ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.225
Committed: Tue Apr 10 05:01:33 2012 UTC (12 years, 1 month ago) by root
Branch: MAIN
CVS Tags: rel-4_15
Changes since 1.224: +24 -1 lines
Log Message:
4.15

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3     IO::AIO - Asynchronous Input/Output
4    
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.1 =head1 DESCRIPTION
32    
33     This module implements asynchronous I/O using whatever means your
34 root 1.156 operating system supports. It is implemented as an interface to C<libeio>
35     (L<http://software.schmorp.de/pkg/libeio.html>).
36 root 1.1
37 root 1.85 Asynchronous means that operations that can normally block your program
38     (e.g. reading from disk) will be done asynchronously: the operation
39     will still block, but you can do something else in the meantime. This
40     is extremely useful for programs that need to stay interactive even
41     when doing heavy I/O (GUI programs, high performance network servers
42     etc.), but can also be used to easily do operations in parallel that are
43     normally done sequentially, e.g. stat'ing many files, which is much faster
44     on a RAID volume or over NFS when you do a number of stat operations
45     concurrently.
46    
47 root 1.108 While most of this works on all types of file descriptors (for
48     example sockets), using these functions on file descriptors that
49 root 1.156 support nonblocking operation (again, sockets, pipes etc.) is
50     very inefficient. Use an event loop for that (such as the L<EV>
51 root 1.108 module): IO::AIO will naturally fit into such an event loop itself.
52 root 1.85
53 root 1.72 In this version, a number of threads are started that execute your
54     requests and signal their completion. You don't need thread support
55     in perl, and the threads created by this module will not be visible
56     to perl. In the future, this module might make use of the native aio
57     functions available on many operating systems. However, they are often
58 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
59 root 1.72 files currently, for example), and they would only support aio_read and
60     aio_write, so the remaining functionality would have to be implemented
61     using threads anyway.
62    
63 root 1.108 Although the module will work in the presence of other (Perl-) threads,
64     it is currently not reentrant in any way, so use appropriate locking
65     yourself, always call C<poll_cb> from within the same thread, or never
66     call C<poll_cb> (or other C<aio_> functions) recursively.
67 root 1.72
68 root 1.86 =head2 EXAMPLE
69    
70 root 1.156 This is a simple example that uses the EV module and loads
71 root 1.86 F</etc/passwd> asynchronously:
72    
73     use Fcntl;
74 root 1.156 use EV;
75 root 1.86 use IO::AIO;
76    
77 root 1.156 # register the IO::AIO callback with EV
78     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
79 root 1.86
80     # queue the request to open /etc/passwd
81 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
82 root 1.94 my $fh = shift
83 root 1.86 or die "error while opening: $!";
84    
85     # stat'ing filehandles is generally non-blocking
86     my $size = -s $fh;
87    
88     # queue a request to read the file
89     my $contents;
90     aio_read $fh, 0, $size, $contents, 0, sub {
91     $_[0] == $size
92     or die "short read: $!";
93    
94     close $fh;
95    
96     # file contents now in $contents
97     print $contents;
98    
99     # exit event loop and program
100 root 1.156 EV::unloop;
101 root 1.86 };
102     };
103    
104     # possibly queue up other requests, or open GUI windows,
105     # check for sockets etc. etc.
106    
107     # process events as long as there are some:
108 root 1.156 EV::loop;
109 root 1.86
110 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
111    
112     Every C<aio_*> function creates a request. which is a C data structure not
113     directly visible to Perl.
114    
115     If called in non-void context, every request function returns a Perl
116     object representing the request. In void context, nothing is returned,
117     which saves a bit of memory.
118    
119     The perl object is a fairly standard ref-to-hash object. The hash contents
120     are not used by IO::AIO so you are free to store anything you like in it.
121    
122     During their existance, aio requests travel through the following states,
123     in order:
124    
125     =over 4
126    
127     =item ready
128    
129     Immediately after a request is created it is put into the ready state,
130     waiting for a thread to execute it.
131    
132     =item execute
133    
134     A thread has accepted the request for processing and is currently
135     executing it (e.g. blocking in read).
136    
137     =item pending
138    
139     The request has been executed and is waiting for result processing.
140    
141     While request submission and execution is fully asynchronous, result
142     processing is not and relies on the perl interpreter calling C<poll_cb>
143     (or another function with the same effect).
144    
145     =item result
146    
147     The request results are processed synchronously by C<poll_cb>.
148    
149     The C<poll_cb> function will process all outstanding aio requests by
150     calling their callbacks, freeing memory associated with them and managing
151     any groups they are contained in.
152    
153     =item done
154    
155     Request has reached the end of its lifetime and holds no resources anymore
156     (except possibly for the Perl object, but its connection to the actual
157     aio request is severed and calling its methods will either do nothing or
158     result in a runtime error).
159 root 1.1
160 root 1.88 =back
161    
162 root 1.1 =cut
163    
164     package IO::AIO;
165    
166 root 1.117 use Carp ();
167    
168 root 1.161 use common::sense;
169 root 1.23
170 root 1.1 use base 'Exporter';
171    
172     BEGIN {
173 root 1.225 our $VERSION = '4.15';
174 root 1.1
175 root 1.220 our @AIO_REQ = qw(aio_sendfile aio_seek aio_read aio_write aio_open aio_close
176 root 1.148 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
177 root 1.206 aio_scandir aio_symlink aio_readlink aio_realpath aio_sync
178     aio_fsync aio_syncfs aio_fdatasync aio_sync_file_range aio_fallocate
179 root 1.222 aio_pathsync aio_readahead aio_fiemap
180 root 1.120 aio_rename aio_link aio_move aio_copy aio_group
181     aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
182 root 1.170 aio_chmod aio_utime aio_truncate
183 root 1.182 aio_msync aio_mtouch aio_mlock aio_mlockall
184 root 1.208 aio_statvfs
185     aio_wd);
186 root 1.120
187 root 1.123 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice));
188 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
189 root 1.188 min_parallel max_parallel max_idle idle_timeout
190 root 1.86 nreqs nready npending nthreads
191 root 1.157 max_poll_time max_poll_reqs
192 root 1.182 sendfile fadvise madvise
193     mmap munmap munlock munlockall);
194 root 1.1
195 root 1.143 push @AIO_REQ, qw(aio_busy); # not exported
196    
197 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
198    
199 root 1.1 require XSLoader;
200 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
201 root 1.1 }
202    
203 root 1.5 =head1 FUNCTIONS
204 root 1.1
205 root 1.175 =head2 QUICK OVERVIEW
206    
207     This section simply lists the prototypes of the most important functions
208     for quick reference. See the following sections for function-by-function
209     documentation.
210    
211 root 1.208 aio_wd $pathname, $callback->($wd)
212 root 1.175 aio_open $pathname, $flags, $mode, $callback->($fh)
213     aio_close $fh, $callback->($status)
214 root 1.220 aio_seek $fh,$offset,$whence, $callback->($offs)
215 root 1.175 aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
216     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
217     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
218     aio_readahead $fh,$offset,$length, $callback->($retval)
219     aio_stat $fh_or_path, $callback->($status)
220     aio_lstat $fh, $callback->($status)
221     aio_statvfs $fh_or_path, $callback->($statvfs)
222     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
223     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
224 root 1.220 aio_chmod $fh_or_path, $mode, $callback->($status)
225 root 1.175 aio_truncate $fh_or_path, $offset, $callback->($status)
226     aio_unlink $pathname, $callback->($status)
227 root 1.209 aio_mknod $pathname, $mode, $dev, $callback->($status)
228 root 1.175 aio_link $srcpath, $dstpath, $callback->($status)
229     aio_symlink $srcpath, $dstpath, $callback->($status)
230 root 1.209 aio_readlink $pathname, $callback->($link)
231     aio_realpath $pathname, $callback->($link)
232 root 1.175 aio_rename $srcpath, $dstpath, $callback->($status)
233     aio_mkdir $pathname, $mode, $callback->($status)
234     aio_rmdir $pathname, $callback->($status)
235     aio_readdir $pathname, $callback->($entries)
236     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
237     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
238     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
239 root 1.215 aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
240 root 1.209 aio_load $pathname, $data, $callback->($status)
241 root 1.175 aio_copy $srcpath, $dstpath, $callback->($status)
242     aio_move $srcpath, $dstpath, $callback->($status)
243 root 1.209 aio_rmtree $pathname, $callback->($status)
244 root 1.175 aio_sync $callback->($status)
245 root 1.206 aio_syncfs $fh, $callback->($status)
246 root 1.175 aio_fsync $fh, $callback->($status)
247     aio_fdatasync $fh, $callback->($status)
248     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
249 root 1.209 aio_pathsync $pathname, $callback->($status)
250 root 1.175 aio_msync $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
251     aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
252 root 1.182 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
253     aio_mlockall $flags, $callback->($status)
254 root 1.175 aio_group $callback->(...)
255     aio_nop $callback->()
256    
257     $prev_pri = aioreq_pri [$pri]
258     aioreq_nice $pri_adjust
259    
260     IO::AIO::poll_wait
261     IO::AIO::poll_cb
262     IO::AIO::poll
263     IO::AIO::flush
264     IO::AIO::max_poll_reqs $nreqs
265     IO::AIO::max_poll_time $seconds
266     IO::AIO::min_parallel $nthreads
267     IO::AIO::max_parallel $nthreads
268     IO::AIO::max_idle $nthreads
269 root 1.188 IO::AIO::idle_timeout $seconds
270 root 1.175 IO::AIO::max_outstanding $maxreqs
271     IO::AIO::nreqs
272     IO::AIO::nready
273     IO::AIO::npending
274    
275     IO::AIO::sendfile $ofh, $ifh, $offset, $count
276     IO::AIO::fadvise $fh, $offset, $len, $advice
277 root 1.184 IO::AIO::madvise $scalar, $offset, $length, $advice
278     IO::AIO::mprotect $scalar, $offset, $length, $protect
279 root 1.182 IO::AIO::munlock $scalar, $offset = 0, $length = undef
280 root 1.175 IO::AIO::munlockall
281    
282 root 1.219 =head2 API NOTES
283 root 1.1
284 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
285     with the same name (sans C<aio_>). The arguments are similar or identical,
286 root 1.14 and they all accept an additional (and optional) C<$callback> argument
287 root 1.212 which must be a code reference. This code reference will be called after
288     the syscall has been executed in an asynchronous fashion. The results
289     of the request will be passed as arguments to the callback (and, if an
290     error occured, in C<$!>) - for most requests the syscall return code (e.g.
291     most syscalls return C<-1> on error, unlike perl, which usually delivers
292     "false").
293    
294     Some requests (such as C<aio_readdir>) pass the actual results and
295     communicate failures by passing C<undef>.
296 root 1.1
297 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
298     internally until the request has finished.
299 root 1.1
300 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
301     further manipulation of those requests while they are in-flight.
302 root 1.52
303 root 1.209 The pathnames you pass to these routines I<should> be absolute. The
304     reason for this is that at the time the request is being executed, the
305 root 1.212 current working directory could have changed. Alternatively, you can
306     make sure that you never change the current working directory anywhere
307     in the program and then use relative paths. You can also take advantage
308     of IO::AIOs working directory abstraction, that lets you specify paths
309     relative to some previously-opened "working directory object" - see the
310     description of the C<IO::AIO::WD> class later in this document.
311 root 1.28
312 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
313     in filenames you got from outside (command line, readdir etc.) without
314 root 1.212 tinkering, b) are in your native filesystem encoding, c) use the Encode
315     module and encode your pathnames to the locale (or other) encoding in
316     effect in the user environment, d) use Glib::filename_from_unicode on
317     unicode filenames or e) use something else to ensure your scalar has the
318     correct contents.
319 root 1.87
320     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
321 root 1.136 handles correctly whether it is set or not.
322 root 1.1
323 root 1.219 =head2 AIO REQUEST FUNCTIONS
324    
325 root 1.5 =over 4
326 root 1.1
327 root 1.80 =item $prev_pri = aioreq_pri [$pri]
328 root 1.68
329 root 1.80 Returns the priority value that would be used for the next request and, if
330     C<$pri> is given, sets the priority for the next aio request.
331 root 1.68
332 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
333     and C<4>, respectively. Requests with higher priority will be serviced
334     first.
335    
336     The priority will be reset to C<0> after each call to one of the C<aio_*>
337 root 1.68 functions.
338    
339 root 1.69 Example: open a file with low priority, then read something from it with
340     higher priority so the read request is serviced before other low priority
341     open requests (potentially spamming the cache):
342    
343     aioreq_pri -3;
344     aio_open ..., sub {
345     return unless $_[0];
346    
347     aioreq_pri -2;
348     aio_read $_[0], ..., sub {
349     ...
350     };
351     };
352    
353 root 1.106
354 root 1.69 =item aioreq_nice $pri_adjust
355    
356     Similar to C<aioreq_pri>, but subtracts the given value from the current
357 root 1.87 priority, so the effect is cumulative.
358 root 1.69
359 root 1.106
360 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
361 root 1.1
362 root 1.2 Asynchronously open or create a file and call the callback with a newly
363     created filehandle for the file.
364 root 1.1
365     The pathname passed to C<aio_open> must be absolute. See API NOTES, above,
366     for an explanation.
367    
368 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
369     list. They are the same as used by C<sysopen>.
370    
371     Likewise, C<$mode> specifies the mode of the newly created file, if it
372     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
373     except that it is mandatory (i.e. use C<0> if you don't create new files,
374 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
375     by the umask in effect then the request is being executed, so better never
376     change the umask.
377 root 1.1
378     Example:
379    
380 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
381 root 1.2 if ($_[0]) {
382     print "open successful, fh is $_[0]\n";
383 root 1.1 ...
384     } else {
385     die "open failed: $!\n";
386     }
387     };
388    
389 root 1.194 In addition to all the common open modes/flags (C<O_RDONLY>, C<O_WRONLY>,
390     C<O_RDWR>, C<O_CREAT>, C<O_TRUNC>, C<O_EXCL> and C<O_APPEND>), the
391     following POSIX and non-POSIX constants are available (missing ones on
392     your system are, as usual, C<0>):
393    
394     C<O_ASYNC>, C<O_DIRECT>, C<O_NOATIME>, C<O_CLOEXEC>, C<O_NOCTTY>, C<O_NOFOLLOW>,
395     C<O_NONBLOCK>, C<O_EXEC>, C<O_SEARCH>, C<O_DIRECTORY>, C<O_DSYNC>,
396     C<O_RSYNC>, C<O_SYNC> and C<O_TTY_INIT>.
397    
398 root 1.106
399 root 1.40 =item aio_close $fh, $callback->($status)
400 root 1.1
401 root 1.2 Asynchronously close a file and call the callback with the result
402 root 1.116 code.
403    
404 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
405 root 1.121 closing the file descriptor associated with the filehandle itself.
406 root 1.117
407 root 1.121 Therefore, C<aio_close> will not close the filehandle - instead it will
408     use dup2 to overwrite the file descriptor with the write-end of a pipe
409     (the pipe fd will be created on demand and will be cached).
410 root 1.117
411 root 1.121 Or in other words: the file descriptor will be closed, but it will not be
412     free for reuse until the perl filehandle is closed.
413 root 1.117
414     =cut
415    
416 root 1.220 =item aio_seek $fh, $offset, $whence, $callback->($offs)
417    
418 root 1.221 Seeks the filehandle to the new C<$offset>, similarly to perl's
419 root 1.220 C<sysseek>. The C<$whence> can use the traditional values (C<0> for
420     C<IO::AIO::SEEK_SET>, C<1> for C<IO::AIO::SEEK_CUR> or C<2> for
421     C<IO::AIO::SEEK_END>).
422    
423     The resulting absolute offset will be passed to the callback, or C<-1> in
424     case of an error.
425    
426     In theory, the C<$whence> constants could be different than the
427     corresponding values from L<Fcntl>, but perl guarantees they are the same,
428     so don't panic.
429    
430 root 1.225 As a GNU/Linux (and maybe Solaris) extension, also the constants
431     C<IO::AIO::SEEK_DATA> and C<IO::AIO::SEEK_HOLE> are available, if they
432     could be found. No guarantees about suitability for use in C<aio_seek> or
433     Perl's C<sysseek> can be made though, although I would naively assume they
434     "just work".
435    
436 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
437 root 1.1
438 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
439 root 1.1
440 root 1.145 Reads or writes C<$length> bytes from or to the specified C<$fh> and
441     C<$offset> into the scalar given by C<$data> and offset C<$dataoffset>
442     and calls the callback without the actual number of bytes read (or -1 on
443     error, just like the syscall).
444 root 1.109
445 root 1.146 C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
446     offset plus the actual number of bytes read.
447    
448 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
449     be used (and updated), otherwise the file descriptor offset will not be
450     changed by these calls.
451 root 1.109
452 root 1.145 If C<$length> is undefined in C<aio_write>, use the remaining length of
453     C<$data>.
454 root 1.109
455     If C<$dataoffset> is less than zero, it will be counted from the end of
456     C<$data>.
457 root 1.1
458 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
459 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
460     the necessary/optional hardware is installed).
461 root 1.31
462 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
463 root 1.1 offset C<0> within the scalar:
464    
465     aio_read $fh, 7, 15, $buffer, 0, sub {
466 root 1.9 $_[0] > 0 or die "read error: $!";
467     print "read $_[0] bytes: <$buffer>\n";
468 root 1.1 };
469    
470 root 1.106
471 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
472 root 1.35
473     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
474     reading at byte offset C<$in_offset>, and starts writing at the current
475     file offset of C<$out_fh>. Because of that, it is not safe to issue more
476     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
477 root 1.196 other. The same C<$in_fh> works fine though, as this function does not
478     move or use the file offset of C<$in_fh>.
479 root 1.35
480 root 1.185 Please note that C<aio_sendfile> can read more bytes from C<$in_fh> than
481 root 1.196 are written, and there is no way to find out how many more bytes have been
482     read from C<aio_sendfile> alone, as C<aio_sendfile> only provides the
483     number of bytes written to C<$out_fh>. Only if the result value equals
484     C<$length> one can assume that C<$length> bytes have been read.
485 root 1.185
486     Unlike with other C<aio_> functions, it makes a lot of sense to use
487     C<aio_sendfile> on non-blocking sockets, as long as one end (typically
488     the C<$in_fh>) is a file - the file I/O will then be asynchronous, while
489 root 1.196 the socket I/O will be non-blocking. Note, however, that you can run
490     into a trap where C<aio_sendfile> reads some data with readahead, then
491     fails to write all data, and when the socket is ready the next time, the
492     data in the cache is already lost, forcing C<aio_sendfile> to again hit
493     the disk. Explicit C<aio_read> + C<aio_write> let's you better control
494     resource usage.
495    
496     This call tries to make use of a native C<sendfile>-like syscall to
497     provide zero-copy operation. For this to work, C<$out_fh> should refer to
498     a socket, and C<$in_fh> should refer to an mmap'able file.
499 root 1.35
500 root 1.170 If a native sendfile cannot be found or it fails with C<ENOSYS>,
501 root 1.196 C<EINVAL>, C<ENOTSUP>, C<EOPNOTSUPP>, C<EAFNOSUPPORT>, C<EPROTOTYPE> or
502     C<ENOTSOCK>, it will be emulated, so you can call C<aio_sendfile> on any
503     type of filehandle regardless of the limitations of the operating system.
504    
505     As native sendfile syscalls (as practically any non-POSIX interface hacked
506     together in a hurry to improve benchmark numbers) tend to be rather buggy
507     on many systems, this implementation tries to work around some known bugs
508     in Linux and FreeBSD kernels (probably others, too), but that might fail,
509     so you really really should check the return value of C<aio_sendfile> -
510     fewre bytes than expected might have been transferred.
511 root 1.35
512 root 1.106
513 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
514 root 1.1
515 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
516 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
517     argument specifies the starting point from which data is to be read and
518     C<$length> specifies the number of bytes to be read. I/O is performed in
519     whole pages, so that offset is effectively rounded down to a page boundary
520     and bytes are read up to the next page boundary greater than or equal to
521 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
522 root 1.1 file. The current file offset of the file is left unchanged.
523    
524 root 1.26 If that syscall doesn't exist (likely if your OS isn't Linux) it will be
525     emulated by simply reading the data, which would have a similar effect.
526    
527 root 1.106
528 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
529 root 1.1
530 root 1.40 =item aio_lstat $fh, $callback->($status)
531 root 1.1
532     Works like perl's C<stat> or C<lstat> in void context. The callback will
533     be called after the stat and the results will be available using C<stat _>
534     or C<-s _> etc...
535    
536     The pathname passed to C<aio_stat> must be absolute. See API NOTES, above,
537     for an explanation.
538    
539     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
540     error when stat'ing a large file, the results will be silently truncated
541     unless perl itself is compiled with large file support.
542    
543 root 1.187 To help interpret the mode and dev/rdev stat values, IO::AIO offers the
544     following constants and functions (if not implemented, the constants will
545     be C<0> and the functions will either C<croak> or fall back on traditional
546     behaviour).
547    
548     C<S_IFMT>, C<S_IFIFO>, C<S_IFCHR>, C<S_IFBLK>, C<S_IFLNK>, C<S_IFREG>,
549     C<S_IFDIR>, C<S_IFWHT>, C<S_IFSOCK>, C<IO::AIO::major $dev_t>,
550     C<IO::AIO::minor $dev_t>, C<IO::AIO::makedev $major, $minor>.
551    
552 root 1.1 Example: Print the length of F</etc/passwd>:
553    
554     aio_stat "/etc/passwd", sub {
555     $_[0] and die "stat failed: $!";
556     print "size is ", -s _, "\n";
557     };
558    
559 root 1.106
560 root 1.175 =item aio_statvfs $fh_or_path, $callback->($statvfs)
561 root 1.172
562     Works like the POSIX C<statvfs> or C<fstatvfs> syscalls, depending on
563     whether a file handle or path was passed.
564    
565     On success, the callback is passed a hash reference with the following
566     members: C<bsize>, C<frsize>, C<blocks>, C<bfree>, C<bavail>, C<files>,
567     C<ffree>, C<favail>, C<fsid>, C<flag> and C<namemax>. On failure, C<undef>
568     is passed.
569    
570     The following POSIX IO::AIO::ST_* constants are defined: C<ST_RDONLY> and
571     C<ST_NOSUID>.
572    
573     The following non-POSIX IO::AIO::ST_* flag masks are defined to
574     their correct value when available, or to C<0> on systems that do
575     not support them: C<ST_NODEV>, C<ST_NOEXEC>, C<ST_SYNCHRONOUS>,
576     C<ST_MANDLOCK>, C<ST_WRITE>, C<ST_APPEND>, C<ST_IMMUTABLE>, C<ST_NOATIME>,
577     C<ST_NODIRATIME> and C<ST_RELATIME>.
578    
579     Example: stat C</wd> and dump out the data if successful.
580    
581     aio_statvfs "/wd", sub {
582     my $f = $_[0]
583     or die "statvfs: $!";
584    
585     use Data::Dumper;
586     say Dumper $f;
587     };
588    
589     # result:
590     {
591     bsize => 1024,
592     bfree => 4333064312,
593     blocks => 10253828096,
594     files => 2050765568,
595     flag => 4096,
596     favail => 2042092649,
597     bavail => 4333064312,
598     ffree => 2042092649,
599     namemax => 255,
600     frsize => 1024,
601     fsid => 1810
602     }
603    
604    
605 root 1.106 =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
606    
607     Works like perl's C<utime> function (including the special case of $atime
608     and $mtime being undef). Fractional times are supported if the underlying
609     syscalls support them.
610    
611     When called with a pathname, uses utimes(2) if available, otherwise
612     utime(2). If called on a file descriptor, uses futimes(2) if available,
613     otherwise returns ENOSYS, so this is not portable.
614    
615     Examples:
616    
617 root 1.107 # set atime and mtime to current time (basically touch(1)):
618 root 1.106 aio_utime "path", undef, undef;
619     # set atime to current time and mtime to beginning of the epoch:
620     aio_utime "path", time, undef; # undef==0
621    
622    
623     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
624    
625     Works like perl's C<chown> function, except that C<undef> for either $uid
626     or $gid is being interpreted as "do not change" (but -1 can also be used).
627    
628     Examples:
629    
630     # same as "chown root path" in the shell:
631     aio_chown "path", 0, -1;
632     # same as above:
633     aio_chown "path", 0, undef;
634    
635    
636 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
637    
638     Works like truncate(2) or ftruncate(2).
639    
640    
641 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
642    
643     Works like perl's C<chmod> function.
644    
645    
646 root 1.40 =item aio_unlink $pathname, $callback->($status)
647 root 1.1
648     Asynchronously unlink (delete) a file and call the callback with the
649     result code.
650    
651 root 1.106
652 root 1.209 =item aio_mknod $pathname, $mode, $dev, $callback->($status)
653 root 1.82
654 root 1.86 [EXPERIMENTAL]
655    
656 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
657    
658 root 1.86 The only (POSIX-) portable way of calling this function is:
659 root 1.83
660 root 1.209 aio_mknod $pathname, IO::AIO::S_IFIFO | $mode, 0, sub { ...
661 root 1.82
662 root 1.187 See C<aio_stat> for info about some potentially helpful extra constants
663     and functions.
664 root 1.106
665 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
666    
667     Asynchronously create a new link to the existing object at C<$srcpath> at
668     the path C<$dstpath> and call the callback with the result code.
669    
670 root 1.106
671 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
672    
673     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
674     the path C<$dstpath> and call the callback with the result code.
675    
676 root 1.106
677 root 1.209 =item aio_readlink $pathname, $callback->($link)
678 root 1.90
679     Asynchronously read the symlink specified by C<$path> and pass it to
680     the callback. If an error occurs, nothing or undef gets passed to the
681     callback.
682    
683 root 1.106
684 root 1.209 =item aio_realpath $pathname, $callback->($path)
685 root 1.201
686     Asynchronously make the path absolute and resolve any symlinks in
687 root 1.202 C<$path>. The resulting path only consists of directories (Same as
688     L<Cwd::realpath>).
689 root 1.201
690     This request can be used to get the absolute path of the current working
691     directory by passing it a path of F<.> (a single dot).
692    
693    
694 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
695    
696     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
697     rename(2) and call the callback with the result code.
698    
699 root 1.106
700 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
701    
702     Asynchronously mkdir (create) a directory and call the callback with
703     the result code. C<$mode> will be modified by the umask at the time the
704     request is executed, so do not change your umask.
705    
706 root 1.106
707 root 1.40 =item aio_rmdir $pathname, $callback->($status)
708 root 1.27
709     Asynchronously rmdir (delete) a directory and call the callback with the
710     result code.
711    
712 root 1.106
713 root 1.46 =item aio_readdir $pathname, $callback->($entries)
714 root 1.37
715     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
716     directory (i.e. opendir + readdir + closedir). The entries will not be
717     sorted, and will B<NOT> include the C<.> and C<..> entries.
718    
719 root 1.148 The callback is passed a single argument which is either C<undef> or an
720     array-ref with the filenames.
721    
722    
723     =item aio_readdirx $pathname, $flags, $callback->($entries, $flags)
724    
725 root 1.207 Quite similar to C<aio_readdir>, but the C<$flags> argument allows one to
726     tune behaviour and output format. In case of an error, C<$entries> will be
727 root 1.148 C<undef>.
728    
729     The flags are a combination of the following constants, ORed together (the
730     flags will also be passed to the callback, possibly modified):
731    
732     =over 4
733    
734 root 1.150 =item IO::AIO::READDIR_DENTS
735 root 1.148
736 root 1.190 When this flag is off, then the callback gets an arrayref consisting of
737     names only (as with C<aio_readdir>), otherwise it gets an arrayref with
738 root 1.150 C<[$name, $type, $inode]> arrayrefs, each describing a single directory
739 root 1.148 entry in more detail.
740    
741     C<$name> is the name of the entry.
742    
743 root 1.150 C<$type> is one of the C<IO::AIO::DT_xxx> constants:
744 root 1.148
745 root 1.150 C<IO::AIO::DT_UNKNOWN>, C<IO::AIO::DT_FIFO>, C<IO::AIO::DT_CHR>, C<IO::AIO::DT_DIR>,
746     C<IO::AIO::DT_BLK>, C<IO::AIO::DT_REG>, C<IO::AIO::DT_LNK>, C<IO::AIO::DT_SOCK>,
747     C<IO::AIO::DT_WHT>.
748 root 1.148
749 root 1.150 C<IO::AIO::DT_UNKNOWN> means just that: readdir does not know. If you need to
750 root 1.148 know, you have to run stat yourself. Also, for speed reasons, the C<$type>
751     scalars are read-only: you can not modify them.
752    
753 root 1.150 C<$inode> is the inode number (which might not be exact on systems with 64
754 root 1.155 bit inode numbers and 32 bit perls). This field has unspecified content on
755     systems that do not deliver the inode information.
756 root 1.150
757     =item IO::AIO::READDIR_DIRS_FIRST
758 root 1.148
759     When this flag is set, then the names will be returned in an order where
760 root 1.193 likely directories come first, in optimal stat order. This is useful when
761     you need to quickly find directories, or you want to find all directories
762     while avoiding to stat() each entry.
763 root 1.148
764 root 1.149 If the system returns type information in readdir, then this is used
765 root 1.193 to find directories directly. Otherwise, likely directories are names
766     beginning with ".", or otherwise names with no dots, of which names with
767 root 1.149 short names are tried first.
768    
769 root 1.150 =item IO::AIO::READDIR_STAT_ORDER
770 root 1.148
771     When this flag is set, then the names will be returned in an order
772     suitable for stat()'ing each one. That is, when you plan to stat()
773     all files in the given directory, then the returned order will likely
774     be fastest.
775    
776 root 1.150 If both this flag and C<IO::AIO::READDIR_DIRS_FIRST> are specified, then
777     the likely dirs come first, resulting in a less optimal stat order.
778 root 1.148
779 root 1.150 =item IO::AIO::READDIR_FOUND_UNKNOWN
780 root 1.148
781     This flag should not be set when calling C<aio_readdirx>. Instead, it
782     is being set by C<aio_readdirx>, when any of the C<$type>'s found were
783 root 1.207 C<IO::AIO::DT_UNKNOWN>. The absence of this flag therefore indicates that all
784 root 1.148 C<$type>'s are known, which can be used to speed up some algorithms.
785    
786     =back
787 root 1.37
788 root 1.106
789 root 1.209 =item aio_load $pathname, $data, $callback->($status)
790 root 1.98
791     This is a composite request that tries to fully load the given file into
792     memory. Status is the same as with aio_read.
793    
794     =cut
795    
796     sub aio_load($$;$) {
797 root 1.123 my ($path, undef, $cb) = @_;
798     my $data = \$_[1];
799 root 1.98
800 root 1.123 my $pri = aioreq_pri;
801     my $grp = aio_group $cb;
802    
803     aioreq_pri $pri;
804     add $grp aio_open $path, O_RDONLY, 0, sub {
805     my $fh = shift
806     or return $grp->result (-1);
807 root 1.98
808     aioreq_pri $pri;
809 root 1.123 add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
810     $grp->result ($_[0]);
811 root 1.98 };
812 root 1.123 };
813 root 1.98
814 root 1.123 $grp
815 root 1.98 }
816    
817 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
818    
819     Try to copy the I<file> (directories not supported as either source or
820     destination) from C<$srcpath> to C<$dstpath> and call the callback with
821 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
822 root 1.82
823 root 1.134 This is a composite request that creates the destination file with
824 root 1.82 mode 0200 and copies the contents of the source file into it using
825     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
826     uid/gid, in that order.
827    
828     If an error occurs, the partial destination file will be unlinked, if
829     possible, except when setting atime, mtime, access mode and uid/gid, where
830     errors are being ignored.
831    
832     =cut
833    
834     sub aio_copy($$;$) {
835 root 1.123 my ($src, $dst, $cb) = @_;
836 root 1.82
837 root 1.123 my $pri = aioreq_pri;
838     my $grp = aio_group $cb;
839 root 1.82
840 root 1.123 aioreq_pri $pri;
841     add $grp aio_open $src, O_RDONLY, 0, sub {
842     if (my $src_fh = $_[0]) {
843 root 1.166 my @stat = stat $src_fh; # hmm, might block over nfs?
844 root 1.95
845 root 1.123 aioreq_pri $pri;
846     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
847     if (my $dst_fh = $_[0]) {
848     aioreq_pri $pri;
849     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
850     if ($_[0] == $stat[7]) {
851     $grp->result (0);
852     close $src_fh;
853    
854 root 1.147 my $ch = sub {
855     aioreq_pri $pri;
856     add $grp aio_chmod $dst_fh, $stat[2] & 07777, sub {
857     aioreq_pri $pri;
858     add $grp aio_chown $dst_fh, $stat[4], $stat[5], sub {
859     aioreq_pri $pri;
860     add $grp aio_close $dst_fh;
861     }
862     };
863     };
864 root 1.123
865     aioreq_pri $pri;
866 root 1.147 add $grp aio_utime $dst_fh, $stat[8], $stat[9], sub {
867     if ($_[0] < 0 && $! == ENOSYS) {
868     aioreq_pri $pri;
869     add $grp aio_utime $dst, $stat[8], $stat[9], $ch;
870     } else {
871     $ch->();
872     }
873     };
874 root 1.123 } else {
875     $grp->result (-1);
876     close $src_fh;
877     close $dst_fh;
878    
879     aioreq $pri;
880     add $grp aio_unlink $dst;
881     }
882     };
883     } else {
884     $grp->result (-1);
885     }
886     },
887 root 1.82
888 root 1.123 } else {
889     $grp->result (-1);
890     }
891     };
892 root 1.82
893 root 1.123 $grp
894 root 1.82 }
895    
896     =item aio_move $srcpath, $dstpath, $callback->($status)
897    
898     Try to move the I<file> (directories not supported as either source or
899     destination) from C<$srcpath> to C<$dstpath> and call the callback with
900 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
901 root 1.82
902 root 1.137 This is a composite request that tries to rename(2) the file first; if
903     rename fails with C<EXDEV>, it copies the file with C<aio_copy> and, if
904     that is successful, unlinks the C<$srcpath>.
905 root 1.82
906     =cut
907    
908     sub aio_move($$;$) {
909 root 1.123 my ($src, $dst, $cb) = @_;
910 root 1.82
911 root 1.123 my $pri = aioreq_pri;
912     my $grp = aio_group $cb;
913 root 1.82
914 root 1.123 aioreq_pri $pri;
915     add $grp aio_rename $src, $dst, sub {
916     if ($_[0] && $! == EXDEV) {
917     aioreq_pri $pri;
918     add $grp aio_copy $src, $dst, sub {
919     $grp->result ($_[0]);
920 root 1.95
921 root 1.196 unless ($_[0]) {
922 root 1.123 aioreq_pri $pri;
923     add $grp aio_unlink $src;
924     }
925     };
926     } else {
927     $grp->result ($_[0]);
928     }
929     };
930 root 1.82
931 root 1.123 $grp
932 root 1.82 }
933    
934 root 1.209 =item aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
935 root 1.40
936 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
937 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
938     names, directories you can recurse into (directories), and ones you cannot
939     recurse into (everything else, including symlinks to directories).
940 root 1.52
941 root 1.61 C<aio_scandir> is a composite request that creates of many sub requests_
942     C<$maxreq> specifies the maximum number of outstanding aio requests that
943     this function generates. If it is C<< <= 0 >>, then a suitable default
944 root 1.81 will be chosen (currently 4).
945 root 1.40
946     On error, the callback is called without arguments, otherwise it receives
947     two array-refs with path-relative entry names.
948    
949     Example:
950    
951     aio_scandir $dir, 0, sub {
952     my ($dirs, $nondirs) = @_;
953     print "real directories: @$dirs\n";
954     print "everything else: @$nondirs\n";
955     };
956    
957     Implementation notes.
958    
959     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
960    
961 root 1.149 If readdir returns file type information, then this is used directly to
962     find directories.
963    
964     Otherwise, after reading the directory, the modification time, size etc.
965     of the directory before and after the readdir is checked, and if they
966     match (and isn't the current time), the link count will be used to decide
967     how many entries are directories (if >= 2). Otherwise, no knowledge of the
968     number of subdirectories will be assumed.
969    
970     Then entries will be sorted into likely directories a non-initial dot
971     currently) and likely non-directories (see C<aio_readdirx>). Then every
972     entry plus an appended C</.> will be C<stat>'ed, likely directories first,
973     in order of their inode numbers. If that succeeds, it assumes that the
974     entry is a directory or a symlink to directory (which will be checked
975 root 1.207 separately). This is often faster than stat'ing the entry itself because
976 root 1.52 filesystems might detect the type of the entry without reading the inode
977 root 1.149 data (e.g. ext2fs filetype feature), even on systems that cannot return
978     the filetype information on readdir.
979 root 1.52
980     If the known number of directories (link count - 2) has been reached, the
981     rest of the entries is assumed to be non-directories.
982    
983     This only works with certainty on POSIX (= UNIX) filesystems, which
984     fortunately are the vast majority of filesystems around.
985    
986     It will also likely work on non-POSIX filesystems with reduced efficiency
987     as those tend to return 0 or 1 as link counts, which disables the
988     directory counting heuristic.
989 root 1.40
990     =cut
991    
992 root 1.100 sub aio_scandir($$;$) {
993 root 1.123 my ($path, $maxreq, $cb) = @_;
994    
995     my $pri = aioreq_pri;
996 root 1.40
997 root 1.123 my $grp = aio_group $cb;
998 root 1.80
999 root 1.123 $maxreq = 4 if $maxreq <= 0;
1000 root 1.55
1001 root 1.210 # get a wd object
1002 root 1.123 aioreq_pri $pri;
1003 root 1.210 add $grp aio_wd $path, sub {
1004 root 1.212 $_[0]
1005     or return $grp->result ();
1006    
1007 root 1.210 my $wd = [shift, "."];
1008 root 1.40
1009 root 1.210 # stat once
1010 root 1.80 aioreq_pri $pri;
1011 root 1.210 add $grp aio_stat $wd, sub {
1012     return $grp->result () if $_[0];
1013     my $now = time;
1014     my $hash1 = join ":", (stat _)[0,1,3,7,9];
1015 root 1.40
1016 root 1.210 # read the directory entries
1017 root 1.80 aioreq_pri $pri;
1018 root 1.210 add $grp aio_readdirx $wd, READDIR_DIRS_FIRST, sub {
1019     my $entries = shift
1020     or return $grp->result ();
1021    
1022     # stat the dir another time
1023     aioreq_pri $pri;
1024     add $grp aio_stat $wd, sub {
1025     my $hash2 = join ":", (stat _)[0,1,3,7,9];
1026 root 1.95
1027 root 1.210 my $ndirs;
1028 root 1.95
1029 root 1.210 # take the slow route if anything looks fishy
1030     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
1031     $ndirs = -1;
1032     } else {
1033     # if nlink == 2, we are finished
1034     # for non-posix-fs's, we rely on nlink < 2
1035     $ndirs = (stat _)[3] - 2
1036     or return $grp->result ([], $entries);
1037     }
1038 root 1.123
1039 root 1.210 my (@dirs, @nondirs);
1040 root 1.40
1041 root 1.210 my $statgrp = add $grp aio_group sub {
1042     $grp->result (\@dirs, \@nondirs);
1043     };
1044 root 1.40
1045 root 1.210 limit $statgrp $maxreq;
1046     feed $statgrp sub {
1047     return unless @$entries;
1048     my $entry = shift @$entries;
1049    
1050     aioreq_pri $pri;
1051     $wd->[1] = "$entry/.";
1052     add $statgrp aio_stat $wd, sub {
1053     if ($_[0] < 0) {
1054     push @nondirs, $entry;
1055     } else {
1056     # need to check for real directory
1057     aioreq_pri $pri;
1058     $wd->[1] = $entry;
1059     add $statgrp aio_lstat $wd, sub {
1060     if (-d _) {
1061     push @dirs, $entry;
1062    
1063     unless (--$ndirs) {
1064     push @nondirs, @$entries;
1065     feed $statgrp;
1066     }
1067     } else {
1068     push @nondirs, $entry;
1069 root 1.74 }
1070 root 1.40 }
1071     }
1072 root 1.210 };
1073 root 1.74 };
1074 root 1.40 };
1075     };
1076     };
1077 root 1.123 };
1078 root 1.55
1079 root 1.123 $grp
1080 root 1.40 }
1081    
1082 root 1.209 =item aio_rmtree $pathname, $callback->($status)
1083 root 1.99
1084 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
1085     status of the final C<rmdir> only. This is a composite request that
1086     uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1087     everything else.
1088 root 1.99
1089     =cut
1090    
1091     sub aio_rmtree;
1092 root 1.100 sub aio_rmtree($;$) {
1093 root 1.123 my ($path, $cb) = @_;
1094 root 1.99
1095 root 1.123 my $pri = aioreq_pri;
1096     my $grp = aio_group $cb;
1097 root 1.99
1098 root 1.123 aioreq_pri $pri;
1099     add $grp aio_scandir $path, 0, sub {
1100     my ($dirs, $nondirs) = @_;
1101 root 1.99
1102 root 1.123 my $dirgrp = aio_group sub {
1103     add $grp aio_rmdir $path, sub {
1104     $grp->result ($_[0]);
1105 root 1.99 };
1106 root 1.123 };
1107 root 1.99
1108 root 1.123 (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
1109     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
1110 root 1.99
1111 root 1.123 add $grp $dirgrp;
1112     };
1113 root 1.99
1114 root 1.123 $grp
1115 root 1.99 }
1116    
1117 root 1.119 =item aio_sync $callback->($status)
1118    
1119     Asynchronously call sync and call the callback when finished.
1120    
1121 root 1.40 =item aio_fsync $fh, $callback->($status)
1122 root 1.1
1123     Asynchronously call fsync on the given filehandle and call the callback
1124     with the fsync result code.
1125    
1126 root 1.40 =item aio_fdatasync $fh, $callback->($status)
1127 root 1.1
1128     Asynchronously call fdatasync on the given filehandle and call the
1129 root 1.26 callback with the fdatasync result code.
1130    
1131     If this call isn't available because your OS lacks it or it couldn't be
1132     detected, it will be emulated by calling C<fsync> instead.
1133 root 1.1
1134 root 1.206 =item aio_syncfs $fh, $callback->($status)
1135    
1136     Asynchronously call the syncfs syscall to sync the filesystem associated
1137     to the given filehandle and call the callback with the syncfs result
1138     code. If syncfs is not available, calls sync(), but returns C<-1> and sets
1139     errno to C<ENOSYS> nevertheless.
1140    
1141 root 1.142 =item aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
1142    
1143     Sync the data portion of the file specified by C<$offset> and C<$length>
1144     to disk (but NOT the metadata), by calling the Linux-specific
1145     sync_file_range call. If sync_file_range is not available or it returns
1146     ENOSYS, then fdatasync or fsync is being substituted.
1147    
1148     C<$flags> can be a combination of C<IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE>,
1149     C<IO::AIO::SYNC_FILE_RANGE_WRITE> and
1150     C<IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER>: refer to the sync_file_range
1151     manpage for details.
1152    
1153 root 1.209 =item aio_pathsync $pathname, $callback->($status)
1154 root 1.120
1155     This request tries to open, fsync and close the given path. This is a
1156 root 1.135 composite request intended to sync directories after directory operations
1157 root 1.120 (E.g. rename). This might not work on all operating systems or have any
1158     specific effect, but usually it makes sure that directory changes get
1159     written to disc. It works for anything that can be opened for read-only,
1160     not just directories.
1161    
1162 root 1.162 Future versions of this function might fall back to other methods when
1163     C<fsync> on the directory fails (such as calling C<sync>).
1164    
1165 root 1.120 Passes C<0> when everything went ok, and C<-1> on error.
1166    
1167     =cut
1168    
1169     sub aio_pathsync($;$) {
1170 root 1.123 my ($path, $cb) = @_;
1171    
1172     my $pri = aioreq_pri;
1173     my $grp = aio_group $cb;
1174 root 1.120
1175 root 1.123 aioreq_pri $pri;
1176     add $grp aio_open $path, O_RDONLY, 0, sub {
1177     my ($fh) = @_;
1178     if ($fh) {
1179     aioreq_pri $pri;
1180     add $grp aio_fsync $fh, sub {
1181     $grp->result ($_[0]);
1182 root 1.120
1183     aioreq_pri $pri;
1184 root 1.123 add $grp aio_close $fh;
1185     };
1186     } else {
1187     $grp->result (-1);
1188     }
1189     };
1190 root 1.120
1191 root 1.123 $grp
1192 root 1.120 }
1193    
1194 root 1.170 =item aio_msync $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1195    
1196     This is a rather advanced IO::AIO call, which only works on mmap(2)ed
1197 root 1.176 scalars (see the C<IO::AIO::mmap> function, although it also works on data
1198     scalars managed by the L<Sys::Mmap> or L<Mmap> modules, note that the
1199     scalar must only be modified in-place while an aio operation is pending on
1200     it).
1201 root 1.170
1202     It calls the C<msync> function of your OS, if available, with the memory
1203     area starting at C<$offset> in the string and ending C<$length> bytes
1204     later. If C<$length> is negative, counts from the end, and if C<$length>
1205     is C<undef>, then it goes till the end of the string. The flags can be
1206     a combination of C<IO::AIO::MS_ASYNC>, C<IO::AIO::MS_INVALIDATE> and
1207     C<IO::AIO::MS_SYNC>.
1208    
1209     =item aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1210    
1211     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1212     scalars.
1213    
1214     It touches (reads or writes) all memory pages in the specified
1215     range inside the scalar. All caveats and parameters are the same
1216     as for C<aio_msync>, above, except for flags, which must be either
1217     C<0> (which reads all pages and ensures they are instantiated) or
1218     C<IO::AIO::MT_MODIFY>, which modifies the memory page s(by reading and
1219     writing an octet from it, which dirties the page).
1220    
1221 root 1.182 =item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1222    
1223     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1224     scalars.
1225    
1226     It reads in all the pages of the underlying storage into memory (if any)
1227     and locks them, so they are not getting swapped/paged out or removed.
1228    
1229     If C<$length> is undefined, then the scalar will be locked till the end.
1230    
1231     On systems that do not implement C<mlock>, this function returns C<-1>
1232     and sets errno to C<ENOSYS>.
1233    
1234     Note that the corresponding C<munlock> is synchronous and is
1235     documented under L<MISCELLANEOUS FUNCTIONS>.
1236    
1237 root 1.183 Example: open a file, mmap and mlock it - both will be undone when
1238     C<$data> gets destroyed.
1239    
1240     open my $fh, "<", $path or die "$path: $!";
1241     my $data;
1242     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1243     aio_mlock $data; # mlock in background
1244    
1245 root 1.182 =item aio_mlockall $flags, $callback->($status)
1246    
1247     Calls the C<mlockall> function with the given C<$flags> (a combination of
1248     C<IO::AIO::MCL_CURRENT> and C<IO::AIO::MCL_FUTURE>).
1249    
1250     On systems that do not implement C<mlockall>, this function returns C<-1>
1251     and sets errno to C<ENOSYS>.
1252    
1253     Note that the corresponding C<munlockall> is synchronous and is
1254     documented under L<MISCELLANEOUS FUNCTIONS>.
1255    
1256 root 1.183 Example: asynchronously lock all current and future pages into memory.
1257    
1258     aio_mlockall IO::AIO::MCL_FUTURE;
1259    
1260 root 1.223 =item aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
1261    
1262     Queries the extents of the given file (by calling the Linux FIEMAP ioctl,
1263     see L<http://cvs.schmorp.de/IO-AIO/doc/fiemap.txt> for details). If the
1264     C<ioctl> is not available on your OS, then this rquiest will fail with
1265     C<ENOSYS>.
1266    
1267     C<$start> is the starting offset to query extents for, C<$length> is the
1268     size of the range to query - if it is C<undef>, then the whole file will
1269     be queried.
1270    
1271     C<$flags> is a combination of flags (C<IO::AIO::FIEMAP_FLAG_SYNC> or
1272     C<IO::AIO::FIEMAP_FLAG_XATTR> - C<IO::AIO::FIEMAP_FLAGS_COMPAT> is also
1273     exported), and is normally C<0> or C<IO::AIO::FIEMAP_FLAG_SYNC> to query
1274     the data portion.
1275    
1276     C<$count> is the maximum number of extent records to return. If it is
1277     C<undef>, then IO::AIO queries all extents of the file. As a very special
1278     case, if it is C<0>, then the callback receives the number of extents
1279     instead of the extents themselves.
1280    
1281     If an error occurs, the callback receives no arguments. The special
1282     C<errno> value C<IO::AIO::EBADR> is available to test for flag errors.
1283    
1284     Otherwise, the callback receives an array reference with extent
1285     structures. Each extent structure is an array reference itself, with the
1286     following members:
1287    
1288     [$logical, $physical, $length, $flags]
1289    
1290     Flags is any combination of the following flag values (typically either C<0>
1291     or C<IO::AIO::FIEMAP_EXTENT_LAST>):
1292    
1293     C<IO::AIO::FIEMAP_EXTENT_LAST>, C<IO::AIO::FIEMAP_EXTENT_UNKNOWN>,
1294     C<IO::AIO::FIEMAP_EXTENT_DELALLOC>, C<IO::AIO::FIEMAP_EXTENT_ENCODED>,
1295     C<IO::AIO::FIEMAP_EXTENT_DATA_ENCRYPTED>, C<IO::AIO::FIEMAP_EXTENT_NOT_ALIGNED>,
1296     C<IO::AIO::FIEMAP_EXTENT_DATA_INLINE>, C<IO::AIO::FIEMAP_EXTENT_DATA_TAIL>,
1297     C<IO::AIO::FIEMAP_EXTENT_UNWRITTEN>, C<IO::AIO::FIEMAP_EXTENT_MERGED> or
1298     C<IO::AIO::FIEMAP_EXTENT_SHARED>.
1299    
1300 root 1.58 =item aio_group $callback->(...)
1301 root 1.54
1302 root 1.55 This is a very special aio request: Instead of doing something, it is a
1303     container for other aio requests, which is useful if you want to bundle
1304 root 1.71 many requests into a single, composite, request with a definite callback
1305     and the ability to cancel the whole request with its subrequests.
1306 root 1.55
1307     Returns an object of class L<IO::AIO::GRP>. See its documentation below
1308     for more info.
1309    
1310     Example:
1311    
1312     my $grp = aio_group sub {
1313     print "all stats done\n";
1314     };
1315    
1316     add $grp
1317     (aio_stat ...),
1318     (aio_stat ...),
1319     ...;
1320    
1321 root 1.63 =item aio_nop $callback->()
1322    
1323     This is a special request - it does nothing in itself and is only used for
1324     side effects, such as when you want to add a dummy request to a group so
1325     that finishing the requests in the group depends on executing the given
1326     code.
1327    
1328 root 1.64 While this request does nothing, it still goes through the execution
1329     phase and still requires a worker thread. Thus, the callback will not
1330     be executed immediately but only after other requests in the queue have
1331     entered their execution phase. This can be used to measure request
1332     latency.
1333    
1334 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1335 root 1.54
1336     Mainly used for debugging and benchmarking, this aio request puts one of
1337     the request workers to sleep for the given time.
1338    
1339 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1340 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1341     immense (it blocks a thread for a long time) so do not use this function
1342     except to put your application under artificial I/O pressure.
1343 root 1.56
1344 root 1.5 =back
1345    
1346 root 1.209
1347     =head2 IO::AIO::WD - multiple working directories
1348    
1349     Your process only has one current working directory, which is used by all
1350     threads. This makes it hard to use relative paths (some other component
1351     could call C<chdir> at any time, and it is hard to control when the path
1352     will be used by IO::AIO).
1353    
1354     One solution for this is to always use absolute paths. This usually works,
1355     but can be quite slow (the kernel has to walk the whole path on every
1356     access), and can also be a hassle to implement.
1357    
1358     Newer POSIX systems have a number of functions (openat, fdopendir,
1359     futimensat and so on) that make it possible to specify working directories
1360     per operation.
1361    
1362     For portability, and because the clowns who "designed", or shall I write,
1363     perpetrated this new interface were obviously half-drunk, this abstraction
1364     cannot be perfect, though.
1365    
1366     IO::AIO allows you to convert directory paths into a so-called IO::AIO::WD
1367     object. This object stores the canonicalised, absolute version of the
1368     path, and on systems that allow it, also a directory file descriptor.
1369    
1370     Everywhere where a pathname is accepted by IO::AIO (e.g. in C<aio_stat>
1371     or C<aio_unlink>), one can specify an array reference with an IO::AIO::WD
1372 root 1.214 object and a pathname instead (or the IO::AIO::WD object alone, which
1373     gets interpreted as C<[$wd, "."]>). If the pathname is absolute, the
1374 root 1.213 IO::AIO::WD object is ignored, otherwise the pathname is resolved relative
1375 root 1.209 to that IO::AIO::WD object.
1376    
1377     For example, to get a wd object for F</etc> and then stat F<passwd>
1378     inside, you would write:
1379    
1380     aio_wd "/etc", sub {
1381     my $etcdir = shift;
1382    
1383     # although $etcdir can be undef on error, there is generally no reason
1384     # to check for errors here, as aio_stat will fail with ENOENT
1385     # when $etcdir is undef.
1386    
1387     aio_stat [$etcdir, "passwd"], sub {
1388     # yay
1389     };
1390     };
1391    
1392 root 1.214 That C<aio_wd> is a request and not a normal function shows that creating
1393     an IO::AIO::WD object is itself a potentially blocking operation, which is
1394     why it is done asynchronously.
1395    
1396     To stat the directory obtained with C<aio_wd> above, one could write
1397     either of the following three request calls:
1398    
1399     aio_lstat "/etc" , sub { ... # pathname as normal string
1400     aio_lstat [$wd, "."], sub { ... # "." relative to $wd (i.e. $wd itself)
1401     aio_lstat $wd , sub { ... # shorthand for the previous
1402 root 1.209
1403     As with normal pathnames, IO::AIO keeps a copy of the working directory
1404     object and the pathname string, so you could write the following without
1405     causing any issues due to C<$path> getting reused:
1406    
1407     my $path = [$wd, undef];
1408    
1409     for my $name (qw(abc def ghi)) {
1410     $path->[1] = $name;
1411     aio_stat $path, sub {
1412     # ...
1413     };
1414     }
1415    
1416     There are some caveats: when directories get renamed (or deleted), the
1417     pathname string doesn't change, so will point to the new directory (or
1418     nowhere at all), while the directory fd, if available on the system,
1419     will still point to the original directory. Most functions accepting a
1420     pathname will use the directory fd on newer systems, and the string on
1421     older systems. Some functions (such as realpath) will always rely on the
1422     string form of the pathname.
1423    
1424     So this fucntionality is mainly useful to get some protection against
1425     C<chdir>, to easily get an absolute path out of a relative path for future
1426     reference, and to speed up doing many operations in the same directory
1427     (e.g. when stat'ing all files in a directory).
1428    
1429     The following functions implement this working directory abstraction:
1430    
1431     =over 4
1432    
1433     =item aio_wd $pathname, $callback->($wd)
1434    
1435     Asynchonously canonicalise the given pathname and convert it to an
1436     IO::AIO::WD object representing it. If possible and supported on the
1437     system, also open a directory fd to speed up pathname resolution relative
1438     to this working directory.
1439    
1440     If something goes wrong, then C<undef> is passwd to the callback instead
1441     of a working directory object and C<$!> is set appropriately. Since
1442     passing C<undef> as working directory component of a pathname fails the
1443     request with C<ENOENT>, there is often no need for error checking in the
1444     C<aio_wd> callback, as future requests using the value will fail in the
1445     expected way.
1446    
1447     If this call isn't available because your OS lacks it or it couldn't be
1448     detected, it will be emulated by calling C<fsync> instead.
1449    
1450     =item IO::AIO::CWD
1451    
1452     This is a compiletime constant (object) that represents the process
1453     current working directory.
1454    
1455     Specifying this object as working directory object for a pathname is as
1456     if the pathname would be specified directly, without a directory object,
1457     e.g., these calls are functionally identical:
1458    
1459     aio_stat "somefile", sub { ... };
1460     aio_stat [IO::AIO::CWD, "somefile"], sub { ... };
1461    
1462     =back
1463    
1464    
1465 root 1.53 =head2 IO::AIO::REQ CLASS
1466 root 1.52
1467     All non-aggregate C<aio_*> functions return an object of this class when
1468     called in non-void context.
1469    
1470     =over 4
1471    
1472 root 1.65 =item cancel $req
1473 root 1.52
1474     Cancels the request, if possible. Has the effect of skipping execution
1475     when entering the B<execute> state and skipping calling the callback when
1476     entering the the B<result> state, but will leave the request otherwise
1477 root 1.151 untouched (with the exception of readdir). That means that requests that
1478     currently execute will not be stopped and resources held by the request
1479     will not be freed prematurely.
1480 root 1.52
1481 root 1.65 =item cb $req $callback->(...)
1482    
1483     Replace (or simply set) the callback registered to the request.
1484    
1485 root 1.52 =back
1486    
1487 root 1.55 =head2 IO::AIO::GRP CLASS
1488    
1489     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1490     objects of this class, too.
1491    
1492     A IO::AIO::GRP object is a special request that can contain multiple other
1493     aio requests.
1494    
1495     You create one by calling the C<aio_group> constructing function with a
1496     callback that will be called when all contained requests have entered the
1497     C<done> state:
1498    
1499     my $grp = aio_group sub {
1500     print "all requests are done\n";
1501     };
1502    
1503     You add requests by calling the C<add> method with one or more
1504     C<IO::AIO::REQ> objects:
1505    
1506     $grp->add (aio_unlink "...");
1507    
1508 root 1.58 add $grp aio_stat "...", sub {
1509     $_[0] or return $grp->result ("error");
1510    
1511     # add another request dynamically, if first succeeded
1512     add $grp aio_open "...", sub {
1513     $grp->result ("ok");
1514     };
1515     };
1516 root 1.55
1517     This makes it very easy to create composite requests (see the source of
1518     C<aio_move> for an application) that work and feel like simple requests.
1519    
1520 root 1.62 =over 4
1521    
1522     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1523 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1524    
1525 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1526 root 1.59 only the request itself, but also all requests it contains.
1527 root 1.55
1528 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1529 root 1.55
1530 root 1.62 =item * You must not add requests to a group from within the group callback (or
1531 root 1.60 any later time).
1532    
1533 root 1.62 =back
1534    
1535 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1536     will finish very quickly. If they contain only requests that are in the
1537     C<done> state, they will also finish. Otherwise they will continue to
1538     exist.
1539    
1540 root 1.133 That means after creating a group you have some time to add requests
1541     (precisely before the callback has been invoked, which is only done within
1542     the C<poll_cb>). And in the callbacks of those requests, you can add
1543     further requests to the group. And only when all those requests have
1544     finished will the the group itself finish.
1545 root 1.57
1546 root 1.55 =over 4
1547    
1548 root 1.65 =item add $grp ...
1549    
1550 root 1.55 =item $grp->add (...)
1551    
1552 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1553     be added, including other groups, as long as you do not create circular
1554     dependencies.
1555    
1556     Returns all its arguments.
1557 root 1.55
1558 root 1.74 =item $grp->cancel_subs
1559    
1560     Cancel all subrequests and clears any feeder, but not the group request
1561     itself. Useful when you queued a lot of events but got a result early.
1562    
1563 root 1.168 The group request will finish normally (you cannot add requests to the
1564     group).
1565    
1566 root 1.58 =item $grp->result (...)
1567    
1568     Set the result value(s) that will be passed to the group callback when all
1569 root 1.120 subrequests have finished and set the groups errno to the current value
1570 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1571     no argument will be passed and errno is zero.
1572    
1573     =item $grp->errno ([$errno])
1574    
1575     Sets the group errno value to C<$errno>, or the current value of errno
1576     when the argument is missing.
1577    
1578     Every aio request has an associated errno value that is restored when
1579     the callback is invoked. This method lets you change this value from its
1580     default (0).
1581    
1582     Calling C<result> will also set errno, so make sure you either set C<$!>
1583     before the call to C<result>, or call c<errno> after it.
1584 root 1.58
1585 root 1.65 =item feed $grp $callback->($grp)
1586 root 1.60
1587     Sets a feeder/generator on this group: every group can have an attached
1588     generator that generates requests if idle. The idea behind this is that,
1589     although you could just queue as many requests as you want in a group,
1590 root 1.139 this might starve other requests for a potentially long time. For example,
1591 root 1.211 C<aio_scandir> might generate hundreds of thousands of C<aio_stat>
1592     requests, delaying any later requests for a long time.
1593 root 1.60
1594     To avoid this, and allow incremental generation of requests, you can
1595     instead a group and set a feeder on it that generates those requests. The
1596 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1597 root 1.60 below) requests active in the group itself and is expected to queue more
1598     requests.
1599    
1600 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1601     not impose any limits).
1602 root 1.60
1603 root 1.65 If the feed does not queue more requests when called, it will be
1604 root 1.60 automatically removed from the group.
1605    
1606 root 1.138 If the feed limit is C<0> when this method is called, it will be set to
1607     C<2> automatically.
1608 root 1.60
1609     Example:
1610    
1611     # stat all files in @files, but only ever use four aio requests concurrently:
1612    
1613     my $grp = aio_group sub { print "finished\n" };
1614 root 1.68 limit $grp 4;
1615 root 1.65 feed $grp sub {
1616 root 1.60 my $file = pop @files
1617     or return;
1618    
1619     add $grp aio_stat $file, sub { ... };
1620 root 1.65 };
1621 root 1.60
1622 root 1.68 =item limit $grp $num
1623 root 1.60
1624     Sets the feeder limit for the group: The feeder will be called whenever
1625     the group contains less than this many requests.
1626    
1627     Setting the limit to C<0> will pause the feeding process.
1628    
1629 root 1.138 The default value for the limit is C<0>, but note that setting a feeder
1630     automatically bumps it up to C<2>.
1631    
1632 root 1.55 =back
1633    
1634 root 1.5 =head2 SUPPORT FUNCTIONS
1635    
1636 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1637    
1638 root 1.5 =over 4
1639    
1640     =item $fileno = IO::AIO::poll_fileno
1641    
1642 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1643 root 1.156 polled for reading by some mechanism outside this module (e.g. EV, Glib,
1644     select and so on, see below or the SYNOPSIS). If the pipe becomes readable
1645     you have to call C<poll_cb> to check the results.
1646 root 1.5
1647     See C<poll_cb> for an example.
1648    
1649     =item IO::AIO::poll_cb
1650    
1651 root 1.191 Process some outstanding events on the result pipe. You have to call
1652     this regularly. Returns C<0> if all events could be processed (or there
1653     were no events to process), or C<-1> if it returned earlier for whatever
1654     reason. Returns immediately when no events are outstanding. The amount of
1655     events processed depends on the settings of C<IO::AIO::max_poll_req> and
1656     C<IO::AIO::max_poll_time>.
1657 root 1.5
1658 root 1.78 If not all requests were processed for whatever reason, the filehandle
1659 root 1.128 will still be ready when C<poll_cb> returns, so normally you don't have to
1660     do anything special to have it called later.
1661 root 1.78
1662 root 1.192 Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes
1663     ready, it can be beneficial to call this function from loops which submit
1664     a lot of requests, to make sure the results get processed when they become
1665     available and not just when the loop is finished and the event loop takes
1666     over again. This function returns very fast when there are no outstanding
1667     requests.
1668    
1669 root 1.20 Example: Install an Event watcher that automatically calls
1670 root 1.156 IO::AIO::poll_cb with high priority (more examples can be found in the
1671     SYNOPSIS section, at the top of this document):
1672 root 1.5
1673     Event->io (fd => IO::AIO::poll_fileno,
1674     poll => 'r', async => 1,
1675     cb => \&IO::AIO::poll_cb);
1676    
1677 root 1.175 =item IO::AIO::poll_wait
1678    
1679     If there are any outstanding requests and none of them in the result
1680     phase, wait till the result filehandle becomes ready for reading (simply
1681     does a C<select> on the filehandle. This is useful if you want to
1682     synchronously wait for some requests to finish).
1683    
1684     See C<nreqs> for an example.
1685    
1686     =item IO::AIO::poll
1687    
1688     Waits until some requests have been handled.
1689    
1690     Returns the number of requests processed, but is otherwise strictly
1691     equivalent to:
1692    
1693     IO::AIO::poll_wait, IO::AIO::poll_cb
1694    
1695     =item IO::AIO::flush
1696    
1697     Wait till all outstanding AIO requests have been handled.
1698    
1699     Strictly equivalent to:
1700    
1701     IO::AIO::poll_wait, IO::AIO::poll_cb
1702     while IO::AIO::nreqs;
1703    
1704 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1705    
1706     =item IO::AIO::max_poll_time $seconds
1707    
1708     These set the maximum number of requests (default C<0>, meaning infinity)
1709     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1710     the maximum amount of time (default C<0>, meaning infinity) spent in
1711     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1712     of time C<poll_cb> is allowed to use).
1713 root 1.78
1714 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1715     syscall per request processed, which is not normally a problem unless your
1716     callbacks are really really fast or your OS is really really slow (I am
1717     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1718    
1719 root 1.86 Setting these is useful if you want to ensure some level of
1720     interactiveness when perl is not fast enough to process all requests in
1721     time.
1722 root 1.78
1723 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
1724 root 1.78
1725     Example: Install an Event watcher that automatically calls
1726 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
1727 root 1.78 program get the CPU sometimes even under high AIO load.
1728    
1729 root 1.86 # try not to spend much more than 0.1s in poll_cb
1730     IO::AIO::max_poll_time 0.1;
1731    
1732     # use a low priority so other tasks have priority
1733 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
1734     poll => 'r', nice => 1,
1735 root 1.86 cb => &IO::AIO::poll_cb);
1736 root 1.78
1737 root 1.104 =back
1738    
1739 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
1740 root 1.13
1741 root 1.105 =over
1742    
1743 root 1.5 =item IO::AIO::min_parallel $nthreads
1744    
1745 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
1746     default is C<8>, which means eight asynchronous operations can execute
1747     concurrently at any one time (the number of outstanding requests,
1748     however, is unlimited).
1749 root 1.5
1750 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
1751 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
1752     create demand for a hundred threads, even if it turns out that everything
1753     is in the cache and could have been processed faster by a single thread.
1754 root 1.34
1755 root 1.61 It is recommended to keep the number of threads relatively low, as some
1756     Linux kernel versions will scale negatively with the number of threads
1757     (higher parallelity => MUCH higher latency). With current Linux 2.6
1758     versions, 4-32 threads should be fine.
1759 root 1.5
1760 root 1.34 Under most circumstances you don't need to call this function, as the
1761     module selects a default that is suitable for low to moderate load.
1762 root 1.5
1763     =item IO::AIO::max_parallel $nthreads
1764    
1765 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
1766     specified number of threads are currently running, this function kills
1767     them. This function blocks until the limit is reached.
1768    
1769     While C<$nthreads> are zero, aio requests get queued but not executed
1770     until the number of threads has been increased again.
1771 root 1.5
1772     This module automatically runs C<max_parallel 0> at program end, to ensure
1773     that all threads are killed and that there are no outstanding requests.
1774    
1775     Under normal circumstances you don't need to call this function.
1776    
1777 root 1.86 =item IO::AIO::max_idle $nthreads
1778    
1779 root 1.188 Limit the number of threads (default: 4) that are allowed to idle
1780     (i.e., threads that did not get a request to process within the idle
1781     timeout (default: 10 seconds). That means if a thread becomes idle while
1782     C<$nthreads> other threads are also idle, it will free its resources and
1783     exit.
1784 root 1.86
1785     This is useful when you allow a large number of threads (e.g. 100 or 1000)
1786     to allow for extremely high load situations, but want to free resources
1787     under normal circumstances (1000 threads can easily consume 30MB of RAM).
1788    
1789     The default is probably ok in most situations, especially if thread
1790     creation is fast. If thread creation is very slow on your system you might
1791     want to use larger values.
1792    
1793 root 1.188 =item IO::AIO::idle_timeout $seconds
1794    
1795     Sets the minimum idle timeout (default 10) after which worker threads are
1796     allowed to exit. SEe C<IO::AIO::max_idle>.
1797    
1798 root 1.123 =item IO::AIO::max_outstanding $maxreqs
1799 root 1.5
1800 root 1.195 Sets the maximum number of outstanding requests to C<$nreqs>. If
1801     you do queue up more than this number of requests, the next call to
1802     C<IO::AIO::poll_cb> (and other functions calling C<poll_cb>, such as
1803     C<IO::AIO::flush> or C<IO::AIO::poll>) will block until the limit is no
1804     longer exceeded.
1805    
1806     In other words, this setting does not enforce a queue limit, but can be
1807     used to make poll functions block if the limit is exceeded.
1808    
1809 root 1.79 This is a very bad function to use in interactive programs because it
1810     blocks, and a bad way to reduce concurrency because it is inexact: Better
1811     use an C<aio_group> together with a feed callback.
1812    
1813 root 1.195 It's main use is in scripts without an event loop - when you want to stat
1814     a lot of files, you can write somehting like this:
1815    
1816     IO::AIO::max_outstanding 32;
1817    
1818     for my $path (...) {
1819     aio_stat $path , ...;
1820     IO::AIO::poll_cb;
1821     }
1822    
1823     IO::AIO::flush;
1824    
1825     The call to C<poll_cb> inside the loop will normally return instantly, but
1826     as soon as more thna C<32> reqeusts are in-flight, it will block until
1827     some requests have been handled. This keeps the loop from pushing a large
1828     number of C<aio_stat> requests onto the queue.
1829    
1830     The default value for C<max_outstanding> is very large, so there is no
1831     practical limit on the number of outstanding requests.
1832 root 1.5
1833 root 1.104 =back
1834    
1835 root 1.86 =head3 STATISTICAL INFORMATION
1836    
1837 root 1.104 =over
1838    
1839 root 1.86 =item IO::AIO::nreqs
1840    
1841     Returns the number of requests currently in the ready, execute or pending
1842     states (i.e. for which their callback has not been invoked yet).
1843    
1844     Example: wait till there are no outstanding requests anymore:
1845    
1846     IO::AIO::poll_wait, IO::AIO::poll_cb
1847     while IO::AIO::nreqs;
1848    
1849     =item IO::AIO::nready
1850    
1851     Returns the number of requests currently in the ready state (not yet
1852     executed).
1853    
1854     =item IO::AIO::npending
1855    
1856     Returns the number of requests currently in the pending state (executed,
1857     but not yet processed by poll_cb).
1858    
1859 root 1.5 =back
1860    
1861 root 1.157 =head3 MISCELLANEOUS FUNCTIONS
1862    
1863     IO::AIO implements some functions that might be useful, but are not
1864     asynchronous.
1865    
1866     =over 4
1867    
1868     =item IO::AIO::sendfile $ofh, $ifh, $offset, $count
1869    
1870     Calls the C<eio_sendfile_sync> function, which is like C<aio_sendfile>,
1871     but is blocking (this makes most sense if you know the input data is
1872     likely cached already and the output filehandle is set to non-blocking
1873     operations).
1874    
1875     Returns the number of bytes copied, or C<-1> on error.
1876    
1877     =item IO::AIO::fadvise $fh, $offset, $len, $advice
1878    
1879 root 1.184 Simply calls the C<posix_fadvise> function (see its
1880 root 1.157 manpage for details). The following advice constants are
1881 root 1.207 available: C<IO::AIO::FADV_NORMAL>, C<IO::AIO::FADV_SEQUENTIAL>,
1882 root 1.157 C<IO::AIO::FADV_RANDOM>, C<IO::AIO::FADV_NOREUSE>,
1883     C<IO::AIO::FADV_WILLNEED>, C<IO::AIO::FADV_DONTNEED>.
1884    
1885     On systems that do not implement C<posix_fadvise>, this function returns
1886     ENOSYS, otherwise the return value of C<posix_fadvise>.
1887    
1888 root 1.184 =item IO::AIO::madvise $scalar, $offset, $len, $advice
1889    
1890     Simply calls the C<posix_madvise> function (see its
1891     manpage for details). The following advice constants are
1892 root 1.207 available: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
1893 root 1.184 C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>, C<IO::AIO::MADV_DONTNEED>.
1894    
1895     On systems that do not implement C<posix_madvise>, this function returns
1896     ENOSYS, otherwise the return value of C<posix_madvise>.
1897    
1898     =item IO::AIO::mprotect $scalar, $offset, $len, $protect
1899    
1900     Simply calls the C<mprotect> function on the preferably AIO::mmap'ed
1901     $scalar (see its manpage for details). The following protect
1902 root 1.207 constants are available: C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_READ>,
1903 root 1.184 C<IO::AIO::PROT_WRITE>, C<IO::AIO::PROT_EXEC>.
1904    
1905     On systems that do not implement C<mprotect>, this function returns
1906     ENOSYS, otherwise the return value of C<mprotect>.
1907    
1908 root 1.176 =item IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
1909    
1910     Memory-maps a file (or anonymous memory range) and attaches it to the
1911     given C<$scalar>, which will act like a string scalar.
1912    
1913     The only operations allowed on the scalar are C<substr>/C<vec> that don't
1914     change the string length, and most read-only operations such as copying it
1915     or searching it with regexes and so on.
1916    
1917     Anything else is unsafe and will, at best, result in memory leaks.
1918    
1919     The memory map associated with the C<$scalar> is automatically removed
1920     when the C<$scalar> is destroyed, or when the C<IO::AIO::mmap> or
1921     C<IO::AIO::munmap> functions are called.
1922    
1923     This calls the C<mmap>(2) function internally. See your system's manual
1924     page for details on the C<$length>, C<$prot> and C<$flags> parameters.
1925    
1926     The C<$length> must be larger than zero and smaller than the actual
1927     filesize.
1928    
1929     C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
1930     C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
1931    
1932     C<$flags> can be a combination of C<IO::AIO::MAP_SHARED> or
1933     C<IO::AIO::MAP_PRIVATE>, or a number of system-specific flags (when
1934     not available, the are defined as 0): C<IO::AIO::MAP_ANONYMOUS>
1935     (which is set to C<MAP_ANON> if your system only provides this
1936     constant), C<IO::AIO::MAP_HUGETLB>, C<IO::AIO::MAP_LOCKED>,
1937     C<IO::AIO::MAP_NORESERVE>, C<IO::AIO::MAP_POPULATE> or
1938     C<IO::AIO::MAP_NONBLOCK>
1939    
1940     If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
1941    
1942 root 1.179 C<$offset> is the offset from the start of the file - it generally must be
1943     a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
1944    
1945 root 1.177 Example:
1946    
1947     use Digest::MD5;
1948     use IO::AIO;
1949    
1950     open my $fh, "<verybigfile"
1951     or die "$!";
1952    
1953     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
1954     or die "verybigfile: $!";
1955    
1956     my $fast_md5 = md5 $data;
1957    
1958 root 1.176 =item IO::AIO::munmap $scalar
1959    
1960     Removes a previous mmap and undefines the C<$scalar>.
1961    
1962 root 1.182 =item IO::AIO::munlock $scalar, $offset = 0, $length = undef
1963 root 1.174
1964 root 1.182 Calls the C<munlock> function, undoing the effects of a previous
1965     C<aio_mlock> call (see its description for details).
1966 root 1.174
1967     =item IO::AIO::munlockall
1968    
1969     Calls the C<munlockall> function.
1970    
1971     On systems that do not implement C<munlockall>, this function returns
1972     ENOSYS, otherwise the return value of C<munlockall>.
1973    
1974 root 1.225 =item IO::AIO::splice $r_fh, $r_off, $w_fh, $w_off, $length, $flags
1975    
1976     Calls the GNU/Linux C<splice(2)> syscall, if available. If C<$r_off> or
1977     C<$w_off> are C<undef>, then C<NULL> is passed for these, otherwise they
1978     should be the file offset.
1979    
1980     The following symbol flag values are available: C<IO::AIO::SPLICE_F_MOVE>,
1981     C<IO::AIO::SPLICE_F_NONBLOCK>, C<IO::AIO::SPLICE_F_MORE> and
1982     C<IO::AIO::SPLICE_F_GIFT>.
1983    
1984     See the C<splice(2)> manpage for details.
1985    
1986     =item IO::AIO::tee $r_fh, $w_fh, $length, $flags
1987    
1988     Calls the GNU/Linux C<tee(2)> syscall, see it's manpage and the
1989     description for C<IO::AIO::splice> above for details.
1990    
1991 root 1.157 =back
1992    
1993 root 1.1 =cut
1994    
1995 root 1.61 min_parallel 8;
1996 root 1.1
1997 root 1.95 END { flush }
1998 root 1.82
1999 root 1.1 1;
2000    
2001 root 1.175 =head1 EVENT LOOP INTEGRATION
2002    
2003     It is recommended to use L<AnyEvent::AIO> to integrate IO::AIO
2004     automatically into many event loops:
2005    
2006     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
2007     use AnyEvent::AIO;
2008    
2009     You can also integrate IO::AIO manually into many event loops, here are
2010     some examples of how to do this:
2011    
2012     # EV integration
2013     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
2014    
2015     # Event integration
2016     Event->io (fd => IO::AIO::poll_fileno,
2017     poll => 'r',
2018     cb => \&IO::AIO::poll_cb);
2019    
2020     # Glib/Gtk2 integration
2021     add_watch Glib::IO IO::AIO::poll_fileno,
2022     in => sub { IO::AIO::poll_cb; 1 };
2023    
2024     # Tk integration
2025     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
2026     readable => \&IO::AIO::poll_cb);
2027    
2028     # Danga::Socket integration
2029     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
2030     \&IO::AIO::poll_cb);
2031    
2032 root 1.27 =head2 FORK BEHAVIOUR
2033    
2034 root 1.197 Usage of pthreads in a program changes the semantics of fork
2035     considerably. Specifically, only async-safe functions can be called after
2036     fork. Perl doesn't know about this, so in general, you cannot call fork
2037 root 1.204 with defined behaviour in perl if pthreads are involved. IO::AIO uses
2038     pthreads, so this applies, but many other extensions and (for inexplicable
2039     reasons) perl itself often is linked against pthreads, so this limitation
2040     applies to quite a lot of perls.
2041    
2042     This module no longer tries to fight your OS, or POSIX. That means IO::AIO
2043     only works in the process that loaded it. Forking is fully supported, but
2044     using IO::AIO in the child is not.
2045    
2046     You might get around by not I<using> IO::AIO before (or after)
2047     forking. You could also try to call the L<IO::AIO::reinit> function in the
2048     child:
2049    
2050     =over 4
2051    
2052     =item IO::AIO::reinit
2053    
2054 root 1.207 Abandons all current requests and I/O threads and simply reinitialises all
2055     data structures. This is not an operation supported by any standards, but
2056 root 1.204 happens to work on GNU/Linux and some newer BSD systems.
2057    
2058     The only reasonable use for this function is to call it after forking, if
2059     C<IO::AIO> was used in the parent. Calling it while IO::AIO is active in
2060     the process will result in undefined behaviour. Calling it at any time
2061     will also result in any undefined (by POSIX) behaviour.
2062    
2063     =back
2064 root 1.52
2065 root 1.60 =head2 MEMORY USAGE
2066    
2067 root 1.72 Per-request usage:
2068    
2069     Each aio request uses - depending on your architecture - around 100-200
2070     bytes of memory. In addition, stat requests need a stat buffer (possibly
2071     a few hundred bytes), readdir requires a result buffer and so on. Perl
2072     scalars and other data passed into aio requests will also be locked and
2073     will consume memory till the request has entered the done state.
2074 root 1.60
2075 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
2076 root 1.60 problem.
2077    
2078 root 1.72 Per-thread usage:
2079    
2080     In the execution phase, some aio requests require more memory for
2081     temporary buffers, and each thread requires a stack and other data
2082     structures (usually around 16k-128k, depending on the OS).
2083    
2084     =head1 KNOWN BUGS
2085    
2086 root 1.73 Known bugs will be fixed in the next release.
2087 root 1.60
2088 root 1.1 =head1 SEE ALSO
2089    
2090 root 1.125 L<AnyEvent::AIO> for easy integration into event loops, L<Coro::AIO> for a
2091     more natural syntax.
2092 root 1.1
2093     =head1 AUTHOR
2094    
2095     Marc Lehmann <schmorp@schmorp.de>
2096     http://home.schmorp.de/
2097    
2098     =cut
2099