 169 |
} |
| 170 |
# else |
| 171 |
for (i = 0; i < 16; ++i) { |
| 172 |
T = *((XULONG *) dp); |
| 173 |
dp += 4; |
| 174 |
W[i] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) | |
| 175 |
((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff); |
| 176 |
} |
| 177 |
# endif |
| 178 |
#elif BYTEORDER == 0x4321 |
| 179 |
assert(sizeof(XULONG) == 4); |
| 180 |
for (i = 0; i < 16; ++i) { |
| 181 |
T = *((XULONG *) dp); |
| 182 |
dp += 4; |
| 183 |
W[i] = T32(T); |
| 184 |
} |
| 185 |
#elif BYTEORDER == 0x12345678 |
| 186 |
assert(sizeof(XULONG) == 8); |
| 187 |
for (i = 0; i < 16; i += 2) { |
| 188 |
T = *((XULONG *) dp); |
| 189 |
dp += 8; |
| 190 |
W[i] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) | |
| 191 |
((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff); |
| 192 |
T >>= 32; |
| 193 |
W[i+1] = ((T << 24) & 0xff000000) | ((T << 8) & 0x00ff0000) | |
| 194 |
((T >> 8) & 0x0000ff00) | ((T >> 24) & 0x000000ff); |
| 195 |
} |
| 196 |
#elif BYTEORDER == 0x87654321 |
| 197 |
assert(sizeof(XULONG) == 8); |
| 198 |
for (i = 0; i < 16; i += 2) { |
| 199 |
T = *((XULONG *) dp); |
| 200 |
dp += 8; |
| 201 |
W[i] = T32(T >> 32); |
| 202 |
W[i+1] = T32(T); |
| 203 |
} |
| 204 |
#else |
| 205 |
#error Unknown byte order -- you need to add code here |
| 206 |
#endif |
| 207 |
|
| 208 |
for (i = 16; i < 80; ++i) |
| 209 |
{ |
| 210 |
T = W[i-3] ^ W[i-8] ^ W[i-14] ^ W[i-16]; |
| 211 |
W[i] = R32(T,1); |
| 212 |
} |
| 213 |
|
| 214 |
A = sha_info->digest[0]; |
| 215 |
B = sha_info->digest[1]; |
| 216 |
C = sha_info->digest[2]; |
| 217 |
D = sha_info->digest[3]; |
| 218 |
E = sha_info->digest[4]; |
| 219 |
|
| 220 |
WP = W; |
| 221 |
FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); FC(1); FD(1); |
| 222 |
FE(1); FT(1); FA(1); FB(1); FC(1); FD(1); FE(1); FT(1); FA(1); FB(1); |
| 223 |
FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); FE(2); FT(2); |
| 224 |
FA(2); FB(2); FC(2); FD(2); FE(2); FT(2); FA(2); FB(2); FC(2); FD(2); |
| 225 |
FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); FA(3); FB(3); |
| 226 |
FC(3); FD(3); FE(3); FT(3); FA(3); FB(3); FC(3); FD(3); FE(3); FT(3); |
| 227 |
FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); FC(4); FD(4); |
| 228 |
FE(4); FT(4); FA(4); FB(4); FC(4); FD(4); FE(4); FT(4); FA(4); FB(4); |
| 229 |
|
| 230 |
sha_info->digest[0] = T32(sha_info->digest[0] + E); |
| 231 |
sha_info->digest[1] = T32(sha_info->digest[1] + T); |
| 232 |
sha_info->digest[2] = T32(sha_info->digest[2] + A); |
| 233 |
sha_info->digest[3] = T32(sha_info->digest[3] + B); |
| 234 |
sha_info->digest[4] = T32(sha_info->digest[4] + C); |
| 235 |
} |
| 236 |
|
| 237 |
/* initialize the SHA digest */ |
| 238 |
|
| 239 |
static void sha_init(SHA_INFO *restrict sha_info) |
| 240 |
{ |
| 241 |
sha_info->digest[0] = 0x67452301L; |
| 242 |
sha_info->digest[1] = 0xefcdab89L; |
| 243 |
sha_info->digest[2] = 0x98badcfeL; |
| 244 |
sha_info->digest[3] = 0x10325476L; |
| 245 |
sha_info->digest[4] = 0xc3d2e1f0L; |
| 246 |
sha_info->count = 0L; |
| 247 |
sha_info->local = 0; |
| 248 |
} |
| 249 |
|
| 250 |
/* update the SHA digest */ |
| 251 |
|
| 252 |
static void sha_update(SHA_INFO *restrict sha_info, U8 *restrict buffer, int count) |
| 253 |
{ |
| 254 |
int i; |
| 255 |
|
| 256 |
sha_info->count += count; |
| 257 |
if (sha_info->local) { |
| 258 |
i = SHA_BLOCKSIZE - sha_info->local; |
| 259 |
if (i > count) { |
| 260 |
i = count; |
| 261 |
} |
| 262 |
memcpy(((U8 *) sha_info->data) + sha_info->local, buffer, i); |
| 263 |
count -= i; |
| 264 |
buffer += i; |
| 265 |
sha_info->local += i; |
| 266 |
if (sha_info->local == SHA_BLOCKSIZE) { |
| 267 |
sha_transform(sha_info); |
| 268 |
} else { |
| 269 |
return; |
| 270 |
} |
| 271 |
} |
| 272 |
while (count >= SHA_BLOCKSIZE) { |
| 273 |
memcpy(sha_info->data, buffer, SHA_BLOCKSIZE); |
| 274 |
buffer += SHA_BLOCKSIZE; |
| 275 |
count -= SHA_BLOCKSIZE; |
| 276 |
sha_transform(sha_info); |
| 277 |
} |
| 278 |
memcpy(sha_info->data, buffer, count); |
| 279 |
sha_info->local = count; |
| 280 |
} |
| 281 |
|
| 282 |
/* finish computing the SHA digest */ |
| 283 |
static int sha_final(SHA_INFO *sha_info) |
| 284 |
{ |
| 285 |
int count = sha_info->count; |
| 286 |
int local = sha_info->local; |
| 287 |
|
| 288 |
sha_info->data[local] = 0x80; |
| 289 |
|
| 290 |
if (sha_info->local >= SHA_BLOCKSIZE - 8) { |
| 291 |
memset(sha_info->data + local + 1, 0, SHA_BLOCKSIZE - 1 - local); |
| 292 |
sha_transform(sha_info); |
| 293 |
memset(sha_info->data, 0, SHA_BLOCKSIZE - 2); |
| 294 |
} else { |
| 295 |
memset(sha_info->data + local + 1, 0, SHA_BLOCKSIZE - 3 - local); |
| 296 |
} |
| 297 |
|
| 298 |
sha_info->data[62] = count >> 5; |
| 299 |
sha_info->data[63] = count << 3; |
| 300 |
|
| 301 |
sha_transform (sha_info); |
| 302 |
|
| 303 |
return sha_info->digest[0] |
| 304 |
? zprefix (sha_info->digest[0]) |
| 305 |
: zprefix (sha_info->digest[1]) + 32; |
| 306 |
} |
| 307 |
|
| 308 |
#define TRIALCHAR "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789!#$%&()*+,-./;<=>?@[]{}^_|" |
| 309 |
|
| 310 |
static char |
| 311 |
nextenc[256]; |
| 312 |
|
| 313 |
static char |
| 314 |
rand_char () |
| 315 |
{ |
| 316 |
return TRIALCHAR[(int)(Drand01 () * sizeof (TRIALCHAR))]; |
| 317 |
} |
| 318 |
|
| 319 |
typedef double (*NVTime)(void); |
| 320 |
|
| 321 |
static double |
| 322 |
simple_nvtime (void) |
| 323 |
{ |
| 324 |
return time (0); |
| 325 |
} |
| 326 |
|
| 327 |
static NVTime |
| 328 |
get_nvtime (void) |
| 329 |
{ |
| 330 |
SV **svp = hv_fetch (PL_modglobal, "Time::NVtime", 12, 0); |
| 331 |
|
| 332 |
if (svp && SvIOK(*svp)) |
| 333 |
return INT2PTR(NVTime, SvIV(*svp)); |
| 334 |
else |
| 335 |
return simple_nvtime; |
| 336 |
|
| 337 |
} |
| 338 |
|
| 339 |
MODULE = Digest::Hashcash PACKAGE = Digest::Hashcash |
| 340 |
|
| 341 |
BOOT: |
| 342 |
{ |
| 343 |
int i; |
| 344 |
|
| 345 |
for (i = 0; i < sizeof (TRIALCHAR); i++) |
| 346 |
nextenc[TRIALCHAR[i]] = TRIALCHAR[(i + 1) % sizeof (TRIALCHAR)]; |
| 347 |
} |
| 348 |
|
| 349 |
PROTOTYPES: ENABLE |
| 350 |
|
| 351 |
# could be improved quite a bit in accuracy |
| 352 |
NV |
| 353 |
_estimate_rounds () |
| 354 |
CODE: |
| 355 |
{ |
| 356 |
char data[40]; |
| 357 |
NVTime nvtime = get_nvtime (); |
| 358 |
NV t1, t2, t; |
| 359 |
int count = 0; |
| 360 |
SHA_INFO ctx; |
| 361 |
|
| 362 |
t = nvtime (); |
| 363 |
do { |
| 364 |
t1 = nvtime (); |
| 365 |
} while (t == t1); |
| 366 |
|
| 367 |
t = t2 = nvtime (); |
| 368 |
do { |
| 369 |
volatile int i; |
| 370 |
sha_init (&ctx); |
| 371 |
sha_update (&ctx, data, sizeof (data)); |
| 372 |
i = sha_final (&ctx); |
| 373 |
|
| 374 |
if (!(++count & 1023)) |
| 375 |
t2 = nvtime (); |
| 376 |
|
| 377 |
} while (t == t2); |
| 378 |
|
| 379 |
RETVAL = (NV)count / (t2 - t1); |
| 380 |
} |
| 381 |
OUTPUT: |
| 382 |
RETVAL |
| 383 |
|
| 384 |
SV * |
| 385 |
_gentoken (int size, IV timestamp, char *resource, char *trial = "", int extrarand = 0) |
| 386 |
CODE: |
| 387 |
{ |
| 388 |
SHA_INFO ctx1, ctx; |
| 389 |
char *token, *seq, *s; |
| 390 |
int toklen, i; |
| 391 |
time_t tstamp = timestamp ? timestamp : time (0); |
| 392 |
struct tm *tm = gmtime (&tstamp); |
| 393 |
|
| 394 |
New (0, token, |
| 395 |
1 + 1 // version |
| 396 |
+ 12 + 1 // time field sans century |
| 397 |
+ strlen (resource) + 1 // ressource |
| 398 |
+ strlen (trial) + extrarand + 8 + 1 // trial |
| 399 |
+ 1, |
| 400 |
char); |
| 401 |
|
| 402 |
if (!token) |
| 403 |
croak ("out of memory"); |
| 404 |
|
| 405 |
if (size > 64) |
| 406 |
croak ("size must be <= 64 in this implementation\n"); |
| 407 |
|
| 408 |
toklen = sprintf (token, "%d:%02d%02d%02d%02d%02d%02d:%s:%s", |
| 409 |
0, tm->tm_year % 100, tm->tm_mon + 1, tm->tm_mday, |
| 410 |
tm->tm_hour, tm->tm_min, tm->tm_sec, |
| 411 |
resource, trial); |
| 412 |
|
| 413 |
if (toklen > 8000) |
| 414 |
croak ("token length must be <= 8000 in this implementation\n"); |
| 415 |
|
| 416 |
perlinterp_release (); |
| 417 |
|
| 418 |
i = toklen + extrarand; |
| 419 |
while (toklen < i) |
| 420 |
token[toklen++] = rand_char (); |
| 421 |
|
| 422 |
sha_init (&ctx1); |
| 423 |
sha_update (&ctx1, token, toklen); |
| 424 |
|
| 425 |
seq = token + toklen; |
| 426 |
i += 8; |
| 427 |
while (toklen < i) |
| 428 |
token[toklen++] = rand_char (); |
| 429 |
|
| 430 |
for (;;) |
| 431 |
{ |
| 432 |
ctx = ctx1; // this "optimization" can help a lot for longer resource strings |
| 433 |
sha_update (&ctx, seq, 8); |
| 434 |
i = sha_final (&ctx); |
| 435 |
|
| 436 |
if (i >= size) |
| 437 |
break; |
| 438 |
|
| 439 |
s = seq; |
| 440 |
do { |
| 441 |
*s = nextenc [*s]; |
| 442 |
} while (*s++ == 'a'); |
| 443 |
} |
| 444 |
|
| 445 |
perlinterp_acquire (); |
| 446 |
|
| 447 |
RETVAL = newSVpvn (token, toklen); |
| 448 |
} |
| 449 |
OUTPUT: |
| 450 |
RETVAL |
| 451 |
|
| 452 |
int |
| 453 |
_prefixlen (SV *tok) |
| 454 |
CODE: |
| 455 |
{ |
| 456 |
STRLEN toklen; |
| 457 |
char *token = SvPV (tok, toklen); |
| 458 |
SHA_INFO ctx; |
| 459 |
|
| 460 |
sha_init (&ctx); |
| 461 |
sha_update (&ctx, token, toklen); |
| 462 |
RETVAL = sha_final (&ctx); |
| 463 |
} |
| 464 |
OUTPUT: |
| 465 |
RETVAL |
| 466 |
|
| 467 |
|