ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.120
Committed: Sun Dec 2 21:51:36 2007 UTC (16 years, 6 months ago) by root
Branch: MAIN
CVS Tags: rel-2_6
Changes since 1.119: +52 -7 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3     IO::AIO - Asynchronous Input/Output
4    
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.6 aio_open "/etc/passwd", O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.118 # AnyEvent integration (EV, Event, Glib, Tk, urxvt, pureperl...)
32 root 1.42 open my $fh, "<&=" . IO::AIO::poll_fileno or die "$!";
33     my $w = AnyEvent->io (fh => $fh, poll => 'r', cb => sub { IO::AIO::poll_cb });
34    
35 root 1.118 # EV integration
36     my $w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
37    
38 root 1.56 # Event integration
39 root 1.6 Event->io (fd => IO::AIO::poll_fileno,
40 root 1.7 poll => 'r',
41 root 1.6 cb => \&IO::AIO::poll_cb);
42    
43 root 1.56 # Glib/Gtk2 integration
44 root 1.6 add_watch Glib::IO IO::AIO::poll_fileno,
45 root 1.22 in => sub { IO::AIO::poll_cb; 1 };
46 root 1.6
47 root 1.56 # Tk integration
48 root 1.6 Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
49     readable => \&IO::AIO::poll_cb);
50    
51 root 1.56 # Danga::Socket integration
52 root 1.11 Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
53     \&IO::AIO::poll_cb);
54    
55 root 1.1 =head1 DESCRIPTION
56    
57     This module implements asynchronous I/O using whatever means your
58 root 1.2 operating system supports.
59 root 1.1
60 root 1.85 Asynchronous means that operations that can normally block your program
61     (e.g. reading from disk) will be done asynchronously: the operation
62     will still block, but you can do something else in the meantime. This
63     is extremely useful for programs that need to stay interactive even
64     when doing heavy I/O (GUI programs, high performance network servers
65     etc.), but can also be used to easily do operations in parallel that are
66     normally done sequentially, e.g. stat'ing many files, which is much faster
67     on a RAID volume or over NFS when you do a number of stat operations
68     concurrently.
69    
70 root 1.108 While most of this works on all types of file descriptors (for
71     example sockets), using these functions on file descriptors that
72     support nonblocking operation (again, sockets, pipes etc.) is very
73     inefficient. Use an event loop for that (such as the L<Event|Event>
74     module): IO::AIO will naturally fit into such an event loop itself.
75 root 1.85
76 root 1.72 In this version, a number of threads are started that execute your
77     requests and signal their completion. You don't need thread support
78     in perl, and the threads created by this module will not be visible
79     to perl. In the future, this module might make use of the native aio
80     functions available on many operating systems. However, they are often
81 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
82 root 1.72 files currently, for example), and they would only support aio_read and
83     aio_write, so the remaining functionality would have to be implemented
84     using threads anyway.
85    
86 root 1.108 Although the module will work in the presence of other (Perl-) threads,
87     it is currently not reentrant in any way, so use appropriate locking
88     yourself, always call C<poll_cb> from within the same thread, or never
89     call C<poll_cb> (or other C<aio_> functions) recursively.
90 root 1.72
91 root 1.86 =head2 EXAMPLE
92    
93     This is a simple example that uses the Event module and loads
94     F</etc/passwd> asynchronously:
95    
96     use Fcntl;
97     use Event;
98     use IO::AIO;
99    
100     # register the IO::AIO callback with Event
101     Event->io (fd => IO::AIO::poll_fileno,
102     poll => 'r',
103     cb => \&IO::AIO::poll_cb);
104    
105     # queue the request to open /etc/passwd
106     aio_open "/etc/passwd", O_RDONLY, 0, sub {
107 root 1.94 my $fh = shift
108 root 1.86 or die "error while opening: $!";
109    
110     # stat'ing filehandles is generally non-blocking
111     my $size = -s $fh;
112    
113     # queue a request to read the file
114     my $contents;
115     aio_read $fh, 0, $size, $contents, 0, sub {
116     $_[0] == $size
117     or die "short read: $!";
118    
119     close $fh;
120    
121     # file contents now in $contents
122     print $contents;
123    
124     # exit event loop and program
125     Event::unloop;
126     };
127     };
128    
129     # possibly queue up other requests, or open GUI windows,
130     # check for sockets etc. etc.
131    
132     # process events as long as there are some:
133     Event::loop;
134    
135 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
136    
137     Every C<aio_*> function creates a request. which is a C data structure not
138     directly visible to Perl.
139    
140     If called in non-void context, every request function returns a Perl
141     object representing the request. In void context, nothing is returned,
142     which saves a bit of memory.
143    
144     The perl object is a fairly standard ref-to-hash object. The hash contents
145     are not used by IO::AIO so you are free to store anything you like in it.
146    
147     During their existance, aio requests travel through the following states,
148     in order:
149    
150     =over 4
151    
152     =item ready
153    
154     Immediately after a request is created it is put into the ready state,
155     waiting for a thread to execute it.
156    
157     =item execute
158    
159     A thread has accepted the request for processing and is currently
160     executing it (e.g. blocking in read).
161    
162     =item pending
163    
164     The request has been executed and is waiting for result processing.
165    
166     While request submission and execution is fully asynchronous, result
167     processing is not and relies on the perl interpreter calling C<poll_cb>
168     (or another function with the same effect).
169    
170     =item result
171    
172     The request results are processed synchronously by C<poll_cb>.
173    
174     The C<poll_cb> function will process all outstanding aio requests by
175     calling their callbacks, freeing memory associated with them and managing
176     any groups they are contained in.
177    
178     =item done
179    
180     Request has reached the end of its lifetime and holds no resources anymore
181     (except possibly for the Perl object, but its connection to the actual
182     aio request is severed and calling its methods will either do nothing or
183     result in a runtime error).
184 root 1.1
185 root 1.88 =back
186    
187 root 1.1 =cut
188    
189     package IO::AIO;
190    
191 root 1.117 use Carp ();
192    
193 root 1.23 no warnings;
194 root 1.51 use strict 'vars';
195 root 1.23
196 root 1.1 use base 'Exporter';
197    
198     BEGIN {
199 root 1.119 our $VERSION = '2.6';
200 root 1.1
201 root 1.120 our @AIO_REQ = qw(aio_sendfile aio_read aio_write aio_open aio_close
202     aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir
203     aio_scandir aio_symlink aio_readlink aio_sync aio_fsync
204     aio_fdatasync aio_pathsync aio_readahead
205     aio_rename aio_link aio_move aio_copy aio_group
206     aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
207     aio_chmod aio_utime aio_truncate);
208    
209 root 1.95 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice aio_block));
210 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
211 root 1.86 min_parallel max_parallel max_idle
212     nreqs nready npending nthreads
213     max_poll_time max_poll_reqs);
214 root 1.1
215 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
216    
217 root 1.1 require XSLoader;
218 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
219 root 1.1 }
220    
221 root 1.5 =head1 FUNCTIONS
222 root 1.1
223 root 1.87 =head2 AIO REQUEST FUNCTIONS
224 root 1.1
225 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
226     with the same name (sans C<aio_>). The arguments are similar or identical,
227 root 1.14 and they all accept an additional (and optional) C<$callback> argument
228     which must be a code reference. This code reference will get called with
229     the syscall return code (e.g. most syscalls return C<-1> on error, unlike
230     perl, which usually delivers "false") as it's sole argument when the given
231     syscall has been executed asynchronously.
232 root 1.1
233 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
234     internally until the request has finished.
235 root 1.1
236 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
237     further manipulation of those requests while they are in-flight.
238 root 1.52
239 root 1.28 The pathnames you pass to these routines I<must> be absolute and
240 root 1.87 encoded as octets. The reason for the former is that at the time the
241 root 1.28 request is being executed, the current working directory could have
242     changed. Alternatively, you can make sure that you never change the
243 root 1.87 current working directory anywhere in the program and then use relative
244     paths.
245 root 1.28
246 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
247     in filenames you got from outside (command line, readdir etc.) without
248     tinkering, b) are ASCII or ISO 8859-1, c) use the Encode module and encode
249 root 1.28 your pathnames to the locale (or other) encoding in effect in the user
250     environment, d) use Glib::filename_from_unicode on unicode filenames or e)
251 root 1.87 use something else to ensure your scalar has the correct contents.
252    
253     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
254     handles correctly wether it is set or not.
255 root 1.1
256 root 1.5 =over 4
257 root 1.1
258 root 1.80 =item $prev_pri = aioreq_pri [$pri]
259 root 1.68
260 root 1.80 Returns the priority value that would be used for the next request and, if
261     C<$pri> is given, sets the priority for the next aio request.
262 root 1.68
263 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
264     and C<4>, respectively. Requests with higher priority will be serviced
265     first.
266    
267     The priority will be reset to C<0> after each call to one of the C<aio_*>
268 root 1.68 functions.
269    
270 root 1.69 Example: open a file with low priority, then read something from it with
271     higher priority so the read request is serviced before other low priority
272     open requests (potentially spamming the cache):
273    
274     aioreq_pri -3;
275     aio_open ..., sub {
276     return unless $_[0];
277    
278     aioreq_pri -2;
279     aio_read $_[0], ..., sub {
280     ...
281     };
282     };
283    
284 root 1.106
285 root 1.69 =item aioreq_nice $pri_adjust
286    
287     Similar to C<aioreq_pri>, but subtracts the given value from the current
288 root 1.87 priority, so the effect is cumulative.
289 root 1.69
290 root 1.106
291 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
292 root 1.1
293 root 1.2 Asynchronously open or create a file and call the callback with a newly
294     created filehandle for the file.
295 root 1.1
296     The pathname passed to C<aio_open> must be absolute. See API NOTES, above,
297     for an explanation.
298    
299 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
300     list. They are the same as used by C<sysopen>.
301    
302     Likewise, C<$mode> specifies the mode of the newly created file, if it
303     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
304     except that it is mandatory (i.e. use C<0> if you don't create new files,
305 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
306     by the umask in effect then the request is being executed, so better never
307     change the umask.
308 root 1.1
309     Example:
310    
311     aio_open "/etc/passwd", O_RDONLY, 0, sub {
312 root 1.2 if ($_[0]) {
313     print "open successful, fh is $_[0]\n";
314 root 1.1 ...
315     } else {
316     die "open failed: $!\n";
317     }
318     };
319    
320 root 1.106
321 root 1.40 =item aio_close $fh, $callback->($status)
322 root 1.1
323 root 1.2 Asynchronously close a file and call the callback with the result
324 root 1.116 code.
325    
326 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
327     closing the file descriptor associated with the filehandle itself. Here is
328     what aio_close will try:
329    
330     1. dup()licate the fd
331     2. asynchronously close() the duplicated fd
332     3. dup()licate the fd once more
333     4. let perl close() the filehandle
334     5. asynchronously close the duplicated fd
335    
336     The idea is that the first close() flushes stuff to disk that closing an
337     fd will flush, so when perl closes the fd, nothing much will need to be
338     flushed. The second async. close() will then flush stuff to disk that
339     closing the last fd to the file will flush.
340    
341     Just FYI, SuSv3 has this to say on close:
342    
343     All outstanding record locks owned by the process on the file
344     associated with the file descriptor shall be removed.
345    
346     If fildes refers to a socket, close() shall cause the socket to be
347     destroyed. ... close() shall block for up to the current linger
348     interval until all data is transmitted.
349     [this actually sounds like a specification bug, but who knows]
350    
351     And at least Linux additionally actually flushes stuff on every close,
352     even when the file itself is still open.
353    
354     Sounds enourmously inefficient and complicated? Yes... please show me how
355     to nuke perl's fd out of existence...
356    
357     =cut
358    
359     sub aio_close($;$) {
360     aio_block {
361     my ($fh, $cb) = @_;
362    
363     my $pri = aioreq_pri;
364     my $grp = aio_group $cb;
365    
366     my $fd = fileno $fh;
367 root 1.20
368 root 1.117 defined $fd or Carp::croak "aio_close called with fd-less filehandle";
369    
370     # if the dups fail we will simply get EBADF
371     my $fd2 = _dup $fd;
372     aioreq_pri $pri;
373     add $grp _aio_close $fd2, sub {
374     my $fd2 = _dup $fd;
375     close $fh;
376     aioreq_pri $pri;
377     add $grp _aio_close $fd2, sub {
378     $grp->result ($_[0]);
379     };
380     };
381    
382     $grp
383     }
384     }
385 root 1.1
386 root 1.106
387 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
388 root 1.1
389 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
390 root 1.1
391 root 1.109 Reads or writes C<$length> bytes from the specified C<$fh> and C<$offset>
392     into the scalar given by C<$data> and offset C<$dataoffset> and calls the
393 root 1.1 callback without the actual number of bytes read (or -1 on error, just
394 root 1.109 like the syscall).
395    
396 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
397     be used (and updated), otherwise the file descriptor offset will not be
398     changed by these calls.
399 root 1.109
400 root 1.114 If C<$length> is undefined in C<aio_write>, use the remaining length of C<$data>.
401 root 1.109
402     If C<$dataoffset> is less than zero, it will be counted from the end of
403     C<$data>.
404 root 1.1
405 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
406 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
407     the necessary/optional hardware is installed).
408 root 1.31
409 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
410 root 1.1 offset C<0> within the scalar:
411    
412     aio_read $fh, 7, 15, $buffer, 0, sub {
413 root 1.9 $_[0] > 0 or die "read error: $!";
414     print "read $_[0] bytes: <$buffer>\n";
415 root 1.1 };
416    
417 root 1.106
418 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
419 root 1.35
420     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
421     reading at byte offset C<$in_offset>, and starts writing at the current
422     file offset of C<$out_fh>. Because of that, it is not safe to issue more
423     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
424     other.
425    
426     This call tries to make use of a native C<sendfile> syscall to provide
427     zero-copy operation. For this to work, C<$out_fh> should refer to a
428     socket, and C<$in_fh> should refer to mmap'able file.
429    
430     If the native sendfile call fails or is not implemented, it will be
431 root 1.36 emulated, so you can call C<aio_sendfile> on any type of filehandle
432     regardless of the limitations of the operating system.
433 root 1.35
434     Please note, however, that C<aio_sendfile> can read more bytes from
435     C<$in_fh> than are written, and there is no way to find out how many
436 root 1.36 bytes have been read from C<aio_sendfile> alone, as C<aio_sendfile> only
437     provides the number of bytes written to C<$out_fh>. Only if the result
438     value equals C<$length> one can assume that C<$length> bytes have been
439     read.
440 root 1.35
441 root 1.106
442 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
443 root 1.1
444 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
445 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
446     argument specifies the starting point from which data is to be read and
447     C<$length> specifies the number of bytes to be read. I/O is performed in
448     whole pages, so that offset is effectively rounded down to a page boundary
449     and bytes are read up to the next page boundary greater than or equal to
450 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
451 root 1.1 file. The current file offset of the file is left unchanged.
452    
453 root 1.26 If that syscall doesn't exist (likely if your OS isn't Linux) it will be
454     emulated by simply reading the data, which would have a similar effect.
455    
456 root 1.106
457 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
458 root 1.1
459 root 1.40 =item aio_lstat $fh, $callback->($status)
460 root 1.1
461     Works like perl's C<stat> or C<lstat> in void context. The callback will
462     be called after the stat and the results will be available using C<stat _>
463     or C<-s _> etc...
464    
465     The pathname passed to C<aio_stat> must be absolute. See API NOTES, above,
466     for an explanation.
467    
468     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
469     error when stat'ing a large file, the results will be silently truncated
470     unless perl itself is compiled with large file support.
471    
472     Example: Print the length of F</etc/passwd>:
473    
474     aio_stat "/etc/passwd", sub {
475     $_[0] and die "stat failed: $!";
476     print "size is ", -s _, "\n";
477     };
478    
479 root 1.106
480     =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
481    
482     Works like perl's C<utime> function (including the special case of $atime
483     and $mtime being undef). Fractional times are supported if the underlying
484     syscalls support them.
485    
486     When called with a pathname, uses utimes(2) if available, otherwise
487     utime(2). If called on a file descriptor, uses futimes(2) if available,
488     otherwise returns ENOSYS, so this is not portable.
489    
490     Examples:
491    
492 root 1.107 # set atime and mtime to current time (basically touch(1)):
493 root 1.106 aio_utime "path", undef, undef;
494     # set atime to current time and mtime to beginning of the epoch:
495     aio_utime "path", time, undef; # undef==0
496    
497    
498     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
499    
500     Works like perl's C<chown> function, except that C<undef> for either $uid
501     or $gid is being interpreted as "do not change" (but -1 can also be used).
502    
503     Examples:
504    
505     # same as "chown root path" in the shell:
506     aio_chown "path", 0, -1;
507     # same as above:
508     aio_chown "path", 0, undef;
509    
510    
511 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
512    
513     Works like truncate(2) or ftruncate(2).
514    
515    
516 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
517    
518     Works like perl's C<chmod> function.
519    
520    
521 root 1.40 =item aio_unlink $pathname, $callback->($status)
522 root 1.1
523     Asynchronously unlink (delete) a file and call the callback with the
524     result code.
525    
526 root 1.106
527 root 1.82 =item aio_mknod $path, $mode, $dev, $callback->($status)
528    
529 root 1.86 [EXPERIMENTAL]
530    
531 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
532    
533 root 1.86 The only (POSIX-) portable way of calling this function is:
534 root 1.83
535     aio_mknod $path, IO::AIO::S_IFIFO | $mode, 0, sub { ...
536 root 1.82
537 root 1.106
538 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
539    
540     Asynchronously create a new link to the existing object at C<$srcpath> at
541     the path C<$dstpath> and call the callback with the result code.
542    
543 root 1.106
544 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
545    
546     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
547     the path C<$dstpath> and call the callback with the result code.
548    
549 root 1.106
550 root 1.90 =item aio_readlink $path, $callback->($link)
551    
552     Asynchronously read the symlink specified by C<$path> and pass it to
553     the callback. If an error occurs, nothing or undef gets passed to the
554     callback.
555    
556 root 1.106
557 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
558    
559     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
560     rename(2) and call the callback with the result code.
561    
562 root 1.106
563 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
564    
565     Asynchronously mkdir (create) a directory and call the callback with
566     the result code. C<$mode> will be modified by the umask at the time the
567     request is executed, so do not change your umask.
568    
569 root 1.106
570 root 1.40 =item aio_rmdir $pathname, $callback->($status)
571 root 1.27
572     Asynchronously rmdir (delete) a directory and call the callback with the
573     result code.
574    
575 root 1.106
576 root 1.46 =item aio_readdir $pathname, $callback->($entries)
577 root 1.37
578     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
579     directory (i.e. opendir + readdir + closedir). The entries will not be
580     sorted, and will B<NOT> include the C<.> and C<..> entries.
581    
582     The callback a single argument which is either C<undef> or an array-ref
583     with the filenames.
584    
585 root 1.106
586 root 1.98 =item aio_load $path, $data, $callback->($status)
587    
588     This is a composite request that tries to fully load the given file into
589     memory. Status is the same as with aio_read.
590    
591     =cut
592    
593     sub aio_load($$;$) {
594     aio_block {
595     my ($path, undef, $cb) = @_;
596     my $data = \$_[1];
597    
598     my $pri = aioreq_pri;
599     my $grp = aio_group $cb;
600    
601     aioreq_pri $pri;
602     add $grp aio_open $path, O_RDONLY, 0, sub {
603 root 1.102 my $fh = shift
604 root 1.98 or return $grp->result (-1);
605    
606     aioreq_pri $pri;
607     add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
608     $grp->result ($_[0]);
609     };
610     };
611    
612     $grp
613     }
614     }
615    
616 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
617    
618     Try to copy the I<file> (directories not supported as either source or
619     destination) from C<$srcpath> to C<$dstpath> and call the callback with
620     the C<0> (error) or C<-1> ok.
621    
622     This is a composite request that it creates the destination file with
623     mode 0200 and copies the contents of the source file into it using
624     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
625     uid/gid, in that order.
626    
627     If an error occurs, the partial destination file will be unlinked, if
628     possible, except when setting atime, mtime, access mode and uid/gid, where
629     errors are being ignored.
630    
631     =cut
632    
633     sub aio_copy($$;$) {
634 root 1.95 aio_block {
635     my ($src, $dst, $cb) = @_;
636 root 1.82
637 root 1.95 my $pri = aioreq_pri;
638     my $grp = aio_group $cb;
639 root 1.82
640 root 1.95 aioreq_pri $pri;
641     add $grp aio_open $src, O_RDONLY, 0, sub {
642     if (my $src_fh = $_[0]) {
643     my @stat = stat $src_fh;
644    
645     aioreq_pri $pri;
646     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
647     if (my $dst_fh = $_[0]) {
648     aioreq_pri $pri;
649     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
650     if ($_[0] == $stat[7]) {
651     $grp->result (0);
652     close $src_fh;
653    
654     # those should not normally block. should. should.
655     utime $stat[8], $stat[9], $dst;
656     chmod $stat[2] & 07777, $dst_fh;
657     chown $stat[4], $stat[5], $dst_fh;
658 root 1.120
659     aioreq_pri $pri;
660     add $grp aio_close $dst_fh;
661 root 1.95 } else {
662     $grp->result (-1);
663     close $src_fh;
664     close $dst_fh;
665 root 1.82
666 root 1.95 aioreq $pri;
667     add $grp aio_unlink $dst;
668     }
669     };
670     } else {
671     $grp->result (-1);
672     }
673     },
674    
675     } else {
676     $grp->result (-1);
677     }
678     };
679 root 1.82
680 root 1.95 $grp
681     }
682 root 1.82 }
683    
684     =item aio_move $srcpath, $dstpath, $callback->($status)
685    
686     Try to move the I<file> (directories not supported as either source or
687     destination) from C<$srcpath> to C<$dstpath> and call the callback with
688     the C<0> (error) or C<-1> ok.
689    
690     This is a composite request that tries to rename(2) the file first. If
691     rename files with C<EXDEV>, it copies the file with C<aio_copy> and, if
692     that is successful, unlinking the C<$srcpath>.
693    
694     =cut
695    
696     sub aio_move($$;$) {
697 root 1.95 aio_block {
698     my ($src, $dst, $cb) = @_;
699 root 1.82
700 root 1.95 my $pri = aioreq_pri;
701     my $grp = aio_group $cb;
702 root 1.82
703 root 1.95 aioreq_pri $pri;
704     add $grp aio_rename $src, $dst, sub {
705     if ($_[0] && $! == EXDEV) {
706     aioreq_pri $pri;
707     add $grp aio_copy $src, $dst, sub {
708     $grp->result ($_[0]);
709    
710     if (!$_[0]) {
711     aioreq_pri $pri;
712     add $grp aio_unlink $src;
713     }
714     };
715     } else {
716 root 1.82 $grp->result ($_[0]);
717 root 1.95 }
718     };
719 root 1.82
720 root 1.95 $grp
721     }
722 root 1.82 }
723    
724 root 1.40 =item aio_scandir $path, $maxreq, $callback->($dirs, $nondirs)
725    
726 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
727 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
728     names, directories you can recurse into (directories), and ones you cannot
729     recurse into (everything else, including symlinks to directories).
730 root 1.52
731 root 1.61 C<aio_scandir> is a composite request that creates of many sub requests_
732     C<$maxreq> specifies the maximum number of outstanding aio requests that
733     this function generates. If it is C<< <= 0 >>, then a suitable default
734 root 1.81 will be chosen (currently 4).
735 root 1.40
736     On error, the callback is called without arguments, otherwise it receives
737     two array-refs with path-relative entry names.
738    
739     Example:
740    
741     aio_scandir $dir, 0, sub {
742     my ($dirs, $nondirs) = @_;
743     print "real directories: @$dirs\n";
744     print "everything else: @$nondirs\n";
745     };
746    
747     Implementation notes.
748    
749     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
750    
751     After reading the directory, the modification time, size etc. of the
752 root 1.52 directory before and after the readdir is checked, and if they match (and
753     isn't the current time), the link count will be used to decide how many
754     entries are directories (if >= 2). Otherwise, no knowledge of the number
755     of subdirectories will be assumed.
756    
757     Then entries will be sorted into likely directories (everything without
758     a non-initial dot currently) and likely non-directories (everything
759     else). Then every entry plus an appended C</.> will be C<stat>'ed,
760     likely directories first. If that succeeds, it assumes that the entry
761     is a directory or a symlink to directory (which will be checked
762     seperately). This is often faster than stat'ing the entry itself because
763     filesystems might detect the type of the entry without reading the inode
764     data (e.g. ext2fs filetype feature).
765    
766     If the known number of directories (link count - 2) has been reached, the
767     rest of the entries is assumed to be non-directories.
768    
769     This only works with certainty on POSIX (= UNIX) filesystems, which
770     fortunately are the vast majority of filesystems around.
771    
772     It will also likely work on non-POSIX filesystems with reduced efficiency
773     as those tend to return 0 or 1 as link counts, which disables the
774     directory counting heuristic.
775 root 1.40
776     =cut
777    
778 root 1.100 sub aio_scandir($$;$) {
779 root 1.95 aio_block {
780     my ($path, $maxreq, $cb) = @_;
781 root 1.40
782 root 1.95 my $pri = aioreq_pri;
783 root 1.80
784 root 1.95 my $grp = aio_group $cb;
785 root 1.55
786 root 1.95 $maxreq = 4 if $maxreq <= 0;
787 root 1.40
788 root 1.95 # stat once
789 root 1.80 aioreq_pri $pri;
790 root 1.95 add $grp aio_stat $path, sub {
791     return $grp->result () if $_[0];
792     my $now = time;
793     my $hash1 = join ":", (stat _)[0,1,3,7,9];
794 root 1.40
795 root 1.95 # read the directory entries
796 root 1.80 aioreq_pri $pri;
797 root 1.95 add $grp aio_readdir $path, sub {
798     my $entries = shift
799     or return $grp->result ();
800    
801     # stat the dir another time
802     aioreq_pri $pri;
803     add $grp aio_stat $path, sub {
804     my $hash2 = join ":", (stat _)[0,1,3,7,9];
805    
806     my $ndirs;
807    
808     # take the slow route if anything looks fishy
809     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
810     $ndirs = -1;
811     } else {
812     # if nlink == 2, we are finished
813     # on non-posix-fs's, we rely on nlink < 2
814     $ndirs = (stat _)[3] - 2
815     or return $grp->result ([], $entries);
816     }
817    
818     # sort into likely dirs and likely nondirs
819     # dirs == files without ".", short entries first
820     $entries = [map $_->[0],
821     sort { $b->[1] cmp $a->[1] }
822     map [$_, sprintf "%s%04d", (/.\./ ? "1" : "0"), length],
823     @$entries];
824 root 1.40
825 root 1.95 my (@dirs, @nondirs);
826 root 1.40
827 root 1.95 my $statgrp = add $grp aio_group sub {
828     $grp->result (\@dirs, \@nondirs);
829     };
830 root 1.40
831 root 1.95 limit $statgrp $maxreq;
832     feed $statgrp sub {
833     return unless @$entries;
834     my $entry = pop @$entries;
835    
836     aioreq_pri $pri;
837     add $statgrp aio_stat "$path/$entry/.", sub {
838     if ($_[0] < 0) {
839     push @nondirs, $entry;
840     } else {
841     # need to check for real directory
842     aioreq_pri $pri;
843     add $statgrp aio_lstat "$path/$entry", sub {
844     if (-d _) {
845     push @dirs, $entry;
846    
847     unless (--$ndirs) {
848     push @nondirs, @$entries;
849     feed $statgrp;
850     }
851     } else {
852     push @nondirs, $entry;
853 root 1.74 }
854 root 1.40 }
855     }
856 root 1.95 };
857 root 1.74 };
858 root 1.40 };
859     };
860     };
861 root 1.55
862 root 1.95 $grp
863     }
864 root 1.40 }
865    
866 root 1.99 =item aio_rmtree $path, $callback->($status)
867    
868 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
869     status of the final C<rmdir> only. This is a composite request that
870     uses C<aio_scandir> to recurse into and rmdir directories, and unlink
871     everything else.
872 root 1.99
873     =cut
874    
875     sub aio_rmtree;
876 root 1.100 sub aio_rmtree($;$) {
877 root 1.99 aio_block {
878     my ($path, $cb) = @_;
879    
880     my $pri = aioreq_pri;
881     my $grp = aio_group $cb;
882    
883     aioreq_pri $pri;
884     add $grp aio_scandir $path, 0, sub {
885     my ($dirs, $nondirs) = @_;
886    
887     my $dirgrp = aio_group sub {
888     add $grp aio_rmdir $path, sub {
889     $grp->result ($_[0]);
890     };
891     };
892    
893     (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
894     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
895    
896     add $grp $dirgrp;
897     };
898    
899     $grp
900     }
901     }
902    
903 root 1.119 =item aio_sync $callback->($status)
904    
905     Asynchronously call sync and call the callback when finished.
906    
907 root 1.40 =item aio_fsync $fh, $callback->($status)
908 root 1.1
909     Asynchronously call fsync on the given filehandle and call the callback
910     with the fsync result code.
911    
912 root 1.40 =item aio_fdatasync $fh, $callback->($status)
913 root 1.1
914     Asynchronously call fdatasync on the given filehandle and call the
915 root 1.26 callback with the fdatasync result code.
916    
917     If this call isn't available because your OS lacks it or it couldn't be
918     detected, it will be emulated by calling C<fsync> instead.
919 root 1.1
920 root 1.120 =item aio_pathsync $path, $callback->($status)
921    
922     This request tries to open, fsync and close the given path. This is a
923     composite request intended tosync directories after directory operations
924     (E.g. rename). This might not work on all operating systems or have any
925     specific effect, but usually it makes sure that directory changes get
926     written to disc. It works for anything that can be opened for read-only,
927     not just directories.
928    
929     Passes C<0> when everything went ok, and C<-1> on error.
930    
931     =cut
932    
933     sub aio_pathsync($;$) {
934     aio_block {
935     my ($path, $cb) = @_;
936    
937     my $pri = aioreq_pri;
938     my $grp = aio_group $cb;
939    
940     aioreq_pri $pri;
941     add $grp aio_open $path, O_RDONLY, 0, sub {
942     my ($fh) = @_;
943     if ($fh) {
944     aioreq_pri $pri;
945     add $grp aio_fsync $fh, sub {
946     $grp->result ($_[0]);
947    
948     aioreq_pri $pri;
949     add $grp aio_close $fh;
950     };
951     } else {
952     $grp->result (-1);
953     }
954     };
955    
956     $grp
957     }
958     }
959    
960 root 1.58 =item aio_group $callback->(...)
961 root 1.54
962 root 1.55 This is a very special aio request: Instead of doing something, it is a
963     container for other aio requests, which is useful if you want to bundle
964 root 1.71 many requests into a single, composite, request with a definite callback
965     and the ability to cancel the whole request with its subrequests.
966 root 1.55
967     Returns an object of class L<IO::AIO::GRP>. See its documentation below
968     for more info.
969    
970     Example:
971    
972     my $grp = aio_group sub {
973     print "all stats done\n";
974     };
975    
976     add $grp
977     (aio_stat ...),
978     (aio_stat ...),
979     ...;
980    
981 root 1.63 =item aio_nop $callback->()
982    
983     This is a special request - it does nothing in itself and is only used for
984     side effects, such as when you want to add a dummy request to a group so
985     that finishing the requests in the group depends on executing the given
986     code.
987    
988 root 1.64 While this request does nothing, it still goes through the execution
989     phase and still requires a worker thread. Thus, the callback will not
990     be executed immediately but only after other requests in the queue have
991     entered their execution phase. This can be used to measure request
992     latency.
993    
994 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
995 root 1.54
996     Mainly used for debugging and benchmarking, this aio request puts one of
997     the request workers to sleep for the given time.
998    
999 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1000 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1001     immense (it blocks a thread for a long time) so do not use this function
1002     except to put your application under artificial I/O pressure.
1003 root 1.56
1004 root 1.5 =back
1005    
1006 root 1.53 =head2 IO::AIO::REQ CLASS
1007 root 1.52
1008     All non-aggregate C<aio_*> functions return an object of this class when
1009     called in non-void context.
1010    
1011     =over 4
1012    
1013 root 1.65 =item cancel $req
1014 root 1.52
1015     Cancels the request, if possible. Has the effect of skipping execution
1016     when entering the B<execute> state and skipping calling the callback when
1017     entering the the B<result> state, but will leave the request otherwise
1018     untouched. That means that requests that currently execute will not be
1019     stopped and resources held by the request will not be freed prematurely.
1020    
1021 root 1.65 =item cb $req $callback->(...)
1022    
1023     Replace (or simply set) the callback registered to the request.
1024    
1025 root 1.52 =back
1026    
1027 root 1.55 =head2 IO::AIO::GRP CLASS
1028    
1029     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1030     objects of this class, too.
1031    
1032     A IO::AIO::GRP object is a special request that can contain multiple other
1033     aio requests.
1034    
1035     You create one by calling the C<aio_group> constructing function with a
1036     callback that will be called when all contained requests have entered the
1037     C<done> state:
1038    
1039     my $grp = aio_group sub {
1040     print "all requests are done\n";
1041     };
1042    
1043     You add requests by calling the C<add> method with one or more
1044     C<IO::AIO::REQ> objects:
1045    
1046     $grp->add (aio_unlink "...");
1047    
1048 root 1.58 add $grp aio_stat "...", sub {
1049     $_[0] or return $grp->result ("error");
1050    
1051     # add another request dynamically, if first succeeded
1052     add $grp aio_open "...", sub {
1053     $grp->result ("ok");
1054     };
1055     };
1056 root 1.55
1057     This makes it very easy to create composite requests (see the source of
1058     C<aio_move> for an application) that work and feel like simple requests.
1059    
1060 root 1.62 =over 4
1061    
1062     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1063 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1064    
1065 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1066 root 1.59 only the request itself, but also all requests it contains.
1067 root 1.55
1068 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1069 root 1.55
1070 root 1.62 =item * You must not add requests to a group from within the group callback (or
1071 root 1.60 any later time).
1072    
1073 root 1.62 =back
1074    
1075 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1076     will finish very quickly. If they contain only requests that are in the
1077     C<done> state, they will also finish. Otherwise they will continue to
1078     exist.
1079    
1080 root 1.57 That means after creating a group you have some time to add requests. And
1081     in the callbacks of those requests, you can add further requests to the
1082     group. And only when all those requests have finished will the the group
1083     itself finish.
1084    
1085 root 1.55 =over 4
1086    
1087 root 1.65 =item add $grp ...
1088    
1089 root 1.55 =item $grp->add (...)
1090    
1091 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1092     be added, including other groups, as long as you do not create circular
1093     dependencies.
1094    
1095     Returns all its arguments.
1096 root 1.55
1097 root 1.74 =item $grp->cancel_subs
1098    
1099     Cancel all subrequests and clears any feeder, but not the group request
1100     itself. Useful when you queued a lot of events but got a result early.
1101    
1102 root 1.58 =item $grp->result (...)
1103    
1104     Set the result value(s) that will be passed to the group callback when all
1105 root 1.120 subrequests have finished and set the groups errno to the current value
1106 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1107     no argument will be passed and errno is zero.
1108    
1109     =item $grp->errno ([$errno])
1110    
1111     Sets the group errno value to C<$errno>, or the current value of errno
1112     when the argument is missing.
1113    
1114     Every aio request has an associated errno value that is restored when
1115     the callback is invoked. This method lets you change this value from its
1116     default (0).
1117    
1118     Calling C<result> will also set errno, so make sure you either set C<$!>
1119     before the call to C<result>, or call c<errno> after it.
1120 root 1.58
1121 root 1.65 =item feed $grp $callback->($grp)
1122 root 1.60
1123     Sets a feeder/generator on this group: every group can have an attached
1124     generator that generates requests if idle. The idea behind this is that,
1125     although you could just queue as many requests as you want in a group,
1126     this might starve other requests for a potentially long time. For
1127     example, C<aio_scandir> might generate hundreds of thousands C<aio_stat>
1128     requests, delaying any later requests for a long time.
1129    
1130     To avoid this, and allow incremental generation of requests, you can
1131     instead a group and set a feeder on it that generates those requests. The
1132 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1133 root 1.60 below) requests active in the group itself and is expected to queue more
1134     requests.
1135    
1136 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1137     not impose any limits).
1138 root 1.60
1139 root 1.65 If the feed does not queue more requests when called, it will be
1140 root 1.60 automatically removed from the group.
1141    
1142 root 1.65 If the feed limit is C<0>, it will be set to C<2> automatically.
1143 root 1.60
1144     Example:
1145    
1146     # stat all files in @files, but only ever use four aio requests concurrently:
1147    
1148     my $grp = aio_group sub { print "finished\n" };
1149 root 1.68 limit $grp 4;
1150 root 1.65 feed $grp sub {
1151 root 1.60 my $file = pop @files
1152     or return;
1153    
1154     add $grp aio_stat $file, sub { ... };
1155 root 1.65 };
1156 root 1.60
1157 root 1.68 =item limit $grp $num
1158 root 1.60
1159     Sets the feeder limit for the group: The feeder will be called whenever
1160     the group contains less than this many requests.
1161    
1162     Setting the limit to C<0> will pause the feeding process.
1163    
1164 root 1.55 =back
1165    
1166 root 1.5 =head2 SUPPORT FUNCTIONS
1167    
1168 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1169    
1170 root 1.5 =over 4
1171    
1172     =item $fileno = IO::AIO::poll_fileno
1173    
1174 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1175     polled for reading by some mechanism outside this module (e.g. Event or
1176     select, see below or the SYNOPSIS). If the pipe becomes readable you have
1177     to call C<poll_cb> to check the results.
1178 root 1.5
1179     See C<poll_cb> for an example.
1180    
1181     =item IO::AIO::poll_cb
1182    
1183 root 1.86 Process some outstanding events on the result pipe. You have to call this
1184 root 1.5 regularly. Returns the number of events processed. Returns immediately
1185 root 1.86 when no events are outstanding. The amount of events processed depends on
1186     the settings of C<IO::AIO::max_poll_req> and C<IO::AIO::max_poll_time>.
1187 root 1.5
1188 root 1.78 If not all requests were processed for whatever reason, the filehandle
1189     will still be ready when C<poll_cb> returns.
1190    
1191 root 1.20 Example: Install an Event watcher that automatically calls
1192     IO::AIO::poll_cb with high priority:
1193 root 1.5
1194     Event->io (fd => IO::AIO::poll_fileno,
1195     poll => 'r', async => 1,
1196     cb => \&IO::AIO::poll_cb);
1197    
1198 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1199    
1200     =item IO::AIO::max_poll_time $seconds
1201    
1202     These set the maximum number of requests (default C<0>, meaning infinity)
1203     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1204     the maximum amount of time (default C<0>, meaning infinity) spent in
1205     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1206     of time C<poll_cb> is allowed to use).
1207 root 1.78
1208 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1209     syscall per request processed, which is not normally a problem unless your
1210     callbacks are really really fast or your OS is really really slow (I am
1211     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1212    
1213 root 1.86 Setting these is useful if you want to ensure some level of
1214     interactiveness when perl is not fast enough to process all requests in
1215     time.
1216 root 1.78
1217 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
1218 root 1.78
1219     Example: Install an Event watcher that automatically calls
1220 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
1221 root 1.78 program get the CPU sometimes even under high AIO load.
1222    
1223 root 1.86 # try not to spend much more than 0.1s in poll_cb
1224     IO::AIO::max_poll_time 0.1;
1225    
1226     # use a low priority so other tasks have priority
1227 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
1228     poll => 'r', nice => 1,
1229 root 1.86 cb => &IO::AIO::poll_cb);
1230 root 1.78
1231 root 1.5 =item IO::AIO::poll_wait
1232    
1233 root 1.93 If there are any outstanding requests and none of them in the result
1234     phase, wait till the result filehandle becomes ready for reading (simply
1235     does a C<select> on the filehandle. This is useful if you want to
1236     synchronously wait for some requests to finish).
1237 root 1.5
1238     See C<nreqs> for an example.
1239    
1240 root 1.86 =item IO::AIO::poll
1241 root 1.5
1242 root 1.86 Waits until some requests have been handled.
1243 root 1.5
1244 root 1.92 Returns the number of requests processed, but is otherwise strictly
1245     equivalent to:
1246 root 1.5
1247     IO::AIO::poll_wait, IO::AIO::poll_cb
1248 root 1.80
1249 root 1.12 =item IO::AIO::flush
1250    
1251     Wait till all outstanding AIO requests have been handled.
1252    
1253 root 1.13 Strictly equivalent to:
1254    
1255     IO::AIO::poll_wait, IO::AIO::poll_cb
1256     while IO::AIO::nreqs;
1257    
1258 root 1.104 =back
1259    
1260 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
1261 root 1.13
1262 root 1.105 =over
1263    
1264 root 1.5 =item IO::AIO::min_parallel $nthreads
1265    
1266 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
1267     default is C<8>, which means eight asynchronous operations can execute
1268     concurrently at any one time (the number of outstanding requests,
1269     however, is unlimited).
1270 root 1.5
1271 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
1272 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
1273     create demand for a hundred threads, even if it turns out that everything
1274     is in the cache and could have been processed faster by a single thread.
1275 root 1.34
1276 root 1.61 It is recommended to keep the number of threads relatively low, as some
1277     Linux kernel versions will scale negatively with the number of threads
1278     (higher parallelity => MUCH higher latency). With current Linux 2.6
1279     versions, 4-32 threads should be fine.
1280 root 1.5
1281 root 1.34 Under most circumstances you don't need to call this function, as the
1282     module selects a default that is suitable for low to moderate load.
1283 root 1.5
1284     =item IO::AIO::max_parallel $nthreads
1285    
1286 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
1287     specified number of threads are currently running, this function kills
1288     them. This function blocks until the limit is reached.
1289    
1290     While C<$nthreads> are zero, aio requests get queued but not executed
1291     until the number of threads has been increased again.
1292 root 1.5
1293     This module automatically runs C<max_parallel 0> at program end, to ensure
1294     that all threads are killed and that there are no outstanding requests.
1295    
1296     Under normal circumstances you don't need to call this function.
1297    
1298 root 1.86 =item IO::AIO::max_idle $nthreads
1299    
1300     Limit the number of threads (default: 4) that are allowed to idle (i.e.,
1301     threads that did not get a request to process within 10 seconds). That
1302     means if a thread becomes idle while C<$nthreads> other threads are also
1303     idle, it will free its resources and exit.
1304    
1305     This is useful when you allow a large number of threads (e.g. 100 or 1000)
1306     to allow for extremely high load situations, but want to free resources
1307     under normal circumstances (1000 threads can easily consume 30MB of RAM).
1308    
1309     The default is probably ok in most situations, especially if thread
1310     creation is fast. If thread creation is very slow on your system you might
1311     want to use larger values.
1312    
1313 root 1.79 =item $oldmaxreqs = IO::AIO::max_outstanding $maxreqs
1314 root 1.5
1315 root 1.79 This is a very bad function to use in interactive programs because it
1316     blocks, and a bad way to reduce concurrency because it is inexact: Better
1317     use an C<aio_group> together with a feed callback.
1318    
1319     Sets the maximum number of outstanding requests to C<$nreqs>. If you
1320 root 1.113 do queue up more than this number of requests, the next call to the
1321 root 1.79 C<poll_cb> (and C<poll_some> and other functions calling C<poll_cb>)
1322     function will block until the limit is no longer exceeded.
1323    
1324     The default value is very large, so there is no practical limit on the
1325     number of outstanding requests.
1326    
1327     You can still queue as many requests as you want. Therefore,
1328     C<max_oustsanding> is mainly useful in simple scripts (with low values) or
1329     as a stop gap to shield against fatal memory overflow (with large values).
1330 root 1.5
1331 root 1.104 =back
1332    
1333 root 1.86 =head3 STATISTICAL INFORMATION
1334    
1335 root 1.104 =over
1336    
1337 root 1.86 =item IO::AIO::nreqs
1338    
1339     Returns the number of requests currently in the ready, execute or pending
1340     states (i.e. for which their callback has not been invoked yet).
1341    
1342     Example: wait till there are no outstanding requests anymore:
1343    
1344     IO::AIO::poll_wait, IO::AIO::poll_cb
1345     while IO::AIO::nreqs;
1346    
1347     =item IO::AIO::nready
1348    
1349     Returns the number of requests currently in the ready state (not yet
1350     executed).
1351    
1352     =item IO::AIO::npending
1353    
1354     Returns the number of requests currently in the pending state (executed,
1355     but not yet processed by poll_cb).
1356    
1357 root 1.5 =back
1358    
1359 root 1.1 =cut
1360    
1361 root 1.61 min_parallel 8;
1362 root 1.1
1363 root 1.95 END { flush }
1364 root 1.82
1365 root 1.1 1;
1366    
1367 root 1.27 =head2 FORK BEHAVIOUR
1368    
1369 root 1.52 This module should do "the right thing" when the process using it forks:
1370    
1371 root 1.34 Before the fork, IO::AIO enters a quiescent state where no requests
1372     can be added in other threads and no results will be processed. After
1373     the fork the parent simply leaves the quiescent state and continues
1374 root 1.72 request/result processing, while the child frees the request/result queue
1375     (so that the requests started before the fork will only be handled in the
1376     parent). Threads will be started on demand until the limit set in the
1377 root 1.34 parent process has been reached again.
1378 root 1.27
1379 root 1.52 In short: the parent will, after a short pause, continue as if fork had
1380     not been called, while the child will act as if IO::AIO has not been used
1381     yet.
1382    
1383 root 1.60 =head2 MEMORY USAGE
1384    
1385 root 1.72 Per-request usage:
1386    
1387     Each aio request uses - depending on your architecture - around 100-200
1388     bytes of memory. In addition, stat requests need a stat buffer (possibly
1389     a few hundred bytes), readdir requires a result buffer and so on. Perl
1390     scalars and other data passed into aio requests will also be locked and
1391     will consume memory till the request has entered the done state.
1392 root 1.60
1393 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
1394 root 1.60 problem.
1395    
1396 root 1.72 Per-thread usage:
1397    
1398     In the execution phase, some aio requests require more memory for
1399     temporary buffers, and each thread requires a stack and other data
1400     structures (usually around 16k-128k, depending on the OS).
1401    
1402     =head1 KNOWN BUGS
1403    
1404 root 1.73 Known bugs will be fixed in the next release.
1405 root 1.60
1406 root 1.1 =head1 SEE ALSO
1407    
1408 root 1.68 L<Coro::AIO>.
1409 root 1.1
1410     =head1 AUTHOR
1411    
1412     Marc Lehmann <schmorp@schmorp.de>
1413     http://home.schmorp.de/
1414    
1415     =cut
1416