ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.202
Committed: Tue Jul 5 14:02:15 2011 UTC (12 years, 11 months ago) by root
Branch: MAIN
Changes since 1.201: +2 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3     IO::AIO - Asynchronous Input/Output
4    
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.1 =head1 DESCRIPTION
32    
33     This module implements asynchronous I/O using whatever means your
34 root 1.156 operating system supports. It is implemented as an interface to C<libeio>
35     (L<http://software.schmorp.de/pkg/libeio.html>).
36 root 1.1
37 root 1.85 Asynchronous means that operations that can normally block your program
38     (e.g. reading from disk) will be done asynchronously: the operation
39     will still block, but you can do something else in the meantime. This
40     is extremely useful for programs that need to stay interactive even
41     when doing heavy I/O (GUI programs, high performance network servers
42     etc.), but can also be used to easily do operations in parallel that are
43     normally done sequentially, e.g. stat'ing many files, which is much faster
44     on a RAID volume or over NFS when you do a number of stat operations
45     concurrently.
46    
47 root 1.108 While most of this works on all types of file descriptors (for
48     example sockets), using these functions on file descriptors that
49 root 1.156 support nonblocking operation (again, sockets, pipes etc.) is
50     very inefficient. Use an event loop for that (such as the L<EV>
51 root 1.108 module): IO::AIO will naturally fit into such an event loop itself.
52 root 1.85
53 root 1.72 In this version, a number of threads are started that execute your
54     requests and signal their completion. You don't need thread support
55     in perl, and the threads created by this module will not be visible
56     to perl. In the future, this module might make use of the native aio
57     functions available on many operating systems. However, they are often
58 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
59 root 1.72 files currently, for example), and they would only support aio_read and
60     aio_write, so the remaining functionality would have to be implemented
61     using threads anyway.
62    
63 root 1.108 Although the module will work in the presence of other (Perl-) threads,
64     it is currently not reentrant in any way, so use appropriate locking
65     yourself, always call C<poll_cb> from within the same thread, or never
66     call C<poll_cb> (or other C<aio_> functions) recursively.
67 root 1.72
68 root 1.86 =head2 EXAMPLE
69    
70 root 1.156 This is a simple example that uses the EV module and loads
71 root 1.86 F</etc/passwd> asynchronously:
72    
73     use Fcntl;
74 root 1.156 use EV;
75 root 1.86 use IO::AIO;
76    
77 root 1.156 # register the IO::AIO callback with EV
78     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
79 root 1.86
80     # queue the request to open /etc/passwd
81 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
82 root 1.94 my $fh = shift
83 root 1.86 or die "error while opening: $!";
84    
85     # stat'ing filehandles is generally non-blocking
86     my $size = -s $fh;
87    
88     # queue a request to read the file
89     my $contents;
90     aio_read $fh, 0, $size, $contents, 0, sub {
91     $_[0] == $size
92     or die "short read: $!";
93    
94     close $fh;
95    
96     # file contents now in $contents
97     print $contents;
98    
99     # exit event loop and program
100 root 1.156 EV::unloop;
101 root 1.86 };
102     };
103    
104     # possibly queue up other requests, or open GUI windows,
105     # check for sockets etc. etc.
106    
107     # process events as long as there are some:
108 root 1.156 EV::loop;
109 root 1.86
110 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
111    
112     Every C<aio_*> function creates a request. which is a C data structure not
113     directly visible to Perl.
114    
115     If called in non-void context, every request function returns a Perl
116     object representing the request. In void context, nothing is returned,
117     which saves a bit of memory.
118    
119     The perl object is a fairly standard ref-to-hash object. The hash contents
120     are not used by IO::AIO so you are free to store anything you like in it.
121    
122     During their existance, aio requests travel through the following states,
123     in order:
124    
125     =over 4
126    
127     =item ready
128    
129     Immediately after a request is created it is put into the ready state,
130     waiting for a thread to execute it.
131    
132     =item execute
133    
134     A thread has accepted the request for processing and is currently
135     executing it (e.g. blocking in read).
136    
137     =item pending
138    
139     The request has been executed and is waiting for result processing.
140    
141     While request submission and execution is fully asynchronous, result
142     processing is not and relies on the perl interpreter calling C<poll_cb>
143     (or another function with the same effect).
144    
145     =item result
146    
147     The request results are processed synchronously by C<poll_cb>.
148    
149     The C<poll_cb> function will process all outstanding aio requests by
150     calling their callbacks, freeing memory associated with them and managing
151     any groups they are contained in.
152    
153     =item done
154    
155     Request has reached the end of its lifetime and holds no resources anymore
156     (except possibly for the Perl object, but its connection to the actual
157     aio request is severed and calling its methods will either do nothing or
158     result in a runtime error).
159 root 1.1
160 root 1.88 =back
161    
162 root 1.1 =cut
163    
164     package IO::AIO;
165    
166 root 1.117 use Carp ();
167    
168 root 1.161 use common::sense;
169 root 1.23
170 root 1.1 use base 'Exporter';
171    
172     BEGIN {
173 root 1.200 our $VERSION = '3.93';
174 root 1.1
175 root 1.120 our @AIO_REQ = qw(aio_sendfile aio_read aio_write aio_open aio_close
176 root 1.148 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
177 root 1.201 aio_scandir aio_symlink aio_readlink aio_realpath aio_sync aio_fsync
178 root 1.142 aio_fdatasync aio_sync_file_range aio_pathsync aio_readahead
179 root 1.120 aio_rename aio_link aio_move aio_copy aio_group
180     aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
181 root 1.170 aio_chmod aio_utime aio_truncate
182 root 1.182 aio_msync aio_mtouch aio_mlock aio_mlockall
183     aio_statvfs);
184 root 1.120
185 root 1.123 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice));
186 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
187 root 1.188 min_parallel max_parallel max_idle idle_timeout
188 root 1.86 nreqs nready npending nthreads
189 root 1.157 max_poll_time max_poll_reqs
190 root 1.182 sendfile fadvise madvise
191     mmap munmap munlock munlockall);
192 root 1.1
193 root 1.143 push @AIO_REQ, qw(aio_busy); # not exported
194    
195 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
196    
197 root 1.1 require XSLoader;
198 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
199 root 1.1 }
200    
201 root 1.5 =head1 FUNCTIONS
202 root 1.1
203 root 1.175 =head2 QUICK OVERVIEW
204    
205     This section simply lists the prototypes of the most important functions
206     for quick reference. See the following sections for function-by-function
207     documentation.
208    
209     aio_open $pathname, $flags, $mode, $callback->($fh)
210     aio_close $fh, $callback->($status)
211     aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
212     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
213     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
214     aio_readahead $fh,$offset,$length, $callback->($retval)
215     aio_stat $fh_or_path, $callback->($status)
216     aio_lstat $fh, $callback->($status)
217     aio_statvfs $fh_or_path, $callback->($statvfs)
218     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
219     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
220     aio_truncate $fh_or_path, $offset, $callback->($status)
221     aio_chmod $fh_or_path, $mode, $callback->($status)
222     aio_unlink $pathname, $callback->($status)
223     aio_mknod $path, $mode, $dev, $callback->($status)
224     aio_link $srcpath, $dstpath, $callback->($status)
225     aio_symlink $srcpath, $dstpath, $callback->($status)
226     aio_readlink $path, $callback->($link)
227 root 1.201 aio_realpath $path, $callback->($link)
228 root 1.175 aio_rename $srcpath, $dstpath, $callback->($status)
229     aio_mkdir $pathname, $mode, $callback->($status)
230     aio_rmdir $pathname, $callback->($status)
231     aio_readdir $pathname, $callback->($entries)
232     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
233     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
234     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
235     aio_load $path, $data, $callback->($status)
236     aio_copy $srcpath, $dstpath, $callback->($status)
237     aio_move $srcpath, $dstpath, $callback->($status)
238     aio_scandir $path, $maxreq, $callback->($dirs, $nondirs)
239     aio_rmtree $path, $callback->($status)
240     aio_sync $callback->($status)
241     aio_fsync $fh, $callback->($status)
242     aio_fdatasync $fh, $callback->($status)
243     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
244     aio_pathsync $path, $callback->($status)
245     aio_msync $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
246     aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
247 root 1.182 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
248     aio_mlockall $flags, $callback->($status)
249 root 1.175 aio_group $callback->(...)
250     aio_nop $callback->()
251    
252     $prev_pri = aioreq_pri [$pri]
253     aioreq_nice $pri_adjust
254    
255     IO::AIO::poll_wait
256     IO::AIO::poll_cb
257     IO::AIO::poll
258     IO::AIO::flush
259     IO::AIO::max_poll_reqs $nreqs
260     IO::AIO::max_poll_time $seconds
261     IO::AIO::min_parallel $nthreads
262     IO::AIO::max_parallel $nthreads
263     IO::AIO::max_idle $nthreads
264 root 1.188 IO::AIO::idle_timeout $seconds
265 root 1.175 IO::AIO::max_outstanding $maxreqs
266     IO::AIO::nreqs
267     IO::AIO::nready
268     IO::AIO::npending
269    
270     IO::AIO::sendfile $ofh, $ifh, $offset, $count
271     IO::AIO::fadvise $fh, $offset, $len, $advice
272 root 1.184 IO::AIO::madvise $scalar, $offset, $length, $advice
273     IO::AIO::mprotect $scalar, $offset, $length, $protect
274 root 1.182 IO::AIO::munlock $scalar, $offset = 0, $length = undef
275 root 1.175 IO::AIO::munlockall
276    
277 root 1.87 =head2 AIO REQUEST FUNCTIONS
278 root 1.1
279 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
280     with the same name (sans C<aio_>). The arguments are similar or identical,
281 root 1.14 and they all accept an additional (and optional) C<$callback> argument
282     which must be a code reference. This code reference will get called with
283     the syscall return code (e.g. most syscalls return C<-1> on error, unlike
284 root 1.136 perl, which usually delivers "false") as its sole argument after the given
285 root 1.14 syscall has been executed asynchronously.
286 root 1.1
287 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
288     internally until the request has finished.
289 root 1.1
290 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
291     further manipulation of those requests while they are in-flight.
292 root 1.52
293 root 1.28 The pathnames you pass to these routines I<must> be absolute and
294 root 1.87 encoded as octets. The reason for the former is that at the time the
295 root 1.28 request is being executed, the current working directory could have
296     changed. Alternatively, you can make sure that you never change the
297 root 1.87 current working directory anywhere in the program and then use relative
298     paths.
299 root 1.28
300 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
301     in filenames you got from outside (command line, readdir etc.) without
302     tinkering, b) are ASCII or ISO 8859-1, c) use the Encode module and encode
303 root 1.28 your pathnames to the locale (or other) encoding in effect in the user
304     environment, d) use Glib::filename_from_unicode on unicode filenames or e)
305 root 1.87 use something else to ensure your scalar has the correct contents.
306    
307     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
308 root 1.136 handles correctly whether it is set or not.
309 root 1.1
310 root 1.5 =over 4
311 root 1.1
312 root 1.80 =item $prev_pri = aioreq_pri [$pri]
313 root 1.68
314 root 1.80 Returns the priority value that would be used for the next request and, if
315     C<$pri> is given, sets the priority for the next aio request.
316 root 1.68
317 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
318     and C<4>, respectively. Requests with higher priority will be serviced
319     first.
320    
321     The priority will be reset to C<0> after each call to one of the C<aio_*>
322 root 1.68 functions.
323    
324 root 1.69 Example: open a file with low priority, then read something from it with
325     higher priority so the read request is serviced before other low priority
326     open requests (potentially spamming the cache):
327    
328     aioreq_pri -3;
329     aio_open ..., sub {
330     return unless $_[0];
331    
332     aioreq_pri -2;
333     aio_read $_[0], ..., sub {
334     ...
335     };
336     };
337    
338 root 1.106
339 root 1.69 =item aioreq_nice $pri_adjust
340    
341     Similar to C<aioreq_pri>, but subtracts the given value from the current
342 root 1.87 priority, so the effect is cumulative.
343 root 1.69
344 root 1.106
345 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
346 root 1.1
347 root 1.2 Asynchronously open or create a file and call the callback with a newly
348     created filehandle for the file.
349 root 1.1
350     The pathname passed to C<aio_open> must be absolute. See API NOTES, above,
351     for an explanation.
352    
353 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
354     list. They are the same as used by C<sysopen>.
355    
356     Likewise, C<$mode> specifies the mode of the newly created file, if it
357     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
358     except that it is mandatory (i.e. use C<0> if you don't create new files,
359 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
360     by the umask in effect then the request is being executed, so better never
361     change the umask.
362 root 1.1
363     Example:
364    
365 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
366 root 1.2 if ($_[0]) {
367     print "open successful, fh is $_[0]\n";
368 root 1.1 ...
369     } else {
370     die "open failed: $!\n";
371     }
372     };
373    
374 root 1.194 In addition to all the common open modes/flags (C<O_RDONLY>, C<O_WRONLY>,
375     C<O_RDWR>, C<O_CREAT>, C<O_TRUNC>, C<O_EXCL> and C<O_APPEND>), the
376     following POSIX and non-POSIX constants are available (missing ones on
377     your system are, as usual, C<0>):
378    
379     C<O_ASYNC>, C<O_DIRECT>, C<O_NOATIME>, C<O_CLOEXEC>, C<O_NOCTTY>, C<O_NOFOLLOW>,
380     C<O_NONBLOCK>, C<O_EXEC>, C<O_SEARCH>, C<O_DIRECTORY>, C<O_DSYNC>,
381     C<O_RSYNC>, C<O_SYNC> and C<O_TTY_INIT>.
382    
383 root 1.106
384 root 1.40 =item aio_close $fh, $callback->($status)
385 root 1.1
386 root 1.2 Asynchronously close a file and call the callback with the result
387 root 1.116 code.
388    
389 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
390 root 1.121 closing the file descriptor associated with the filehandle itself.
391 root 1.117
392 root 1.121 Therefore, C<aio_close> will not close the filehandle - instead it will
393     use dup2 to overwrite the file descriptor with the write-end of a pipe
394     (the pipe fd will be created on demand and will be cached).
395 root 1.117
396 root 1.121 Or in other words: the file descriptor will be closed, but it will not be
397     free for reuse until the perl filehandle is closed.
398 root 1.117
399     =cut
400    
401 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
402 root 1.1
403 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
404 root 1.1
405 root 1.145 Reads or writes C<$length> bytes from or to the specified C<$fh> and
406     C<$offset> into the scalar given by C<$data> and offset C<$dataoffset>
407     and calls the callback without the actual number of bytes read (or -1 on
408     error, just like the syscall).
409 root 1.109
410 root 1.146 C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
411     offset plus the actual number of bytes read.
412    
413 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
414     be used (and updated), otherwise the file descriptor offset will not be
415     changed by these calls.
416 root 1.109
417 root 1.145 If C<$length> is undefined in C<aio_write>, use the remaining length of
418     C<$data>.
419 root 1.109
420     If C<$dataoffset> is less than zero, it will be counted from the end of
421     C<$data>.
422 root 1.1
423 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
424 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
425     the necessary/optional hardware is installed).
426 root 1.31
427 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
428 root 1.1 offset C<0> within the scalar:
429    
430     aio_read $fh, 7, 15, $buffer, 0, sub {
431 root 1.9 $_[0] > 0 or die "read error: $!";
432     print "read $_[0] bytes: <$buffer>\n";
433 root 1.1 };
434    
435 root 1.106
436 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
437 root 1.35
438     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
439     reading at byte offset C<$in_offset>, and starts writing at the current
440     file offset of C<$out_fh>. Because of that, it is not safe to issue more
441     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
442 root 1.196 other. The same C<$in_fh> works fine though, as this function does not
443     move or use the file offset of C<$in_fh>.
444 root 1.35
445 root 1.185 Please note that C<aio_sendfile> can read more bytes from C<$in_fh> than
446 root 1.196 are written, and there is no way to find out how many more bytes have been
447     read from C<aio_sendfile> alone, as C<aio_sendfile> only provides the
448     number of bytes written to C<$out_fh>. Only if the result value equals
449     C<$length> one can assume that C<$length> bytes have been read.
450 root 1.185
451     Unlike with other C<aio_> functions, it makes a lot of sense to use
452     C<aio_sendfile> on non-blocking sockets, as long as one end (typically
453     the C<$in_fh>) is a file - the file I/O will then be asynchronous, while
454 root 1.196 the socket I/O will be non-blocking. Note, however, that you can run
455     into a trap where C<aio_sendfile> reads some data with readahead, then
456     fails to write all data, and when the socket is ready the next time, the
457     data in the cache is already lost, forcing C<aio_sendfile> to again hit
458     the disk. Explicit C<aio_read> + C<aio_write> let's you better control
459     resource usage.
460    
461     This call tries to make use of a native C<sendfile>-like syscall to
462     provide zero-copy operation. For this to work, C<$out_fh> should refer to
463     a socket, and C<$in_fh> should refer to an mmap'able file.
464 root 1.35
465 root 1.170 If a native sendfile cannot be found or it fails with C<ENOSYS>,
466 root 1.196 C<EINVAL>, C<ENOTSUP>, C<EOPNOTSUPP>, C<EAFNOSUPPORT>, C<EPROTOTYPE> or
467     C<ENOTSOCK>, it will be emulated, so you can call C<aio_sendfile> on any
468     type of filehandle regardless of the limitations of the operating system.
469    
470     As native sendfile syscalls (as practically any non-POSIX interface hacked
471     together in a hurry to improve benchmark numbers) tend to be rather buggy
472     on many systems, this implementation tries to work around some known bugs
473     in Linux and FreeBSD kernels (probably others, too), but that might fail,
474     so you really really should check the return value of C<aio_sendfile> -
475     fewre bytes than expected might have been transferred.
476 root 1.35
477 root 1.106
478 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
479 root 1.1
480 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
481 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
482     argument specifies the starting point from which data is to be read and
483     C<$length> specifies the number of bytes to be read. I/O is performed in
484     whole pages, so that offset is effectively rounded down to a page boundary
485     and bytes are read up to the next page boundary greater than or equal to
486 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
487 root 1.1 file. The current file offset of the file is left unchanged.
488    
489 root 1.26 If that syscall doesn't exist (likely if your OS isn't Linux) it will be
490     emulated by simply reading the data, which would have a similar effect.
491    
492 root 1.106
493 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
494 root 1.1
495 root 1.40 =item aio_lstat $fh, $callback->($status)
496 root 1.1
497     Works like perl's C<stat> or C<lstat> in void context. The callback will
498     be called after the stat and the results will be available using C<stat _>
499     or C<-s _> etc...
500    
501     The pathname passed to C<aio_stat> must be absolute. See API NOTES, above,
502     for an explanation.
503    
504     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
505     error when stat'ing a large file, the results will be silently truncated
506     unless perl itself is compiled with large file support.
507    
508 root 1.187 To help interpret the mode and dev/rdev stat values, IO::AIO offers the
509     following constants and functions (if not implemented, the constants will
510     be C<0> and the functions will either C<croak> or fall back on traditional
511     behaviour).
512    
513     C<S_IFMT>, C<S_IFIFO>, C<S_IFCHR>, C<S_IFBLK>, C<S_IFLNK>, C<S_IFREG>,
514     C<S_IFDIR>, C<S_IFWHT>, C<S_IFSOCK>, C<IO::AIO::major $dev_t>,
515     C<IO::AIO::minor $dev_t>, C<IO::AIO::makedev $major, $minor>.
516    
517 root 1.1 Example: Print the length of F</etc/passwd>:
518    
519     aio_stat "/etc/passwd", sub {
520     $_[0] and die "stat failed: $!";
521     print "size is ", -s _, "\n";
522     };
523    
524 root 1.106
525 root 1.175 =item aio_statvfs $fh_or_path, $callback->($statvfs)
526 root 1.172
527     Works like the POSIX C<statvfs> or C<fstatvfs> syscalls, depending on
528     whether a file handle or path was passed.
529    
530     On success, the callback is passed a hash reference with the following
531     members: C<bsize>, C<frsize>, C<blocks>, C<bfree>, C<bavail>, C<files>,
532     C<ffree>, C<favail>, C<fsid>, C<flag> and C<namemax>. On failure, C<undef>
533     is passed.
534    
535     The following POSIX IO::AIO::ST_* constants are defined: C<ST_RDONLY> and
536     C<ST_NOSUID>.
537    
538     The following non-POSIX IO::AIO::ST_* flag masks are defined to
539     their correct value when available, or to C<0> on systems that do
540     not support them: C<ST_NODEV>, C<ST_NOEXEC>, C<ST_SYNCHRONOUS>,
541     C<ST_MANDLOCK>, C<ST_WRITE>, C<ST_APPEND>, C<ST_IMMUTABLE>, C<ST_NOATIME>,
542     C<ST_NODIRATIME> and C<ST_RELATIME>.
543    
544     Example: stat C</wd> and dump out the data if successful.
545    
546     aio_statvfs "/wd", sub {
547     my $f = $_[0]
548     or die "statvfs: $!";
549    
550     use Data::Dumper;
551     say Dumper $f;
552     };
553    
554     # result:
555     {
556     bsize => 1024,
557     bfree => 4333064312,
558     blocks => 10253828096,
559     files => 2050765568,
560     flag => 4096,
561     favail => 2042092649,
562     bavail => 4333064312,
563     ffree => 2042092649,
564     namemax => 255,
565     frsize => 1024,
566     fsid => 1810
567     }
568    
569    
570 root 1.106 =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
571    
572     Works like perl's C<utime> function (including the special case of $atime
573     and $mtime being undef). Fractional times are supported if the underlying
574     syscalls support them.
575    
576     When called with a pathname, uses utimes(2) if available, otherwise
577     utime(2). If called on a file descriptor, uses futimes(2) if available,
578     otherwise returns ENOSYS, so this is not portable.
579    
580     Examples:
581    
582 root 1.107 # set atime and mtime to current time (basically touch(1)):
583 root 1.106 aio_utime "path", undef, undef;
584     # set atime to current time and mtime to beginning of the epoch:
585     aio_utime "path", time, undef; # undef==0
586    
587    
588     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
589    
590     Works like perl's C<chown> function, except that C<undef> for either $uid
591     or $gid is being interpreted as "do not change" (but -1 can also be used).
592    
593     Examples:
594    
595     # same as "chown root path" in the shell:
596     aio_chown "path", 0, -1;
597     # same as above:
598     aio_chown "path", 0, undef;
599    
600    
601 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
602    
603     Works like truncate(2) or ftruncate(2).
604    
605    
606 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
607    
608     Works like perl's C<chmod> function.
609    
610    
611 root 1.40 =item aio_unlink $pathname, $callback->($status)
612 root 1.1
613     Asynchronously unlink (delete) a file and call the callback with the
614     result code.
615    
616 root 1.106
617 root 1.82 =item aio_mknod $path, $mode, $dev, $callback->($status)
618    
619 root 1.86 [EXPERIMENTAL]
620    
621 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
622    
623 root 1.86 The only (POSIX-) portable way of calling this function is:
624 root 1.83
625     aio_mknod $path, IO::AIO::S_IFIFO | $mode, 0, sub { ...
626 root 1.82
627 root 1.187 See C<aio_stat> for info about some potentially helpful extra constants
628     and functions.
629 root 1.106
630 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
631    
632     Asynchronously create a new link to the existing object at C<$srcpath> at
633     the path C<$dstpath> and call the callback with the result code.
634    
635 root 1.106
636 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
637    
638     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
639     the path C<$dstpath> and call the callback with the result code.
640    
641 root 1.106
642 root 1.90 =item aio_readlink $path, $callback->($link)
643    
644     Asynchronously read the symlink specified by C<$path> and pass it to
645     the callback. If an error occurs, nothing or undef gets passed to the
646     callback.
647    
648 root 1.106
649 root 1.201 =item aio_realpath $path, $callback->($path)
650    
651     Asynchronously make the path absolute and resolve any symlinks in
652 root 1.202 C<$path>. The resulting path only consists of directories (Same as
653     L<Cwd::realpath>).
654 root 1.201
655     This request can be used to get the absolute path of the current working
656     directory by passing it a path of F<.> (a single dot).
657    
658    
659 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
660    
661     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
662     rename(2) and call the callback with the result code.
663    
664 root 1.106
665 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
666    
667     Asynchronously mkdir (create) a directory and call the callback with
668     the result code. C<$mode> will be modified by the umask at the time the
669     request is executed, so do not change your umask.
670    
671 root 1.106
672 root 1.40 =item aio_rmdir $pathname, $callback->($status)
673 root 1.27
674     Asynchronously rmdir (delete) a directory and call the callback with the
675     result code.
676    
677 root 1.106
678 root 1.46 =item aio_readdir $pathname, $callback->($entries)
679 root 1.37
680     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
681     directory (i.e. opendir + readdir + closedir). The entries will not be
682     sorted, and will B<NOT> include the C<.> and C<..> entries.
683    
684 root 1.148 The callback is passed a single argument which is either C<undef> or an
685     array-ref with the filenames.
686    
687    
688     =item aio_readdirx $pathname, $flags, $callback->($entries, $flags)
689    
690     Quite similar to C<aio_readdir>, but the C<$flags> argument allows to tune
691     behaviour and output format. In case of an error, C<$entries> will be
692     C<undef>.
693    
694     The flags are a combination of the following constants, ORed together (the
695     flags will also be passed to the callback, possibly modified):
696    
697     =over 4
698    
699 root 1.150 =item IO::AIO::READDIR_DENTS
700 root 1.148
701 root 1.190 When this flag is off, then the callback gets an arrayref consisting of
702     names only (as with C<aio_readdir>), otherwise it gets an arrayref with
703 root 1.150 C<[$name, $type, $inode]> arrayrefs, each describing a single directory
704 root 1.148 entry in more detail.
705    
706     C<$name> is the name of the entry.
707    
708 root 1.150 C<$type> is one of the C<IO::AIO::DT_xxx> constants:
709 root 1.148
710 root 1.150 C<IO::AIO::DT_UNKNOWN>, C<IO::AIO::DT_FIFO>, C<IO::AIO::DT_CHR>, C<IO::AIO::DT_DIR>,
711     C<IO::AIO::DT_BLK>, C<IO::AIO::DT_REG>, C<IO::AIO::DT_LNK>, C<IO::AIO::DT_SOCK>,
712     C<IO::AIO::DT_WHT>.
713 root 1.148
714 root 1.150 C<IO::AIO::DT_UNKNOWN> means just that: readdir does not know. If you need to
715 root 1.148 know, you have to run stat yourself. Also, for speed reasons, the C<$type>
716     scalars are read-only: you can not modify them.
717    
718 root 1.150 C<$inode> is the inode number (which might not be exact on systems with 64
719 root 1.155 bit inode numbers and 32 bit perls). This field has unspecified content on
720     systems that do not deliver the inode information.
721 root 1.150
722     =item IO::AIO::READDIR_DIRS_FIRST
723 root 1.148
724     When this flag is set, then the names will be returned in an order where
725 root 1.193 likely directories come first, in optimal stat order. This is useful when
726     you need to quickly find directories, or you want to find all directories
727     while avoiding to stat() each entry.
728 root 1.148
729 root 1.149 If the system returns type information in readdir, then this is used
730 root 1.193 to find directories directly. Otherwise, likely directories are names
731     beginning with ".", or otherwise names with no dots, of which names with
732 root 1.149 short names are tried first.
733    
734 root 1.150 =item IO::AIO::READDIR_STAT_ORDER
735 root 1.148
736     When this flag is set, then the names will be returned in an order
737     suitable for stat()'ing each one. That is, when you plan to stat()
738     all files in the given directory, then the returned order will likely
739     be fastest.
740    
741 root 1.150 If both this flag and C<IO::AIO::READDIR_DIRS_FIRST> are specified, then
742     the likely dirs come first, resulting in a less optimal stat order.
743 root 1.148
744 root 1.150 =item IO::AIO::READDIR_FOUND_UNKNOWN
745 root 1.148
746     This flag should not be set when calling C<aio_readdirx>. Instead, it
747     is being set by C<aio_readdirx>, when any of the C<$type>'s found were
748 root 1.150 C<IO::AIO::DT_UNKNOWN>. The absense of this flag therefore indicates that all
749 root 1.148 C<$type>'s are known, which can be used to speed up some algorithms.
750    
751     =back
752 root 1.37
753 root 1.106
754 root 1.98 =item aio_load $path, $data, $callback->($status)
755    
756     This is a composite request that tries to fully load the given file into
757     memory. Status is the same as with aio_read.
758    
759     =cut
760    
761     sub aio_load($$;$) {
762 root 1.123 my ($path, undef, $cb) = @_;
763     my $data = \$_[1];
764 root 1.98
765 root 1.123 my $pri = aioreq_pri;
766     my $grp = aio_group $cb;
767    
768     aioreq_pri $pri;
769     add $grp aio_open $path, O_RDONLY, 0, sub {
770     my $fh = shift
771     or return $grp->result (-1);
772 root 1.98
773     aioreq_pri $pri;
774 root 1.123 add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
775     $grp->result ($_[0]);
776 root 1.98 };
777 root 1.123 };
778 root 1.98
779 root 1.123 $grp
780 root 1.98 }
781    
782 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
783    
784     Try to copy the I<file> (directories not supported as either source or
785     destination) from C<$srcpath> to C<$dstpath> and call the callback with
786 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
787 root 1.82
788 root 1.134 This is a composite request that creates the destination file with
789 root 1.82 mode 0200 and copies the contents of the source file into it using
790     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
791     uid/gid, in that order.
792    
793     If an error occurs, the partial destination file will be unlinked, if
794     possible, except when setting atime, mtime, access mode and uid/gid, where
795     errors are being ignored.
796    
797     =cut
798    
799     sub aio_copy($$;$) {
800 root 1.123 my ($src, $dst, $cb) = @_;
801 root 1.82
802 root 1.123 my $pri = aioreq_pri;
803     my $grp = aio_group $cb;
804 root 1.82
805 root 1.123 aioreq_pri $pri;
806     add $grp aio_open $src, O_RDONLY, 0, sub {
807     if (my $src_fh = $_[0]) {
808 root 1.166 my @stat = stat $src_fh; # hmm, might block over nfs?
809 root 1.95
810 root 1.123 aioreq_pri $pri;
811     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
812     if (my $dst_fh = $_[0]) {
813     aioreq_pri $pri;
814     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
815     if ($_[0] == $stat[7]) {
816     $grp->result (0);
817     close $src_fh;
818    
819 root 1.147 my $ch = sub {
820     aioreq_pri $pri;
821     add $grp aio_chmod $dst_fh, $stat[2] & 07777, sub {
822     aioreq_pri $pri;
823     add $grp aio_chown $dst_fh, $stat[4], $stat[5], sub {
824     aioreq_pri $pri;
825     add $grp aio_close $dst_fh;
826     }
827     };
828     };
829 root 1.123
830     aioreq_pri $pri;
831 root 1.147 add $grp aio_utime $dst_fh, $stat[8], $stat[9], sub {
832     if ($_[0] < 0 && $! == ENOSYS) {
833     aioreq_pri $pri;
834     add $grp aio_utime $dst, $stat[8], $stat[9], $ch;
835     } else {
836     $ch->();
837     }
838     };
839 root 1.123 } else {
840     $grp->result (-1);
841     close $src_fh;
842     close $dst_fh;
843    
844     aioreq $pri;
845     add $grp aio_unlink $dst;
846     }
847     };
848     } else {
849     $grp->result (-1);
850     }
851     },
852 root 1.82
853 root 1.123 } else {
854     $grp->result (-1);
855     }
856     };
857 root 1.82
858 root 1.123 $grp
859 root 1.82 }
860    
861     =item aio_move $srcpath, $dstpath, $callback->($status)
862    
863     Try to move the I<file> (directories not supported as either source or
864     destination) from C<$srcpath> to C<$dstpath> and call the callback with
865 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
866 root 1.82
867 root 1.137 This is a composite request that tries to rename(2) the file first; if
868     rename fails with C<EXDEV>, it copies the file with C<aio_copy> and, if
869     that is successful, unlinks the C<$srcpath>.
870 root 1.82
871     =cut
872    
873     sub aio_move($$;$) {
874 root 1.123 my ($src, $dst, $cb) = @_;
875 root 1.82
876 root 1.123 my $pri = aioreq_pri;
877     my $grp = aio_group $cb;
878 root 1.82
879 root 1.123 aioreq_pri $pri;
880     add $grp aio_rename $src, $dst, sub {
881     if ($_[0] && $! == EXDEV) {
882     aioreq_pri $pri;
883     add $grp aio_copy $src, $dst, sub {
884     $grp->result ($_[0]);
885 root 1.95
886 root 1.196 unless ($_[0]) {
887 root 1.123 aioreq_pri $pri;
888     add $grp aio_unlink $src;
889     }
890     };
891     } else {
892     $grp->result ($_[0]);
893     }
894     };
895 root 1.82
896 root 1.123 $grp
897 root 1.82 }
898    
899 root 1.40 =item aio_scandir $path, $maxreq, $callback->($dirs, $nondirs)
900    
901 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
902 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
903     names, directories you can recurse into (directories), and ones you cannot
904     recurse into (everything else, including symlinks to directories).
905 root 1.52
906 root 1.61 C<aio_scandir> is a composite request that creates of many sub requests_
907     C<$maxreq> specifies the maximum number of outstanding aio requests that
908     this function generates. If it is C<< <= 0 >>, then a suitable default
909 root 1.81 will be chosen (currently 4).
910 root 1.40
911     On error, the callback is called without arguments, otherwise it receives
912     two array-refs with path-relative entry names.
913    
914     Example:
915    
916     aio_scandir $dir, 0, sub {
917     my ($dirs, $nondirs) = @_;
918     print "real directories: @$dirs\n";
919     print "everything else: @$nondirs\n";
920     };
921    
922     Implementation notes.
923    
924     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
925    
926 root 1.149 If readdir returns file type information, then this is used directly to
927     find directories.
928    
929     Otherwise, after reading the directory, the modification time, size etc.
930     of the directory before and after the readdir is checked, and if they
931     match (and isn't the current time), the link count will be used to decide
932     how many entries are directories (if >= 2). Otherwise, no knowledge of the
933     number of subdirectories will be assumed.
934    
935     Then entries will be sorted into likely directories a non-initial dot
936     currently) and likely non-directories (see C<aio_readdirx>). Then every
937     entry plus an appended C</.> will be C<stat>'ed, likely directories first,
938     in order of their inode numbers. If that succeeds, it assumes that the
939     entry is a directory or a symlink to directory (which will be checked
940 root 1.52 seperately). This is often faster than stat'ing the entry itself because
941     filesystems might detect the type of the entry without reading the inode
942 root 1.149 data (e.g. ext2fs filetype feature), even on systems that cannot return
943     the filetype information on readdir.
944 root 1.52
945     If the known number of directories (link count - 2) has been reached, the
946     rest of the entries is assumed to be non-directories.
947    
948     This only works with certainty on POSIX (= UNIX) filesystems, which
949     fortunately are the vast majority of filesystems around.
950    
951     It will also likely work on non-POSIX filesystems with reduced efficiency
952     as those tend to return 0 or 1 as link counts, which disables the
953     directory counting heuristic.
954 root 1.40
955     =cut
956    
957 root 1.100 sub aio_scandir($$;$) {
958 root 1.123 my ($path, $maxreq, $cb) = @_;
959    
960     my $pri = aioreq_pri;
961 root 1.40
962 root 1.123 my $grp = aio_group $cb;
963 root 1.80
964 root 1.123 $maxreq = 4 if $maxreq <= 0;
965 root 1.55
966 root 1.123 # stat once
967     aioreq_pri $pri;
968     add $grp aio_stat $path, sub {
969     return $grp->result () if $_[0];
970     my $now = time;
971     my $hash1 = join ":", (stat _)[0,1,3,7,9];
972 root 1.40
973 root 1.123 # read the directory entries
974 root 1.80 aioreq_pri $pri;
975 root 1.148 add $grp aio_readdirx $path, READDIR_DIRS_FIRST, sub {
976 root 1.123 my $entries = shift
977     or return $grp->result ();
978 root 1.40
979 root 1.123 # stat the dir another time
980 root 1.80 aioreq_pri $pri;
981 root 1.123 add $grp aio_stat $path, sub {
982     my $hash2 = join ":", (stat _)[0,1,3,7,9];
983 root 1.95
984 root 1.123 my $ndirs;
985 root 1.95
986 root 1.123 # take the slow route if anything looks fishy
987     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
988     $ndirs = -1;
989     } else {
990     # if nlink == 2, we are finished
991 root 1.150 # for non-posix-fs's, we rely on nlink < 2
992 root 1.123 $ndirs = (stat _)[3] - 2
993     or return $grp->result ([], $entries);
994     }
995    
996     my (@dirs, @nondirs);
997 root 1.40
998 root 1.123 my $statgrp = add $grp aio_group sub {
999     $grp->result (\@dirs, \@nondirs);
1000     };
1001 root 1.40
1002 root 1.123 limit $statgrp $maxreq;
1003     feed $statgrp sub {
1004     return unless @$entries;
1005 root 1.150 my $entry = shift @$entries;
1006 root 1.40
1007 root 1.123 aioreq_pri $pri;
1008     add $statgrp aio_stat "$path/$entry/.", sub {
1009     if ($_[0] < 0) {
1010     push @nondirs, $entry;
1011     } else {
1012     # need to check for real directory
1013     aioreq_pri $pri;
1014     add $statgrp aio_lstat "$path/$entry", sub {
1015     if (-d _) {
1016     push @dirs, $entry;
1017    
1018     unless (--$ndirs) {
1019     push @nondirs, @$entries;
1020     feed $statgrp;
1021 root 1.74 }
1022 root 1.123 } else {
1023     push @nondirs, $entry;
1024 root 1.40 }
1025     }
1026 root 1.123 }
1027 root 1.74 };
1028 root 1.40 };
1029     };
1030     };
1031 root 1.123 };
1032 root 1.55
1033 root 1.123 $grp
1034 root 1.40 }
1035    
1036 root 1.99 =item aio_rmtree $path, $callback->($status)
1037    
1038 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
1039     status of the final C<rmdir> only. This is a composite request that
1040     uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1041     everything else.
1042 root 1.99
1043     =cut
1044    
1045     sub aio_rmtree;
1046 root 1.100 sub aio_rmtree($;$) {
1047 root 1.123 my ($path, $cb) = @_;
1048 root 1.99
1049 root 1.123 my $pri = aioreq_pri;
1050     my $grp = aio_group $cb;
1051 root 1.99
1052 root 1.123 aioreq_pri $pri;
1053     add $grp aio_scandir $path, 0, sub {
1054     my ($dirs, $nondirs) = @_;
1055 root 1.99
1056 root 1.123 my $dirgrp = aio_group sub {
1057     add $grp aio_rmdir $path, sub {
1058     $grp->result ($_[0]);
1059 root 1.99 };
1060 root 1.123 };
1061 root 1.99
1062 root 1.123 (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
1063     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
1064 root 1.99
1065 root 1.123 add $grp $dirgrp;
1066     };
1067 root 1.99
1068 root 1.123 $grp
1069 root 1.99 }
1070    
1071 root 1.119 =item aio_sync $callback->($status)
1072    
1073     Asynchronously call sync and call the callback when finished.
1074    
1075 root 1.40 =item aio_fsync $fh, $callback->($status)
1076 root 1.1
1077     Asynchronously call fsync on the given filehandle and call the callback
1078     with the fsync result code.
1079    
1080 root 1.40 =item aio_fdatasync $fh, $callback->($status)
1081 root 1.1
1082     Asynchronously call fdatasync on the given filehandle and call the
1083 root 1.26 callback with the fdatasync result code.
1084    
1085     If this call isn't available because your OS lacks it or it couldn't be
1086     detected, it will be emulated by calling C<fsync> instead.
1087 root 1.1
1088 root 1.142 =item aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
1089    
1090     Sync the data portion of the file specified by C<$offset> and C<$length>
1091     to disk (but NOT the metadata), by calling the Linux-specific
1092     sync_file_range call. If sync_file_range is not available or it returns
1093     ENOSYS, then fdatasync or fsync is being substituted.
1094    
1095     C<$flags> can be a combination of C<IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE>,
1096     C<IO::AIO::SYNC_FILE_RANGE_WRITE> and
1097     C<IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER>: refer to the sync_file_range
1098     manpage for details.
1099    
1100 root 1.120 =item aio_pathsync $path, $callback->($status)
1101    
1102     This request tries to open, fsync and close the given path. This is a
1103 root 1.135 composite request intended to sync directories after directory operations
1104 root 1.120 (E.g. rename). This might not work on all operating systems or have any
1105     specific effect, but usually it makes sure that directory changes get
1106     written to disc. It works for anything that can be opened for read-only,
1107     not just directories.
1108    
1109 root 1.162 Future versions of this function might fall back to other methods when
1110     C<fsync> on the directory fails (such as calling C<sync>).
1111    
1112 root 1.120 Passes C<0> when everything went ok, and C<-1> on error.
1113    
1114     =cut
1115    
1116     sub aio_pathsync($;$) {
1117 root 1.123 my ($path, $cb) = @_;
1118    
1119     my $pri = aioreq_pri;
1120     my $grp = aio_group $cb;
1121 root 1.120
1122 root 1.123 aioreq_pri $pri;
1123     add $grp aio_open $path, O_RDONLY, 0, sub {
1124     my ($fh) = @_;
1125     if ($fh) {
1126     aioreq_pri $pri;
1127     add $grp aio_fsync $fh, sub {
1128     $grp->result ($_[0]);
1129 root 1.120
1130     aioreq_pri $pri;
1131 root 1.123 add $grp aio_close $fh;
1132     };
1133     } else {
1134     $grp->result (-1);
1135     }
1136     };
1137 root 1.120
1138 root 1.123 $grp
1139 root 1.120 }
1140    
1141 root 1.170 =item aio_msync $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1142    
1143     This is a rather advanced IO::AIO call, which only works on mmap(2)ed
1144 root 1.176 scalars (see the C<IO::AIO::mmap> function, although it also works on data
1145     scalars managed by the L<Sys::Mmap> or L<Mmap> modules, note that the
1146     scalar must only be modified in-place while an aio operation is pending on
1147     it).
1148 root 1.170
1149     It calls the C<msync> function of your OS, if available, with the memory
1150     area starting at C<$offset> in the string and ending C<$length> bytes
1151     later. If C<$length> is negative, counts from the end, and if C<$length>
1152     is C<undef>, then it goes till the end of the string. The flags can be
1153     a combination of C<IO::AIO::MS_ASYNC>, C<IO::AIO::MS_INVALIDATE> and
1154     C<IO::AIO::MS_SYNC>.
1155    
1156     =item aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1157    
1158     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1159     scalars.
1160    
1161     It touches (reads or writes) all memory pages in the specified
1162     range inside the scalar. All caveats and parameters are the same
1163     as for C<aio_msync>, above, except for flags, which must be either
1164     C<0> (which reads all pages and ensures they are instantiated) or
1165     C<IO::AIO::MT_MODIFY>, which modifies the memory page s(by reading and
1166     writing an octet from it, which dirties the page).
1167    
1168 root 1.182 =item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1169    
1170     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1171     scalars.
1172    
1173     It reads in all the pages of the underlying storage into memory (if any)
1174     and locks them, so they are not getting swapped/paged out or removed.
1175    
1176     If C<$length> is undefined, then the scalar will be locked till the end.
1177    
1178     On systems that do not implement C<mlock>, this function returns C<-1>
1179     and sets errno to C<ENOSYS>.
1180    
1181     Note that the corresponding C<munlock> is synchronous and is
1182     documented under L<MISCELLANEOUS FUNCTIONS>.
1183    
1184 root 1.183 Example: open a file, mmap and mlock it - both will be undone when
1185     C<$data> gets destroyed.
1186    
1187     open my $fh, "<", $path or die "$path: $!";
1188     my $data;
1189     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1190     aio_mlock $data; # mlock in background
1191    
1192 root 1.182 =item aio_mlockall $flags, $callback->($status)
1193    
1194     Calls the C<mlockall> function with the given C<$flags> (a combination of
1195     C<IO::AIO::MCL_CURRENT> and C<IO::AIO::MCL_FUTURE>).
1196    
1197     On systems that do not implement C<mlockall>, this function returns C<-1>
1198     and sets errno to C<ENOSYS>.
1199    
1200     Note that the corresponding C<munlockall> is synchronous and is
1201     documented under L<MISCELLANEOUS FUNCTIONS>.
1202    
1203 root 1.183 Example: asynchronously lock all current and future pages into memory.
1204    
1205     aio_mlockall IO::AIO::MCL_FUTURE;
1206    
1207 root 1.58 =item aio_group $callback->(...)
1208 root 1.54
1209 root 1.55 This is a very special aio request: Instead of doing something, it is a
1210     container for other aio requests, which is useful if you want to bundle
1211 root 1.71 many requests into a single, composite, request with a definite callback
1212     and the ability to cancel the whole request with its subrequests.
1213 root 1.55
1214     Returns an object of class L<IO::AIO::GRP>. See its documentation below
1215     for more info.
1216    
1217     Example:
1218    
1219     my $grp = aio_group sub {
1220     print "all stats done\n";
1221     };
1222    
1223     add $grp
1224     (aio_stat ...),
1225     (aio_stat ...),
1226     ...;
1227    
1228 root 1.63 =item aio_nop $callback->()
1229    
1230     This is a special request - it does nothing in itself and is only used for
1231     side effects, such as when you want to add a dummy request to a group so
1232     that finishing the requests in the group depends on executing the given
1233     code.
1234    
1235 root 1.64 While this request does nothing, it still goes through the execution
1236     phase and still requires a worker thread. Thus, the callback will not
1237     be executed immediately but only after other requests in the queue have
1238     entered their execution phase. This can be used to measure request
1239     latency.
1240    
1241 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1242 root 1.54
1243     Mainly used for debugging and benchmarking, this aio request puts one of
1244     the request workers to sleep for the given time.
1245    
1246 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1247 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1248     immense (it blocks a thread for a long time) so do not use this function
1249     except to put your application under artificial I/O pressure.
1250 root 1.56
1251 root 1.5 =back
1252    
1253 root 1.53 =head2 IO::AIO::REQ CLASS
1254 root 1.52
1255     All non-aggregate C<aio_*> functions return an object of this class when
1256     called in non-void context.
1257    
1258     =over 4
1259    
1260 root 1.65 =item cancel $req
1261 root 1.52
1262     Cancels the request, if possible. Has the effect of skipping execution
1263     when entering the B<execute> state and skipping calling the callback when
1264     entering the the B<result> state, but will leave the request otherwise
1265 root 1.151 untouched (with the exception of readdir). That means that requests that
1266     currently execute will not be stopped and resources held by the request
1267     will not be freed prematurely.
1268 root 1.52
1269 root 1.65 =item cb $req $callback->(...)
1270    
1271     Replace (or simply set) the callback registered to the request.
1272    
1273 root 1.52 =back
1274    
1275 root 1.55 =head2 IO::AIO::GRP CLASS
1276    
1277     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1278     objects of this class, too.
1279    
1280     A IO::AIO::GRP object is a special request that can contain multiple other
1281     aio requests.
1282    
1283     You create one by calling the C<aio_group> constructing function with a
1284     callback that will be called when all contained requests have entered the
1285     C<done> state:
1286    
1287     my $grp = aio_group sub {
1288     print "all requests are done\n";
1289     };
1290    
1291     You add requests by calling the C<add> method with one or more
1292     C<IO::AIO::REQ> objects:
1293    
1294     $grp->add (aio_unlink "...");
1295    
1296 root 1.58 add $grp aio_stat "...", sub {
1297     $_[0] or return $grp->result ("error");
1298    
1299     # add another request dynamically, if first succeeded
1300     add $grp aio_open "...", sub {
1301     $grp->result ("ok");
1302     };
1303     };
1304 root 1.55
1305     This makes it very easy to create composite requests (see the source of
1306     C<aio_move> for an application) that work and feel like simple requests.
1307    
1308 root 1.62 =over 4
1309    
1310     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1311 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1312    
1313 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1314 root 1.59 only the request itself, but also all requests it contains.
1315 root 1.55
1316 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1317 root 1.55
1318 root 1.62 =item * You must not add requests to a group from within the group callback (or
1319 root 1.60 any later time).
1320    
1321 root 1.62 =back
1322    
1323 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1324     will finish very quickly. If they contain only requests that are in the
1325     C<done> state, they will also finish. Otherwise they will continue to
1326     exist.
1327    
1328 root 1.133 That means after creating a group you have some time to add requests
1329     (precisely before the callback has been invoked, which is only done within
1330     the C<poll_cb>). And in the callbacks of those requests, you can add
1331     further requests to the group. And only when all those requests have
1332     finished will the the group itself finish.
1333 root 1.57
1334 root 1.55 =over 4
1335    
1336 root 1.65 =item add $grp ...
1337    
1338 root 1.55 =item $grp->add (...)
1339    
1340 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1341     be added, including other groups, as long as you do not create circular
1342     dependencies.
1343    
1344     Returns all its arguments.
1345 root 1.55
1346 root 1.74 =item $grp->cancel_subs
1347    
1348     Cancel all subrequests and clears any feeder, but not the group request
1349     itself. Useful when you queued a lot of events but got a result early.
1350    
1351 root 1.168 The group request will finish normally (you cannot add requests to the
1352     group).
1353    
1354 root 1.58 =item $grp->result (...)
1355    
1356     Set the result value(s) that will be passed to the group callback when all
1357 root 1.120 subrequests have finished and set the groups errno to the current value
1358 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1359     no argument will be passed and errno is zero.
1360    
1361     =item $grp->errno ([$errno])
1362    
1363     Sets the group errno value to C<$errno>, or the current value of errno
1364     when the argument is missing.
1365    
1366     Every aio request has an associated errno value that is restored when
1367     the callback is invoked. This method lets you change this value from its
1368     default (0).
1369    
1370     Calling C<result> will also set errno, so make sure you either set C<$!>
1371     before the call to C<result>, or call c<errno> after it.
1372 root 1.58
1373 root 1.65 =item feed $grp $callback->($grp)
1374 root 1.60
1375     Sets a feeder/generator on this group: every group can have an attached
1376     generator that generates requests if idle. The idea behind this is that,
1377     although you could just queue as many requests as you want in a group,
1378 root 1.139 this might starve other requests for a potentially long time. For example,
1379     C<aio_scandir> might generate hundreds of thousands C<aio_stat> requests,
1380     delaying any later requests for a long time.
1381 root 1.60
1382     To avoid this, and allow incremental generation of requests, you can
1383     instead a group and set a feeder on it that generates those requests. The
1384 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1385 root 1.60 below) requests active in the group itself and is expected to queue more
1386     requests.
1387    
1388 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1389     not impose any limits).
1390 root 1.60
1391 root 1.65 If the feed does not queue more requests when called, it will be
1392 root 1.60 automatically removed from the group.
1393    
1394 root 1.138 If the feed limit is C<0> when this method is called, it will be set to
1395     C<2> automatically.
1396 root 1.60
1397     Example:
1398    
1399     # stat all files in @files, but only ever use four aio requests concurrently:
1400    
1401     my $grp = aio_group sub { print "finished\n" };
1402 root 1.68 limit $grp 4;
1403 root 1.65 feed $grp sub {
1404 root 1.60 my $file = pop @files
1405     or return;
1406    
1407     add $grp aio_stat $file, sub { ... };
1408 root 1.65 };
1409 root 1.60
1410 root 1.68 =item limit $grp $num
1411 root 1.60
1412     Sets the feeder limit for the group: The feeder will be called whenever
1413     the group contains less than this many requests.
1414    
1415     Setting the limit to C<0> will pause the feeding process.
1416    
1417 root 1.138 The default value for the limit is C<0>, but note that setting a feeder
1418     automatically bumps it up to C<2>.
1419    
1420 root 1.55 =back
1421    
1422 root 1.5 =head2 SUPPORT FUNCTIONS
1423    
1424 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1425    
1426 root 1.5 =over 4
1427    
1428     =item $fileno = IO::AIO::poll_fileno
1429    
1430 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1431 root 1.156 polled for reading by some mechanism outside this module (e.g. EV, Glib,
1432     select and so on, see below or the SYNOPSIS). If the pipe becomes readable
1433     you have to call C<poll_cb> to check the results.
1434 root 1.5
1435     See C<poll_cb> for an example.
1436    
1437     =item IO::AIO::poll_cb
1438    
1439 root 1.191 Process some outstanding events on the result pipe. You have to call
1440     this regularly. Returns C<0> if all events could be processed (or there
1441     were no events to process), or C<-1> if it returned earlier for whatever
1442     reason. Returns immediately when no events are outstanding. The amount of
1443     events processed depends on the settings of C<IO::AIO::max_poll_req> and
1444     C<IO::AIO::max_poll_time>.
1445 root 1.5
1446 root 1.78 If not all requests were processed for whatever reason, the filehandle
1447 root 1.128 will still be ready when C<poll_cb> returns, so normally you don't have to
1448     do anything special to have it called later.
1449 root 1.78
1450 root 1.192 Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes
1451     ready, it can be beneficial to call this function from loops which submit
1452     a lot of requests, to make sure the results get processed when they become
1453     available and not just when the loop is finished and the event loop takes
1454     over again. This function returns very fast when there are no outstanding
1455     requests.
1456    
1457 root 1.20 Example: Install an Event watcher that automatically calls
1458 root 1.156 IO::AIO::poll_cb with high priority (more examples can be found in the
1459     SYNOPSIS section, at the top of this document):
1460 root 1.5
1461     Event->io (fd => IO::AIO::poll_fileno,
1462     poll => 'r', async => 1,
1463     cb => \&IO::AIO::poll_cb);
1464    
1465 root 1.175 =item IO::AIO::poll_wait
1466    
1467     If there are any outstanding requests and none of them in the result
1468     phase, wait till the result filehandle becomes ready for reading (simply
1469     does a C<select> on the filehandle. This is useful if you want to
1470     synchronously wait for some requests to finish).
1471    
1472     See C<nreqs> for an example.
1473    
1474     =item IO::AIO::poll
1475    
1476     Waits until some requests have been handled.
1477    
1478     Returns the number of requests processed, but is otherwise strictly
1479     equivalent to:
1480    
1481     IO::AIO::poll_wait, IO::AIO::poll_cb
1482    
1483     =item IO::AIO::flush
1484    
1485     Wait till all outstanding AIO requests have been handled.
1486    
1487     Strictly equivalent to:
1488    
1489     IO::AIO::poll_wait, IO::AIO::poll_cb
1490     while IO::AIO::nreqs;
1491    
1492 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1493    
1494     =item IO::AIO::max_poll_time $seconds
1495    
1496     These set the maximum number of requests (default C<0>, meaning infinity)
1497     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1498     the maximum amount of time (default C<0>, meaning infinity) spent in
1499     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1500     of time C<poll_cb> is allowed to use).
1501 root 1.78
1502 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1503     syscall per request processed, which is not normally a problem unless your
1504     callbacks are really really fast or your OS is really really slow (I am
1505     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1506    
1507 root 1.86 Setting these is useful if you want to ensure some level of
1508     interactiveness when perl is not fast enough to process all requests in
1509     time.
1510 root 1.78
1511 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
1512 root 1.78
1513     Example: Install an Event watcher that automatically calls
1514 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
1515 root 1.78 program get the CPU sometimes even under high AIO load.
1516    
1517 root 1.86 # try not to spend much more than 0.1s in poll_cb
1518     IO::AIO::max_poll_time 0.1;
1519    
1520     # use a low priority so other tasks have priority
1521 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
1522     poll => 'r', nice => 1,
1523 root 1.86 cb => &IO::AIO::poll_cb);
1524 root 1.78
1525 root 1.104 =back
1526    
1527 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
1528 root 1.13
1529 root 1.105 =over
1530    
1531 root 1.5 =item IO::AIO::min_parallel $nthreads
1532    
1533 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
1534     default is C<8>, which means eight asynchronous operations can execute
1535     concurrently at any one time (the number of outstanding requests,
1536     however, is unlimited).
1537 root 1.5
1538 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
1539 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
1540     create demand for a hundred threads, even if it turns out that everything
1541     is in the cache and could have been processed faster by a single thread.
1542 root 1.34
1543 root 1.61 It is recommended to keep the number of threads relatively low, as some
1544     Linux kernel versions will scale negatively with the number of threads
1545     (higher parallelity => MUCH higher latency). With current Linux 2.6
1546     versions, 4-32 threads should be fine.
1547 root 1.5
1548 root 1.34 Under most circumstances you don't need to call this function, as the
1549     module selects a default that is suitable for low to moderate load.
1550 root 1.5
1551     =item IO::AIO::max_parallel $nthreads
1552    
1553 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
1554     specified number of threads are currently running, this function kills
1555     them. This function blocks until the limit is reached.
1556    
1557     While C<$nthreads> are zero, aio requests get queued but not executed
1558     until the number of threads has been increased again.
1559 root 1.5
1560     This module automatically runs C<max_parallel 0> at program end, to ensure
1561     that all threads are killed and that there are no outstanding requests.
1562    
1563     Under normal circumstances you don't need to call this function.
1564    
1565 root 1.86 =item IO::AIO::max_idle $nthreads
1566    
1567 root 1.188 Limit the number of threads (default: 4) that are allowed to idle
1568     (i.e., threads that did not get a request to process within the idle
1569     timeout (default: 10 seconds). That means if a thread becomes idle while
1570     C<$nthreads> other threads are also idle, it will free its resources and
1571     exit.
1572 root 1.86
1573     This is useful when you allow a large number of threads (e.g. 100 or 1000)
1574     to allow for extremely high load situations, but want to free resources
1575     under normal circumstances (1000 threads can easily consume 30MB of RAM).
1576    
1577     The default is probably ok in most situations, especially if thread
1578     creation is fast. If thread creation is very slow on your system you might
1579     want to use larger values.
1580    
1581 root 1.188 =item IO::AIO::idle_timeout $seconds
1582    
1583     Sets the minimum idle timeout (default 10) after which worker threads are
1584     allowed to exit. SEe C<IO::AIO::max_idle>.
1585    
1586 root 1.123 =item IO::AIO::max_outstanding $maxreqs
1587 root 1.5
1588 root 1.195 Sets the maximum number of outstanding requests to C<$nreqs>. If
1589     you do queue up more than this number of requests, the next call to
1590     C<IO::AIO::poll_cb> (and other functions calling C<poll_cb>, such as
1591     C<IO::AIO::flush> or C<IO::AIO::poll>) will block until the limit is no
1592     longer exceeded.
1593    
1594     In other words, this setting does not enforce a queue limit, but can be
1595     used to make poll functions block if the limit is exceeded.
1596    
1597 root 1.79 This is a very bad function to use in interactive programs because it
1598     blocks, and a bad way to reduce concurrency because it is inexact: Better
1599     use an C<aio_group> together with a feed callback.
1600    
1601 root 1.195 It's main use is in scripts without an event loop - when you want to stat
1602     a lot of files, you can write somehting like this:
1603    
1604     IO::AIO::max_outstanding 32;
1605    
1606     for my $path (...) {
1607     aio_stat $path , ...;
1608     IO::AIO::poll_cb;
1609     }
1610    
1611     IO::AIO::flush;
1612    
1613     The call to C<poll_cb> inside the loop will normally return instantly, but
1614     as soon as more thna C<32> reqeusts are in-flight, it will block until
1615     some requests have been handled. This keeps the loop from pushing a large
1616     number of C<aio_stat> requests onto the queue.
1617    
1618     The default value for C<max_outstanding> is very large, so there is no
1619     practical limit on the number of outstanding requests.
1620 root 1.5
1621 root 1.104 =back
1622    
1623 root 1.86 =head3 STATISTICAL INFORMATION
1624    
1625 root 1.104 =over
1626    
1627 root 1.86 =item IO::AIO::nreqs
1628    
1629     Returns the number of requests currently in the ready, execute or pending
1630     states (i.e. for which their callback has not been invoked yet).
1631    
1632     Example: wait till there are no outstanding requests anymore:
1633    
1634     IO::AIO::poll_wait, IO::AIO::poll_cb
1635     while IO::AIO::nreqs;
1636    
1637     =item IO::AIO::nready
1638    
1639     Returns the number of requests currently in the ready state (not yet
1640     executed).
1641    
1642     =item IO::AIO::npending
1643    
1644     Returns the number of requests currently in the pending state (executed,
1645     but not yet processed by poll_cb).
1646    
1647 root 1.5 =back
1648    
1649 root 1.157 =head3 MISCELLANEOUS FUNCTIONS
1650    
1651     IO::AIO implements some functions that might be useful, but are not
1652     asynchronous.
1653    
1654     =over 4
1655    
1656     =item IO::AIO::sendfile $ofh, $ifh, $offset, $count
1657    
1658     Calls the C<eio_sendfile_sync> function, which is like C<aio_sendfile>,
1659     but is blocking (this makes most sense if you know the input data is
1660     likely cached already and the output filehandle is set to non-blocking
1661     operations).
1662    
1663     Returns the number of bytes copied, or C<-1> on error.
1664    
1665     =item IO::AIO::fadvise $fh, $offset, $len, $advice
1666    
1667 root 1.184 Simply calls the C<posix_fadvise> function (see its
1668 root 1.157 manpage for details). The following advice constants are
1669     avaiable: C<IO::AIO::FADV_NORMAL>, C<IO::AIO::FADV_SEQUENTIAL>,
1670     C<IO::AIO::FADV_RANDOM>, C<IO::AIO::FADV_NOREUSE>,
1671     C<IO::AIO::FADV_WILLNEED>, C<IO::AIO::FADV_DONTNEED>.
1672    
1673     On systems that do not implement C<posix_fadvise>, this function returns
1674     ENOSYS, otherwise the return value of C<posix_fadvise>.
1675    
1676 root 1.184 =item IO::AIO::madvise $scalar, $offset, $len, $advice
1677    
1678     Simply calls the C<posix_madvise> function (see its
1679     manpage for details). The following advice constants are
1680     avaiable: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
1681     C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>, C<IO::AIO::MADV_DONTNEED>.
1682    
1683     On systems that do not implement C<posix_madvise>, this function returns
1684     ENOSYS, otherwise the return value of C<posix_madvise>.
1685    
1686     =item IO::AIO::mprotect $scalar, $offset, $len, $protect
1687    
1688     Simply calls the C<mprotect> function on the preferably AIO::mmap'ed
1689     $scalar (see its manpage for details). The following protect
1690     constants are avaiable: C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_READ>,
1691     C<IO::AIO::PROT_WRITE>, C<IO::AIO::PROT_EXEC>.
1692    
1693     On systems that do not implement C<mprotect>, this function returns
1694     ENOSYS, otherwise the return value of C<mprotect>.
1695    
1696 root 1.176 =item IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
1697    
1698     Memory-maps a file (or anonymous memory range) and attaches it to the
1699     given C<$scalar>, which will act like a string scalar.
1700    
1701     The only operations allowed on the scalar are C<substr>/C<vec> that don't
1702     change the string length, and most read-only operations such as copying it
1703     or searching it with regexes and so on.
1704    
1705     Anything else is unsafe and will, at best, result in memory leaks.
1706    
1707     The memory map associated with the C<$scalar> is automatically removed
1708     when the C<$scalar> is destroyed, or when the C<IO::AIO::mmap> or
1709     C<IO::AIO::munmap> functions are called.
1710    
1711     This calls the C<mmap>(2) function internally. See your system's manual
1712     page for details on the C<$length>, C<$prot> and C<$flags> parameters.
1713    
1714     The C<$length> must be larger than zero and smaller than the actual
1715     filesize.
1716    
1717     C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
1718     C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
1719    
1720     C<$flags> can be a combination of C<IO::AIO::MAP_SHARED> or
1721     C<IO::AIO::MAP_PRIVATE>, or a number of system-specific flags (when
1722     not available, the are defined as 0): C<IO::AIO::MAP_ANONYMOUS>
1723     (which is set to C<MAP_ANON> if your system only provides this
1724     constant), C<IO::AIO::MAP_HUGETLB>, C<IO::AIO::MAP_LOCKED>,
1725     C<IO::AIO::MAP_NORESERVE>, C<IO::AIO::MAP_POPULATE> or
1726     C<IO::AIO::MAP_NONBLOCK>
1727    
1728     If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
1729    
1730 root 1.179 C<$offset> is the offset from the start of the file - it generally must be
1731     a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
1732    
1733 root 1.177 Example:
1734    
1735     use Digest::MD5;
1736     use IO::AIO;
1737    
1738     open my $fh, "<verybigfile"
1739     or die "$!";
1740    
1741     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
1742     or die "verybigfile: $!";
1743    
1744     my $fast_md5 = md5 $data;
1745    
1746 root 1.176 =item IO::AIO::munmap $scalar
1747    
1748     Removes a previous mmap and undefines the C<$scalar>.
1749    
1750 root 1.182 =item IO::AIO::munlock $scalar, $offset = 0, $length = undef
1751 root 1.174
1752 root 1.182 Calls the C<munlock> function, undoing the effects of a previous
1753     C<aio_mlock> call (see its description for details).
1754 root 1.174
1755     =item IO::AIO::munlockall
1756    
1757     Calls the C<munlockall> function.
1758    
1759     On systems that do not implement C<munlockall>, this function returns
1760     ENOSYS, otherwise the return value of C<munlockall>.
1761    
1762 root 1.157 =back
1763    
1764 root 1.1 =cut
1765    
1766 root 1.61 min_parallel 8;
1767 root 1.1
1768 root 1.95 END { flush }
1769 root 1.82
1770 root 1.1 1;
1771    
1772 root 1.175 =head1 EVENT LOOP INTEGRATION
1773    
1774     It is recommended to use L<AnyEvent::AIO> to integrate IO::AIO
1775     automatically into many event loops:
1776    
1777     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
1778     use AnyEvent::AIO;
1779    
1780     You can also integrate IO::AIO manually into many event loops, here are
1781     some examples of how to do this:
1782    
1783     # EV integration
1784     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
1785    
1786     # Event integration
1787     Event->io (fd => IO::AIO::poll_fileno,
1788     poll => 'r',
1789     cb => \&IO::AIO::poll_cb);
1790    
1791     # Glib/Gtk2 integration
1792     add_watch Glib::IO IO::AIO::poll_fileno,
1793     in => sub { IO::AIO::poll_cb; 1 };
1794    
1795     # Tk integration
1796     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
1797     readable => \&IO::AIO::poll_cb);
1798    
1799     # Danga::Socket integration
1800     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
1801     \&IO::AIO::poll_cb);
1802    
1803 root 1.27 =head2 FORK BEHAVIOUR
1804    
1805 root 1.197 Usage of pthreads in a program changes the semantics of fork
1806     considerably. Specifically, only async-safe functions can be called after
1807     fork. Perl doesn't know about this, so in general, you cannot call fork
1808     with defined behaviour in perl. IO::AIO uses pthreads, so this applies,
1809     but many other extensions and (for inexplicable reasons) perl itself often
1810     is linked against pthreads, so this limitation applies.
1811    
1812     Some operating systems have extensions that allow safe use of fork, and
1813     this module should do "the right thing" on those, and tries on others. At
1814     the time of this writing (2011) only GNU/Linux supports these extensions
1815     to POSIX.
1816 root 1.52
1817 root 1.60 =head2 MEMORY USAGE
1818    
1819 root 1.72 Per-request usage:
1820    
1821     Each aio request uses - depending on your architecture - around 100-200
1822     bytes of memory. In addition, stat requests need a stat buffer (possibly
1823     a few hundred bytes), readdir requires a result buffer and so on. Perl
1824     scalars and other data passed into aio requests will also be locked and
1825     will consume memory till the request has entered the done state.
1826 root 1.60
1827 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
1828 root 1.60 problem.
1829    
1830 root 1.72 Per-thread usage:
1831    
1832     In the execution phase, some aio requests require more memory for
1833     temporary buffers, and each thread requires a stack and other data
1834     structures (usually around 16k-128k, depending on the OS).
1835    
1836     =head1 KNOWN BUGS
1837    
1838 root 1.73 Known bugs will be fixed in the next release.
1839 root 1.60
1840 root 1.1 =head1 SEE ALSO
1841    
1842 root 1.125 L<AnyEvent::AIO> for easy integration into event loops, L<Coro::AIO> for a
1843     more natural syntax.
1844 root 1.1
1845     =head1 AUTHOR
1846    
1847     Marc Lehmann <schmorp@schmorp.de>
1848     http://home.schmorp.de/
1849    
1850     =cut
1851