ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.206
Committed: Sun Jul 24 03:32:51 2011 UTC (12 years, 10 months ago) by root
Branch: MAIN
Changes since 1.205: +10 -2 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3     IO::AIO - Asynchronous Input/Output
4    
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.1 =head1 DESCRIPTION
32    
33     This module implements asynchronous I/O using whatever means your
34 root 1.156 operating system supports. It is implemented as an interface to C<libeio>
35     (L<http://software.schmorp.de/pkg/libeio.html>).
36 root 1.1
37 root 1.85 Asynchronous means that operations that can normally block your program
38     (e.g. reading from disk) will be done asynchronously: the operation
39     will still block, but you can do something else in the meantime. This
40     is extremely useful for programs that need to stay interactive even
41     when doing heavy I/O (GUI programs, high performance network servers
42     etc.), but can also be used to easily do operations in parallel that are
43     normally done sequentially, e.g. stat'ing many files, which is much faster
44     on a RAID volume or over NFS when you do a number of stat operations
45     concurrently.
46    
47 root 1.108 While most of this works on all types of file descriptors (for
48     example sockets), using these functions on file descriptors that
49 root 1.156 support nonblocking operation (again, sockets, pipes etc.) is
50     very inefficient. Use an event loop for that (such as the L<EV>
51 root 1.108 module): IO::AIO will naturally fit into such an event loop itself.
52 root 1.85
53 root 1.72 In this version, a number of threads are started that execute your
54     requests and signal their completion. You don't need thread support
55     in perl, and the threads created by this module will not be visible
56     to perl. In the future, this module might make use of the native aio
57     functions available on many operating systems. However, they are often
58 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
59 root 1.72 files currently, for example), and they would only support aio_read and
60     aio_write, so the remaining functionality would have to be implemented
61     using threads anyway.
62    
63 root 1.108 Although the module will work in the presence of other (Perl-) threads,
64     it is currently not reentrant in any way, so use appropriate locking
65     yourself, always call C<poll_cb> from within the same thread, or never
66     call C<poll_cb> (or other C<aio_> functions) recursively.
67 root 1.72
68 root 1.86 =head2 EXAMPLE
69    
70 root 1.156 This is a simple example that uses the EV module and loads
71 root 1.86 F</etc/passwd> asynchronously:
72    
73     use Fcntl;
74 root 1.156 use EV;
75 root 1.86 use IO::AIO;
76    
77 root 1.156 # register the IO::AIO callback with EV
78     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
79 root 1.86
80     # queue the request to open /etc/passwd
81 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
82 root 1.94 my $fh = shift
83 root 1.86 or die "error while opening: $!";
84    
85     # stat'ing filehandles is generally non-blocking
86     my $size = -s $fh;
87    
88     # queue a request to read the file
89     my $contents;
90     aio_read $fh, 0, $size, $contents, 0, sub {
91     $_[0] == $size
92     or die "short read: $!";
93    
94     close $fh;
95    
96     # file contents now in $contents
97     print $contents;
98    
99     # exit event loop and program
100 root 1.156 EV::unloop;
101 root 1.86 };
102     };
103    
104     # possibly queue up other requests, or open GUI windows,
105     # check for sockets etc. etc.
106    
107     # process events as long as there are some:
108 root 1.156 EV::loop;
109 root 1.86
110 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
111    
112     Every C<aio_*> function creates a request. which is a C data structure not
113     directly visible to Perl.
114    
115     If called in non-void context, every request function returns a Perl
116     object representing the request. In void context, nothing is returned,
117     which saves a bit of memory.
118    
119     The perl object is a fairly standard ref-to-hash object. The hash contents
120     are not used by IO::AIO so you are free to store anything you like in it.
121    
122     During their existance, aio requests travel through the following states,
123     in order:
124    
125     =over 4
126    
127     =item ready
128    
129     Immediately after a request is created it is put into the ready state,
130     waiting for a thread to execute it.
131    
132     =item execute
133    
134     A thread has accepted the request for processing and is currently
135     executing it (e.g. blocking in read).
136    
137     =item pending
138    
139     The request has been executed and is waiting for result processing.
140    
141     While request submission and execution is fully asynchronous, result
142     processing is not and relies on the perl interpreter calling C<poll_cb>
143     (or another function with the same effect).
144    
145     =item result
146    
147     The request results are processed synchronously by C<poll_cb>.
148    
149     The C<poll_cb> function will process all outstanding aio requests by
150     calling their callbacks, freeing memory associated with them and managing
151     any groups they are contained in.
152    
153     =item done
154    
155     Request has reached the end of its lifetime and holds no resources anymore
156     (except possibly for the Perl object, but its connection to the actual
157     aio request is severed and calling its methods will either do nothing or
158     result in a runtime error).
159 root 1.1
160 root 1.88 =back
161    
162 root 1.1 =cut
163    
164     package IO::AIO;
165    
166 root 1.117 use Carp ();
167    
168 root 1.161 use common::sense;
169 root 1.23
170 root 1.1 use base 'Exporter';
171    
172     BEGIN {
173 root 1.205 our $VERSION = '4.0';
174 root 1.1
175 root 1.120 our @AIO_REQ = qw(aio_sendfile aio_read aio_write aio_open aio_close
176 root 1.148 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
177 root 1.206 aio_scandir aio_symlink aio_readlink aio_realpath aio_sync
178     aio_fsync aio_syncfs aio_fdatasync aio_sync_file_range aio_fallocate
179 root 1.203 aio_pathsync aio_readahead
180 root 1.120 aio_rename aio_link aio_move aio_copy aio_group
181     aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
182 root 1.170 aio_chmod aio_utime aio_truncate
183 root 1.182 aio_msync aio_mtouch aio_mlock aio_mlockall
184     aio_statvfs);
185 root 1.120
186 root 1.123 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice));
187 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
188 root 1.188 min_parallel max_parallel max_idle idle_timeout
189 root 1.86 nreqs nready npending nthreads
190 root 1.157 max_poll_time max_poll_reqs
191 root 1.182 sendfile fadvise madvise
192     mmap munmap munlock munlockall);
193 root 1.1
194 root 1.143 push @AIO_REQ, qw(aio_busy); # not exported
195    
196 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
197    
198 root 1.1 require XSLoader;
199 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
200 root 1.1 }
201    
202 root 1.5 =head1 FUNCTIONS
203 root 1.1
204 root 1.175 =head2 QUICK OVERVIEW
205    
206     This section simply lists the prototypes of the most important functions
207     for quick reference. See the following sections for function-by-function
208     documentation.
209    
210     aio_open $pathname, $flags, $mode, $callback->($fh)
211     aio_close $fh, $callback->($status)
212     aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
213     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
214     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
215     aio_readahead $fh,$offset,$length, $callback->($retval)
216     aio_stat $fh_or_path, $callback->($status)
217     aio_lstat $fh, $callback->($status)
218     aio_statvfs $fh_or_path, $callback->($statvfs)
219     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
220     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
221     aio_truncate $fh_or_path, $offset, $callback->($status)
222     aio_chmod $fh_or_path, $mode, $callback->($status)
223     aio_unlink $pathname, $callback->($status)
224     aio_mknod $path, $mode, $dev, $callback->($status)
225     aio_link $srcpath, $dstpath, $callback->($status)
226     aio_symlink $srcpath, $dstpath, $callback->($status)
227     aio_readlink $path, $callback->($link)
228 root 1.201 aio_realpath $path, $callback->($link)
229 root 1.175 aio_rename $srcpath, $dstpath, $callback->($status)
230     aio_mkdir $pathname, $mode, $callback->($status)
231     aio_rmdir $pathname, $callback->($status)
232     aio_readdir $pathname, $callback->($entries)
233     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
234     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
235     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
236     aio_load $path, $data, $callback->($status)
237     aio_copy $srcpath, $dstpath, $callback->($status)
238     aio_move $srcpath, $dstpath, $callback->($status)
239     aio_scandir $path, $maxreq, $callback->($dirs, $nondirs)
240     aio_rmtree $path, $callback->($status)
241     aio_sync $callback->($status)
242 root 1.206 aio_syncfs $fh, $callback->($status)
243 root 1.175 aio_fsync $fh, $callback->($status)
244     aio_fdatasync $fh, $callback->($status)
245     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
246     aio_pathsync $path, $callback->($status)
247     aio_msync $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
248     aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
249 root 1.182 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
250     aio_mlockall $flags, $callback->($status)
251 root 1.175 aio_group $callback->(...)
252     aio_nop $callback->()
253    
254     $prev_pri = aioreq_pri [$pri]
255     aioreq_nice $pri_adjust
256    
257     IO::AIO::poll_wait
258     IO::AIO::poll_cb
259     IO::AIO::poll
260     IO::AIO::flush
261     IO::AIO::max_poll_reqs $nreqs
262     IO::AIO::max_poll_time $seconds
263     IO::AIO::min_parallel $nthreads
264     IO::AIO::max_parallel $nthreads
265     IO::AIO::max_idle $nthreads
266 root 1.188 IO::AIO::idle_timeout $seconds
267 root 1.175 IO::AIO::max_outstanding $maxreqs
268     IO::AIO::nreqs
269     IO::AIO::nready
270     IO::AIO::npending
271    
272     IO::AIO::sendfile $ofh, $ifh, $offset, $count
273     IO::AIO::fadvise $fh, $offset, $len, $advice
274 root 1.184 IO::AIO::madvise $scalar, $offset, $length, $advice
275     IO::AIO::mprotect $scalar, $offset, $length, $protect
276 root 1.182 IO::AIO::munlock $scalar, $offset = 0, $length = undef
277 root 1.175 IO::AIO::munlockall
278    
279 root 1.87 =head2 AIO REQUEST FUNCTIONS
280 root 1.1
281 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
282     with the same name (sans C<aio_>). The arguments are similar or identical,
283 root 1.14 and they all accept an additional (and optional) C<$callback> argument
284     which must be a code reference. This code reference will get called with
285     the syscall return code (e.g. most syscalls return C<-1> on error, unlike
286 root 1.136 perl, which usually delivers "false") as its sole argument after the given
287 root 1.14 syscall has been executed asynchronously.
288 root 1.1
289 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
290     internally until the request has finished.
291 root 1.1
292 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
293     further manipulation of those requests while they are in-flight.
294 root 1.52
295 root 1.28 The pathnames you pass to these routines I<must> be absolute and
296 root 1.87 encoded as octets. The reason for the former is that at the time the
297 root 1.28 request is being executed, the current working directory could have
298     changed. Alternatively, you can make sure that you never change the
299 root 1.87 current working directory anywhere in the program and then use relative
300     paths.
301 root 1.28
302 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
303     in filenames you got from outside (command line, readdir etc.) without
304     tinkering, b) are ASCII or ISO 8859-1, c) use the Encode module and encode
305 root 1.28 your pathnames to the locale (or other) encoding in effect in the user
306     environment, d) use Glib::filename_from_unicode on unicode filenames or e)
307 root 1.87 use something else to ensure your scalar has the correct contents.
308    
309     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
310 root 1.136 handles correctly whether it is set or not.
311 root 1.1
312 root 1.5 =over 4
313 root 1.1
314 root 1.80 =item $prev_pri = aioreq_pri [$pri]
315 root 1.68
316 root 1.80 Returns the priority value that would be used for the next request and, if
317     C<$pri> is given, sets the priority for the next aio request.
318 root 1.68
319 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
320     and C<4>, respectively. Requests with higher priority will be serviced
321     first.
322    
323     The priority will be reset to C<0> after each call to one of the C<aio_*>
324 root 1.68 functions.
325    
326 root 1.69 Example: open a file with low priority, then read something from it with
327     higher priority so the read request is serviced before other low priority
328     open requests (potentially spamming the cache):
329    
330     aioreq_pri -3;
331     aio_open ..., sub {
332     return unless $_[0];
333    
334     aioreq_pri -2;
335     aio_read $_[0], ..., sub {
336     ...
337     };
338     };
339    
340 root 1.106
341 root 1.69 =item aioreq_nice $pri_adjust
342    
343     Similar to C<aioreq_pri>, but subtracts the given value from the current
344 root 1.87 priority, so the effect is cumulative.
345 root 1.69
346 root 1.106
347 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
348 root 1.1
349 root 1.2 Asynchronously open or create a file and call the callback with a newly
350     created filehandle for the file.
351 root 1.1
352     The pathname passed to C<aio_open> must be absolute. See API NOTES, above,
353     for an explanation.
354    
355 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
356     list. They are the same as used by C<sysopen>.
357    
358     Likewise, C<$mode> specifies the mode of the newly created file, if it
359     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
360     except that it is mandatory (i.e. use C<0> if you don't create new files,
361 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
362     by the umask in effect then the request is being executed, so better never
363     change the umask.
364 root 1.1
365     Example:
366    
367 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
368 root 1.2 if ($_[0]) {
369     print "open successful, fh is $_[0]\n";
370 root 1.1 ...
371     } else {
372     die "open failed: $!\n";
373     }
374     };
375    
376 root 1.194 In addition to all the common open modes/flags (C<O_RDONLY>, C<O_WRONLY>,
377     C<O_RDWR>, C<O_CREAT>, C<O_TRUNC>, C<O_EXCL> and C<O_APPEND>), the
378     following POSIX and non-POSIX constants are available (missing ones on
379     your system are, as usual, C<0>):
380    
381     C<O_ASYNC>, C<O_DIRECT>, C<O_NOATIME>, C<O_CLOEXEC>, C<O_NOCTTY>, C<O_NOFOLLOW>,
382     C<O_NONBLOCK>, C<O_EXEC>, C<O_SEARCH>, C<O_DIRECTORY>, C<O_DSYNC>,
383     C<O_RSYNC>, C<O_SYNC> and C<O_TTY_INIT>.
384    
385 root 1.106
386 root 1.40 =item aio_close $fh, $callback->($status)
387 root 1.1
388 root 1.2 Asynchronously close a file and call the callback with the result
389 root 1.116 code.
390    
391 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
392 root 1.121 closing the file descriptor associated with the filehandle itself.
393 root 1.117
394 root 1.121 Therefore, C<aio_close> will not close the filehandle - instead it will
395     use dup2 to overwrite the file descriptor with the write-end of a pipe
396     (the pipe fd will be created on demand and will be cached).
397 root 1.117
398 root 1.121 Or in other words: the file descriptor will be closed, but it will not be
399     free for reuse until the perl filehandle is closed.
400 root 1.117
401     =cut
402    
403 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
404 root 1.1
405 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
406 root 1.1
407 root 1.145 Reads or writes C<$length> bytes from or to the specified C<$fh> and
408     C<$offset> into the scalar given by C<$data> and offset C<$dataoffset>
409     and calls the callback without the actual number of bytes read (or -1 on
410     error, just like the syscall).
411 root 1.109
412 root 1.146 C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
413     offset plus the actual number of bytes read.
414    
415 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
416     be used (and updated), otherwise the file descriptor offset will not be
417     changed by these calls.
418 root 1.109
419 root 1.145 If C<$length> is undefined in C<aio_write>, use the remaining length of
420     C<$data>.
421 root 1.109
422     If C<$dataoffset> is less than zero, it will be counted from the end of
423     C<$data>.
424 root 1.1
425 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
426 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
427     the necessary/optional hardware is installed).
428 root 1.31
429 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
430 root 1.1 offset C<0> within the scalar:
431    
432     aio_read $fh, 7, 15, $buffer, 0, sub {
433 root 1.9 $_[0] > 0 or die "read error: $!";
434     print "read $_[0] bytes: <$buffer>\n";
435 root 1.1 };
436    
437 root 1.106
438 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
439 root 1.35
440     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
441     reading at byte offset C<$in_offset>, and starts writing at the current
442     file offset of C<$out_fh>. Because of that, it is not safe to issue more
443     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
444 root 1.196 other. The same C<$in_fh> works fine though, as this function does not
445     move or use the file offset of C<$in_fh>.
446 root 1.35
447 root 1.185 Please note that C<aio_sendfile> can read more bytes from C<$in_fh> than
448 root 1.196 are written, and there is no way to find out how many more bytes have been
449     read from C<aio_sendfile> alone, as C<aio_sendfile> only provides the
450     number of bytes written to C<$out_fh>. Only if the result value equals
451     C<$length> one can assume that C<$length> bytes have been read.
452 root 1.185
453     Unlike with other C<aio_> functions, it makes a lot of sense to use
454     C<aio_sendfile> on non-blocking sockets, as long as one end (typically
455     the C<$in_fh>) is a file - the file I/O will then be asynchronous, while
456 root 1.196 the socket I/O will be non-blocking. Note, however, that you can run
457     into a trap where C<aio_sendfile> reads some data with readahead, then
458     fails to write all data, and when the socket is ready the next time, the
459     data in the cache is already lost, forcing C<aio_sendfile> to again hit
460     the disk. Explicit C<aio_read> + C<aio_write> let's you better control
461     resource usage.
462    
463     This call tries to make use of a native C<sendfile>-like syscall to
464     provide zero-copy operation. For this to work, C<$out_fh> should refer to
465     a socket, and C<$in_fh> should refer to an mmap'able file.
466 root 1.35
467 root 1.170 If a native sendfile cannot be found or it fails with C<ENOSYS>,
468 root 1.196 C<EINVAL>, C<ENOTSUP>, C<EOPNOTSUPP>, C<EAFNOSUPPORT>, C<EPROTOTYPE> or
469     C<ENOTSOCK>, it will be emulated, so you can call C<aio_sendfile> on any
470     type of filehandle regardless of the limitations of the operating system.
471    
472     As native sendfile syscalls (as practically any non-POSIX interface hacked
473     together in a hurry to improve benchmark numbers) tend to be rather buggy
474     on many systems, this implementation tries to work around some known bugs
475     in Linux and FreeBSD kernels (probably others, too), but that might fail,
476     so you really really should check the return value of C<aio_sendfile> -
477     fewre bytes than expected might have been transferred.
478 root 1.35
479 root 1.106
480 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
481 root 1.1
482 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
483 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
484     argument specifies the starting point from which data is to be read and
485     C<$length> specifies the number of bytes to be read. I/O is performed in
486     whole pages, so that offset is effectively rounded down to a page boundary
487     and bytes are read up to the next page boundary greater than or equal to
488 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
489 root 1.1 file. The current file offset of the file is left unchanged.
490    
491 root 1.26 If that syscall doesn't exist (likely if your OS isn't Linux) it will be
492     emulated by simply reading the data, which would have a similar effect.
493    
494 root 1.106
495 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
496 root 1.1
497 root 1.40 =item aio_lstat $fh, $callback->($status)
498 root 1.1
499     Works like perl's C<stat> or C<lstat> in void context. The callback will
500     be called after the stat and the results will be available using C<stat _>
501     or C<-s _> etc...
502    
503     The pathname passed to C<aio_stat> must be absolute. See API NOTES, above,
504     for an explanation.
505    
506     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
507     error when stat'ing a large file, the results will be silently truncated
508     unless perl itself is compiled with large file support.
509    
510 root 1.187 To help interpret the mode and dev/rdev stat values, IO::AIO offers the
511     following constants and functions (if not implemented, the constants will
512     be C<0> and the functions will either C<croak> or fall back on traditional
513     behaviour).
514    
515     C<S_IFMT>, C<S_IFIFO>, C<S_IFCHR>, C<S_IFBLK>, C<S_IFLNK>, C<S_IFREG>,
516     C<S_IFDIR>, C<S_IFWHT>, C<S_IFSOCK>, C<IO::AIO::major $dev_t>,
517     C<IO::AIO::minor $dev_t>, C<IO::AIO::makedev $major, $minor>.
518    
519 root 1.1 Example: Print the length of F</etc/passwd>:
520    
521     aio_stat "/etc/passwd", sub {
522     $_[0] and die "stat failed: $!";
523     print "size is ", -s _, "\n";
524     };
525    
526 root 1.106
527 root 1.175 =item aio_statvfs $fh_or_path, $callback->($statvfs)
528 root 1.172
529     Works like the POSIX C<statvfs> or C<fstatvfs> syscalls, depending on
530     whether a file handle or path was passed.
531    
532     On success, the callback is passed a hash reference with the following
533     members: C<bsize>, C<frsize>, C<blocks>, C<bfree>, C<bavail>, C<files>,
534     C<ffree>, C<favail>, C<fsid>, C<flag> and C<namemax>. On failure, C<undef>
535     is passed.
536    
537     The following POSIX IO::AIO::ST_* constants are defined: C<ST_RDONLY> and
538     C<ST_NOSUID>.
539    
540     The following non-POSIX IO::AIO::ST_* flag masks are defined to
541     their correct value when available, or to C<0> on systems that do
542     not support them: C<ST_NODEV>, C<ST_NOEXEC>, C<ST_SYNCHRONOUS>,
543     C<ST_MANDLOCK>, C<ST_WRITE>, C<ST_APPEND>, C<ST_IMMUTABLE>, C<ST_NOATIME>,
544     C<ST_NODIRATIME> and C<ST_RELATIME>.
545    
546     Example: stat C</wd> and dump out the data if successful.
547    
548     aio_statvfs "/wd", sub {
549     my $f = $_[0]
550     or die "statvfs: $!";
551    
552     use Data::Dumper;
553     say Dumper $f;
554     };
555    
556     # result:
557     {
558     bsize => 1024,
559     bfree => 4333064312,
560     blocks => 10253828096,
561     files => 2050765568,
562     flag => 4096,
563     favail => 2042092649,
564     bavail => 4333064312,
565     ffree => 2042092649,
566     namemax => 255,
567     frsize => 1024,
568     fsid => 1810
569     }
570    
571    
572 root 1.106 =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
573    
574     Works like perl's C<utime> function (including the special case of $atime
575     and $mtime being undef). Fractional times are supported if the underlying
576     syscalls support them.
577    
578     When called with a pathname, uses utimes(2) if available, otherwise
579     utime(2). If called on a file descriptor, uses futimes(2) if available,
580     otherwise returns ENOSYS, so this is not portable.
581    
582     Examples:
583    
584 root 1.107 # set atime and mtime to current time (basically touch(1)):
585 root 1.106 aio_utime "path", undef, undef;
586     # set atime to current time and mtime to beginning of the epoch:
587     aio_utime "path", time, undef; # undef==0
588    
589    
590     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
591    
592     Works like perl's C<chown> function, except that C<undef> for either $uid
593     or $gid is being interpreted as "do not change" (but -1 can also be used).
594    
595     Examples:
596    
597     # same as "chown root path" in the shell:
598     aio_chown "path", 0, -1;
599     # same as above:
600     aio_chown "path", 0, undef;
601    
602    
603 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
604    
605     Works like truncate(2) or ftruncate(2).
606    
607    
608 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
609    
610     Works like perl's C<chmod> function.
611    
612    
613 root 1.40 =item aio_unlink $pathname, $callback->($status)
614 root 1.1
615     Asynchronously unlink (delete) a file and call the callback with the
616     result code.
617    
618 root 1.106
619 root 1.82 =item aio_mknod $path, $mode, $dev, $callback->($status)
620    
621 root 1.86 [EXPERIMENTAL]
622    
623 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
624    
625 root 1.86 The only (POSIX-) portable way of calling this function is:
626 root 1.83
627     aio_mknod $path, IO::AIO::S_IFIFO | $mode, 0, sub { ...
628 root 1.82
629 root 1.187 See C<aio_stat> for info about some potentially helpful extra constants
630     and functions.
631 root 1.106
632 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
633    
634     Asynchronously create a new link to the existing object at C<$srcpath> at
635     the path C<$dstpath> and call the callback with the result code.
636    
637 root 1.106
638 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
639    
640     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
641     the path C<$dstpath> and call the callback with the result code.
642    
643 root 1.106
644 root 1.90 =item aio_readlink $path, $callback->($link)
645    
646     Asynchronously read the symlink specified by C<$path> and pass it to
647     the callback. If an error occurs, nothing or undef gets passed to the
648     callback.
649    
650 root 1.106
651 root 1.201 =item aio_realpath $path, $callback->($path)
652    
653     Asynchronously make the path absolute and resolve any symlinks in
654 root 1.202 C<$path>. The resulting path only consists of directories (Same as
655     L<Cwd::realpath>).
656 root 1.201
657     This request can be used to get the absolute path of the current working
658     directory by passing it a path of F<.> (a single dot).
659    
660    
661 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
662    
663     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
664     rename(2) and call the callback with the result code.
665    
666 root 1.106
667 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
668    
669     Asynchronously mkdir (create) a directory and call the callback with
670     the result code. C<$mode> will be modified by the umask at the time the
671     request is executed, so do not change your umask.
672    
673 root 1.106
674 root 1.40 =item aio_rmdir $pathname, $callback->($status)
675 root 1.27
676     Asynchronously rmdir (delete) a directory and call the callback with the
677     result code.
678    
679 root 1.106
680 root 1.46 =item aio_readdir $pathname, $callback->($entries)
681 root 1.37
682     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
683     directory (i.e. opendir + readdir + closedir). The entries will not be
684     sorted, and will B<NOT> include the C<.> and C<..> entries.
685    
686 root 1.148 The callback is passed a single argument which is either C<undef> or an
687     array-ref with the filenames.
688    
689    
690     =item aio_readdirx $pathname, $flags, $callback->($entries, $flags)
691    
692     Quite similar to C<aio_readdir>, but the C<$flags> argument allows to tune
693     behaviour and output format. In case of an error, C<$entries> will be
694     C<undef>.
695    
696     The flags are a combination of the following constants, ORed together (the
697     flags will also be passed to the callback, possibly modified):
698    
699     =over 4
700    
701 root 1.150 =item IO::AIO::READDIR_DENTS
702 root 1.148
703 root 1.190 When this flag is off, then the callback gets an arrayref consisting of
704     names only (as with C<aio_readdir>), otherwise it gets an arrayref with
705 root 1.150 C<[$name, $type, $inode]> arrayrefs, each describing a single directory
706 root 1.148 entry in more detail.
707    
708     C<$name> is the name of the entry.
709    
710 root 1.150 C<$type> is one of the C<IO::AIO::DT_xxx> constants:
711 root 1.148
712 root 1.150 C<IO::AIO::DT_UNKNOWN>, C<IO::AIO::DT_FIFO>, C<IO::AIO::DT_CHR>, C<IO::AIO::DT_DIR>,
713     C<IO::AIO::DT_BLK>, C<IO::AIO::DT_REG>, C<IO::AIO::DT_LNK>, C<IO::AIO::DT_SOCK>,
714     C<IO::AIO::DT_WHT>.
715 root 1.148
716 root 1.150 C<IO::AIO::DT_UNKNOWN> means just that: readdir does not know. If you need to
717 root 1.148 know, you have to run stat yourself. Also, for speed reasons, the C<$type>
718     scalars are read-only: you can not modify them.
719    
720 root 1.150 C<$inode> is the inode number (which might not be exact on systems with 64
721 root 1.155 bit inode numbers and 32 bit perls). This field has unspecified content on
722     systems that do not deliver the inode information.
723 root 1.150
724     =item IO::AIO::READDIR_DIRS_FIRST
725 root 1.148
726     When this flag is set, then the names will be returned in an order where
727 root 1.193 likely directories come first, in optimal stat order. This is useful when
728     you need to quickly find directories, or you want to find all directories
729     while avoiding to stat() each entry.
730 root 1.148
731 root 1.149 If the system returns type information in readdir, then this is used
732 root 1.193 to find directories directly. Otherwise, likely directories are names
733     beginning with ".", or otherwise names with no dots, of which names with
734 root 1.149 short names are tried first.
735    
736 root 1.150 =item IO::AIO::READDIR_STAT_ORDER
737 root 1.148
738     When this flag is set, then the names will be returned in an order
739     suitable for stat()'ing each one. That is, when you plan to stat()
740     all files in the given directory, then the returned order will likely
741     be fastest.
742    
743 root 1.150 If both this flag and C<IO::AIO::READDIR_DIRS_FIRST> are specified, then
744     the likely dirs come first, resulting in a less optimal stat order.
745 root 1.148
746 root 1.150 =item IO::AIO::READDIR_FOUND_UNKNOWN
747 root 1.148
748     This flag should not be set when calling C<aio_readdirx>. Instead, it
749     is being set by C<aio_readdirx>, when any of the C<$type>'s found were
750 root 1.150 C<IO::AIO::DT_UNKNOWN>. The absense of this flag therefore indicates that all
751 root 1.148 C<$type>'s are known, which can be used to speed up some algorithms.
752    
753     =back
754 root 1.37
755 root 1.106
756 root 1.98 =item aio_load $path, $data, $callback->($status)
757    
758     This is a composite request that tries to fully load the given file into
759     memory. Status is the same as with aio_read.
760    
761     =cut
762    
763     sub aio_load($$;$) {
764 root 1.123 my ($path, undef, $cb) = @_;
765     my $data = \$_[1];
766 root 1.98
767 root 1.123 my $pri = aioreq_pri;
768     my $grp = aio_group $cb;
769    
770     aioreq_pri $pri;
771     add $grp aio_open $path, O_RDONLY, 0, sub {
772     my $fh = shift
773     or return $grp->result (-1);
774 root 1.98
775     aioreq_pri $pri;
776 root 1.123 add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
777     $grp->result ($_[0]);
778 root 1.98 };
779 root 1.123 };
780 root 1.98
781 root 1.123 $grp
782 root 1.98 }
783    
784 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
785    
786     Try to copy the I<file> (directories not supported as either source or
787     destination) from C<$srcpath> to C<$dstpath> and call the callback with
788 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
789 root 1.82
790 root 1.134 This is a composite request that creates the destination file with
791 root 1.82 mode 0200 and copies the contents of the source file into it using
792     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
793     uid/gid, in that order.
794    
795     If an error occurs, the partial destination file will be unlinked, if
796     possible, except when setting atime, mtime, access mode and uid/gid, where
797     errors are being ignored.
798    
799     =cut
800    
801     sub aio_copy($$;$) {
802 root 1.123 my ($src, $dst, $cb) = @_;
803 root 1.82
804 root 1.123 my $pri = aioreq_pri;
805     my $grp = aio_group $cb;
806 root 1.82
807 root 1.123 aioreq_pri $pri;
808     add $grp aio_open $src, O_RDONLY, 0, sub {
809     if (my $src_fh = $_[0]) {
810 root 1.166 my @stat = stat $src_fh; # hmm, might block over nfs?
811 root 1.95
812 root 1.123 aioreq_pri $pri;
813     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
814     if (my $dst_fh = $_[0]) {
815     aioreq_pri $pri;
816     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
817     if ($_[0] == $stat[7]) {
818     $grp->result (0);
819     close $src_fh;
820    
821 root 1.147 my $ch = sub {
822     aioreq_pri $pri;
823     add $grp aio_chmod $dst_fh, $stat[2] & 07777, sub {
824     aioreq_pri $pri;
825     add $grp aio_chown $dst_fh, $stat[4], $stat[5], sub {
826     aioreq_pri $pri;
827     add $grp aio_close $dst_fh;
828     }
829     };
830     };
831 root 1.123
832     aioreq_pri $pri;
833 root 1.147 add $grp aio_utime $dst_fh, $stat[8], $stat[9], sub {
834     if ($_[0] < 0 && $! == ENOSYS) {
835     aioreq_pri $pri;
836     add $grp aio_utime $dst, $stat[8], $stat[9], $ch;
837     } else {
838     $ch->();
839     }
840     };
841 root 1.123 } else {
842     $grp->result (-1);
843     close $src_fh;
844     close $dst_fh;
845    
846     aioreq $pri;
847     add $grp aio_unlink $dst;
848     }
849     };
850     } else {
851     $grp->result (-1);
852     }
853     },
854 root 1.82
855 root 1.123 } else {
856     $grp->result (-1);
857     }
858     };
859 root 1.82
860 root 1.123 $grp
861 root 1.82 }
862    
863     =item aio_move $srcpath, $dstpath, $callback->($status)
864    
865     Try to move the I<file> (directories not supported as either source or
866     destination) from C<$srcpath> to C<$dstpath> and call the callback with
867 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
868 root 1.82
869 root 1.137 This is a composite request that tries to rename(2) the file first; if
870     rename fails with C<EXDEV>, it copies the file with C<aio_copy> and, if
871     that is successful, unlinks the C<$srcpath>.
872 root 1.82
873     =cut
874    
875     sub aio_move($$;$) {
876 root 1.123 my ($src, $dst, $cb) = @_;
877 root 1.82
878 root 1.123 my $pri = aioreq_pri;
879     my $grp = aio_group $cb;
880 root 1.82
881 root 1.123 aioreq_pri $pri;
882     add $grp aio_rename $src, $dst, sub {
883     if ($_[0] && $! == EXDEV) {
884     aioreq_pri $pri;
885     add $grp aio_copy $src, $dst, sub {
886     $grp->result ($_[0]);
887 root 1.95
888 root 1.196 unless ($_[0]) {
889 root 1.123 aioreq_pri $pri;
890     add $grp aio_unlink $src;
891     }
892     };
893     } else {
894     $grp->result ($_[0]);
895     }
896     };
897 root 1.82
898 root 1.123 $grp
899 root 1.82 }
900    
901 root 1.40 =item aio_scandir $path, $maxreq, $callback->($dirs, $nondirs)
902    
903 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
904 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
905     names, directories you can recurse into (directories), and ones you cannot
906     recurse into (everything else, including symlinks to directories).
907 root 1.52
908 root 1.61 C<aio_scandir> is a composite request that creates of many sub requests_
909     C<$maxreq> specifies the maximum number of outstanding aio requests that
910     this function generates. If it is C<< <= 0 >>, then a suitable default
911 root 1.81 will be chosen (currently 4).
912 root 1.40
913     On error, the callback is called without arguments, otherwise it receives
914     two array-refs with path-relative entry names.
915    
916     Example:
917    
918     aio_scandir $dir, 0, sub {
919     my ($dirs, $nondirs) = @_;
920     print "real directories: @$dirs\n";
921     print "everything else: @$nondirs\n";
922     };
923    
924     Implementation notes.
925    
926     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
927    
928 root 1.149 If readdir returns file type information, then this is used directly to
929     find directories.
930    
931     Otherwise, after reading the directory, the modification time, size etc.
932     of the directory before and after the readdir is checked, and if they
933     match (and isn't the current time), the link count will be used to decide
934     how many entries are directories (if >= 2). Otherwise, no knowledge of the
935     number of subdirectories will be assumed.
936    
937     Then entries will be sorted into likely directories a non-initial dot
938     currently) and likely non-directories (see C<aio_readdirx>). Then every
939     entry plus an appended C</.> will be C<stat>'ed, likely directories first,
940     in order of their inode numbers. If that succeeds, it assumes that the
941     entry is a directory or a symlink to directory (which will be checked
942 root 1.52 seperately). This is often faster than stat'ing the entry itself because
943     filesystems might detect the type of the entry without reading the inode
944 root 1.149 data (e.g. ext2fs filetype feature), even on systems that cannot return
945     the filetype information on readdir.
946 root 1.52
947     If the known number of directories (link count - 2) has been reached, the
948     rest of the entries is assumed to be non-directories.
949    
950     This only works with certainty on POSIX (= UNIX) filesystems, which
951     fortunately are the vast majority of filesystems around.
952    
953     It will also likely work on non-POSIX filesystems with reduced efficiency
954     as those tend to return 0 or 1 as link counts, which disables the
955     directory counting heuristic.
956 root 1.40
957     =cut
958    
959 root 1.100 sub aio_scandir($$;$) {
960 root 1.123 my ($path, $maxreq, $cb) = @_;
961    
962     my $pri = aioreq_pri;
963 root 1.40
964 root 1.123 my $grp = aio_group $cb;
965 root 1.80
966 root 1.123 $maxreq = 4 if $maxreq <= 0;
967 root 1.55
968 root 1.123 # stat once
969     aioreq_pri $pri;
970     add $grp aio_stat $path, sub {
971     return $grp->result () if $_[0];
972     my $now = time;
973     my $hash1 = join ":", (stat _)[0,1,3,7,9];
974 root 1.40
975 root 1.123 # read the directory entries
976 root 1.80 aioreq_pri $pri;
977 root 1.148 add $grp aio_readdirx $path, READDIR_DIRS_FIRST, sub {
978 root 1.123 my $entries = shift
979     or return $grp->result ();
980 root 1.40
981 root 1.123 # stat the dir another time
982 root 1.80 aioreq_pri $pri;
983 root 1.123 add $grp aio_stat $path, sub {
984     my $hash2 = join ":", (stat _)[0,1,3,7,9];
985 root 1.95
986 root 1.123 my $ndirs;
987 root 1.95
988 root 1.123 # take the slow route if anything looks fishy
989     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
990     $ndirs = -1;
991     } else {
992     # if nlink == 2, we are finished
993 root 1.150 # for non-posix-fs's, we rely on nlink < 2
994 root 1.123 $ndirs = (stat _)[3] - 2
995     or return $grp->result ([], $entries);
996     }
997    
998     my (@dirs, @nondirs);
999 root 1.40
1000 root 1.123 my $statgrp = add $grp aio_group sub {
1001     $grp->result (\@dirs, \@nondirs);
1002     };
1003 root 1.40
1004 root 1.123 limit $statgrp $maxreq;
1005     feed $statgrp sub {
1006     return unless @$entries;
1007 root 1.150 my $entry = shift @$entries;
1008 root 1.40
1009 root 1.123 aioreq_pri $pri;
1010     add $statgrp aio_stat "$path/$entry/.", sub {
1011     if ($_[0] < 0) {
1012     push @nondirs, $entry;
1013     } else {
1014     # need to check for real directory
1015     aioreq_pri $pri;
1016     add $statgrp aio_lstat "$path/$entry", sub {
1017     if (-d _) {
1018     push @dirs, $entry;
1019    
1020     unless (--$ndirs) {
1021     push @nondirs, @$entries;
1022     feed $statgrp;
1023 root 1.74 }
1024 root 1.123 } else {
1025     push @nondirs, $entry;
1026 root 1.40 }
1027     }
1028 root 1.123 }
1029 root 1.74 };
1030 root 1.40 };
1031     };
1032     };
1033 root 1.123 };
1034 root 1.55
1035 root 1.123 $grp
1036 root 1.40 }
1037    
1038 root 1.99 =item aio_rmtree $path, $callback->($status)
1039    
1040 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
1041     status of the final C<rmdir> only. This is a composite request that
1042     uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1043     everything else.
1044 root 1.99
1045     =cut
1046    
1047     sub aio_rmtree;
1048 root 1.100 sub aio_rmtree($;$) {
1049 root 1.123 my ($path, $cb) = @_;
1050 root 1.99
1051 root 1.123 my $pri = aioreq_pri;
1052     my $grp = aio_group $cb;
1053 root 1.99
1054 root 1.123 aioreq_pri $pri;
1055     add $grp aio_scandir $path, 0, sub {
1056     my ($dirs, $nondirs) = @_;
1057 root 1.99
1058 root 1.123 my $dirgrp = aio_group sub {
1059     add $grp aio_rmdir $path, sub {
1060     $grp->result ($_[0]);
1061 root 1.99 };
1062 root 1.123 };
1063 root 1.99
1064 root 1.123 (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
1065     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
1066 root 1.99
1067 root 1.123 add $grp $dirgrp;
1068     };
1069 root 1.99
1070 root 1.123 $grp
1071 root 1.99 }
1072    
1073 root 1.119 =item aio_sync $callback->($status)
1074    
1075     Asynchronously call sync and call the callback when finished.
1076    
1077 root 1.40 =item aio_fsync $fh, $callback->($status)
1078 root 1.1
1079     Asynchronously call fsync on the given filehandle and call the callback
1080     with the fsync result code.
1081    
1082 root 1.40 =item aio_fdatasync $fh, $callback->($status)
1083 root 1.1
1084     Asynchronously call fdatasync on the given filehandle and call the
1085 root 1.26 callback with the fdatasync result code.
1086    
1087     If this call isn't available because your OS lacks it or it couldn't be
1088     detected, it will be emulated by calling C<fsync> instead.
1089 root 1.1
1090 root 1.206 =item aio_syncfs $fh, $callback->($status)
1091    
1092     Asynchronously call the syncfs syscall to sync the filesystem associated
1093     to the given filehandle and call the callback with the syncfs result
1094     code. If syncfs is not available, calls sync(), but returns C<-1> and sets
1095     errno to C<ENOSYS> nevertheless.
1096    
1097 root 1.142 =item aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
1098    
1099     Sync the data portion of the file specified by C<$offset> and C<$length>
1100     to disk (but NOT the metadata), by calling the Linux-specific
1101     sync_file_range call. If sync_file_range is not available or it returns
1102     ENOSYS, then fdatasync or fsync is being substituted.
1103    
1104     C<$flags> can be a combination of C<IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE>,
1105     C<IO::AIO::SYNC_FILE_RANGE_WRITE> and
1106     C<IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER>: refer to the sync_file_range
1107     manpage for details.
1108    
1109 root 1.120 =item aio_pathsync $path, $callback->($status)
1110    
1111     This request tries to open, fsync and close the given path. This is a
1112 root 1.135 composite request intended to sync directories after directory operations
1113 root 1.120 (E.g. rename). This might not work on all operating systems or have any
1114     specific effect, but usually it makes sure that directory changes get
1115     written to disc. It works for anything that can be opened for read-only,
1116     not just directories.
1117    
1118 root 1.162 Future versions of this function might fall back to other methods when
1119     C<fsync> on the directory fails (such as calling C<sync>).
1120    
1121 root 1.120 Passes C<0> when everything went ok, and C<-1> on error.
1122    
1123     =cut
1124    
1125     sub aio_pathsync($;$) {
1126 root 1.123 my ($path, $cb) = @_;
1127    
1128     my $pri = aioreq_pri;
1129     my $grp = aio_group $cb;
1130 root 1.120
1131 root 1.123 aioreq_pri $pri;
1132     add $grp aio_open $path, O_RDONLY, 0, sub {
1133     my ($fh) = @_;
1134     if ($fh) {
1135     aioreq_pri $pri;
1136     add $grp aio_fsync $fh, sub {
1137     $grp->result ($_[0]);
1138 root 1.120
1139     aioreq_pri $pri;
1140 root 1.123 add $grp aio_close $fh;
1141     };
1142     } else {
1143     $grp->result (-1);
1144     }
1145     };
1146 root 1.120
1147 root 1.123 $grp
1148 root 1.120 }
1149    
1150 root 1.170 =item aio_msync $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1151    
1152     This is a rather advanced IO::AIO call, which only works on mmap(2)ed
1153 root 1.176 scalars (see the C<IO::AIO::mmap> function, although it also works on data
1154     scalars managed by the L<Sys::Mmap> or L<Mmap> modules, note that the
1155     scalar must only be modified in-place while an aio operation is pending on
1156     it).
1157 root 1.170
1158     It calls the C<msync> function of your OS, if available, with the memory
1159     area starting at C<$offset> in the string and ending C<$length> bytes
1160     later. If C<$length> is negative, counts from the end, and if C<$length>
1161     is C<undef>, then it goes till the end of the string. The flags can be
1162     a combination of C<IO::AIO::MS_ASYNC>, C<IO::AIO::MS_INVALIDATE> and
1163     C<IO::AIO::MS_SYNC>.
1164    
1165     =item aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1166    
1167     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1168     scalars.
1169    
1170     It touches (reads or writes) all memory pages in the specified
1171     range inside the scalar. All caveats and parameters are the same
1172     as for C<aio_msync>, above, except for flags, which must be either
1173     C<0> (which reads all pages and ensures they are instantiated) or
1174     C<IO::AIO::MT_MODIFY>, which modifies the memory page s(by reading and
1175     writing an octet from it, which dirties the page).
1176    
1177 root 1.182 =item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1178    
1179     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1180     scalars.
1181    
1182     It reads in all the pages of the underlying storage into memory (if any)
1183     and locks them, so they are not getting swapped/paged out or removed.
1184    
1185     If C<$length> is undefined, then the scalar will be locked till the end.
1186    
1187     On systems that do not implement C<mlock>, this function returns C<-1>
1188     and sets errno to C<ENOSYS>.
1189    
1190     Note that the corresponding C<munlock> is synchronous and is
1191     documented under L<MISCELLANEOUS FUNCTIONS>.
1192    
1193 root 1.183 Example: open a file, mmap and mlock it - both will be undone when
1194     C<$data> gets destroyed.
1195    
1196     open my $fh, "<", $path or die "$path: $!";
1197     my $data;
1198     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1199     aio_mlock $data; # mlock in background
1200    
1201 root 1.182 =item aio_mlockall $flags, $callback->($status)
1202    
1203     Calls the C<mlockall> function with the given C<$flags> (a combination of
1204     C<IO::AIO::MCL_CURRENT> and C<IO::AIO::MCL_FUTURE>).
1205    
1206     On systems that do not implement C<mlockall>, this function returns C<-1>
1207     and sets errno to C<ENOSYS>.
1208    
1209     Note that the corresponding C<munlockall> is synchronous and is
1210     documented under L<MISCELLANEOUS FUNCTIONS>.
1211    
1212 root 1.183 Example: asynchronously lock all current and future pages into memory.
1213    
1214     aio_mlockall IO::AIO::MCL_FUTURE;
1215    
1216 root 1.58 =item aio_group $callback->(...)
1217 root 1.54
1218 root 1.55 This is a very special aio request: Instead of doing something, it is a
1219     container for other aio requests, which is useful if you want to bundle
1220 root 1.71 many requests into a single, composite, request with a definite callback
1221     and the ability to cancel the whole request with its subrequests.
1222 root 1.55
1223     Returns an object of class L<IO::AIO::GRP>. See its documentation below
1224     for more info.
1225    
1226     Example:
1227    
1228     my $grp = aio_group sub {
1229     print "all stats done\n";
1230     };
1231    
1232     add $grp
1233     (aio_stat ...),
1234     (aio_stat ...),
1235     ...;
1236    
1237 root 1.63 =item aio_nop $callback->()
1238    
1239     This is a special request - it does nothing in itself and is only used for
1240     side effects, such as when you want to add a dummy request to a group so
1241     that finishing the requests in the group depends on executing the given
1242     code.
1243    
1244 root 1.64 While this request does nothing, it still goes through the execution
1245     phase and still requires a worker thread. Thus, the callback will not
1246     be executed immediately but only after other requests in the queue have
1247     entered their execution phase. This can be used to measure request
1248     latency.
1249    
1250 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1251 root 1.54
1252     Mainly used for debugging and benchmarking, this aio request puts one of
1253     the request workers to sleep for the given time.
1254    
1255 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1256 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1257     immense (it blocks a thread for a long time) so do not use this function
1258     except to put your application under artificial I/O pressure.
1259 root 1.56
1260 root 1.5 =back
1261    
1262 root 1.53 =head2 IO::AIO::REQ CLASS
1263 root 1.52
1264     All non-aggregate C<aio_*> functions return an object of this class when
1265     called in non-void context.
1266    
1267     =over 4
1268    
1269 root 1.65 =item cancel $req
1270 root 1.52
1271     Cancels the request, if possible. Has the effect of skipping execution
1272     when entering the B<execute> state and skipping calling the callback when
1273     entering the the B<result> state, but will leave the request otherwise
1274 root 1.151 untouched (with the exception of readdir). That means that requests that
1275     currently execute will not be stopped and resources held by the request
1276     will not be freed prematurely.
1277 root 1.52
1278 root 1.65 =item cb $req $callback->(...)
1279    
1280     Replace (or simply set) the callback registered to the request.
1281    
1282 root 1.52 =back
1283    
1284 root 1.55 =head2 IO::AIO::GRP CLASS
1285    
1286     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1287     objects of this class, too.
1288    
1289     A IO::AIO::GRP object is a special request that can contain multiple other
1290     aio requests.
1291    
1292     You create one by calling the C<aio_group> constructing function with a
1293     callback that will be called when all contained requests have entered the
1294     C<done> state:
1295    
1296     my $grp = aio_group sub {
1297     print "all requests are done\n";
1298     };
1299    
1300     You add requests by calling the C<add> method with one or more
1301     C<IO::AIO::REQ> objects:
1302    
1303     $grp->add (aio_unlink "...");
1304    
1305 root 1.58 add $grp aio_stat "...", sub {
1306     $_[0] or return $grp->result ("error");
1307    
1308     # add another request dynamically, if first succeeded
1309     add $grp aio_open "...", sub {
1310     $grp->result ("ok");
1311     };
1312     };
1313 root 1.55
1314     This makes it very easy to create composite requests (see the source of
1315     C<aio_move> for an application) that work and feel like simple requests.
1316    
1317 root 1.62 =over 4
1318    
1319     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1320 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1321    
1322 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1323 root 1.59 only the request itself, but also all requests it contains.
1324 root 1.55
1325 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1326 root 1.55
1327 root 1.62 =item * You must not add requests to a group from within the group callback (or
1328 root 1.60 any later time).
1329    
1330 root 1.62 =back
1331    
1332 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1333     will finish very quickly. If they contain only requests that are in the
1334     C<done> state, they will also finish. Otherwise they will continue to
1335     exist.
1336    
1337 root 1.133 That means after creating a group you have some time to add requests
1338     (precisely before the callback has been invoked, which is only done within
1339     the C<poll_cb>). And in the callbacks of those requests, you can add
1340     further requests to the group. And only when all those requests have
1341     finished will the the group itself finish.
1342 root 1.57
1343 root 1.55 =over 4
1344    
1345 root 1.65 =item add $grp ...
1346    
1347 root 1.55 =item $grp->add (...)
1348    
1349 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1350     be added, including other groups, as long as you do not create circular
1351     dependencies.
1352    
1353     Returns all its arguments.
1354 root 1.55
1355 root 1.74 =item $grp->cancel_subs
1356    
1357     Cancel all subrequests and clears any feeder, but not the group request
1358     itself. Useful when you queued a lot of events but got a result early.
1359    
1360 root 1.168 The group request will finish normally (you cannot add requests to the
1361     group).
1362    
1363 root 1.58 =item $grp->result (...)
1364    
1365     Set the result value(s) that will be passed to the group callback when all
1366 root 1.120 subrequests have finished and set the groups errno to the current value
1367 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1368     no argument will be passed and errno is zero.
1369    
1370     =item $grp->errno ([$errno])
1371    
1372     Sets the group errno value to C<$errno>, or the current value of errno
1373     when the argument is missing.
1374    
1375     Every aio request has an associated errno value that is restored when
1376     the callback is invoked. This method lets you change this value from its
1377     default (0).
1378    
1379     Calling C<result> will also set errno, so make sure you either set C<$!>
1380     before the call to C<result>, or call c<errno> after it.
1381 root 1.58
1382 root 1.65 =item feed $grp $callback->($grp)
1383 root 1.60
1384     Sets a feeder/generator on this group: every group can have an attached
1385     generator that generates requests if idle. The idea behind this is that,
1386     although you could just queue as many requests as you want in a group,
1387 root 1.139 this might starve other requests for a potentially long time. For example,
1388     C<aio_scandir> might generate hundreds of thousands C<aio_stat> requests,
1389     delaying any later requests for a long time.
1390 root 1.60
1391     To avoid this, and allow incremental generation of requests, you can
1392     instead a group and set a feeder on it that generates those requests. The
1393 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1394 root 1.60 below) requests active in the group itself and is expected to queue more
1395     requests.
1396    
1397 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1398     not impose any limits).
1399 root 1.60
1400 root 1.65 If the feed does not queue more requests when called, it will be
1401 root 1.60 automatically removed from the group.
1402    
1403 root 1.138 If the feed limit is C<0> when this method is called, it will be set to
1404     C<2> automatically.
1405 root 1.60
1406     Example:
1407    
1408     # stat all files in @files, but only ever use four aio requests concurrently:
1409    
1410     my $grp = aio_group sub { print "finished\n" };
1411 root 1.68 limit $grp 4;
1412 root 1.65 feed $grp sub {
1413 root 1.60 my $file = pop @files
1414     or return;
1415    
1416     add $grp aio_stat $file, sub { ... };
1417 root 1.65 };
1418 root 1.60
1419 root 1.68 =item limit $grp $num
1420 root 1.60
1421     Sets the feeder limit for the group: The feeder will be called whenever
1422     the group contains less than this many requests.
1423    
1424     Setting the limit to C<0> will pause the feeding process.
1425    
1426 root 1.138 The default value for the limit is C<0>, but note that setting a feeder
1427     automatically bumps it up to C<2>.
1428    
1429 root 1.55 =back
1430    
1431 root 1.5 =head2 SUPPORT FUNCTIONS
1432    
1433 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1434    
1435 root 1.5 =over 4
1436    
1437     =item $fileno = IO::AIO::poll_fileno
1438    
1439 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1440 root 1.156 polled for reading by some mechanism outside this module (e.g. EV, Glib,
1441     select and so on, see below or the SYNOPSIS). If the pipe becomes readable
1442     you have to call C<poll_cb> to check the results.
1443 root 1.5
1444     See C<poll_cb> for an example.
1445    
1446     =item IO::AIO::poll_cb
1447    
1448 root 1.191 Process some outstanding events on the result pipe. You have to call
1449     this regularly. Returns C<0> if all events could be processed (or there
1450     were no events to process), or C<-1> if it returned earlier for whatever
1451     reason. Returns immediately when no events are outstanding. The amount of
1452     events processed depends on the settings of C<IO::AIO::max_poll_req> and
1453     C<IO::AIO::max_poll_time>.
1454 root 1.5
1455 root 1.78 If not all requests were processed for whatever reason, the filehandle
1456 root 1.128 will still be ready when C<poll_cb> returns, so normally you don't have to
1457     do anything special to have it called later.
1458 root 1.78
1459 root 1.192 Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes
1460     ready, it can be beneficial to call this function from loops which submit
1461     a lot of requests, to make sure the results get processed when they become
1462     available and not just when the loop is finished and the event loop takes
1463     over again. This function returns very fast when there are no outstanding
1464     requests.
1465    
1466 root 1.20 Example: Install an Event watcher that automatically calls
1467 root 1.156 IO::AIO::poll_cb with high priority (more examples can be found in the
1468     SYNOPSIS section, at the top of this document):
1469 root 1.5
1470     Event->io (fd => IO::AIO::poll_fileno,
1471     poll => 'r', async => 1,
1472     cb => \&IO::AIO::poll_cb);
1473    
1474 root 1.175 =item IO::AIO::poll_wait
1475    
1476     If there are any outstanding requests and none of them in the result
1477     phase, wait till the result filehandle becomes ready for reading (simply
1478     does a C<select> on the filehandle. This is useful if you want to
1479     synchronously wait for some requests to finish).
1480    
1481     See C<nreqs> for an example.
1482    
1483     =item IO::AIO::poll
1484    
1485     Waits until some requests have been handled.
1486    
1487     Returns the number of requests processed, but is otherwise strictly
1488     equivalent to:
1489    
1490     IO::AIO::poll_wait, IO::AIO::poll_cb
1491    
1492     =item IO::AIO::flush
1493    
1494     Wait till all outstanding AIO requests have been handled.
1495    
1496     Strictly equivalent to:
1497    
1498     IO::AIO::poll_wait, IO::AIO::poll_cb
1499     while IO::AIO::nreqs;
1500    
1501 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1502    
1503     =item IO::AIO::max_poll_time $seconds
1504    
1505     These set the maximum number of requests (default C<0>, meaning infinity)
1506     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1507     the maximum amount of time (default C<0>, meaning infinity) spent in
1508     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1509     of time C<poll_cb> is allowed to use).
1510 root 1.78
1511 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1512     syscall per request processed, which is not normally a problem unless your
1513     callbacks are really really fast or your OS is really really slow (I am
1514     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1515    
1516 root 1.86 Setting these is useful if you want to ensure some level of
1517     interactiveness when perl is not fast enough to process all requests in
1518     time.
1519 root 1.78
1520 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
1521 root 1.78
1522     Example: Install an Event watcher that automatically calls
1523 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
1524 root 1.78 program get the CPU sometimes even under high AIO load.
1525    
1526 root 1.86 # try not to spend much more than 0.1s in poll_cb
1527     IO::AIO::max_poll_time 0.1;
1528    
1529     # use a low priority so other tasks have priority
1530 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
1531     poll => 'r', nice => 1,
1532 root 1.86 cb => &IO::AIO::poll_cb);
1533 root 1.78
1534 root 1.104 =back
1535    
1536 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
1537 root 1.13
1538 root 1.105 =over
1539    
1540 root 1.5 =item IO::AIO::min_parallel $nthreads
1541    
1542 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
1543     default is C<8>, which means eight asynchronous operations can execute
1544     concurrently at any one time (the number of outstanding requests,
1545     however, is unlimited).
1546 root 1.5
1547 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
1548 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
1549     create demand for a hundred threads, even if it turns out that everything
1550     is in the cache and could have been processed faster by a single thread.
1551 root 1.34
1552 root 1.61 It is recommended to keep the number of threads relatively low, as some
1553     Linux kernel versions will scale negatively with the number of threads
1554     (higher parallelity => MUCH higher latency). With current Linux 2.6
1555     versions, 4-32 threads should be fine.
1556 root 1.5
1557 root 1.34 Under most circumstances you don't need to call this function, as the
1558     module selects a default that is suitable for low to moderate load.
1559 root 1.5
1560     =item IO::AIO::max_parallel $nthreads
1561    
1562 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
1563     specified number of threads are currently running, this function kills
1564     them. This function blocks until the limit is reached.
1565    
1566     While C<$nthreads> are zero, aio requests get queued but not executed
1567     until the number of threads has been increased again.
1568 root 1.5
1569     This module automatically runs C<max_parallel 0> at program end, to ensure
1570     that all threads are killed and that there are no outstanding requests.
1571    
1572     Under normal circumstances you don't need to call this function.
1573    
1574 root 1.86 =item IO::AIO::max_idle $nthreads
1575    
1576 root 1.188 Limit the number of threads (default: 4) that are allowed to idle
1577     (i.e., threads that did not get a request to process within the idle
1578     timeout (default: 10 seconds). That means if a thread becomes idle while
1579     C<$nthreads> other threads are also idle, it will free its resources and
1580     exit.
1581 root 1.86
1582     This is useful when you allow a large number of threads (e.g. 100 or 1000)
1583     to allow for extremely high load situations, but want to free resources
1584     under normal circumstances (1000 threads can easily consume 30MB of RAM).
1585    
1586     The default is probably ok in most situations, especially if thread
1587     creation is fast. If thread creation is very slow on your system you might
1588     want to use larger values.
1589    
1590 root 1.188 =item IO::AIO::idle_timeout $seconds
1591    
1592     Sets the minimum idle timeout (default 10) after which worker threads are
1593     allowed to exit. SEe C<IO::AIO::max_idle>.
1594    
1595 root 1.123 =item IO::AIO::max_outstanding $maxreqs
1596 root 1.5
1597 root 1.195 Sets the maximum number of outstanding requests to C<$nreqs>. If
1598     you do queue up more than this number of requests, the next call to
1599     C<IO::AIO::poll_cb> (and other functions calling C<poll_cb>, such as
1600     C<IO::AIO::flush> or C<IO::AIO::poll>) will block until the limit is no
1601     longer exceeded.
1602    
1603     In other words, this setting does not enforce a queue limit, but can be
1604     used to make poll functions block if the limit is exceeded.
1605    
1606 root 1.79 This is a very bad function to use in interactive programs because it
1607     blocks, and a bad way to reduce concurrency because it is inexact: Better
1608     use an C<aio_group> together with a feed callback.
1609    
1610 root 1.195 It's main use is in scripts without an event loop - when you want to stat
1611     a lot of files, you can write somehting like this:
1612    
1613     IO::AIO::max_outstanding 32;
1614    
1615     for my $path (...) {
1616     aio_stat $path , ...;
1617     IO::AIO::poll_cb;
1618     }
1619    
1620     IO::AIO::flush;
1621    
1622     The call to C<poll_cb> inside the loop will normally return instantly, but
1623     as soon as more thna C<32> reqeusts are in-flight, it will block until
1624     some requests have been handled. This keeps the loop from pushing a large
1625     number of C<aio_stat> requests onto the queue.
1626    
1627     The default value for C<max_outstanding> is very large, so there is no
1628     practical limit on the number of outstanding requests.
1629 root 1.5
1630 root 1.104 =back
1631    
1632 root 1.86 =head3 STATISTICAL INFORMATION
1633    
1634 root 1.104 =over
1635    
1636 root 1.86 =item IO::AIO::nreqs
1637    
1638     Returns the number of requests currently in the ready, execute or pending
1639     states (i.e. for which their callback has not been invoked yet).
1640    
1641     Example: wait till there are no outstanding requests anymore:
1642    
1643     IO::AIO::poll_wait, IO::AIO::poll_cb
1644     while IO::AIO::nreqs;
1645    
1646     =item IO::AIO::nready
1647    
1648     Returns the number of requests currently in the ready state (not yet
1649     executed).
1650    
1651     =item IO::AIO::npending
1652    
1653     Returns the number of requests currently in the pending state (executed,
1654     but not yet processed by poll_cb).
1655    
1656 root 1.5 =back
1657    
1658 root 1.157 =head3 MISCELLANEOUS FUNCTIONS
1659    
1660     IO::AIO implements some functions that might be useful, but are not
1661     asynchronous.
1662    
1663     =over 4
1664    
1665     =item IO::AIO::sendfile $ofh, $ifh, $offset, $count
1666    
1667     Calls the C<eio_sendfile_sync> function, which is like C<aio_sendfile>,
1668     but is blocking (this makes most sense if you know the input data is
1669     likely cached already and the output filehandle is set to non-blocking
1670     operations).
1671    
1672     Returns the number of bytes copied, or C<-1> on error.
1673    
1674     =item IO::AIO::fadvise $fh, $offset, $len, $advice
1675    
1676 root 1.184 Simply calls the C<posix_fadvise> function (see its
1677 root 1.157 manpage for details). The following advice constants are
1678     avaiable: C<IO::AIO::FADV_NORMAL>, C<IO::AIO::FADV_SEQUENTIAL>,
1679     C<IO::AIO::FADV_RANDOM>, C<IO::AIO::FADV_NOREUSE>,
1680     C<IO::AIO::FADV_WILLNEED>, C<IO::AIO::FADV_DONTNEED>.
1681    
1682     On systems that do not implement C<posix_fadvise>, this function returns
1683     ENOSYS, otherwise the return value of C<posix_fadvise>.
1684    
1685 root 1.184 =item IO::AIO::madvise $scalar, $offset, $len, $advice
1686    
1687     Simply calls the C<posix_madvise> function (see its
1688     manpage for details). The following advice constants are
1689     avaiable: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
1690     C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>, C<IO::AIO::MADV_DONTNEED>.
1691    
1692     On systems that do not implement C<posix_madvise>, this function returns
1693     ENOSYS, otherwise the return value of C<posix_madvise>.
1694    
1695     =item IO::AIO::mprotect $scalar, $offset, $len, $protect
1696    
1697     Simply calls the C<mprotect> function on the preferably AIO::mmap'ed
1698     $scalar (see its manpage for details). The following protect
1699     constants are avaiable: C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_READ>,
1700     C<IO::AIO::PROT_WRITE>, C<IO::AIO::PROT_EXEC>.
1701    
1702     On systems that do not implement C<mprotect>, this function returns
1703     ENOSYS, otherwise the return value of C<mprotect>.
1704    
1705 root 1.176 =item IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
1706    
1707     Memory-maps a file (or anonymous memory range) and attaches it to the
1708     given C<$scalar>, which will act like a string scalar.
1709    
1710     The only operations allowed on the scalar are C<substr>/C<vec> that don't
1711     change the string length, and most read-only operations such as copying it
1712     or searching it with regexes and so on.
1713    
1714     Anything else is unsafe and will, at best, result in memory leaks.
1715    
1716     The memory map associated with the C<$scalar> is automatically removed
1717     when the C<$scalar> is destroyed, or when the C<IO::AIO::mmap> or
1718     C<IO::AIO::munmap> functions are called.
1719    
1720     This calls the C<mmap>(2) function internally. See your system's manual
1721     page for details on the C<$length>, C<$prot> and C<$flags> parameters.
1722    
1723     The C<$length> must be larger than zero and smaller than the actual
1724     filesize.
1725    
1726     C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
1727     C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
1728    
1729     C<$flags> can be a combination of C<IO::AIO::MAP_SHARED> or
1730     C<IO::AIO::MAP_PRIVATE>, or a number of system-specific flags (when
1731     not available, the are defined as 0): C<IO::AIO::MAP_ANONYMOUS>
1732     (which is set to C<MAP_ANON> if your system only provides this
1733     constant), C<IO::AIO::MAP_HUGETLB>, C<IO::AIO::MAP_LOCKED>,
1734     C<IO::AIO::MAP_NORESERVE>, C<IO::AIO::MAP_POPULATE> or
1735     C<IO::AIO::MAP_NONBLOCK>
1736    
1737     If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
1738    
1739 root 1.179 C<$offset> is the offset from the start of the file - it generally must be
1740     a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
1741    
1742 root 1.177 Example:
1743    
1744     use Digest::MD5;
1745     use IO::AIO;
1746    
1747     open my $fh, "<verybigfile"
1748     or die "$!";
1749    
1750     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
1751     or die "verybigfile: $!";
1752    
1753     my $fast_md5 = md5 $data;
1754    
1755 root 1.176 =item IO::AIO::munmap $scalar
1756    
1757     Removes a previous mmap and undefines the C<$scalar>.
1758    
1759 root 1.182 =item IO::AIO::munlock $scalar, $offset = 0, $length = undef
1760 root 1.174
1761 root 1.182 Calls the C<munlock> function, undoing the effects of a previous
1762     C<aio_mlock> call (see its description for details).
1763 root 1.174
1764     =item IO::AIO::munlockall
1765    
1766     Calls the C<munlockall> function.
1767    
1768     On systems that do not implement C<munlockall>, this function returns
1769     ENOSYS, otherwise the return value of C<munlockall>.
1770    
1771 root 1.157 =back
1772    
1773 root 1.1 =cut
1774    
1775 root 1.61 min_parallel 8;
1776 root 1.1
1777 root 1.95 END { flush }
1778 root 1.82
1779 root 1.1 1;
1780    
1781 root 1.175 =head1 EVENT LOOP INTEGRATION
1782    
1783     It is recommended to use L<AnyEvent::AIO> to integrate IO::AIO
1784     automatically into many event loops:
1785    
1786     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
1787     use AnyEvent::AIO;
1788    
1789     You can also integrate IO::AIO manually into many event loops, here are
1790     some examples of how to do this:
1791    
1792     # EV integration
1793     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
1794    
1795     # Event integration
1796     Event->io (fd => IO::AIO::poll_fileno,
1797     poll => 'r',
1798     cb => \&IO::AIO::poll_cb);
1799    
1800     # Glib/Gtk2 integration
1801     add_watch Glib::IO IO::AIO::poll_fileno,
1802     in => sub { IO::AIO::poll_cb; 1 };
1803    
1804     # Tk integration
1805     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
1806     readable => \&IO::AIO::poll_cb);
1807    
1808     # Danga::Socket integration
1809     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
1810     \&IO::AIO::poll_cb);
1811    
1812 root 1.27 =head2 FORK BEHAVIOUR
1813    
1814 root 1.197 Usage of pthreads in a program changes the semantics of fork
1815     considerably. Specifically, only async-safe functions can be called after
1816     fork. Perl doesn't know about this, so in general, you cannot call fork
1817 root 1.204 with defined behaviour in perl if pthreads are involved. IO::AIO uses
1818     pthreads, so this applies, but many other extensions and (for inexplicable
1819     reasons) perl itself often is linked against pthreads, so this limitation
1820     applies to quite a lot of perls.
1821    
1822     This module no longer tries to fight your OS, or POSIX. That means IO::AIO
1823     only works in the process that loaded it. Forking is fully supported, but
1824     using IO::AIO in the child is not.
1825    
1826     You might get around by not I<using> IO::AIO before (or after)
1827     forking. You could also try to call the L<IO::AIO::reinit> function in the
1828     child:
1829    
1830     =over 4
1831    
1832     =item IO::AIO::reinit
1833    
1834     Abondons all current requests and I/O threads and simply reinitialises all
1835     data structures. This is not an operation suppported by any standards, but
1836     happens to work on GNU/Linux and some newer BSD systems.
1837    
1838     The only reasonable use for this function is to call it after forking, if
1839     C<IO::AIO> was used in the parent. Calling it while IO::AIO is active in
1840     the process will result in undefined behaviour. Calling it at any time
1841     will also result in any undefined (by POSIX) behaviour.
1842    
1843     =back
1844 root 1.52
1845 root 1.60 =head2 MEMORY USAGE
1846    
1847 root 1.72 Per-request usage:
1848    
1849     Each aio request uses - depending on your architecture - around 100-200
1850     bytes of memory. In addition, stat requests need a stat buffer (possibly
1851     a few hundred bytes), readdir requires a result buffer and so on. Perl
1852     scalars and other data passed into aio requests will also be locked and
1853     will consume memory till the request has entered the done state.
1854 root 1.60
1855 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
1856 root 1.60 problem.
1857    
1858 root 1.72 Per-thread usage:
1859    
1860     In the execution phase, some aio requests require more memory for
1861     temporary buffers, and each thread requires a stack and other data
1862     structures (usually around 16k-128k, depending on the OS).
1863    
1864     =head1 KNOWN BUGS
1865    
1866 root 1.73 Known bugs will be fixed in the next release.
1867 root 1.60
1868 root 1.1 =head1 SEE ALSO
1869    
1870 root 1.125 L<AnyEvent::AIO> for easy integration into event loops, L<Coro::AIO> for a
1871     more natural syntax.
1872 root 1.1
1873     =head1 AUTHOR
1874    
1875     Marc Lehmann <schmorp@schmorp.de>
1876     http://home.schmorp.de/
1877    
1878     =cut
1879