ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.209
Committed: Tue Sep 27 00:41:51 2011 UTC (12 years, 8 months ago) by root
Branch: MAIN
Changes since 1.208: +132 -21 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3     IO::AIO - Asynchronous Input/Output
4    
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.1 =head1 DESCRIPTION
32    
33     This module implements asynchronous I/O using whatever means your
34 root 1.156 operating system supports. It is implemented as an interface to C<libeio>
35     (L<http://software.schmorp.de/pkg/libeio.html>).
36 root 1.1
37 root 1.85 Asynchronous means that operations that can normally block your program
38     (e.g. reading from disk) will be done asynchronously: the operation
39     will still block, but you can do something else in the meantime. This
40     is extremely useful for programs that need to stay interactive even
41     when doing heavy I/O (GUI programs, high performance network servers
42     etc.), but can also be used to easily do operations in parallel that are
43     normally done sequentially, e.g. stat'ing many files, which is much faster
44     on a RAID volume or over NFS when you do a number of stat operations
45     concurrently.
46    
47 root 1.108 While most of this works on all types of file descriptors (for
48     example sockets), using these functions on file descriptors that
49 root 1.156 support nonblocking operation (again, sockets, pipes etc.) is
50     very inefficient. Use an event loop for that (such as the L<EV>
51 root 1.108 module): IO::AIO will naturally fit into such an event loop itself.
52 root 1.85
53 root 1.72 In this version, a number of threads are started that execute your
54     requests and signal their completion. You don't need thread support
55     in perl, and the threads created by this module will not be visible
56     to perl. In the future, this module might make use of the native aio
57     functions available on many operating systems. However, they are often
58 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
59 root 1.72 files currently, for example), and they would only support aio_read and
60     aio_write, so the remaining functionality would have to be implemented
61     using threads anyway.
62    
63 root 1.108 Although the module will work in the presence of other (Perl-) threads,
64     it is currently not reentrant in any way, so use appropriate locking
65     yourself, always call C<poll_cb> from within the same thread, or never
66     call C<poll_cb> (or other C<aio_> functions) recursively.
67 root 1.72
68 root 1.86 =head2 EXAMPLE
69    
70 root 1.156 This is a simple example that uses the EV module and loads
71 root 1.86 F</etc/passwd> asynchronously:
72    
73     use Fcntl;
74 root 1.156 use EV;
75 root 1.86 use IO::AIO;
76    
77 root 1.156 # register the IO::AIO callback with EV
78     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
79 root 1.86
80     # queue the request to open /etc/passwd
81 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
82 root 1.94 my $fh = shift
83 root 1.86 or die "error while opening: $!";
84    
85     # stat'ing filehandles is generally non-blocking
86     my $size = -s $fh;
87    
88     # queue a request to read the file
89     my $contents;
90     aio_read $fh, 0, $size, $contents, 0, sub {
91     $_[0] == $size
92     or die "short read: $!";
93    
94     close $fh;
95    
96     # file contents now in $contents
97     print $contents;
98    
99     # exit event loop and program
100 root 1.156 EV::unloop;
101 root 1.86 };
102     };
103    
104     # possibly queue up other requests, or open GUI windows,
105     # check for sockets etc. etc.
106    
107     # process events as long as there are some:
108 root 1.156 EV::loop;
109 root 1.86
110 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
111    
112     Every C<aio_*> function creates a request. which is a C data structure not
113     directly visible to Perl.
114    
115     If called in non-void context, every request function returns a Perl
116     object representing the request. In void context, nothing is returned,
117     which saves a bit of memory.
118    
119     The perl object is a fairly standard ref-to-hash object. The hash contents
120     are not used by IO::AIO so you are free to store anything you like in it.
121    
122     During their existance, aio requests travel through the following states,
123     in order:
124    
125     =over 4
126    
127     =item ready
128    
129     Immediately after a request is created it is put into the ready state,
130     waiting for a thread to execute it.
131    
132     =item execute
133    
134     A thread has accepted the request for processing and is currently
135     executing it (e.g. blocking in read).
136    
137     =item pending
138    
139     The request has been executed and is waiting for result processing.
140    
141     While request submission and execution is fully asynchronous, result
142     processing is not and relies on the perl interpreter calling C<poll_cb>
143     (or another function with the same effect).
144    
145     =item result
146    
147     The request results are processed synchronously by C<poll_cb>.
148    
149     The C<poll_cb> function will process all outstanding aio requests by
150     calling their callbacks, freeing memory associated with them and managing
151     any groups they are contained in.
152    
153     =item done
154    
155     Request has reached the end of its lifetime and holds no resources anymore
156     (except possibly for the Perl object, but its connection to the actual
157     aio request is severed and calling its methods will either do nothing or
158     result in a runtime error).
159 root 1.1
160 root 1.88 =back
161    
162 root 1.1 =cut
163    
164     package IO::AIO;
165    
166 root 1.117 use Carp ();
167    
168 root 1.161 use common::sense;
169 root 1.23
170 root 1.1 use base 'Exporter';
171    
172     BEGIN {
173 root 1.205 our $VERSION = '4.0';
174 root 1.1
175 root 1.120 our @AIO_REQ = qw(aio_sendfile aio_read aio_write aio_open aio_close
176 root 1.148 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
177 root 1.206 aio_scandir aio_symlink aio_readlink aio_realpath aio_sync
178     aio_fsync aio_syncfs aio_fdatasync aio_sync_file_range aio_fallocate
179 root 1.203 aio_pathsync aio_readahead
180 root 1.120 aio_rename aio_link aio_move aio_copy aio_group
181     aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
182 root 1.170 aio_chmod aio_utime aio_truncate
183 root 1.182 aio_msync aio_mtouch aio_mlock aio_mlockall
184 root 1.208 aio_statvfs
185     aio_wd);
186 root 1.120
187 root 1.123 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice));
188 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
189 root 1.188 min_parallel max_parallel max_idle idle_timeout
190 root 1.86 nreqs nready npending nthreads
191 root 1.157 max_poll_time max_poll_reqs
192 root 1.182 sendfile fadvise madvise
193     mmap munmap munlock munlockall);
194 root 1.1
195 root 1.143 push @AIO_REQ, qw(aio_busy); # not exported
196    
197 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
198    
199 root 1.1 require XSLoader;
200 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
201 root 1.1 }
202    
203 root 1.5 =head1 FUNCTIONS
204 root 1.1
205 root 1.175 =head2 QUICK OVERVIEW
206    
207     This section simply lists the prototypes of the most important functions
208     for quick reference. See the following sections for function-by-function
209     documentation.
210    
211 root 1.208 aio_wd $pathname, $callback->($wd)
212 root 1.175 aio_open $pathname, $flags, $mode, $callback->($fh)
213     aio_close $fh, $callback->($status)
214     aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
215     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
216     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
217     aio_readahead $fh,$offset,$length, $callback->($retval)
218     aio_stat $fh_or_path, $callback->($status)
219     aio_lstat $fh, $callback->($status)
220     aio_statvfs $fh_or_path, $callback->($statvfs)
221     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
222     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
223     aio_truncate $fh_or_path, $offset, $callback->($status)
224     aio_chmod $fh_or_path, $mode, $callback->($status)
225     aio_unlink $pathname, $callback->($status)
226 root 1.209 aio_mknod $pathname, $mode, $dev, $callback->($status)
227 root 1.175 aio_link $srcpath, $dstpath, $callback->($status)
228     aio_symlink $srcpath, $dstpath, $callback->($status)
229 root 1.209 aio_readlink $pathname, $callback->($link)
230     aio_realpath $pathname, $callback->($link)
231 root 1.175 aio_rename $srcpath, $dstpath, $callback->($status)
232     aio_mkdir $pathname, $mode, $callback->($status)
233     aio_rmdir $pathname, $callback->($status)
234     aio_readdir $pathname, $callback->($entries)
235     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
236     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
237     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
238 root 1.209 aio_load $pathname, $data, $callback->($status)
239 root 1.175 aio_copy $srcpath, $dstpath, $callback->($status)
240     aio_move $srcpath, $dstpath, $callback->($status)
241 root 1.209 aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
242     aio_rmtree $pathname, $callback->($status)
243 root 1.175 aio_sync $callback->($status)
244 root 1.206 aio_syncfs $fh, $callback->($status)
245 root 1.175 aio_fsync $fh, $callback->($status)
246     aio_fdatasync $fh, $callback->($status)
247     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
248 root 1.209 aio_pathsync $pathname, $callback->($status)
249 root 1.175 aio_msync $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
250     aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
251 root 1.182 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
252     aio_mlockall $flags, $callback->($status)
253 root 1.175 aio_group $callback->(...)
254     aio_nop $callback->()
255    
256     $prev_pri = aioreq_pri [$pri]
257     aioreq_nice $pri_adjust
258    
259     IO::AIO::poll_wait
260     IO::AIO::poll_cb
261     IO::AIO::poll
262     IO::AIO::flush
263     IO::AIO::max_poll_reqs $nreqs
264     IO::AIO::max_poll_time $seconds
265     IO::AIO::min_parallel $nthreads
266     IO::AIO::max_parallel $nthreads
267     IO::AIO::max_idle $nthreads
268 root 1.188 IO::AIO::idle_timeout $seconds
269 root 1.175 IO::AIO::max_outstanding $maxreqs
270     IO::AIO::nreqs
271     IO::AIO::nready
272     IO::AIO::npending
273    
274     IO::AIO::sendfile $ofh, $ifh, $offset, $count
275     IO::AIO::fadvise $fh, $offset, $len, $advice
276 root 1.184 IO::AIO::madvise $scalar, $offset, $length, $advice
277     IO::AIO::mprotect $scalar, $offset, $length, $protect
278 root 1.182 IO::AIO::munlock $scalar, $offset = 0, $length = undef
279 root 1.175 IO::AIO::munlockall
280    
281 root 1.87 =head2 AIO REQUEST FUNCTIONS
282 root 1.1
283 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
284     with the same name (sans C<aio_>). The arguments are similar or identical,
285 root 1.14 and they all accept an additional (and optional) C<$callback> argument
286     which must be a code reference. This code reference will get called with
287     the syscall return code (e.g. most syscalls return C<-1> on error, unlike
288 root 1.136 perl, which usually delivers "false") as its sole argument after the given
289 root 1.14 syscall has been executed asynchronously.
290 root 1.1
291 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
292     internally until the request has finished.
293 root 1.1
294 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
295     further manipulation of those requests while they are in-flight.
296 root 1.52
297 root 1.209 The pathnames you pass to these routines I<should> be absolute. The
298     reason for this is that at the time the request is being executed, the
299     current working directory could have changed. Alternatively, you can make
300     sure that you never change the current working directory anywhere in
301     the program and then use relative paths. Lastly, you can take advantage
302     of IO::AIOs working directory abstraction - see the description of the
303     C<IO::AIO::WD> class later in this document.
304 root 1.28
305 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
306     in filenames you got from outside (command line, readdir etc.) without
307     tinkering, b) are ASCII or ISO 8859-1, c) use the Encode module and encode
308 root 1.28 your pathnames to the locale (or other) encoding in effect in the user
309     environment, d) use Glib::filename_from_unicode on unicode filenames or e)
310 root 1.87 use something else to ensure your scalar has the correct contents.
311    
312     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
313 root 1.136 handles correctly whether it is set or not.
314 root 1.1
315 root 1.5 =over 4
316 root 1.1
317 root 1.80 =item $prev_pri = aioreq_pri [$pri]
318 root 1.68
319 root 1.80 Returns the priority value that would be used for the next request and, if
320     C<$pri> is given, sets the priority for the next aio request.
321 root 1.68
322 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
323     and C<4>, respectively. Requests with higher priority will be serviced
324     first.
325    
326     The priority will be reset to C<0> after each call to one of the C<aio_*>
327 root 1.68 functions.
328    
329 root 1.69 Example: open a file with low priority, then read something from it with
330     higher priority so the read request is serviced before other low priority
331     open requests (potentially spamming the cache):
332    
333     aioreq_pri -3;
334     aio_open ..., sub {
335     return unless $_[0];
336    
337     aioreq_pri -2;
338     aio_read $_[0], ..., sub {
339     ...
340     };
341     };
342    
343 root 1.106
344 root 1.69 =item aioreq_nice $pri_adjust
345    
346     Similar to C<aioreq_pri>, but subtracts the given value from the current
347 root 1.87 priority, so the effect is cumulative.
348 root 1.69
349 root 1.106
350 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
351 root 1.1
352 root 1.2 Asynchronously open or create a file and call the callback with a newly
353     created filehandle for the file.
354 root 1.1
355     The pathname passed to C<aio_open> must be absolute. See API NOTES, above,
356     for an explanation.
357    
358 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
359     list. They are the same as used by C<sysopen>.
360    
361     Likewise, C<$mode> specifies the mode of the newly created file, if it
362     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
363     except that it is mandatory (i.e. use C<0> if you don't create new files,
364 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
365     by the umask in effect then the request is being executed, so better never
366     change the umask.
367 root 1.1
368     Example:
369    
370 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
371 root 1.2 if ($_[0]) {
372     print "open successful, fh is $_[0]\n";
373 root 1.1 ...
374     } else {
375     die "open failed: $!\n";
376     }
377     };
378    
379 root 1.194 In addition to all the common open modes/flags (C<O_RDONLY>, C<O_WRONLY>,
380     C<O_RDWR>, C<O_CREAT>, C<O_TRUNC>, C<O_EXCL> and C<O_APPEND>), the
381     following POSIX and non-POSIX constants are available (missing ones on
382     your system are, as usual, C<0>):
383    
384     C<O_ASYNC>, C<O_DIRECT>, C<O_NOATIME>, C<O_CLOEXEC>, C<O_NOCTTY>, C<O_NOFOLLOW>,
385     C<O_NONBLOCK>, C<O_EXEC>, C<O_SEARCH>, C<O_DIRECTORY>, C<O_DSYNC>,
386     C<O_RSYNC>, C<O_SYNC> and C<O_TTY_INIT>.
387    
388 root 1.106
389 root 1.40 =item aio_close $fh, $callback->($status)
390 root 1.1
391 root 1.2 Asynchronously close a file and call the callback with the result
392 root 1.116 code.
393    
394 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
395 root 1.121 closing the file descriptor associated with the filehandle itself.
396 root 1.117
397 root 1.121 Therefore, C<aio_close> will not close the filehandle - instead it will
398     use dup2 to overwrite the file descriptor with the write-end of a pipe
399     (the pipe fd will be created on demand and will be cached).
400 root 1.117
401 root 1.121 Or in other words: the file descriptor will be closed, but it will not be
402     free for reuse until the perl filehandle is closed.
403 root 1.117
404     =cut
405    
406 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
407 root 1.1
408 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
409 root 1.1
410 root 1.145 Reads or writes C<$length> bytes from or to the specified C<$fh> and
411     C<$offset> into the scalar given by C<$data> and offset C<$dataoffset>
412     and calls the callback without the actual number of bytes read (or -1 on
413     error, just like the syscall).
414 root 1.109
415 root 1.146 C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
416     offset plus the actual number of bytes read.
417    
418 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
419     be used (and updated), otherwise the file descriptor offset will not be
420     changed by these calls.
421 root 1.109
422 root 1.145 If C<$length> is undefined in C<aio_write>, use the remaining length of
423     C<$data>.
424 root 1.109
425     If C<$dataoffset> is less than zero, it will be counted from the end of
426     C<$data>.
427 root 1.1
428 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
429 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
430     the necessary/optional hardware is installed).
431 root 1.31
432 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
433 root 1.1 offset C<0> within the scalar:
434    
435     aio_read $fh, 7, 15, $buffer, 0, sub {
436 root 1.9 $_[0] > 0 or die "read error: $!";
437     print "read $_[0] bytes: <$buffer>\n";
438 root 1.1 };
439    
440 root 1.106
441 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
442 root 1.35
443     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
444     reading at byte offset C<$in_offset>, and starts writing at the current
445     file offset of C<$out_fh>. Because of that, it is not safe to issue more
446     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
447 root 1.196 other. The same C<$in_fh> works fine though, as this function does not
448     move or use the file offset of C<$in_fh>.
449 root 1.35
450 root 1.185 Please note that C<aio_sendfile> can read more bytes from C<$in_fh> than
451 root 1.196 are written, and there is no way to find out how many more bytes have been
452     read from C<aio_sendfile> alone, as C<aio_sendfile> only provides the
453     number of bytes written to C<$out_fh>. Only if the result value equals
454     C<$length> one can assume that C<$length> bytes have been read.
455 root 1.185
456     Unlike with other C<aio_> functions, it makes a lot of sense to use
457     C<aio_sendfile> on non-blocking sockets, as long as one end (typically
458     the C<$in_fh>) is a file - the file I/O will then be asynchronous, while
459 root 1.196 the socket I/O will be non-blocking. Note, however, that you can run
460     into a trap where C<aio_sendfile> reads some data with readahead, then
461     fails to write all data, and when the socket is ready the next time, the
462     data in the cache is already lost, forcing C<aio_sendfile> to again hit
463     the disk. Explicit C<aio_read> + C<aio_write> let's you better control
464     resource usage.
465    
466     This call tries to make use of a native C<sendfile>-like syscall to
467     provide zero-copy operation. For this to work, C<$out_fh> should refer to
468     a socket, and C<$in_fh> should refer to an mmap'able file.
469 root 1.35
470 root 1.170 If a native sendfile cannot be found or it fails with C<ENOSYS>,
471 root 1.196 C<EINVAL>, C<ENOTSUP>, C<EOPNOTSUPP>, C<EAFNOSUPPORT>, C<EPROTOTYPE> or
472     C<ENOTSOCK>, it will be emulated, so you can call C<aio_sendfile> on any
473     type of filehandle regardless of the limitations of the operating system.
474    
475     As native sendfile syscalls (as practically any non-POSIX interface hacked
476     together in a hurry to improve benchmark numbers) tend to be rather buggy
477     on many systems, this implementation tries to work around some known bugs
478     in Linux and FreeBSD kernels (probably others, too), but that might fail,
479     so you really really should check the return value of C<aio_sendfile> -
480     fewre bytes than expected might have been transferred.
481 root 1.35
482 root 1.106
483 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
484 root 1.1
485 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
486 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
487     argument specifies the starting point from which data is to be read and
488     C<$length> specifies the number of bytes to be read. I/O is performed in
489     whole pages, so that offset is effectively rounded down to a page boundary
490     and bytes are read up to the next page boundary greater than or equal to
491 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
492 root 1.1 file. The current file offset of the file is left unchanged.
493    
494 root 1.26 If that syscall doesn't exist (likely if your OS isn't Linux) it will be
495     emulated by simply reading the data, which would have a similar effect.
496    
497 root 1.106
498 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
499 root 1.1
500 root 1.40 =item aio_lstat $fh, $callback->($status)
501 root 1.1
502     Works like perl's C<stat> or C<lstat> in void context. The callback will
503     be called after the stat and the results will be available using C<stat _>
504     or C<-s _> etc...
505    
506     The pathname passed to C<aio_stat> must be absolute. See API NOTES, above,
507     for an explanation.
508    
509     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
510     error when stat'ing a large file, the results will be silently truncated
511     unless perl itself is compiled with large file support.
512    
513 root 1.187 To help interpret the mode and dev/rdev stat values, IO::AIO offers the
514     following constants and functions (if not implemented, the constants will
515     be C<0> and the functions will either C<croak> or fall back on traditional
516     behaviour).
517    
518     C<S_IFMT>, C<S_IFIFO>, C<S_IFCHR>, C<S_IFBLK>, C<S_IFLNK>, C<S_IFREG>,
519     C<S_IFDIR>, C<S_IFWHT>, C<S_IFSOCK>, C<IO::AIO::major $dev_t>,
520     C<IO::AIO::minor $dev_t>, C<IO::AIO::makedev $major, $minor>.
521    
522 root 1.1 Example: Print the length of F</etc/passwd>:
523    
524     aio_stat "/etc/passwd", sub {
525     $_[0] and die "stat failed: $!";
526     print "size is ", -s _, "\n";
527     };
528    
529 root 1.106
530 root 1.175 =item aio_statvfs $fh_or_path, $callback->($statvfs)
531 root 1.172
532     Works like the POSIX C<statvfs> or C<fstatvfs> syscalls, depending on
533     whether a file handle or path was passed.
534    
535     On success, the callback is passed a hash reference with the following
536     members: C<bsize>, C<frsize>, C<blocks>, C<bfree>, C<bavail>, C<files>,
537     C<ffree>, C<favail>, C<fsid>, C<flag> and C<namemax>. On failure, C<undef>
538     is passed.
539    
540     The following POSIX IO::AIO::ST_* constants are defined: C<ST_RDONLY> and
541     C<ST_NOSUID>.
542    
543     The following non-POSIX IO::AIO::ST_* flag masks are defined to
544     their correct value when available, or to C<0> on systems that do
545     not support them: C<ST_NODEV>, C<ST_NOEXEC>, C<ST_SYNCHRONOUS>,
546     C<ST_MANDLOCK>, C<ST_WRITE>, C<ST_APPEND>, C<ST_IMMUTABLE>, C<ST_NOATIME>,
547     C<ST_NODIRATIME> and C<ST_RELATIME>.
548    
549     Example: stat C</wd> and dump out the data if successful.
550    
551     aio_statvfs "/wd", sub {
552     my $f = $_[0]
553     or die "statvfs: $!";
554    
555     use Data::Dumper;
556     say Dumper $f;
557     };
558    
559     # result:
560     {
561     bsize => 1024,
562     bfree => 4333064312,
563     blocks => 10253828096,
564     files => 2050765568,
565     flag => 4096,
566     favail => 2042092649,
567     bavail => 4333064312,
568     ffree => 2042092649,
569     namemax => 255,
570     frsize => 1024,
571     fsid => 1810
572     }
573    
574    
575 root 1.106 =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
576    
577     Works like perl's C<utime> function (including the special case of $atime
578     and $mtime being undef). Fractional times are supported if the underlying
579     syscalls support them.
580    
581     When called with a pathname, uses utimes(2) if available, otherwise
582     utime(2). If called on a file descriptor, uses futimes(2) if available,
583     otherwise returns ENOSYS, so this is not portable.
584    
585     Examples:
586    
587 root 1.107 # set atime and mtime to current time (basically touch(1)):
588 root 1.106 aio_utime "path", undef, undef;
589     # set atime to current time and mtime to beginning of the epoch:
590     aio_utime "path", time, undef; # undef==0
591    
592    
593     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
594    
595     Works like perl's C<chown> function, except that C<undef> for either $uid
596     or $gid is being interpreted as "do not change" (but -1 can also be used).
597    
598     Examples:
599    
600     # same as "chown root path" in the shell:
601     aio_chown "path", 0, -1;
602     # same as above:
603     aio_chown "path", 0, undef;
604    
605    
606 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
607    
608     Works like truncate(2) or ftruncate(2).
609    
610    
611 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
612    
613     Works like perl's C<chmod> function.
614    
615    
616 root 1.40 =item aio_unlink $pathname, $callback->($status)
617 root 1.1
618     Asynchronously unlink (delete) a file and call the callback with the
619     result code.
620    
621 root 1.106
622 root 1.209 =item aio_mknod $pathname, $mode, $dev, $callback->($status)
623 root 1.82
624 root 1.86 [EXPERIMENTAL]
625    
626 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
627    
628 root 1.86 The only (POSIX-) portable way of calling this function is:
629 root 1.83
630 root 1.209 aio_mknod $pathname, IO::AIO::S_IFIFO | $mode, 0, sub { ...
631 root 1.82
632 root 1.187 See C<aio_stat> for info about some potentially helpful extra constants
633     and functions.
634 root 1.106
635 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
636    
637     Asynchronously create a new link to the existing object at C<$srcpath> at
638     the path C<$dstpath> and call the callback with the result code.
639    
640 root 1.106
641 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
642    
643     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
644     the path C<$dstpath> and call the callback with the result code.
645    
646 root 1.106
647 root 1.209 =item aio_readlink $pathname, $callback->($link)
648 root 1.90
649     Asynchronously read the symlink specified by C<$path> and pass it to
650     the callback. If an error occurs, nothing or undef gets passed to the
651     callback.
652    
653 root 1.106
654 root 1.209 =item aio_realpath $pathname, $callback->($path)
655 root 1.201
656     Asynchronously make the path absolute and resolve any symlinks in
657 root 1.202 C<$path>. The resulting path only consists of directories (Same as
658     L<Cwd::realpath>).
659 root 1.201
660     This request can be used to get the absolute path of the current working
661     directory by passing it a path of F<.> (a single dot).
662    
663    
664 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
665    
666     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
667     rename(2) and call the callback with the result code.
668    
669 root 1.106
670 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
671    
672     Asynchronously mkdir (create) a directory and call the callback with
673     the result code. C<$mode> will be modified by the umask at the time the
674     request is executed, so do not change your umask.
675    
676 root 1.106
677 root 1.40 =item aio_rmdir $pathname, $callback->($status)
678 root 1.27
679     Asynchronously rmdir (delete) a directory and call the callback with the
680     result code.
681    
682 root 1.106
683 root 1.46 =item aio_readdir $pathname, $callback->($entries)
684 root 1.37
685     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
686     directory (i.e. opendir + readdir + closedir). The entries will not be
687     sorted, and will B<NOT> include the C<.> and C<..> entries.
688    
689 root 1.148 The callback is passed a single argument which is either C<undef> or an
690     array-ref with the filenames.
691    
692    
693     =item aio_readdirx $pathname, $flags, $callback->($entries, $flags)
694    
695 root 1.207 Quite similar to C<aio_readdir>, but the C<$flags> argument allows one to
696     tune behaviour and output format. In case of an error, C<$entries> will be
697 root 1.148 C<undef>.
698    
699     The flags are a combination of the following constants, ORed together (the
700     flags will also be passed to the callback, possibly modified):
701    
702     =over 4
703    
704 root 1.150 =item IO::AIO::READDIR_DENTS
705 root 1.148
706 root 1.190 When this flag is off, then the callback gets an arrayref consisting of
707     names only (as with C<aio_readdir>), otherwise it gets an arrayref with
708 root 1.150 C<[$name, $type, $inode]> arrayrefs, each describing a single directory
709 root 1.148 entry in more detail.
710    
711     C<$name> is the name of the entry.
712    
713 root 1.150 C<$type> is one of the C<IO::AIO::DT_xxx> constants:
714 root 1.148
715 root 1.150 C<IO::AIO::DT_UNKNOWN>, C<IO::AIO::DT_FIFO>, C<IO::AIO::DT_CHR>, C<IO::AIO::DT_DIR>,
716     C<IO::AIO::DT_BLK>, C<IO::AIO::DT_REG>, C<IO::AIO::DT_LNK>, C<IO::AIO::DT_SOCK>,
717     C<IO::AIO::DT_WHT>.
718 root 1.148
719 root 1.150 C<IO::AIO::DT_UNKNOWN> means just that: readdir does not know. If you need to
720 root 1.148 know, you have to run stat yourself. Also, for speed reasons, the C<$type>
721     scalars are read-only: you can not modify them.
722    
723 root 1.150 C<$inode> is the inode number (which might not be exact on systems with 64
724 root 1.155 bit inode numbers and 32 bit perls). This field has unspecified content on
725     systems that do not deliver the inode information.
726 root 1.150
727     =item IO::AIO::READDIR_DIRS_FIRST
728 root 1.148
729     When this flag is set, then the names will be returned in an order where
730 root 1.193 likely directories come first, in optimal stat order. This is useful when
731     you need to quickly find directories, or you want to find all directories
732     while avoiding to stat() each entry.
733 root 1.148
734 root 1.149 If the system returns type information in readdir, then this is used
735 root 1.193 to find directories directly. Otherwise, likely directories are names
736     beginning with ".", or otherwise names with no dots, of which names with
737 root 1.149 short names are tried first.
738    
739 root 1.150 =item IO::AIO::READDIR_STAT_ORDER
740 root 1.148
741     When this flag is set, then the names will be returned in an order
742     suitable for stat()'ing each one. That is, when you plan to stat()
743     all files in the given directory, then the returned order will likely
744     be fastest.
745    
746 root 1.150 If both this flag and C<IO::AIO::READDIR_DIRS_FIRST> are specified, then
747     the likely dirs come first, resulting in a less optimal stat order.
748 root 1.148
749 root 1.150 =item IO::AIO::READDIR_FOUND_UNKNOWN
750 root 1.148
751     This flag should not be set when calling C<aio_readdirx>. Instead, it
752     is being set by C<aio_readdirx>, when any of the C<$type>'s found were
753 root 1.207 C<IO::AIO::DT_UNKNOWN>. The absence of this flag therefore indicates that all
754 root 1.148 C<$type>'s are known, which can be used to speed up some algorithms.
755    
756     =back
757 root 1.37
758 root 1.106
759 root 1.209 =item aio_load $pathname, $data, $callback->($status)
760 root 1.98
761     This is a composite request that tries to fully load the given file into
762     memory. Status is the same as with aio_read.
763    
764     =cut
765    
766     sub aio_load($$;$) {
767 root 1.123 my ($path, undef, $cb) = @_;
768     my $data = \$_[1];
769 root 1.98
770 root 1.123 my $pri = aioreq_pri;
771     my $grp = aio_group $cb;
772    
773     aioreq_pri $pri;
774     add $grp aio_open $path, O_RDONLY, 0, sub {
775     my $fh = shift
776     or return $grp->result (-1);
777 root 1.98
778     aioreq_pri $pri;
779 root 1.123 add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
780     $grp->result ($_[0]);
781 root 1.98 };
782 root 1.123 };
783 root 1.98
784 root 1.123 $grp
785 root 1.98 }
786    
787 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
788    
789     Try to copy the I<file> (directories not supported as either source or
790     destination) from C<$srcpath> to C<$dstpath> and call the callback with
791 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
792 root 1.82
793 root 1.134 This is a composite request that creates the destination file with
794 root 1.82 mode 0200 and copies the contents of the source file into it using
795     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
796     uid/gid, in that order.
797    
798     If an error occurs, the partial destination file will be unlinked, if
799     possible, except when setting atime, mtime, access mode and uid/gid, where
800     errors are being ignored.
801    
802     =cut
803    
804     sub aio_copy($$;$) {
805 root 1.123 my ($src, $dst, $cb) = @_;
806 root 1.82
807 root 1.123 my $pri = aioreq_pri;
808     my $grp = aio_group $cb;
809 root 1.82
810 root 1.123 aioreq_pri $pri;
811     add $grp aio_open $src, O_RDONLY, 0, sub {
812     if (my $src_fh = $_[0]) {
813 root 1.166 my @stat = stat $src_fh; # hmm, might block over nfs?
814 root 1.95
815 root 1.123 aioreq_pri $pri;
816     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
817     if (my $dst_fh = $_[0]) {
818     aioreq_pri $pri;
819     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
820     if ($_[0] == $stat[7]) {
821     $grp->result (0);
822     close $src_fh;
823    
824 root 1.147 my $ch = sub {
825     aioreq_pri $pri;
826     add $grp aio_chmod $dst_fh, $stat[2] & 07777, sub {
827     aioreq_pri $pri;
828     add $grp aio_chown $dst_fh, $stat[4], $stat[5], sub {
829     aioreq_pri $pri;
830     add $grp aio_close $dst_fh;
831     }
832     };
833     };
834 root 1.123
835     aioreq_pri $pri;
836 root 1.147 add $grp aio_utime $dst_fh, $stat[8], $stat[9], sub {
837     if ($_[0] < 0 && $! == ENOSYS) {
838     aioreq_pri $pri;
839     add $grp aio_utime $dst, $stat[8], $stat[9], $ch;
840     } else {
841     $ch->();
842     }
843     };
844 root 1.123 } else {
845     $grp->result (-1);
846     close $src_fh;
847     close $dst_fh;
848    
849     aioreq $pri;
850     add $grp aio_unlink $dst;
851     }
852     };
853     } else {
854     $grp->result (-1);
855     }
856     },
857 root 1.82
858 root 1.123 } else {
859     $grp->result (-1);
860     }
861     };
862 root 1.82
863 root 1.123 $grp
864 root 1.82 }
865    
866     =item aio_move $srcpath, $dstpath, $callback->($status)
867    
868     Try to move the I<file> (directories not supported as either source or
869     destination) from C<$srcpath> to C<$dstpath> and call the callback with
870 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
871 root 1.82
872 root 1.137 This is a composite request that tries to rename(2) the file first; if
873     rename fails with C<EXDEV>, it copies the file with C<aio_copy> and, if
874     that is successful, unlinks the C<$srcpath>.
875 root 1.82
876     =cut
877    
878     sub aio_move($$;$) {
879 root 1.123 my ($src, $dst, $cb) = @_;
880 root 1.82
881 root 1.123 my $pri = aioreq_pri;
882     my $grp = aio_group $cb;
883 root 1.82
884 root 1.123 aioreq_pri $pri;
885     add $grp aio_rename $src, $dst, sub {
886     if ($_[0] && $! == EXDEV) {
887     aioreq_pri $pri;
888     add $grp aio_copy $src, $dst, sub {
889     $grp->result ($_[0]);
890 root 1.95
891 root 1.196 unless ($_[0]) {
892 root 1.123 aioreq_pri $pri;
893     add $grp aio_unlink $src;
894     }
895     };
896     } else {
897     $grp->result ($_[0]);
898     }
899     };
900 root 1.82
901 root 1.123 $grp
902 root 1.82 }
903    
904 root 1.209 =item aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
905 root 1.40
906 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
907 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
908     names, directories you can recurse into (directories), and ones you cannot
909     recurse into (everything else, including symlinks to directories).
910 root 1.52
911 root 1.61 C<aio_scandir> is a composite request that creates of many sub requests_
912     C<$maxreq> specifies the maximum number of outstanding aio requests that
913     this function generates. If it is C<< <= 0 >>, then a suitable default
914 root 1.81 will be chosen (currently 4).
915 root 1.40
916     On error, the callback is called without arguments, otherwise it receives
917     two array-refs with path-relative entry names.
918    
919     Example:
920    
921     aio_scandir $dir, 0, sub {
922     my ($dirs, $nondirs) = @_;
923     print "real directories: @$dirs\n";
924     print "everything else: @$nondirs\n";
925     };
926    
927     Implementation notes.
928    
929     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
930    
931 root 1.149 If readdir returns file type information, then this is used directly to
932     find directories.
933    
934     Otherwise, after reading the directory, the modification time, size etc.
935     of the directory before and after the readdir is checked, and if they
936     match (and isn't the current time), the link count will be used to decide
937     how many entries are directories (if >= 2). Otherwise, no knowledge of the
938     number of subdirectories will be assumed.
939    
940     Then entries will be sorted into likely directories a non-initial dot
941     currently) and likely non-directories (see C<aio_readdirx>). Then every
942     entry plus an appended C</.> will be C<stat>'ed, likely directories first,
943     in order of their inode numbers. If that succeeds, it assumes that the
944     entry is a directory or a symlink to directory (which will be checked
945 root 1.207 separately). This is often faster than stat'ing the entry itself because
946 root 1.52 filesystems might detect the type of the entry without reading the inode
947 root 1.149 data (e.g. ext2fs filetype feature), even on systems that cannot return
948     the filetype information on readdir.
949 root 1.52
950     If the known number of directories (link count - 2) has been reached, the
951     rest of the entries is assumed to be non-directories.
952    
953     This only works with certainty on POSIX (= UNIX) filesystems, which
954     fortunately are the vast majority of filesystems around.
955    
956     It will also likely work on non-POSIX filesystems with reduced efficiency
957     as those tend to return 0 or 1 as link counts, which disables the
958     directory counting heuristic.
959 root 1.40
960     =cut
961    
962 root 1.100 sub aio_scandir($$;$) {
963 root 1.123 my ($path, $maxreq, $cb) = @_;
964    
965     my $pri = aioreq_pri;
966 root 1.40
967 root 1.123 my $grp = aio_group $cb;
968 root 1.80
969 root 1.123 $maxreq = 4 if $maxreq <= 0;
970 root 1.55
971 root 1.123 # stat once
972     aioreq_pri $pri;
973     add $grp aio_stat $path, sub {
974     return $grp->result () if $_[0];
975     my $now = time;
976     my $hash1 = join ":", (stat _)[0,1,3,7,9];
977 root 1.40
978 root 1.123 # read the directory entries
979 root 1.80 aioreq_pri $pri;
980 root 1.148 add $grp aio_readdirx $path, READDIR_DIRS_FIRST, sub {
981 root 1.123 my $entries = shift
982     or return $grp->result ();
983 root 1.40
984 root 1.123 # stat the dir another time
985 root 1.80 aioreq_pri $pri;
986 root 1.123 add $grp aio_stat $path, sub {
987     my $hash2 = join ":", (stat _)[0,1,3,7,9];
988 root 1.95
989 root 1.123 my $ndirs;
990 root 1.95
991 root 1.123 # take the slow route if anything looks fishy
992     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
993     $ndirs = -1;
994     } else {
995     # if nlink == 2, we are finished
996 root 1.150 # for non-posix-fs's, we rely on nlink < 2
997 root 1.123 $ndirs = (stat _)[3] - 2
998     or return $grp->result ([], $entries);
999     }
1000    
1001     my (@dirs, @nondirs);
1002 root 1.40
1003 root 1.123 my $statgrp = add $grp aio_group sub {
1004     $grp->result (\@dirs, \@nondirs);
1005     };
1006 root 1.40
1007 root 1.123 limit $statgrp $maxreq;
1008     feed $statgrp sub {
1009     return unless @$entries;
1010 root 1.150 my $entry = shift @$entries;
1011 root 1.40
1012 root 1.123 aioreq_pri $pri;
1013     add $statgrp aio_stat "$path/$entry/.", sub {
1014     if ($_[0] < 0) {
1015     push @nondirs, $entry;
1016     } else {
1017     # need to check for real directory
1018     aioreq_pri $pri;
1019     add $statgrp aio_lstat "$path/$entry", sub {
1020     if (-d _) {
1021     push @dirs, $entry;
1022    
1023     unless (--$ndirs) {
1024     push @nondirs, @$entries;
1025     feed $statgrp;
1026 root 1.74 }
1027 root 1.123 } else {
1028     push @nondirs, $entry;
1029 root 1.40 }
1030     }
1031 root 1.123 }
1032 root 1.74 };
1033 root 1.40 };
1034     };
1035     };
1036 root 1.123 };
1037 root 1.55
1038 root 1.123 $grp
1039 root 1.40 }
1040    
1041 root 1.209 =item aio_rmtree $pathname, $callback->($status)
1042 root 1.99
1043 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
1044     status of the final C<rmdir> only. This is a composite request that
1045     uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1046     everything else.
1047 root 1.99
1048     =cut
1049    
1050     sub aio_rmtree;
1051 root 1.100 sub aio_rmtree($;$) {
1052 root 1.123 my ($path, $cb) = @_;
1053 root 1.99
1054 root 1.123 my $pri = aioreq_pri;
1055     my $grp = aio_group $cb;
1056 root 1.99
1057 root 1.123 aioreq_pri $pri;
1058     add $grp aio_scandir $path, 0, sub {
1059     my ($dirs, $nondirs) = @_;
1060 root 1.99
1061 root 1.123 my $dirgrp = aio_group sub {
1062     add $grp aio_rmdir $path, sub {
1063     $grp->result ($_[0]);
1064 root 1.99 };
1065 root 1.123 };
1066 root 1.99
1067 root 1.123 (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
1068     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
1069 root 1.99
1070 root 1.123 add $grp $dirgrp;
1071     };
1072 root 1.99
1073 root 1.123 $grp
1074 root 1.99 }
1075    
1076 root 1.119 =item aio_sync $callback->($status)
1077    
1078     Asynchronously call sync and call the callback when finished.
1079    
1080 root 1.40 =item aio_fsync $fh, $callback->($status)
1081 root 1.1
1082     Asynchronously call fsync on the given filehandle and call the callback
1083     with the fsync result code.
1084    
1085 root 1.40 =item aio_fdatasync $fh, $callback->($status)
1086 root 1.1
1087     Asynchronously call fdatasync on the given filehandle and call the
1088 root 1.26 callback with the fdatasync result code.
1089    
1090     If this call isn't available because your OS lacks it or it couldn't be
1091     detected, it will be emulated by calling C<fsync> instead.
1092 root 1.1
1093 root 1.206 =item aio_syncfs $fh, $callback->($status)
1094    
1095     Asynchronously call the syncfs syscall to sync the filesystem associated
1096     to the given filehandle and call the callback with the syncfs result
1097     code. If syncfs is not available, calls sync(), but returns C<-1> and sets
1098     errno to C<ENOSYS> nevertheless.
1099    
1100 root 1.142 =item aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
1101    
1102     Sync the data portion of the file specified by C<$offset> and C<$length>
1103     to disk (but NOT the metadata), by calling the Linux-specific
1104     sync_file_range call. If sync_file_range is not available or it returns
1105     ENOSYS, then fdatasync or fsync is being substituted.
1106    
1107     C<$flags> can be a combination of C<IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE>,
1108     C<IO::AIO::SYNC_FILE_RANGE_WRITE> and
1109     C<IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER>: refer to the sync_file_range
1110     manpage for details.
1111    
1112 root 1.209 =item aio_pathsync $pathname, $callback->($status)
1113 root 1.120
1114     This request tries to open, fsync and close the given path. This is a
1115 root 1.135 composite request intended to sync directories after directory operations
1116 root 1.120 (E.g. rename). This might not work on all operating systems or have any
1117     specific effect, but usually it makes sure that directory changes get
1118     written to disc. It works for anything that can be opened for read-only,
1119     not just directories.
1120    
1121 root 1.162 Future versions of this function might fall back to other methods when
1122     C<fsync> on the directory fails (such as calling C<sync>).
1123    
1124 root 1.120 Passes C<0> when everything went ok, and C<-1> on error.
1125    
1126     =cut
1127    
1128     sub aio_pathsync($;$) {
1129 root 1.123 my ($path, $cb) = @_;
1130    
1131     my $pri = aioreq_pri;
1132     my $grp = aio_group $cb;
1133 root 1.120
1134 root 1.123 aioreq_pri $pri;
1135     add $grp aio_open $path, O_RDONLY, 0, sub {
1136     my ($fh) = @_;
1137     if ($fh) {
1138     aioreq_pri $pri;
1139     add $grp aio_fsync $fh, sub {
1140     $grp->result ($_[0]);
1141 root 1.120
1142     aioreq_pri $pri;
1143 root 1.123 add $grp aio_close $fh;
1144     };
1145     } else {
1146     $grp->result (-1);
1147     }
1148     };
1149 root 1.120
1150 root 1.123 $grp
1151 root 1.120 }
1152    
1153 root 1.170 =item aio_msync $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1154    
1155     This is a rather advanced IO::AIO call, which only works on mmap(2)ed
1156 root 1.176 scalars (see the C<IO::AIO::mmap> function, although it also works on data
1157     scalars managed by the L<Sys::Mmap> or L<Mmap> modules, note that the
1158     scalar must only be modified in-place while an aio operation is pending on
1159     it).
1160 root 1.170
1161     It calls the C<msync> function of your OS, if available, with the memory
1162     area starting at C<$offset> in the string and ending C<$length> bytes
1163     later. If C<$length> is negative, counts from the end, and if C<$length>
1164     is C<undef>, then it goes till the end of the string. The flags can be
1165     a combination of C<IO::AIO::MS_ASYNC>, C<IO::AIO::MS_INVALIDATE> and
1166     C<IO::AIO::MS_SYNC>.
1167    
1168     =item aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1169    
1170     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1171     scalars.
1172    
1173     It touches (reads or writes) all memory pages in the specified
1174     range inside the scalar. All caveats and parameters are the same
1175     as for C<aio_msync>, above, except for flags, which must be either
1176     C<0> (which reads all pages and ensures they are instantiated) or
1177     C<IO::AIO::MT_MODIFY>, which modifies the memory page s(by reading and
1178     writing an octet from it, which dirties the page).
1179    
1180 root 1.182 =item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1181    
1182     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1183     scalars.
1184    
1185     It reads in all the pages of the underlying storage into memory (if any)
1186     and locks them, so they are not getting swapped/paged out or removed.
1187    
1188     If C<$length> is undefined, then the scalar will be locked till the end.
1189    
1190     On systems that do not implement C<mlock>, this function returns C<-1>
1191     and sets errno to C<ENOSYS>.
1192    
1193     Note that the corresponding C<munlock> is synchronous and is
1194     documented under L<MISCELLANEOUS FUNCTIONS>.
1195    
1196 root 1.183 Example: open a file, mmap and mlock it - both will be undone when
1197     C<$data> gets destroyed.
1198    
1199     open my $fh, "<", $path or die "$path: $!";
1200     my $data;
1201     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1202     aio_mlock $data; # mlock in background
1203    
1204 root 1.182 =item aio_mlockall $flags, $callback->($status)
1205    
1206     Calls the C<mlockall> function with the given C<$flags> (a combination of
1207     C<IO::AIO::MCL_CURRENT> and C<IO::AIO::MCL_FUTURE>).
1208    
1209     On systems that do not implement C<mlockall>, this function returns C<-1>
1210     and sets errno to C<ENOSYS>.
1211    
1212     Note that the corresponding C<munlockall> is synchronous and is
1213     documented under L<MISCELLANEOUS FUNCTIONS>.
1214    
1215 root 1.183 Example: asynchronously lock all current and future pages into memory.
1216    
1217     aio_mlockall IO::AIO::MCL_FUTURE;
1218    
1219 root 1.58 =item aio_group $callback->(...)
1220 root 1.54
1221 root 1.55 This is a very special aio request: Instead of doing something, it is a
1222     container for other aio requests, which is useful if you want to bundle
1223 root 1.71 many requests into a single, composite, request with a definite callback
1224     and the ability to cancel the whole request with its subrequests.
1225 root 1.55
1226     Returns an object of class L<IO::AIO::GRP>. See its documentation below
1227     for more info.
1228    
1229     Example:
1230    
1231     my $grp = aio_group sub {
1232     print "all stats done\n";
1233     };
1234    
1235     add $grp
1236     (aio_stat ...),
1237     (aio_stat ...),
1238     ...;
1239    
1240 root 1.63 =item aio_nop $callback->()
1241    
1242     This is a special request - it does nothing in itself and is only used for
1243     side effects, such as when you want to add a dummy request to a group so
1244     that finishing the requests in the group depends on executing the given
1245     code.
1246    
1247 root 1.64 While this request does nothing, it still goes through the execution
1248     phase and still requires a worker thread. Thus, the callback will not
1249     be executed immediately but only after other requests in the queue have
1250     entered their execution phase. This can be used to measure request
1251     latency.
1252    
1253 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1254 root 1.54
1255     Mainly used for debugging and benchmarking, this aio request puts one of
1256     the request workers to sleep for the given time.
1257    
1258 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1259 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1260     immense (it blocks a thread for a long time) so do not use this function
1261     except to put your application under artificial I/O pressure.
1262 root 1.56
1263 root 1.5 =back
1264    
1265 root 1.209
1266     =head2 IO::AIO::WD - multiple working directories
1267    
1268     Your process only has one current working directory, which is used by all
1269     threads. This makes it hard to use relative paths (some other component
1270     could call C<chdir> at any time, and it is hard to control when the path
1271     will be used by IO::AIO).
1272    
1273     One solution for this is to always use absolute paths. This usually works,
1274     but can be quite slow (the kernel has to walk the whole path on every
1275     access), and can also be a hassle to implement.
1276    
1277     Newer POSIX systems have a number of functions (openat, fdopendir,
1278     futimensat and so on) that make it possible to specify working directories
1279     per operation.
1280    
1281     For portability, and because the clowns who "designed", or shall I write,
1282     perpetrated this new interface were obviously half-drunk, this abstraction
1283     cannot be perfect, though.
1284    
1285     IO::AIO allows you to convert directory paths into a so-called IO::AIO::WD
1286     object. This object stores the canonicalised, absolute version of the
1287     path, and on systems that allow it, also a directory file descriptor.
1288    
1289     Everywhere where a pathname is accepted by IO::AIO (e.g. in C<aio_stat>
1290     or C<aio_unlink>), one can specify an array reference with an IO::AIO::WD
1291     object and a pathname instead. If the pathname is absolute, the
1292     IO::AIO::WD objetc is ignored, otherwise the pathname is resolved relative
1293     to that IO::AIO::WD object.
1294    
1295     For example, to get a wd object for F</etc> and then stat F<passwd>
1296     inside, you would write:
1297    
1298     aio_wd "/etc", sub {
1299     my $etcdir = shift;
1300    
1301     # although $etcdir can be undef on error, there is generally no reason
1302     # to check for errors here, as aio_stat will fail with ENOENT
1303     # when $etcdir is undef.
1304    
1305     aio_stat [$etcdir, "passwd"], sub {
1306     # yay
1307     };
1308     };
1309    
1310     This shows that creating an IO::AIO::WD object is itself a potentially
1311     blocking operation, which is why it is done asynchronously.
1312    
1313     As with normal pathnames, IO::AIO keeps a copy of the working directory
1314     object and the pathname string, so you could write the following without
1315     causing any issues due to C<$path> getting reused:
1316    
1317     my $path = [$wd, undef];
1318    
1319     for my $name (qw(abc def ghi)) {
1320     $path->[1] = $name;
1321     aio_stat $path, sub {
1322     # ...
1323     };
1324     }
1325    
1326     There are some caveats: when directories get renamed (or deleted), the
1327     pathname string doesn't change, so will point to the new directory (or
1328     nowhere at all), while the directory fd, if available on the system,
1329     will still point to the original directory. Most functions accepting a
1330     pathname will use the directory fd on newer systems, and the string on
1331     older systems. Some functions (such as realpath) will always rely on the
1332     string form of the pathname.
1333    
1334     So this fucntionality is mainly useful to get some protection against
1335     C<chdir>, to easily get an absolute path out of a relative path for future
1336     reference, and to speed up doing many operations in the same directory
1337     (e.g. when stat'ing all files in a directory).
1338    
1339     The following functions implement this working directory abstraction:
1340    
1341     =over 4
1342    
1343     =item aio_wd $pathname, $callback->($wd)
1344    
1345     Asynchonously canonicalise the given pathname and convert it to an
1346     IO::AIO::WD object representing it. If possible and supported on the
1347     system, also open a directory fd to speed up pathname resolution relative
1348     to this working directory.
1349    
1350     If something goes wrong, then C<undef> is passwd to the callback instead
1351     of a working directory object and C<$!> is set appropriately. Since
1352     passing C<undef> as working directory component of a pathname fails the
1353     request with C<ENOENT>, there is often no need for error checking in the
1354     C<aio_wd> callback, as future requests using the value will fail in the
1355     expected way.
1356    
1357     If this call isn't available because your OS lacks it or it couldn't be
1358     detected, it will be emulated by calling C<fsync> instead.
1359    
1360     =item IO::AIO::CWD
1361    
1362     This is a compiletime constant (object) that represents the process
1363     current working directory.
1364    
1365     Specifying this object as working directory object for a pathname is as
1366     if the pathname would be specified directly, without a directory object,
1367     e.g., these calls are functionally identical:
1368    
1369     aio_stat "somefile", sub { ... };
1370     aio_stat [IO::AIO::CWD, "somefile"], sub { ... };
1371    
1372     =back
1373    
1374    
1375 root 1.53 =head2 IO::AIO::REQ CLASS
1376 root 1.52
1377     All non-aggregate C<aio_*> functions return an object of this class when
1378     called in non-void context.
1379    
1380     =over 4
1381    
1382 root 1.65 =item cancel $req
1383 root 1.52
1384     Cancels the request, if possible. Has the effect of skipping execution
1385     when entering the B<execute> state and skipping calling the callback when
1386     entering the the B<result> state, but will leave the request otherwise
1387 root 1.151 untouched (with the exception of readdir). That means that requests that
1388     currently execute will not be stopped and resources held by the request
1389     will not be freed prematurely.
1390 root 1.52
1391 root 1.65 =item cb $req $callback->(...)
1392    
1393     Replace (or simply set) the callback registered to the request.
1394    
1395 root 1.52 =back
1396    
1397 root 1.55 =head2 IO::AIO::GRP CLASS
1398    
1399     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1400     objects of this class, too.
1401    
1402     A IO::AIO::GRP object is a special request that can contain multiple other
1403     aio requests.
1404    
1405     You create one by calling the C<aio_group> constructing function with a
1406     callback that will be called when all contained requests have entered the
1407     C<done> state:
1408    
1409     my $grp = aio_group sub {
1410     print "all requests are done\n";
1411     };
1412    
1413     You add requests by calling the C<add> method with one or more
1414     C<IO::AIO::REQ> objects:
1415    
1416     $grp->add (aio_unlink "...");
1417    
1418 root 1.58 add $grp aio_stat "...", sub {
1419     $_[0] or return $grp->result ("error");
1420    
1421     # add another request dynamically, if first succeeded
1422     add $grp aio_open "...", sub {
1423     $grp->result ("ok");
1424     };
1425     };
1426 root 1.55
1427     This makes it very easy to create composite requests (see the source of
1428     C<aio_move> for an application) that work and feel like simple requests.
1429    
1430 root 1.62 =over 4
1431    
1432     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1433 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1434    
1435 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1436 root 1.59 only the request itself, but also all requests it contains.
1437 root 1.55
1438 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1439 root 1.55
1440 root 1.62 =item * You must not add requests to a group from within the group callback (or
1441 root 1.60 any later time).
1442    
1443 root 1.62 =back
1444    
1445 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1446     will finish very quickly. If they contain only requests that are in the
1447     C<done> state, they will also finish. Otherwise they will continue to
1448     exist.
1449    
1450 root 1.133 That means after creating a group you have some time to add requests
1451     (precisely before the callback has been invoked, which is only done within
1452     the C<poll_cb>). And in the callbacks of those requests, you can add
1453     further requests to the group. And only when all those requests have
1454     finished will the the group itself finish.
1455 root 1.57
1456 root 1.55 =over 4
1457    
1458 root 1.65 =item add $grp ...
1459    
1460 root 1.55 =item $grp->add (...)
1461    
1462 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1463     be added, including other groups, as long as you do not create circular
1464     dependencies.
1465    
1466     Returns all its arguments.
1467 root 1.55
1468 root 1.74 =item $grp->cancel_subs
1469    
1470     Cancel all subrequests and clears any feeder, but not the group request
1471     itself. Useful when you queued a lot of events but got a result early.
1472    
1473 root 1.168 The group request will finish normally (you cannot add requests to the
1474     group).
1475    
1476 root 1.58 =item $grp->result (...)
1477    
1478     Set the result value(s) that will be passed to the group callback when all
1479 root 1.120 subrequests have finished and set the groups errno to the current value
1480 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1481     no argument will be passed and errno is zero.
1482    
1483     =item $grp->errno ([$errno])
1484    
1485     Sets the group errno value to C<$errno>, or the current value of errno
1486     when the argument is missing.
1487    
1488     Every aio request has an associated errno value that is restored when
1489     the callback is invoked. This method lets you change this value from its
1490     default (0).
1491    
1492     Calling C<result> will also set errno, so make sure you either set C<$!>
1493     before the call to C<result>, or call c<errno> after it.
1494 root 1.58
1495 root 1.65 =item feed $grp $callback->($grp)
1496 root 1.60
1497     Sets a feeder/generator on this group: every group can have an attached
1498     generator that generates requests if idle. The idea behind this is that,
1499     although you could just queue as many requests as you want in a group,
1500 root 1.139 this might starve other requests for a potentially long time. For example,
1501     C<aio_scandir> might generate hundreds of thousands C<aio_stat> requests,
1502     delaying any later requests for a long time.
1503 root 1.60
1504     To avoid this, and allow incremental generation of requests, you can
1505     instead a group and set a feeder on it that generates those requests. The
1506 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1507 root 1.60 below) requests active in the group itself and is expected to queue more
1508     requests.
1509    
1510 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1511     not impose any limits).
1512 root 1.60
1513 root 1.65 If the feed does not queue more requests when called, it will be
1514 root 1.60 automatically removed from the group.
1515    
1516 root 1.138 If the feed limit is C<0> when this method is called, it will be set to
1517     C<2> automatically.
1518 root 1.60
1519     Example:
1520    
1521     # stat all files in @files, but only ever use four aio requests concurrently:
1522    
1523     my $grp = aio_group sub { print "finished\n" };
1524 root 1.68 limit $grp 4;
1525 root 1.65 feed $grp sub {
1526 root 1.60 my $file = pop @files
1527     or return;
1528    
1529     add $grp aio_stat $file, sub { ... };
1530 root 1.65 };
1531 root 1.60
1532 root 1.68 =item limit $grp $num
1533 root 1.60
1534     Sets the feeder limit for the group: The feeder will be called whenever
1535     the group contains less than this many requests.
1536    
1537     Setting the limit to C<0> will pause the feeding process.
1538    
1539 root 1.138 The default value for the limit is C<0>, but note that setting a feeder
1540     automatically bumps it up to C<2>.
1541    
1542 root 1.55 =back
1543    
1544 root 1.5 =head2 SUPPORT FUNCTIONS
1545    
1546 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1547    
1548 root 1.5 =over 4
1549    
1550     =item $fileno = IO::AIO::poll_fileno
1551    
1552 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1553 root 1.156 polled for reading by some mechanism outside this module (e.g. EV, Glib,
1554     select and so on, see below or the SYNOPSIS). If the pipe becomes readable
1555     you have to call C<poll_cb> to check the results.
1556 root 1.5
1557     See C<poll_cb> for an example.
1558    
1559     =item IO::AIO::poll_cb
1560    
1561 root 1.191 Process some outstanding events on the result pipe. You have to call
1562     this regularly. Returns C<0> if all events could be processed (or there
1563     were no events to process), or C<-1> if it returned earlier for whatever
1564     reason. Returns immediately when no events are outstanding. The amount of
1565     events processed depends on the settings of C<IO::AIO::max_poll_req> and
1566     C<IO::AIO::max_poll_time>.
1567 root 1.5
1568 root 1.78 If not all requests were processed for whatever reason, the filehandle
1569 root 1.128 will still be ready when C<poll_cb> returns, so normally you don't have to
1570     do anything special to have it called later.
1571 root 1.78
1572 root 1.192 Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes
1573     ready, it can be beneficial to call this function from loops which submit
1574     a lot of requests, to make sure the results get processed when they become
1575     available and not just when the loop is finished and the event loop takes
1576     over again. This function returns very fast when there are no outstanding
1577     requests.
1578    
1579 root 1.20 Example: Install an Event watcher that automatically calls
1580 root 1.156 IO::AIO::poll_cb with high priority (more examples can be found in the
1581     SYNOPSIS section, at the top of this document):
1582 root 1.5
1583     Event->io (fd => IO::AIO::poll_fileno,
1584     poll => 'r', async => 1,
1585     cb => \&IO::AIO::poll_cb);
1586    
1587 root 1.175 =item IO::AIO::poll_wait
1588    
1589     If there are any outstanding requests and none of them in the result
1590     phase, wait till the result filehandle becomes ready for reading (simply
1591     does a C<select> on the filehandle. This is useful if you want to
1592     synchronously wait for some requests to finish).
1593    
1594     See C<nreqs> for an example.
1595    
1596     =item IO::AIO::poll
1597    
1598     Waits until some requests have been handled.
1599    
1600     Returns the number of requests processed, but is otherwise strictly
1601     equivalent to:
1602    
1603     IO::AIO::poll_wait, IO::AIO::poll_cb
1604    
1605     =item IO::AIO::flush
1606    
1607     Wait till all outstanding AIO requests have been handled.
1608    
1609     Strictly equivalent to:
1610    
1611     IO::AIO::poll_wait, IO::AIO::poll_cb
1612     while IO::AIO::nreqs;
1613    
1614 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1615    
1616     =item IO::AIO::max_poll_time $seconds
1617    
1618     These set the maximum number of requests (default C<0>, meaning infinity)
1619     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1620     the maximum amount of time (default C<0>, meaning infinity) spent in
1621     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1622     of time C<poll_cb> is allowed to use).
1623 root 1.78
1624 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1625     syscall per request processed, which is not normally a problem unless your
1626     callbacks are really really fast or your OS is really really slow (I am
1627     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1628    
1629 root 1.86 Setting these is useful if you want to ensure some level of
1630     interactiveness when perl is not fast enough to process all requests in
1631     time.
1632 root 1.78
1633 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
1634 root 1.78
1635     Example: Install an Event watcher that automatically calls
1636 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
1637 root 1.78 program get the CPU sometimes even under high AIO load.
1638    
1639 root 1.86 # try not to spend much more than 0.1s in poll_cb
1640     IO::AIO::max_poll_time 0.1;
1641    
1642     # use a low priority so other tasks have priority
1643 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
1644     poll => 'r', nice => 1,
1645 root 1.86 cb => &IO::AIO::poll_cb);
1646 root 1.78
1647 root 1.104 =back
1648    
1649 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
1650 root 1.13
1651 root 1.105 =over
1652    
1653 root 1.5 =item IO::AIO::min_parallel $nthreads
1654    
1655 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
1656     default is C<8>, which means eight asynchronous operations can execute
1657     concurrently at any one time (the number of outstanding requests,
1658     however, is unlimited).
1659 root 1.5
1660 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
1661 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
1662     create demand for a hundred threads, even if it turns out that everything
1663     is in the cache and could have been processed faster by a single thread.
1664 root 1.34
1665 root 1.61 It is recommended to keep the number of threads relatively low, as some
1666     Linux kernel versions will scale negatively with the number of threads
1667     (higher parallelity => MUCH higher latency). With current Linux 2.6
1668     versions, 4-32 threads should be fine.
1669 root 1.5
1670 root 1.34 Under most circumstances you don't need to call this function, as the
1671     module selects a default that is suitable for low to moderate load.
1672 root 1.5
1673     =item IO::AIO::max_parallel $nthreads
1674    
1675 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
1676     specified number of threads are currently running, this function kills
1677     them. This function blocks until the limit is reached.
1678    
1679     While C<$nthreads> are zero, aio requests get queued but not executed
1680     until the number of threads has been increased again.
1681 root 1.5
1682     This module automatically runs C<max_parallel 0> at program end, to ensure
1683     that all threads are killed and that there are no outstanding requests.
1684    
1685     Under normal circumstances you don't need to call this function.
1686    
1687 root 1.86 =item IO::AIO::max_idle $nthreads
1688    
1689 root 1.188 Limit the number of threads (default: 4) that are allowed to idle
1690     (i.e., threads that did not get a request to process within the idle
1691     timeout (default: 10 seconds). That means if a thread becomes idle while
1692     C<$nthreads> other threads are also idle, it will free its resources and
1693     exit.
1694 root 1.86
1695     This is useful when you allow a large number of threads (e.g. 100 or 1000)
1696     to allow for extremely high load situations, but want to free resources
1697     under normal circumstances (1000 threads can easily consume 30MB of RAM).
1698    
1699     The default is probably ok in most situations, especially if thread
1700     creation is fast. If thread creation is very slow on your system you might
1701     want to use larger values.
1702    
1703 root 1.188 =item IO::AIO::idle_timeout $seconds
1704    
1705     Sets the minimum idle timeout (default 10) after which worker threads are
1706     allowed to exit. SEe C<IO::AIO::max_idle>.
1707    
1708 root 1.123 =item IO::AIO::max_outstanding $maxreqs
1709 root 1.5
1710 root 1.195 Sets the maximum number of outstanding requests to C<$nreqs>. If
1711     you do queue up more than this number of requests, the next call to
1712     C<IO::AIO::poll_cb> (and other functions calling C<poll_cb>, such as
1713     C<IO::AIO::flush> or C<IO::AIO::poll>) will block until the limit is no
1714     longer exceeded.
1715    
1716     In other words, this setting does not enforce a queue limit, but can be
1717     used to make poll functions block if the limit is exceeded.
1718    
1719 root 1.79 This is a very bad function to use in interactive programs because it
1720     blocks, and a bad way to reduce concurrency because it is inexact: Better
1721     use an C<aio_group> together with a feed callback.
1722    
1723 root 1.195 It's main use is in scripts without an event loop - when you want to stat
1724     a lot of files, you can write somehting like this:
1725    
1726     IO::AIO::max_outstanding 32;
1727    
1728     for my $path (...) {
1729     aio_stat $path , ...;
1730     IO::AIO::poll_cb;
1731     }
1732    
1733     IO::AIO::flush;
1734    
1735     The call to C<poll_cb> inside the loop will normally return instantly, but
1736     as soon as more thna C<32> reqeusts are in-flight, it will block until
1737     some requests have been handled. This keeps the loop from pushing a large
1738     number of C<aio_stat> requests onto the queue.
1739    
1740     The default value for C<max_outstanding> is very large, so there is no
1741     practical limit on the number of outstanding requests.
1742 root 1.5
1743 root 1.104 =back
1744    
1745 root 1.86 =head3 STATISTICAL INFORMATION
1746    
1747 root 1.104 =over
1748    
1749 root 1.86 =item IO::AIO::nreqs
1750    
1751     Returns the number of requests currently in the ready, execute or pending
1752     states (i.e. for which their callback has not been invoked yet).
1753    
1754     Example: wait till there are no outstanding requests anymore:
1755    
1756     IO::AIO::poll_wait, IO::AIO::poll_cb
1757     while IO::AIO::nreqs;
1758    
1759     =item IO::AIO::nready
1760    
1761     Returns the number of requests currently in the ready state (not yet
1762     executed).
1763    
1764     =item IO::AIO::npending
1765    
1766     Returns the number of requests currently in the pending state (executed,
1767     but not yet processed by poll_cb).
1768    
1769 root 1.5 =back
1770    
1771 root 1.157 =head3 MISCELLANEOUS FUNCTIONS
1772    
1773     IO::AIO implements some functions that might be useful, but are not
1774     asynchronous.
1775    
1776     =over 4
1777    
1778     =item IO::AIO::sendfile $ofh, $ifh, $offset, $count
1779    
1780     Calls the C<eio_sendfile_sync> function, which is like C<aio_sendfile>,
1781     but is blocking (this makes most sense if you know the input data is
1782     likely cached already and the output filehandle is set to non-blocking
1783     operations).
1784    
1785     Returns the number of bytes copied, or C<-1> on error.
1786    
1787     =item IO::AIO::fadvise $fh, $offset, $len, $advice
1788    
1789 root 1.184 Simply calls the C<posix_fadvise> function (see its
1790 root 1.157 manpage for details). The following advice constants are
1791 root 1.207 available: C<IO::AIO::FADV_NORMAL>, C<IO::AIO::FADV_SEQUENTIAL>,
1792 root 1.157 C<IO::AIO::FADV_RANDOM>, C<IO::AIO::FADV_NOREUSE>,
1793     C<IO::AIO::FADV_WILLNEED>, C<IO::AIO::FADV_DONTNEED>.
1794    
1795     On systems that do not implement C<posix_fadvise>, this function returns
1796     ENOSYS, otherwise the return value of C<posix_fadvise>.
1797    
1798 root 1.184 =item IO::AIO::madvise $scalar, $offset, $len, $advice
1799    
1800     Simply calls the C<posix_madvise> function (see its
1801     manpage for details). The following advice constants are
1802 root 1.207 available: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
1803 root 1.184 C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>, C<IO::AIO::MADV_DONTNEED>.
1804    
1805     On systems that do not implement C<posix_madvise>, this function returns
1806     ENOSYS, otherwise the return value of C<posix_madvise>.
1807    
1808     =item IO::AIO::mprotect $scalar, $offset, $len, $protect
1809    
1810     Simply calls the C<mprotect> function on the preferably AIO::mmap'ed
1811     $scalar (see its manpage for details). The following protect
1812 root 1.207 constants are available: C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_READ>,
1813 root 1.184 C<IO::AIO::PROT_WRITE>, C<IO::AIO::PROT_EXEC>.
1814    
1815     On systems that do not implement C<mprotect>, this function returns
1816     ENOSYS, otherwise the return value of C<mprotect>.
1817    
1818 root 1.176 =item IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
1819    
1820     Memory-maps a file (or anonymous memory range) and attaches it to the
1821     given C<$scalar>, which will act like a string scalar.
1822    
1823     The only operations allowed on the scalar are C<substr>/C<vec> that don't
1824     change the string length, and most read-only operations such as copying it
1825     or searching it with regexes and so on.
1826    
1827     Anything else is unsafe and will, at best, result in memory leaks.
1828    
1829     The memory map associated with the C<$scalar> is automatically removed
1830     when the C<$scalar> is destroyed, or when the C<IO::AIO::mmap> or
1831     C<IO::AIO::munmap> functions are called.
1832    
1833     This calls the C<mmap>(2) function internally. See your system's manual
1834     page for details on the C<$length>, C<$prot> and C<$flags> parameters.
1835    
1836     The C<$length> must be larger than zero and smaller than the actual
1837     filesize.
1838    
1839     C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
1840     C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
1841    
1842     C<$flags> can be a combination of C<IO::AIO::MAP_SHARED> or
1843     C<IO::AIO::MAP_PRIVATE>, or a number of system-specific flags (when
1844     not available, the are defined as 0): C<IO::AIO::MAP_ANONYMOUS>
1845     (which is set to C<MAP_ANON> if your system only provides this
1846     constant), C<IO::AIO::MAP_HUGETLB>, C<IO::AIO::MAP_LOCKED>,
1847     C<IO::AIO::MAP_NORESERVE>, C<IO::AIO::MAP_POPULATE> or
1848     C<IO::AIO::MAP_NONBLOCK>
1849    
1850     If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
1851    
1852 root 1.179 C<$offset> is the offset from the start of the file - it generally must be
1853     a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
1854    
1855 root 1.177 Example:
1856    
1857     use Digest::MD5;
1858     use IO::AIO;
1859    
1860     open my $fh, "<verybigfile"
1861     or die "$!";
1862    
1863     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
1864     or die "verybigfile: $!";
1865    
1866     my $fast_md5 = md5 $data;
1867    
1868 root 1.176 =item IO::AIO::munmap $scalar
1869    
1870     Removes a previous mmap and undefines the C<$scalar>.
1871    
1872 root 1.182 =item IO::AIO::munlock $scalar, $offset = 0, $length = undef
1873 root 1.174
1874 root 1.182 Calls the C<munlock> function, undoing the effects of a previous
1875     C<aio_mlock> call (see its description for details).
1876 root 1.174
1877     =item IO::AIO::munlockall
1878    
1879     Calls the C<munlockall> function.
1880    
1881     On systems that do not implement C<munlockall>, this function returns
1882     ENOSYS, otherwise the return value of C<munlockall>.
1883    
1884 root 1.157 =back
1885    
1886 root 1.1 =cut
1887    
1888 root 1.61 min_parallel 8;
1889 root 1.1
1890 root 1.95 END { flush }
1891 root 1.82
1892 root 1.1 1;
1893    
1894 root 1.175 =head1 EVENT LOOP INTEGRATION
1895    
1896     It is recommended to use L<AnyEvent::AIO> to integrate IO::AIO
1897     automatically into many event loops:
1898    
1899     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
1900     use AnyEvent::AIO;
1901    
1902     You can also integrate IO::AIO manually into many event loops, here are
1903     some examples of how to do this:
1904    
1905     # EV integration
1906     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
1907    
1908     # Event integration
1909     Event->io (fd => IO::AIO::poll_fileno,
1910     poll => 'r',
1911     cb => \&IO::AIO::poll_cb);
1912    
1913     # Glib/Gtk2 integration
1914     add_watch Glib::IO IO::AIO::poll_fileno,
1915     in => sub { IO::AIO::poll_cb; 1 };
1916    
1917     # Tk integration
1918     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
1919     readable => \&IO::AIO::poll_cb);
1920    
1921     # Danga::Socket integration
1922     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
1923     \&IO::AIO::poll_cb);
1924    
1925 root 1.27 =head2 FORK BEHAVIOUR
1926    
1927 root 1.197 Usage of pthreads in a program changes the semantics of fork
1928     considerably. Specifically, only async-safe functions can be called after
1929     fork. Perl doesn't know about this, so in general, you cannot call fork
1930 root 1.204 with defined behaviour in perl if pthreads are involved. IO::AIO uses
1931     pthreads, so this applies, but many other extensions and (for inexplicable
1932     reasons) perl itself often is linked against pthreads, so this limitation
1933     applies to quite a lot of perls.
1934    
1935     This module no longer tries to fight your OS, or POSIX. That means IO::AIO
1936     only works in the process that loaded it. Forking is fully supported, but
1937     using IO::AIO in the child is not.
1938    
1939     You might get around by not I<using> IO::AIO before (or after)
1940     forking. You could also try to call the L<IO::AIO::reinit> function in the
1941     child:
1942    
1943     =over 4
1944    
1945     =item IO::AIO::reinit
1946    
1947 root 1.207 Abandons all current requests and I/O threads and simply reinitialises all
1948     data structures. This is not an operation supported by any standards, but
1949 root 1.204 happens to work on GNU/Linux and some newer BSD systems.
1950    
1951     The only reasonable use for this function is to call it after forking, if
1952     C<IO::AIO> was used in the parent. Calling it while IO::AIO is active in
1953     the process will result in undefined behaviour. Calling it at any time
1954     will also result in any undefined (by POSIX) behaviour.
1955    
1956     =back
1957 root 1.52
1958 root 1.60 =head2 MEMORY USAGE
1959    
1960 root 1.72 Per-request usage:
1961    
1962     Each aio request uses - depending on your architecture - around 100-200
1963     bytes of memory. In addition, stat requests need a stat buffer (possibly
1964     a few hundred bytes), readdir requires a result buffer and so on. Perl
1965     scalars and other data passed into aio requests will also be locked and
1966     will consume memory till the request has entered the done state.
1967 root 1.60
1968 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
1969 root 1.60 problem.
1970    
1971 root 1.72 Per-thread usage:
1972    
1973     In the execution phase, some aio requests require more memory for
1974     temporary buffers, and each thread requires a stack and other data
1975     structures (usually around 16k-128k, depending on the OS).
1976    
1977     =head1 KNOWN BUGS
1978    
1979 root 1.73 Known bugs will be fixed in the next release.
1980 root 1.60
1981 root 1.1 =head1 SEE ALSO
1982    
1983 root 1.125 L<AnyEvent::AIO> for easy integration into event loops, L<Coro::AIO> for a
1984     more natural syntax.
1985 root 1.1
1986     =head1 AUTHOR
1987    
1988     Marc Lehmann <schmorp@schmorp.de>
1989     http://home.schmorp.de/
1990    
1991     =cut
1992