ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.228
Committed: Sun Jun 17 17:07:25 2012 UTC (11 years, 11 months ago) by root
Branch: MAIN
Changes since 1.227: +2 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3     IO::AIO - Asynchronous Input/Output
4    
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.1 =head1 DESCRIPTION
32    
33     This module implements asynchronous I/O using whatever means your
34 root 1.156 operating system supports. It is implemented as an interface to C<libeio>
35     (L<http://software.schmorp.de/pkg/libeio.html>).
36 root 1.1
37 root 1.85 Asynchronous means that operations that can normally block your program
38     (e.g. reading from disk) will be done asynchronously: the operation
39     will still block, but you can do something else in the meantime. This
40     is extremely useful for programs that need to stay interactive even
41     when doing heavy I/O (GUI programs, high performance network servers
42     etc.), but can also be used to easily do operations in parallel that are
43     normally done sequentially, e.g. stat'ing many files, which is much faster
44     on a RAID volume or over NFS when you do a number of stat operations
45     concurrently.
46    
47 root 1.108 While most of this works on all types of file descriptors (for
48     example sockets), using these functions on file descriptors that
49 root 1.156 support nonblocking operation (again, sockets, pipes etc.) is
50     very inefficient. Use an event loop for that (such as the L<EV>
51 root 1.108 module): IO::AIO will naturally fit into such an event loop itself.
52 root 1.85
53 root 1.72 In this version, a number of threads are started that execute your
54     requests and signal their completion. You don't need thread support
55     in perl, and the threads created by this module will not be visible
56     to perl. In the future, this module might make use of the native aio
57     functions available on many operating systems. However, they are often
58 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
59 root 1.72 files currently, for example), and they would only support aio_read and
60     aio_write, so the remaining functionality would have to be implemented
61     using threads anyway.
62    
63 root 1.108 Although the module will work in the presence of other (Perl-) threads,
64     it is currently not reentrant in any way, so use appropriate locking
65     yourself, always call C<poll_cb> from within the same thread, or never
66     call C<poll_cb> (or other C<aio_> functions) recursively.
67 root 1.72
68 root 1.86 =head2 EXAMPLE
69    
70 root 1.156 This is a simple example that uses the EV module and loads
71 root 1.86 F</etc/passwd> asynchronously:
72    
73     use Fcntl;
74 root 1.156 use EV;
75 root 1.86 use IO::AIO;
76    
77 root 1.156 # register the IO::AIO callback with EV
78     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
79 root 1.86
80     # queue the request to open /etc/passwd
81 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
82 root 1.94 my $fh = shift
83 root 1.86 or die "error while opening: $!";
84    
85     # stat'ing filehandles is generally non-blocking
86     my $size = -s $fh;
87    
88     # queue a request to read the file
89     my $contents;
90     aio_read $fh, 0, $size, $contents, 0, sub {
91     $_[0] == $size
92     or die "short read: $!";
93    
94     close $fh;
95    
96     # file contents now in $contents
97     print $contents;
98    
99     # exit event loop and program
100 root 1.156 EV::unloop;
101 root 1.86 };
102     };
103    
104     # possibly queue up other requests, or open GUI windows,
105     # check for sockets etc. etc.
106    
107     # process events as long as there are some:
108 root 1.156 EV::loop;
109 root 1.86
110 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
111    
112     Every C<aio_*> function creates a request. which is a C data structure not
113     directly visible to Perl.
114    
115     If called in non-void context, every request function returns a Perl
116     object representing the request. In void context, nothing is returned,
117     which saves a bit of memory.
118    
119     The perl object is a fairly standard ref-to-hash object. The hash contents
120     are not used by IO::AIO so you are free to store anything you like in it.
121    
122     During their existance, aio requests travel through the following states,
123     in order:
124    
125     =over 4
126    
127     =item ready
128    
129     Immediately after a request is created it is put into the ready state,
130     waiting for a thread to execute it.
131    
132     =item execute
133    
134     A thread has accepted the request for processing and is currently
135     executing it (e.g. blocking in read).
136    
137     =item pending
138    
139     The request has been executed and is waiting for result processing.
140    
141     While request submission and execution is fully asynchronous, result
142     processing is not and relies on the perl interpreter calling C<poll_cb>
143     (or another function with the same effect).
144    
145     =item result
146    
147     The request results are processed synchronously by C<poll_cb>.
148    
149     The C<poll_cb> function will process all outstanding aio requests by
150     calling their callbacks, freeing memory associated with them and managing
151     any groups they are contained in.
152    
153     =item done
154    
155     Request has reached the end of its lifetime and holds no resources anymore
156     (except possibly for the Perl object, but its connection to the actual
157     aio request is severed and calling its methods will either do nothing or
158     result in a runtime error).
159 root 1.1
160 root 1.88 =back
161    
162 root 1.1 =cut
163    
164     package IO::AIO;
165    
166 root 1.117 use Carp ();
167    
168 root 1.161 use common::sense;
169 root 1.23
170 root 1.1 use base 'Exporter';
171    
172     BEGIN {
173 root 1.225 our $VERSION = '4.15';
174 root 1.1
175 root 1.220 our @AIO_REQ = qw(aio_sendfile aio_seek aio_read aio_write aio_open aio_close
176 root 1.148 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
177 root 1.206 aio_scandir aio_symlink aio_readlink aio_realpath aio_sync
178     aio_fsync aio_syncfs aio_fdatasync aio_sync_file_range aio_fallocate
179 root 1.222 aio_pathsync aio_readahead aio_fiemap
180 root 1.120 aio_rename aio_link aio_move aio_copy aio_group
181     aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
182 root 1.170 aio_chmod aio_utime aio_truncate
183 root 1.182 aio_msync aio_mtouch aio_mlock aio_mlockall
184 root 1.208 aio_statvfs
185     aio_wd);
186 root 1.120
187 root 1.123 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice));
188 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
189 root 1.188 min_parallel max_parallel max_idle idle_timeout
190 root 1.86 nreqs nready npending nthreads
191 root 1.157 max_poll_time max_poll_reqs
192 root 1.182 sendfile fadvise madvise
193     mmap munmap munlock munlockall);
194 root 1.1
195 root 1.143 push @AIO_REQ, qw(aio_busy); # not exported
196    
197 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
198    
199 root 1.1 require XSLoader;
200 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
201 root 1.1 }
202    
203 root 1.5 =head1 FUNCTIONS
204 root 1.1
205 root 1.175 =head2 QUICK OVERVIEW
206    
207     This section simply lists the prototypes of the most important functions
208     for quick reference. See the following sections for function-by-function
209     documentation.
210    
211 root 1.208 aio_wd $pathname, $callback->($wd)
212 root 1.175 aio_open $pathname, $flags, $mode, $callback->($fh)
213     aio_close $fh, $callback->($status)
214 root 1.220 aio_seek $fh,$offset,$whence, $callback->($offs)
215 root 1.175 aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
216     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
217     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
218     aio_readahead $fh,$offset,$length, $callback->($retval)
219     aio_stat $fh_or_path, $callback->($status)
220     aio_lstat $fh, $callback->($status)
221     aio_statvfs $fh_or_path, $callback->($statvfs)
222     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
223     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
224 root 1.220 aio_chmod $fh_or_path, $mode, $callback->($status)
225 root 1.175 aio_truncate $fh_or_path, $offset, $callback->($status)
226     aio_unlink $pathname, $callback->($status)
227 root 1.209 aio_mknod $pathname, $mode, $dev, $callback->($status)
228 root 1.175 aio_link $srcpath, $dstpath, $callback->($status)
229     aio_symlink $srcpath, $dstpath, $callback->($status)
230 root 1.209 aio_readlink $pathname, $callback->($link)
231     aio_realpath $pathname, $callback->($link)
232 root 1.175 aio_rename $srcpath, $dstpath, $callback->($status)
233     aio_mkdir $pathname, $mode, $callback->($status)
234     aio_rmdir $pathname, $callback->($status)
235     aio_readdir $pathname, $callback->($entries)
236     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
237     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
238     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
239 root 1.215 aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
240 root 1.209 aio_load $pathname, $data, $callback->($status)
241 root 1.175 aio_copy $srcpath, $dstpath, $callback->($status)
242     aio_move $srcpath, $dstpath, $callback->($status)
243 root 1.209 aio_rmtree $pathname, $callback->($status)
244 root 1.175 aio_sync $callback->($status)
245 root 1.206 aio_syncfs $fh, $callback->($status)
246 root 1.175 aio_fsync $fh, $callback->($status)
247     aio_fdatasync $fh, $callback->($status)
248     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
249 root 1.209 aio_pathsync $pathname, $callback->($status)
250 root 1.175 aio_msync $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
251     aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
252 root 1.182 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
253     aio_mlockall $flags, $callback->($status)
254 root 1.175 aio_group $callback->(...)
255     aio_nop $callback->()
256    
257     $prev_pri = aioreq_pri [$pri]
258     aioreq_nice $pri_adjust
259    
260     IO::AIO::poll_wait
261     IO::AIO::poll_cb
262     IO::AIO::poll
263     IO::AIO::flush
264     IO::AIO::max_poll_reqs $nreqs
265     IO::AIO::max_poll_time $seconds
266     IO::AIO::min_parallel $nthreads
267     IO::AIO::max_parallel $nthreads
268     IO::AIO::max_idle $nthreads
269 root 1.188 IO::AIO::idle_timeout $seconds
270 root 1.175 IO::AIO::max_outstanding $maxreqs
271     IO::AIO::nreqs
272     IO::AIO::nready
273     IO::AIO::npending
274    
275     IO::AIO::sendfile $ofh, $ifh, $offset, $count
276     IO::AIO::fadvise $fh, $offset, $len, $advice
277 root 1.226 IO::AIO::mmap $scalar, $length, $prot, $flags[, $fh[, $offset]]
278     IO::AIO::munmap $scalar
279 root 1.184 IO::AIO::madvise $scalar, $offset, $length, $advice
280     IO::AIO::mprotect $scalar, $offset, $length, $protect
281 root 1.182 IO::AIO::munlock $scalar, $offset = 0, $length = undef
282 root 1.175 IO::AIO::munlockall
283    
284 root 1.219 =head2 API NOTES
285 root 1.1
286 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
287     with the same name (sans C<aio_>). The arguments are similar or identical,
288 root 1.14 and they all accept an additional (and optional) C<$callback> argument
289 root 1.212 which must be a code reference. This code reference will be called after
290     the syscall has been executed in an asynchronous fashion. The results
291     of the request will be passed as arguments to the callback (and, if an
292     error occured, in C<$!>) - for most requests the syscall return code (e.g.
293     most syscalls return C<-1> on error, unlike perl, which usually delivers
294     "false").
295    
296     Some requests (such as C<aio_readdir>) pass the actual results and
297     communicate failures by passing C<undef>.
298 root 1.1
299 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
300     internally until the request has finished.
301 root 1.1
302 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
303     further manipulation of those requests while they are in-flight.
304 root 1.52
305 root 1.209 The pathnames you pass to these routines I<should> be absolute. The
306     reason for this is that at the time the request is being executed, the
307 root 1.212 current working directory could have changed. Alternatively, you can
308     make sure that you never change the current working directory anywhere
309     in the program and then use relative paths. You can also take advantage
310     of IO::AIOs working directory abstraction, that lets you specify paths
311     relative to some previously-opened "working directory object" - see the
312     description of the C<IO::AIO::WD> class later in this document.
313 root 1.28
314 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
315     in filenames you got from outside (command line, readdir etc.) without
316 root 1.212 tinkering, b) are in your native filesystem encoding, c) use the Encode
317     module and encode your pathnames to the locale (or other) encoding in
318     effect in the user environment, d) use Glib::filename_from_unicode on
319     unicode filenames or e) use something else to ensure your scalar has the
320     correct contents.
321 root 1.87
322     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
323 root 1.136 handles correctly whether it is set or not.
324 root 1.1
325 root 1.219 =head2 AIO REQUEST FUNCTIONS
326    
327 root 1.5 =over 4
328 root 1.1
329 root 1.80 =item $prev_pri = aioreq_pri [$pri]
330 root 1.68
331 root 1.80 Returns the priority value that would be used for the next request and, if
332     C<$pri> is given, sets the priority for the next aio request.
333 root 1.68
334 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
335     and C<4>, respectively. Requests with higher priority will be serviced
336     first.
337    
338     The priority will be reset to C<0> after each call to one of the C<aio_*>
339 root 1.68 functions.
340    
341 root 1.69 Example: open a file with low priority, then read something from it with
342     higher priority so the read request is serviced before other low priority
343     open requests (potentially spamming the cache):
344    
345     aioreq_pri -3;
346     aio_open ..., sub {
347     return unless $_[0];
348    
349     aioreq_pri -2;
350     aio_read $_[0], ..., sub {
351     ...
352     };
353     };
354    
355 root 1.106
356 root 1.69 =item aioreq_nice $pri_adjust
357    
358     Similar to C<aioreq_pri>, but subtracts the given value from the current
359 root 1.87 priority, so the effect is cumulative.
360 root 1.69
361 root 1.106
362 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
363 root 1.1
364 root 1.2 Asynchronously open or create a file and call the callback with a newly
365     created filehandle for the file.
366 root 1.1
367     The pathname passed to C<aio_open> must be absolute. See API NOTES, above,
368     for an explanation.
369    
370 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
371     list. They are the same as used by C<sysopen>.
372    
373     Likewise, C<$mode> specifies the mode of the newly created file, if it
374     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
375     except that it is mandatory (i.e. use C<0> if you don't create new files,
376 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
377     by the umask in effect then the request is being executed, so better never
378     change the umask.
379 root 1.1
380     Example:
381    
382 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
383 root 1.2 if ($_[0]) {
384     print "open successful, fh is $_[0]\n";
385 root 1.1 ...
386     } else {
387     die "open failed: $!\n";
388     }
389     };
390    
391 root 1.194 In addition to all the common open modes/flags (C<O_RDONLY>, C<O_WRONLY>,
392     C<O_RDWR>, C<O_CREAT>, C<O_TRUNC>, C<O_EXCL> and C<O_APPEND>), the
393     following POSIX and non-POSIX constants are available (missing ones on
394     your system are, as usual, C<0>):
395    
396     C<O_ASYNC>, C<O_DIRECT>, C<O_NOATIME>, C<O_CLOEXEC>, C<O_NOCTTY>, C<O_NOFOLLOW>,
397     C<O_NONBLOCK>, C<O_EXEC>, C<O_SEARCH>, C<O_DIRECTORY>, C<O_DSYNC>,
398     C<O_RSYNC>, C<O_SYNC> and C<O_TTY_INIT>.
399    
400 root 1.106
401 root 1.40 =item aio_close $fh, $callback->($status)
402 root 1.1
403 root 1.2 Asynchronously close a file and call the callback with the result
404 root 1.116 code.
405    
406 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
407 root 1.121 closing the file descriptor associated with the filehandle itself.
408 root 1.117
409 root 1.121 Therefore, C<aio_close> will not close the filehandle - instead it will
410     use dup2 to overwrite the file descriptor with the write-end of a pipe
411     (the pipe fd will be created on demand and will be cached).
412 root 1.117
413 root 1.121 Or in other words: the file descriptor will be closed, but it will not be
414     free for reuse until the perl filehandle is closed.
415 root 1.117
416     =cut
417    
418 root 1.220 =item aio_seek $fh, $offset, $whence, $callback->($offs)
419    
420 root 1.221 Seeks the filehandle to the new C<$offset>, similarly to perl's
421 root 1.220 C<sysseek>. The C<$whence> can use the traditional values (C<0> for
422     C<IO::AIO::SEEK_SET>, C<1> for C<IO::AIO::SEEK_CUR> or C<2> for
423     C<IO::AIO::SEEK_END>).
424    
425     The resulting absolute offset will be passed to the callback, or C<-1> in
426     case of an error.
427    
428     In theory, the C<$whence> constants could be different than the
429     corresponding values from L<Fcntl>, but perl guarantees they are the same,
430     so don't panic.
431    
432 root 1.225 As a GNU/Linux (and maybe Solaris) extension, also the constants
433     C<IO::AIO::SEEK_DATA> and C<IO::AIO::SEEK_HOLE> are available, if they
434     could be found. No guarantees about suitability for use in C<aio_seek> or
435     Perl's C<sysseek> can be made though, although I would naively assume they
436     "just work".
437    
438 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
439 root 1.1
440 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
441 root 1.1
442 root 1.145 Reads or writes C<$length> bytes from or to the specified C<$fh> and
443     C<$offset> into the scalar given by C<$data> and offset C<$dataoffset>
444     and calls the callback without the actual number of bytes read (or -1 on
445     error, just like the syscall).
446 root 1.109
447 root 1.146 C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
448     offset plus the actual number of bytes read.
449    
450 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
451     be used (and updated), otherwise the file descriptor offset will not be
452     changed by these calls.
453 root 1.109
454 root 1.145 If C<$length> is undefined in C<aio_write>, use the remaining length of
455     C<$data>.
456 root 1.109
457     If C<$dataoffset> is less than zero, it will be counted from the end of
458     C<$data>.
459 root 1.1
460 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
461 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
462     the necessary/optional hardware is installed).
463 root 1.31
464 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
465 root 1.1 offset C<0> within the scalar:
466    
467     aio_read $fh, 7, 15, $buffer, 0, sub {
468 root 1.9 $_[0] > 0 or die "read error: $!";
469     print "read $_[0] bytes: <$buffer>\n";
470 root 1.1 };
471    
472 root 1.106
473 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
474 root 1.35
475     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
476     reading at byte offset C<$in_offset>, and starts writing at the current
477     file offset of C<$out_fh>. Because of that, it is not safe to issue more
478     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
479 root 1.196 other. The same C<$in_fh> works fine though, as this function does not
480     move or use the file offset of C<$in_fh>.
481 root 1.35
482 root 1.185 Please note that C<aio_sendfile> can read more bytes from C<$in_fh> than
483 root 1.196 are written, and there is no way to find out how many more bytes have been
484     read from C<aio_sendfile> alone, as C<aio_sendfile> only provides the
485     number of bytes written to C<$out_fh>. Only if the result value equals
486     C<$length> one can assume that C<$length> bytes have been read.
487 root 1.185
488     Unlike with other C<aio_> functions, it makes a lot of sense to use
489     C<aio_sendfile> on non-blocking sockets, as long as one end (typically
490     the C<$in_fh>) is a file - the file I/O will then be asynchronous, while
491 root 1.196 the socket I/O will be non-blocking. Note, however, that you can run
492     into a trap where C<aio_sendfile> reads some data with readahead, then
493     fails to write all data, and when the socket is ready the next time, the
494     data in the cache is already lost, forcing C<aio_sendfile> to again hit
495     the disk. Explicit C<aio_read> + C<aio_write> let's you better control
496     resource usage.
497    
498     This call tries to make use of a native C<sendfile>-like syscall to
499     provide zero-copy operation. For this to work, C<$out_fh> should refer to
500     a socket, and C<$in_fh> should refer to an mmap'able file.
501 root 1.35
502 root 1.170 If a native sendfile cannot be found or it fails with C<ENOSYS>,
503 root 1.196 C<EINVAL>, C<ENOTSUP>, C<EOPNOTSUPP>, C<EAFNOSUPPORT>, C<EPROTOTYPE> or
504     C<ENOTSOCK>, it will be emulated, so you can call C<aio_sendfile> on any
505     type of filehandle regardless of the limitations of the operating system.
506    
507     As native sendfile syscalls (as practically any non-POSIX interface hacked
508     together in a hurry to improve benchmark numbers) tend to be rather buggy
509     on many systems, this implementation tries to work around some known bugs
510     in Linux and FreeBSD kernels (probably others, too), but that might fail,
511     so you really really should check the return value of C<aio_sendfile> -
512     fewre bytes than expected might have been transferred.
513 root 1.35
514 root 1.106
515 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
516 root 1.1
517 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
518 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
519     argument specifies the starting point from which data is to be read and
520     C<$length> specifies the number of bytes to be read. I/O is performed in
521     whole pages, so that offset is effectively rounded down to a page boundary
522     and bytes are read up to the next page boundary greater than or equal to
523 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
524 root 1.1 file. The current file offset of the file is left unchanged.
525    
526 root 1.26 If that syscall doesn't exist (likely if your OS isn't Linux) it will be
527     emulated by simply reading the data, which would have a similar effect.
528    
529 root 1.106
530 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
531 root 1.1
532 root 1.40 =item aio_lstat $fh, $callback->($status)
533 root 1.1
534     Works like perl's C<stat> or C<lstat> in void context. The callback will
535     be called after the stat and the results will be available using C<stat _>
536     or C<-s _> etc...
537    
538     The pathname passed to C<aio_stat> must be absolute. See API NOTES, above,
539     for an explanation.
540    
541     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
542     error when stat'ing a large file, the results will be silently truncated
543     unless perl itself is compiled with large file support.
544    
545 root 1.187 To help interpret the mode and dev/rdev stat values, IO::AIO offers the
546     following constants and functions (if not implemented, the constants will
547     be C<0> and the functions will either C<croak> or fall back on traditional
548     behaviour).
549    
550     C<S_IFMT>, C<S_IFIFO>, C<S_IFCHR>, C<S_IFBLK>, C<S_IFLNK>, C<S_IFREG>,
551     C<S_IFDIR>, C<S_IFWHT>, C<S_IFSOCK>, C<IO::AIO::major $dev_t>,
552     C<IO::AIO::minor $dev_t>, C<IO::AIO::makedev $major, $minor>.
553    
554 root 1.1 Example: Print the length of F</etc/passwd>:
555    
556     aio_stat "/etc/passwd", sub {
557     $_[0] and die "stat failed: $!";
558     print "size is ", -s _, "\n";
559     };
560    
561 root 1.106
562 root 1.175 =item aio_statvfs $fh_or_path, $callback->($statvfs)
563 root 1.172
564     Works like the POSIX C<statvfs> or C<fstatvfs> syscalls, depending on
565     whether a file handle or path was passed.
566    
567     On success, the callback is passed a hash reference with the following
568     members: C<bsize>, C<frsize>, C<blocks>, C<bfree>, C<bavail>, C<files>,
569     C<ffree>, C<favail>, C<fsid>, C<flag> and C<namemax>. On failure, C<undef>
570     is passed.
571    
572     The following POSIX IO::AIO::ST_* constants are defined: C<ST_RDONLY> and
573     C<ST_NOSUID>.
574    
575     The following non-POSIX IO::AIO::ST_* flag masks are defined to
576     their correct value when available, or to C<0> on systems that do
577     not support them: C<ST_NODEV>, C<ST_NOEXEC>, C<ST_SYNCHRONOUS>,
578     C<ST_MANDLOCK>, C<ST_WRITE>, C<ST_APPEND>, C<ST_IMMUTABLE>, C<ST_NOATIME>,
579     C<ST_NODIRATIME> and C<ST_RELATIME>.
580    
581     Example: stat C</wd> and dump out the data if successful.
582    
583     aio_statvfs "/wd", sub {
584     my $f = $_[0]
585     or die "statvfs: $!";
586    
587     use Data::Dumper;
588     say Dumper $f;
589     };
590    
591     # result:
592     {
593     bsize => 1024,
594     bfree => 4333064312,
595     blocks => 10253828096,
596     files => 2050765568,
597     flag => 4096,
598     favail => 2042092649,
599     bavail => 4333064312,
600     ffree => 2042092649,
601     namemax => 255,
602     frsize => 1024,
603     fsid => 1810
604     }
605    
606    
607 root 1.106 =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
608    
609     Works like perl's C<utime> function (including the special case of $atime
610     and $mtime being undef). Fractional times are supported if the underlying
611     syscalls support them.
612    
613     When called with a pathname, uses utimes(2) if available, otherwise
614     utime(2). If called on a file descriptor, uses futimes(2) if available,
615     otherwise returns ENOSYS, so this is not portable.
616    
617     Examples:
618    
619 root 1.107 # set atime and mtime to current time (basically touch(1)):
620 root 1.106 aio_utime "path", undef, undef;
621     # set atime to current time and mtime to beginning of the epoch:
622     aio_utime "path", time, undef; # undef==0
623    
624    
625     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
626    
627     Works like perl's C<chown> function, except that C<undef> for either $uid
628     or $gid is being interpreted as "do not change" (but -1 can also be used).
629    
630     Examples:
631    
632     # same as "chown root path" in the shell:
633     aio_chown "path", 0, -1;
634     # same as above:
635     aio_chown "path", 0, undef;
636    
637    
638 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
639    
640     Works like truncate(2) or ftruncate(2).
641    
642    
643 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
644    
645     Works like perl's C<chmod> function.
646    
647    
648 root 1.40 =item aio_unlink $pathname, $callback->($status)
649 root 1.1
650     Asynchronously unlink (delete) a file and call the callback with the
651     result code.
652    
653 root 1.106
654 root 1.209 =item aio_mknod $pathname, $mode, $dev, $callback->($status)
655 root 1.82
656 root 1.86 [EXPERIMENTAL]
657    
658 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
659    
660 root 1.86 The only (POSIX-) portable way of calling this function is:
661 root 1.83
662 root 1.209 aio_mknod $pathname, IO::AIO::S_IFIFO | $mode, 0, sub { ...
663 root 1.82
664 root 1.187 See C<aio_stat> for info about some potentially helpful extra constants
665     and functions.
666 root 1.106
667 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
668    
669     Asynchronously create a new link to the existing object at C<$srcpath> at
670     the path C<$dstpath> and call the callback with the result code.
671    
672 root 1.106
673 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
674    
675     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
676     the path C<$dstpath> and call the callback with the result code.
677    
678 root 1.106
679 root 1.209 =item aio_readlink $pathname, $callback->($link)
680 root 1.90
681     Asynchronously read the symlink specified by C<$path> and pass it to
682     the callback. If an error occurs, nothing or undef gets passed to the
683     callback.
684    
685 root 1.106
686 root 1.209 =item aio_realpath $pathname, $callback->($path)
687 root 1.201
688     Asynchronously make the path absolute and resolve any symlinks in
689 root 1.202 C<$path>. The resulting path only consists of directories (Same as
690     L<Cwd::realpath>).
691 root 1.201
692     This request can be used to get the absolute path of the current working
693     directory by passing it a path of F<.> (a single dot).
694    
695    
696 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
697    
698     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
699     rename(2) and call the callback with the result code.
700    
701 root 1.106
702 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
703    
704     Asynchronously mkdir (create) a directory and call the callback with
705     the result code. C<$mode> will be modified by the umask at the time the
706     request is executed, so do not change your umask.
707    
708 root 1.106
709 root 1.40 =item aio_rmdir $pathname, $callback->($status)
710 root 1.27
711     Asynchronously rmdir (delete) a directory and call the callback with the
712     result code.
713    
714 root 1.106
715 root 1.46 =item aio_readdir $pathname, $callback->($entries)
716 root 1.37
717     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
718     directory (i.e. opendir + readdir + closedir). The entries will not be
719     sorted, and will B<NOT> include the C<.> and C<..> entries.
720    
721 root 1.148 The callback is passed a single argument which is either C<undef> or an
722     array-ref with the filenames.
723    
724    
725     =item aio_readdirx $pathname, $flags, $callback->($entries, $flags)
726    
727 root 1.207 Quite similar to C<aio_readdir>, but the C<$flags> argument allows one to
728     tune behaviour and output format. In case of an error, C<$entries> will be
729 root 1.148 C<undef>.
730    
731     The flags are a combination of the following constants, ORed together (the
732     flags will also be passed to the callback, possibly modified):
733    
734     =over 4
735    
736 root 1.150 =item IO::AIO::READDIR_DENTS
737 root 1.148
738 root 1.190 When this flag is off, then the callback gets an arrayref consisting of
739     names only (as with C<aio_readdir>), otherwise it gets an arrayref with
740 root 1.150 C<[$name, $type, $inode]> arrayrefs, each describing a single directory
741 root 1.148 entry in more detail.
742    
743     C<$name> is the name of the entry.
744    
745 root 1.150 C<$type> is one of the C<IO::AIO::DT_xxx> constants:
746 root 1.148
747 root 1.150 C<IO::AIO::DT_UNKNOWN>, C<IO::AIO::DT_FIFO>, C<IO::AIO::DT_CHR>, C<IO::AIO::DT_DIR>,
748     C<IO::AIO::DT_BLK>, C<IO::AIO::DT_REG>, C<IO::AIO::DT_LNK>, C<IO::AIO::DT_SOCK>,
749     C<IO::AIO::DT_WHT>.
750 root 1.148
751 root 1.150 C<IO::AIO::DT_UNKNOWN> means just that: readdir does not know. If you need to
752 root 1.148 know, you have to run stat yourself. Also, for speed reasons, the C<$type>
753     scalars are read-only: you can not modify them.
754    
755 root 1.150 C<$inode> is the inode number (which might not be exact on systems with 64
756 root 1.155 bit inode numbers and 32 bit perls). This field has unspecified content on
757     systems that do not deliver the inode information.
758 root 1.150
759     =item IO::AIO::READDIR_DIRS_FIRST
760 root 1.148
761     When this flag is set, then the names will be returned in an order where
762 root 1.193 likely directories come first, in optimal stat order. This is useful when
763     you need to quickly find directories, or you want to find all directories
764     while avoiding to stat() each entry.
765 root 1.148
766 root 1.149 If the system returns type information in readdir, then this is used
767 root 1.193 to find directories directly. Otherwise, likely directories are names
768     beginning with ".", or otherwise names with no dots, of which names with
769 root 1.149 short names are tried first.
770    
771 root 1.150 =item IO::AIO::READDIR_STAT_ORDER
772 root 1.148
773     When this flag is set, then the names will be returned in an order
774     suitable for stat()'ing each one. That is, when you plan to stat()
775     all files in the given directory, then the returned order will likely
776     be fastest.
777    
778 root 1.150 If both this flag and C<IO::AIO::READDIR_DIRS_FIRST> are specified, then
779     the likely dirs come first, resulting in a less optimal stat order.
780 root 1.148
781 root 1.150 =item IO::AIO::READDIR_FOUND_UNKNOWN
782 root 1.148
783     This flag should not be set when calling C<aio_readdirx>. Instead, it
784     is being set by C<aio_readdirx>, when any of the C<$type>'s found were
785 root 1.207 C<IO::AIO::DT_UNKNOWN>. The absence of this flag therefore indicates that all
786 root 1.148 C<$type>'s are known, which can be used to speed up some algorithms.
787    
788     =back
789 root 1.37
790 root 1.106
791 root 1.209 =item aio_load $pathname, $data, $callback->($status)
792 root 1.98
793     This is a composite request that tries to fully load the given file into
794     memory. Status is the same as with aio_read.
795    
796     =cut
797    
798     sub aio_load($$;$) {
799 root 1.123 my ($path, undef, $cb) = @_;
800     my $data = \$_[1];
801 root 1.98
802 root 1.123 my $pri = aioreq_pri;
803     my $grp = aio_group $cb;
804    
805     aioreq_pri $pri;
806     add $grp aio_open $path, O_RDONLY, 0, sub {
807     my $fh = shift
808     or return $grp->result (-1);
809 root 1.98
810     aioreq_pri $pri;
811 root 1.123 add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
812     $grp->result ($_[0]);
813 root 1.98 };
814 root 1.123 };
815 root 1.98
816 root 1.123 $grp
817 root 1.98 }
818    
819 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
820    
821     Try to copy the I<file> (directories not supported as either source or
822     destination) from C<$srcpath> to C<$dstpath> and call the callback with
823 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
824 root 1.82
825 root 1.134 This is a composite request that creates the destination file with
826 root 1.82 mode 0200 and copies the contents of the source file into it using
827     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
828     uid/gid, in that order.
829    
830     If an error occurs, the partial destination file will be unlinked, if
831     possible, except when setting atime, mtime, access mode and uid/gid, where
832     errors are being ignored.
833    
834     =cut
835    
836     sub aio_copy($$;$) {
837 root 1.123 my ($src, $dst, $cb) = @_;
838 root 1.82
839 root 1.123 my $pri = aioreq_pri;
840     my $grp = aio_group $cb;
841 root 1.82
842 root 1.123 aioreq_pri $pri;
843     add $grp aio_open $src, O_RDONLY, 0, sub {
844     if (my $src_fh = $_[0]) {
845 root 1.166 my @stat = stat $src_fh; # hmm, might block over nfs?
846 root 1.95
847 root 1.123 aioreq_pri $pri;
848     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
849     if (my $dst_fh = $_[0]) {
850     aioreq_pri $pri;
851     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
852     if ($_[0] == $stat[7]) {
853     $grp->result (0);
854     close $src_fh;
855    
856 root 1.147 my $ch = sub {
857     aioreq_pri $pri;
858     add $grp aio_chmod $dst_fh, $stat[2] & 07777, sub {
859     aioreq_pri $pri;
860     add $grp aio_chown $dst_fh, $stat[4], $stat[5], sub {
861     aioreq_pri $pri;
862     add $grp aio_close $dst_fh;
863     }
864     };
865     };
866 root 1.123
867     aioreq_pri $pri;
868 root 1.147 add $grp aio_utime $dst_fh, $stat[8], $stat[9], sub {
869     if ($_[0] < 0 && $! == ENOSYS) {
870     aioreq_pri $pri;
871     add $grp aio_utime $dst, $stat[8], $stat[9], $ch;
872     } else {
873     $ch->();
874     }
875     };
876 root 1.123 } else {
877     $grp->result (-1);
878     close $src_fh;
879     close $dst_fh;
880    
881     aioreq $pri;
882     add $grp aio_unlink $dst;
883     }
884     };
885     } else {
886     $grp->result (-1);
887     }
888     },
889 root 1.82
890 root 1.123 } else {
891     $grp->result (-1);
892     }
893     };
894 root 1.82
895 root 1.123 $grp
896 root 1.82 }
897    
898     =item aio_move $srcpath, $dstpath, $callback->($status)
899    
900     Try to move the I<file> (directories not supported as either source or
901     destination) from C<$srcpath> to C<$dstpath> and call the callback with
902 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
903 root 1.82
904 root 1.137 This is a composite request that tries to rename(2) the file first; if
905     rename fails with C<EXDEV>, it copies the file with C<aio_copy> and, if
906     that is successful, unlinks the C<$srcpath>.
907 root 1.82
908     =cut
909    
910     sub aio_move($$;$) {
911 root 1.123 my ($src, $dst, $cb) = @_;
912 root 1.82
913 root 1.123 my $pri = aioreq_pri;
914     my $grp = aio_group $cb;
915 root 1.82
916 root 1.123 aioreq_pri $pri;
917     add $grp aio_rename $src, $dst, sub {
918     if ($_[0] && $! == EXDEV) {
919     aioreq_pri $pri;
920     add $grp aio_copy $src, $dst, sub {
921     $grp->result ($_[0]);
922 root 1.95
923 root 1.196 unless ($_[0]) {
924 root 1.123 aioreq_pri $pri;
925     add $grp aio_unlink $src;
926     }
927     };
928     } else {
929     $grp->result ($_[0]);
930     }
931     };
932 root 1.82
933 root 1.123 $grp
934 root 1.82 }
935    
936 root 1.209 =item aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
937 root 1.40
938 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
939 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
940     names, directories you can recurse into (directories), and ones you cannot
941     recurse into (everything else, including symlinks to directories).
942 root 1.52
943 root 1.61 C<aio_scandir> is a composite request that creates of many sub requests_
944     C<$maxreq> specifies the maximum number of outstanding aio requests that
945     this function generates. If it is C<< <= 0 >>, then a suitable default
946 root 1.81 will be chosen (currently 4).
947 root 1.40
948     On error, the callback is called without arguments, otherwise it receives
949     two array-refs with path-relative entry names.
950    
951     Example:
952    
953     aio_scandir $dir, 0, sub {
954     my ($dirs, $nondirs) = @_;
955     print "real directories: @$dirs\n";
956     print "everything else: @$nondirs\n";
957     };
958    
959     Implementation notes.
960    
961     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
962    
963 root 1.149 If readdir returns file type information, then this is used directly to
964     find directories.
965    
966     Otherwise, after reading the directory, the modification time, size etc.
967     of the directory before and after the readdir is checked, and if they
968     match (and isn't the current time), the link count will be used to decide
969     how many entries are directories (if >= 2). Otherwise, no knowledge of the
970     number of subdirectories will be assumed.
971    
972     Then entries will be sorted into likely directories a non-initial dot
973     currently) and likely non-directories (see C<aio_readdirx>). Then every
974     entry plus an appended C</.> will be C<stat>'ed, likely directories first,
975     in order of their inode numbers. If that succeeds, it assumes that the
976     entry is a directory or a symlink to directory (which will be checked
977 root 1.207 separately). This is often faster than stat'ing the entry itself because
978 root 1.52 filesystems might detect the type of the entry without reading the inode
979 root 1.149 data (e.g. ext2fs filetype feature), even on systems that cannot return
980     the filetype information on readdir.
981 root 1.52
982     If the known number of directories (link count - 2) has been reached, the
983     rest of the entries is assumed to be non-directories.
984    
985     This only works with certainty on POSIX (= UNIX) filesystems, which
986     fortunately are the vast majority of filesystems around.
987    
988     It will also likely work on non-POSIX filesystems with reduced efficiency
989     as those tend to return 0 or 1 as link counts, which disables the
990     directory counting heuristic.
991 root 1.40
992     =cut
993    
994 root 1.100 sub aio_scandir($$;$) {
995 root 1.123 my ($path, $maxreq, $cb) = @_;
996    
997     my $pri = aioreq_pri;
998 root 1.40
999 root 1.123 my $grp = aio_group $cb;
1000 root 1.80
1001 root 1.123 $maxreq = 4 if $maxreq <= 0;
1002 root 1.55
1003 root 1.210 # get a wd object
1004 root 1.123 aioreq_pri $pri;
1005 root 1.210 add $grp aio_wd $path, sub {
1006 root 1.212 $_[0]
1007     or return $grp->result ();
1008    
1009 root 1.210 my $wd = [shift, "."];
1010 root 1.40
1011 root 1.210 # stat once
1012 root 1.80 aioreq_pri $pri;
1013 root 1.210 add $grp aio_stat $wd, sub {
1014     return $grp->result () if $_[0];
1015     my $now = time;
1016     my $hash1 = join ":", (stat _)[0,1,3,7,9];
1017 root 1.40
1018 root 1.210 # read the directory entries
1019 root 1.80 aioreq_pri $pri;
1020 root 1.210 add $grp aio_readdirx $wd, READDIR_DIRS_FIRST, sub {
1021     my $entries = shift
1022     or return $grp->result ();
1023    
1024     # stat the dir another time
1025     aioreq_pri $pri;
1026     add $grp aio_stat $wd, sub {
1027     my $hash2 = join ":", (stat _)[0,1,3,7,9];
1028 root 1.95
1029 root 1.210 my $ndirs;
1030 root 1.95
1031 root 1.210 # take the slow route if anything looks fishy
1032     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
1033     $ndirs = -1;
1034     } else {
1035     # if nlink == 2, we are finished
1036     # for non-posix-fs's, we rely on nlink < 2
1037     $ndirs = (stat _)[3] - 2
1038     or return $grp->result ([], $entries);
1039     }
1040 root 1.123
1041 root 1.210 my (@dirs, @nondirs);
1042 root 1.40
1043 root 1.210 my $statgrp = add $grp aio_group sub {
1044     $grp->result (\@dirs, \@nondirs);
1045     };
1046 root 1.40
1047 root 1.210 limit $statgrp $maxreq;
1048     feed $statgrp sub {
1049     return unless @$entries;
1050     my $entry = shift @$entries;
1051    
1052     aioreq_pri $pri;
1053     $wd->[1] = "$entry/.";
1054     add $statgrp aio_stat $wd, sub {
1055     if ($_[0] < 0) {
1056     push @nondirs, $entry;
1057     } else {
1058     # need to check for real directory
1059     aioreq_pri $pri;
1060     $wd->[1] = $entry;
1061     add $statgrp aio_lstat $wd, sub {
1062     if (-d _) {
1063     push @dirs, $entry;
1064    
1065     unless (--$ndirs) {
1066     push @nondirs, @$entries;
1067     feed $statgrp;
1068     }
1069     } else {
1070     push @nondirs, $entry;
1071 root 1.74 }
1072 root 1.40 }
1073     }
1074 root 1.210 };
1075 root 1.74 };
1076 root 1.40 };
1077     };
1078     };
1079 root 1.123 };
1080 root 1.55
1081 root 1.123 $grp
1082 root 1.40 }
1083    
1084 root 1.209 =item aio_rmtree $pathname, $callback->($status)
1085 root 1.99
1086 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
1087     status of the final C<rmdir> only. This is a composite request that
1088     uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1089     everything else.
1090 root 1.99
1091     =cut
1092    
1093     sub aio_rmtree;
1094 root 1.100 sub aio_rmtree($;$) {
1095 root 1.123 my ($path, $cb) = @_;
1096 root 1.99
1097 root 1.123 my $pri = aioreq_pri;
1098     my $grp = aio_group $cb;
1099 root 1.99
1100 root 1.123 aioreq_pri $pri;
1101     add $grp aio_scandir $path, 0, sub {
1102     my ($dirs, $nondirs) = @_;
1103 root 1.99
1104 root 1.123 my $dirgrp = aio_group sub {
1105     add $grp aio_rmdir $path, sub {
1106     $grp->result ($_[0]);
1107 root 1.99 };
1108 root 1.123 };
1109 root 1.99
1110 root 1.123 (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
1111     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
1112 root 1.99
1113 root 1.123 add $grp $dirgrp;
1114     };
1115 root 1.99
1116 root 1.123 $grp
1117 root 1.99 }
1118    
1119 root 1.119 =item aio_sync $callback->($status)
1120    
1121     Asynchronously call sync and call the callback when finished.
1122    
1123 root 1.40 =item aio_fsync $fh, $callback->($status)
1124 root 1.1
1125     Asynchronously call fsync on the given filehandle and call the callback
1126     with the fsync result code.
1127    
1128 root 1.40 =item aio_fdatasync $fh, $callback->($status)
1129 root 1.1
1130     Asynchronously call fdatasync on the given filehandle and call the
1131 root 1.26 callback with the fdatasync result code.
1132    
1133     If this call isn't available because your OS lacks it or it couldn't be
1134     detected, it will be emulated by calling C<fsync> instead.
1135 root 1.1
1136 root 1.206 =item aio_syncfs $fh, $callback->($status)
1137    
1138     Asynchronously call the syncfs syscall to sync the filesystem associated
1139     to the given filehandle and call the callback with the syncfs result
1140     code. If syncfs is not available, calls sync(), but returns C<-1> and sets
1141     errno to C<ENOSYS> nevertheless.
1142    
1143 root 1.142 =item aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
1144    
1145     Sync the data portion of the file specified by C<$offset> and C<$length>
1146     to disk (but NOT the metadata), by calling the Linux-specific
1147     sync_file_range call. If sync_file_range is not available or it returns
1148     ENOSYS, then fdatasync or fsync is being substituted.
1149    
1150     C<$flags> can be a combination of C<IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE>,
1151     C<IO::AIO::SYNC_FILE_RANGE_WRITE> and
1152     C<IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER>: refer to the sync_file_range
1153     manpage for details.
1154    
1155 root 1.209 =item aio_pathsync $pathname, $callback->($status)
1156 root 1.120
1157     This request tries to open, fsync and close the given path. This is a
1158 root 1.135 composite request intended to sync directories after directory operations
1159 root 1.120 (E.g. rename). This might not work on all operating systems or have any
1160     specific effect, but usually it makes sure that directory changes get
1161     written to disc. It works for anything that can be opened for read-only,
1162     not just directories.
1163    
1164 root 1.162 Future versions of this function might fall back to other methods when
1165     C<fsync> on the directory fails (such as calling C<sync>).
1166    
1167 root 1.120 Passes C<0> when everything went ok, and C<-1> on error.
1168    
1169     =cut
1170    
1171     sub aio_pathsync($;$) {
1172 root 1.123 my ($path, $cb) = @_;
1173    
1174     my $pri = aioreq_pri;
1175     my $grp = aio_group $cb;
1176 root 1.120
1177 root 1.123 aioreq_pri $pri;
1178     add $grp aio_open $path, O_RDONLY, 0, sub {
1179     my ($fh) = @_;
1180     if ($fh) {
1181     aioreq_pri $pri;
1182     add $grp aio_fsync $fh, sub {
1183     $grp->result ($_[0]);
1184 root 1.120
1185     aioreq_pri $pri;
1186 root 1.123 add $grp aio_close $fh;
1187     };
1188     } else {
1189     $grp->result (-1);
1190     }
1191     };
1192 root 1.120
1193 root 1.123 $grp
1194 root 1.120 }
1195    
1196 root 1.170 =item aio_msync $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1197    
1198     This is a rather advanced IO::AIO call, which only works on mmap(2)ed
1199 root 1.176 scalars (see the C<IO::AIO::mmap> function, although it also works on data
1200     scalars managed by the L<Sys::Mmap> or L<Mmap> modules, note that the
1201     scalar must only be modified in-place while an aio operation is pending on
1202     it).
1203 root 1.170
1204     It calls the C<msync> function of your OS, if available, with the memory
1205     area starting at C<$offset> in the string and ending C<$length> bytes
1206     later. If C<$length> is negative, counts from the end, and if C<$length>
1207     is C<undef>, then it goes till the end of the string. The flags can be
1208     a combination of C<IO::AIO::MS_ASYNC>, C<IO::AIO::MS_INVALIDATE> and
1209     C<IO::AIO::MS_SYNC>.
1210    
1211     =item aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1212    
1213     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1214     scalars.
1215    
1216     It touches (reads or writes) all memory pages in the specified
1217     range inside the scalar. All caveats and parameters are the same
1218     as for C<aio_msync>, above, except for flags, which must be either
1219     C<0> (which reads all pages and ensures they are instantiated) or
1220     C<IO::AIO::MT_MODIFY>, which modifies the memory page s(by reading and
1221     writing an octet from it, which dirties the page).
1222    
1223 root 1.182 =item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1224    
1225     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1226     scalars.
1227    
1228     It reads in all the pages of the underlying storage into memory (if any)
1229     and locks them, so they are not getting swapped/paged out or removed.
1230    
1231     If C<$length> is undefined, then the scalar will be locked till the end.
1232    
1233     On systems that do not implement C<mlock>, this function returns C<-1>
1234     and sets errno to C<ENOSYS>.
1235    
1236     Note that the corresponding C<munlock> is synchronous and is
1237     documented under L<MISCELLANEOUS FUNCTIONS>.
1238    
1239 root 1.183 Example: open a file, mmap and mlock it - both will be undone when
1240     C<$data> gets destroyed.
1241    
1242     open my $fh, "<", $path or die "$path: $!";
1243     my $data;
1244     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1245     aio_mlock $data; # mlock in background
1246    
1247 root 1.182 =item aio_mlockall $flags, $callback->($status)
1248    
1249     Calls the C<mlockall> function with the given C<$flags> (a combination of
1250     C<IO::AIO::MCL_CURRENT> and C<IO::AIO::MCL_FUTURE>).
1251    
1252     On systems that do not implement C<mlockall>, this function returns C<-1>
1253     and sets errno to C<ENOSYS>.
1254    
1255     Note that the corresponding C<munlockall> is synchronous and is
1256     documented under L<MISCELLANEOUS FUNCTIONS>.
1257    
1258 root 1.183 Example: asynchronously lock all current and future pages into memory.
1259    
1260     aio_mlockall IO::AIO::MCL_FUTURE;
1261    
1262 root 1.223 =item aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
1263    
1264     Queries the extents of the given file (by calling the Linux FIEMAP ioctl,
1265     see L<http://cvs.schmorp.de/IO-AIO/doc/fiemap.txt> for details). If the
1266     C<ioctl> is not available on your OS, then this rquiest will fail with
1267     C<ENOSYS>.
1268    
1269     C<$start> is the starting offset to query extents for, C<$length> is the
1270     size of the range to query - if it is C<undef>, then the whole file will
1271     be queried.
1272    
1273     C<$flags> is a combination of flags (C<IO::AIO::FIEMAP_FLAG_SYNC> or
1274     C<IO::AIO::FIEMAP_FLAG_XATTR> - C<IO::AIO::FIEMAP_FLAGS_COMPAT> is also
1275     exported), and is normally C<0> or C<IO::AIO::FIEMAP_FLAG_SYNC> to query
1276     the data portion.
1277    
1278     C<$count> is the maximum number of extent records to return. If it is
1279     C<undef>, then IO::AIO queries all extents of the file. As a very special
1280     case, if it is C<0>, then the callback receives the number of extents
1281     instead of the extents themselves.
1282    
1283     If an error occurs, the callback receives no arguments. The special
1284     C<errno> value C<IO::AIO::EBADR> is available to test for flag errors.
1285    
1286     Otherwise, the callback receives an array reference with extent
1287     structures. Each extent structure is an array reference itself, with the
1288     following members:
1289    
1290     [$logical, $physical, $length, $flags]
1291    
1292     Flags is any combination of the following flag values (typically either C<0>
1293     or C<IO::AIO::FIEMAP_EXTENT_LAST>):
1294    
1295     C<IO::AIO::FIEMAP_EXTENT_LAST>, C<IO::AIO::FIEMAP_EXTENT_UNKNOWN>,
1296     C<IO::AIO::FIEMAP_EXTENT_DELALLOC>, C<IO::AIO::FIEMAP_EXTENT_ENCODED>,
1297     C<IO::AIO::FIEMAP_EXTENT_DATA_ENCRYPTED>, C<IO::AIO::FIEMAP_EXTENT_NOT_ALIGNED>,
1298     C<IO::AIO::FIEMAP_EXTENT_DATA_INLINE>, C<IO::AIO::FIEMAP_EXTENT_DATA_TAIL>,
1299     C<IO::AIO::FIEMAP_EXTENT_UNWRITTEN>, C<IO::AIO::FIEMAP_EXTENT_MERGED> or
1300     C<IO::AIO::FIEMAP_EXTENT_SHARED>.
1301    
1302 root 1.58 =item aio_group $callback->(...)
1303 root 1.54
1304 root 1.55 This is a very special aio request: Instead of doing something, it is a
1305     container for other aio requests, which is useful if you want to bundle
1306 root 1.71 many requests into a single, composite, request with a definite callback
1307     and the ability to cancel the whole request with its subrequests.
1308 root 1.55
1309     Returns an object of class L<IO::AIO::GRP>. See its documentation below
1310     for more info.
1311    
1312     Example:
1313    
1314     my $grp = aio_group sub {
1315     print "all stats done\n";
1316     };
1317    
1318     add $grp
1319     (aio_stat ...),
1320     (aio_stat ...),
1321     ...;
1322    
1323 root 1.63 =item aio_nop $callback->()
1324    
1325     This is a special request - it does nothing in itself and is only used for
1326     side effects, such as when you want to add a dummy request to a group so
1327     that finishing the requests in the group depends on executing the given
1328     code.
1329    
1330 root 1.64 While this request does nothing, it still goes through the execution
1331     phase and still requires a worker thread. Thus, the callback will not
1332     be executed immediately but only after other requests in the queue have
1333     entered their execution phase. This can be used to measure request
1334     latency.
1335    
1336 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1337 root 1.54
1338     Mainly used for debugging and benchmarking, this aio request puts one of
1339     the request workers to sleep for the given time.
1340    
1341 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1342 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1343     immense (it blocks a thread for a long time) so do not use this function
1344     except to put your application under artificial I/O pressure.
1345 root 1.56
1346 root 1.5 =back
1347    
1348 root 1.209
1349     =head2 IO::AIO::WD - multiple working directories
1350    
1351     Your process only has one current working directory, which is used by all
1352     threads. This makes it hard to use relative paths (some other component
1353     could call C<chdir> at any time, and it is hard to control when the path
1354     will be used by IO::AIO).
1355    
1356     One solution for this is to always use absolute paths. This usually works,
1357     but can be quite slow (the kernel has to walk the whole path on every
1358     access), and can also be a hassle to implement.
1359    
1360     Newer POSIX systems have a number of functions (openat, fdopendir,
1361     futimensat and so on) that make it possible to specify working directories
1362     per operation.
1363    
1364     For portability, and because the clowns who "designed", or shall I write,
1365     perpetrated this new interface were obviously half-drunk, this abstraction
1366     cannot be perfect, though.
1367    
1368     IO::AIO allows you to convert directory paths into a so-called IO::AIO::WD
1369     object. This object stores the canonicalised, absolute version of the
1370     path, and on systems that allow it, also a directory file descriptor.
1371    
1372     Everywhere where a pathname is accepted by IO::AIO (e.g. in C<aio_stat>
1373     or C<aio_unlink>), one can specify an array reference with an IO::AIO::WD
1374 root 1.214 object and a pathname instead (or the IO::AIO::WD object alone, which
1375     gets interpreted as C<[$wd, "."]>). If the pathname is absolute, the
1376 root 1.213 IO::AIO::WD object is ignored, otherwise the pathname is resolved relative
1377 root 1.209 to that IO::AIO::WD object.
1378    
1379     For example, to get a wd object for F</etc> and then stat F<passwd>
1380     inside, you would write:
1381    
1382     aio_wd "/etc", sub {
1383     my $etcdir = shift;
1384    
1385     # although $etcdir can be undef on error, there is generally no reason
1386     # to check for errors here, as aio_stat will fail with ENOENT
1387     # when $etcdir is undef.
1388    
1389     aio_stat [$etcdir, "passwd"], sub {
1390     # yay
1391     };
1392     };
1393    
1394 root 1.214 That C<aio_wd> is a request and not a normal function shows that creating
1395     an IO::AIO::WD object is itself a potentially blocking operation, which is
1396     why it is done asynchronously.
1397    
1398     To stat the directory obtained with C<aio_wd> above, one could write
1399     either of the following three request calls:
1400    
1401     aio_lstat "/etc" , sub { ... # pathname as normal string
1402     aio_lstat [$wd, "."], sub { ... # "." relative to $wd (i.e. $wd itself)
1403     aio_lstat $wd , sub { ... # shorthand for the previous
1404 root 1.209
1405     As with normal pathnames, IO::AIO keeps a copy of the working directory
1406     object and the pathname string, so you could write the following without
1407     causing any issues due to C<$path> getting reused:
1408    
1409     my $path = [$wd, undef];
1410    
1411     for my $name (qw(abc def ghi)) {
1412     $path->[1] = $name;
1413     aio_stat $path, sub {
1414     # ...
1415     };
1416     }
1417    
1418     There are some caveats: when directories get renamed (or deleted), the
1419     pathname string doesn't change, so will point to the new directory (or
1420     nowhere at all), while the directory fd, if available on the system,
1421     will still point to the original directory. Most functions accepting a
1422     pathname will use the directory fd on newer systems, and the string on
1423     older systems. Some functions (such as realpath) will always rely on the
1424     string form of the pathname.
1425    
1426     So this fucntionality is mainly useful to get some protection against
1427     C<chdir>, to easily get an absolute path out of a relative path for future
1428     reference, and to speed up doing many operations in the same directory
1429     (e.g. when stat'ing all files in a directory).
1430    
1431     The following functions implement this working directory abstraction:
1432    
1433     =over 4
1434    
1435     =item aio_wd $pathname, $callback->($wd)
1436    
1437     Asynchonously canonicalise the given pathname and convert it to an
1438     IO::AIO::WD object representing it. If possible and supported on the
1439     system, also open a directory fd to speed up pathname resolution relative
1440     to this working directory.
1441    
1442     If something goes wrong, then C<undef> is passwd to the callback instead
1443     of a working directory object and C<$!> is set appropriately. Since
1444     passing C<undef> as working directory component of a pathname fails the
1445     request with C<ENOENT>, there is often no need for error checking in the
1446     C<aio_wd> callback, as future requests using the value will fail in the
1447     expected way.
1448    
1449     If this call isn't available because your OS lacks it or it couldn't be
1450     detected, it will be emulated by calling C<fsync> instead.
1451    
1452     =item IO::AIO::CWD
1453    
1454     This is a compiletime constant (object) that represents the process
1455     current working directory.
1456    
1457     Specifying this object as working directory object for a pathname is as
1458     if the pathname would be specified directly, without a directory object,
1459     e.g., these calls are functionally identical:
1460    
1461     aio_stat "somefile", sub { ... };
1462     aio_stat [IO::AIO::CWD, "somefile"], sub { ... };
1463    
1464     =back
1465    
1466    
1467 root 1.53 =head2 IO::AIO::REQ CLASS
1468 root 1.52
1469     All non-aggregate C<aio_*> functions return an object of this class when
1470     called in non-void context.
1471    
1472     =over 4
1473    
1474 root 1.65 =item cancel $req
1475 root 1.52
1476     Cancels the request, if possible. Has the effect of skipping execution
1477     when entering the B<execute> state and skipping calling the callback when
1478     entering the the B<result> state, but will leave the request otherwise
1479 root 1.151 untouched (with the exception of readdir). That means that requests that
1480     currently execute will not be stopped and resources held by the request
1481     will not be freed prematurely.
1482 root 1.52
1483 root 1.65 =item cb $req $callback->(...)
1484    
1485     Replace (or simply set) the callback registered to the request.
1486    
1487 root 1.52 =back
1488    
1489 root 1.55 =head2 IO::AIO::GRP CLASS
1490    
1491     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1492     objects of this class, too.
1493    
1494     A IO::AIO::GRP object is a special request that can contain multiple other
1495     aio requests.
1496    
1497     You create one by calling the C<aio_group> constructing function with a
1498     callback that will be called when all contained requests have entered the
1499     C<done> state:
1500    
1501     my $grp = aio_group sub {
1502     print "all requests are done\n";
1503     };
1504    
1505     You add requests by calling the C<add> method with one or more
1506     C<IO::AIO::REQ> objects:
1507    
1508     $grp->add (aio_unlink "...");
1509    
1510 root 1.58 add $grp aio_stat "...", sub {
1511     $_[0] or return $grp->result ("error");
1512    
1513     # add another request dynamically, if first succeeded
1514     add $grp aio_open "...", sub {
1515     $grp->result ("ok");
1516     };
1517     };
1518 root 1.55
1519     This makes it very easy to create composite requests (see the source of
1520     C<aio_move> for an application) that work and feel like simple requests.
1521    
1522 root 1.62 =over 4
1523    
1524     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1525 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1526    
1527 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1528 root 1.59 only the request itself, but also all requests it contains.
1529 root 1.55
1530 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1531 root 1.55
1532 root 1.62 =item * You must not add requests to a group from within the group callback (or
1533 root 1.60 any later time).
1534    
1535 root 1.62 =back
1536    
1537 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1538     will finish very quickly. If they contain only requests that are in the
1539     C<done> state, they will also finish. Otherwise they will continue to
1540     exist.
1541    
1542 root 1.133 That means after creating a group you have some time to add requests
1543     (precisely before the callback has been invoked, which is only done within
1544     the C<poll_cb>). And in the callbacks of those requests, you can add
1545     further requests to the group. And only when all those requests have
1546     finished will the the group itself finish.
1547 root 1.57
1548 root 1.55 =over 4
1549    
1550 root 1.65 =item add $grp ...
1551    
1552 root 1.55 =item $grp->add (...)
1553    
1554 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1555     be added, including other groups, as long as you do not create circular
1556     dependencies.
1557    
1558     Returns all its arguments.
1559 root 1.55
1560 root 1.74 =item $grp->cancel_subs
1561    
1562     Cancel all subrequests and clears any feeder, but not the group request
1563     itself. Useful when you queued a lot of events but got a result early.
1564    
1565 root 1.168 The group request will finish normally (you cannot add requests to the
1566     group).
1567    
1568 root 1.58 =item $grp->result (...)
1569    
1570     Set the result value(s) that will be passed to the group callback when all
1571 root 1.120 subrequests have finished and set the groups errno to the current value
1572 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1573     no argument will be passed and errno is zero.
1574    
1575     =item $grp->errno ([$errno])
1576    
1577     Sets the group errno value to C<$errno>, or the current value of errno
1578     when the argument is missing.
1579    
1580     Every aio request has an associated errno value that is restored when
1581     the callback is invoked. This method lets you change this value from its
1582     default (0).
1583    
1584     Calling C<result> will also set errno, so make sure you either set C<$!>
1585     before the call to C<result>, or call c<errno> after it.
1586 root 1.58
1587 root 1.65 =item feed $grp $callback->($grp)
1588 root 1.60
1589     Sets a feeder/generator on this group: every group can have an attached
1590     generator that generates requests if idle. The idea behind this is that,
1591     although you could just queue as many requests as you want in a group,
1592 root 1.139 this might starve other requests for a potentially long time. For example,
1593 root 1.211 C<aio_scandir> might generate hundreds of thousands of C<aio_stat>
1594     requests, delaying any later requests for a long time.
1595 root 1.60
1596     To avoid this, and allow incremental generation of requests, you can
1597     instead a group and set a feeder on it that generates those requests. The
1598 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1599 root 1.60 below) requests active in the group itself and is expected to queue more
1600     requests.
1601    
1602 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1603     not impose any limits).
1604 root 1.60
1605 root 1.65 If the feed does not queue more requests when called, it will be
1606 root 1.60 automatically removed from the group.
1607    
1608 root 1.138 If the feed limit is C<0> when this method is called, it will be set to
1609     C<2> automatically.
1610 root 1.60
1611     Example:
1612    
1613     # stat all files in @files, but only ever use four aio requests concurrently:
1614    
1615     my $grp = aio_group sub { print "finished\n" };
1616 root 1.68 limit $grp 4;
1617 root 1.65 feed $grp sub {
1618 root 1.60 my $file = pop @files
1619     or return;
1620    
1621     add $grp aio_stat $file, sub { ... };
1622 root 1.65 };
1623 root 1.60
1624 root 1.68 =item limit $grp $num
1625 root 1.60
1626     Sets the feeder limit for the group: The feeder will be called whenever
1627     the group contains less than this many requests.
1628    
1629     Setting the limit to C<0> will pause the feeding process.
1630    
1631 root 1.138 The default value for the limit is C<0>, but note that setting a feeder
1632     automatically bumps it up to C<2>.
1633    
1634 root 1.55 =back
1635    
1636 root 1.5 =head2 SUPPORT FUNCTIONS
1637    
1638 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1639    
1640 root 1.5 =over 4
1641    
1642     =item $fileno = IO::AIO::poll_fileno
1643    
1644 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1645 root 1.156 polled for reading by some mechanism outside this module (e.g. EV, Glib,
1646     select and so on, see below or the SYNOPSIS). If the pipe becomes readable
1647     you have to call C<poll_cb> to check the results.
1648 root 1.5
1649     See C<poll_cb> for an example.
1650    
1651     =item IO::AIO::poll_cb
1652    
1653 root 1.191 Process some outstanding events on the result pipe. You have to call
1654     this regularly. Returns C<0> if all events could be processed (or there
1655     were no events to process), or C<-1> if it returned earlier for whatever
1656     reason. Returns immediately when no events are outstanding. The amount of
1657     events processed depends on the settings of C<IO::AIO::max_poll_req> and
1658     C<IO::AIO::max_poll_time>.
1659 root 1.5
1660 root 1.78 If not all requests were processed for whatever reason, the filehandle
1661 root 1.128 will still be ready when C<poll_cb> returns, so normally you don't have to
1662     do anything special to have it called later.
1663 root 1.78
1664 root 1.192 Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes
1665     ready, it can be beneficial to call this function from loops which submit
1666     a lot of requests, to make sure the results get processed when they become
1667     available and not just when the loop is finished and the event loop takes
1668     over again. This function returns very fast when there are no outstanding
1669     requests.
1670    
1671 root 1.20 Example: Install an Event watcher that automatically calls
1672 root 1.156 IO::AIO::poll_cb with high priority (more examples can be found in the
1673     SYNOPSIS section, at the top of this document):
1674 root 1.5
1675     Event->io (fd => IO::AIO::poll_fileno,
1676     poll => 'r', async => 1,
1677     cb => \&IO::AIO::poll_cb);
1678    
1679 root 1.175 =item IO::AIO::poll_wait
1680    
1681     If there are any outstanding requests and none of them in the result
1682     phase, wait till the result filehandle becomes ready for reading (simply
1683     does a C<select> on the filehandle. This is useful if you want to
1684     synchronously wait for some requests to finish).
1685    
1686     See C<nreqs> for an example.
1687    
1688     =item IO::AIO::poll
1689    
1690     Waits until some requests have been handled.
1691    
1692     Returns the number of requests processed, but is otherwise strictly
1693     equivalent to:
1694    
1695     IO::AIO::poll_wait, IO::AIO::poll_cb
1696    
1697     =item IO::AIO::flush
1698    
1699     Wait till all outstanding AIO requests have been handled.
1700    
1701     Strictly equivalent to:
1702    
1703     IO::AIO::poll_wait, IO::AIO::poll_cb
1704     while IO::AIO::nreqs;
1705    
1706 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1707    
1708     =item IO::AIO::max_poll_time $seconds
1709    
1710     These set the maximum number of requests (default C<0>, meaning infinity)
1711     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1712     the maximum amount of time (default C<0>, meaning infinity) spent in
1713     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1714     of time C<poll_cb> is allowed to use).
1715 root 1.78
1716 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1717     syscall per request processed, which is not normally a problem unless your
1718     callbacks are really really fast or your OS is really really slow (I am
1719     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1720    
1721 root 1.86 Setting these is useful if you want to ensure some level of
1722     interactiveness when perl is not fast enough to process all requests in
1723     time.
1724 root 1.78
1725 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
1726 root 1.78
1727     Example: Install an Event watcher that automatically calls
1728 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
1729 root 1.78 program get the CPU sometimes even under high AIO load.
1730    
1731 root 1.86 # try not to spend much more than 0.1s in poll_cb
1732     IO::AIO::max_poll_time 0.1;
1733    
1734     # use a low priority so other tasks have priority
1735 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
1736     poll => 'r', nice => 1,
1737 root 1.86 cb => &IO::AIO::poll_cb);
1738 root 1.78
1739 root 1.104 =back
1740    
1741 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
1742 root 1.13
1743 root 1.105 =over
1744    
1745 root 1.5 =item IO::AIO::min_parallel $nthreads
1746    
1747 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
1748     default is C<8>, which means eight asynchronous operations can execute
1749     concurrently at any one time (the number of outstanding requests,
1750     however, is unlimited).
1751 root 1.5
1752 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
1753 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
1754     create demand for a hundred threads, even if it turns out that everything
1755     is in the cache and could have been processed faster by a single thread.
1756 root 1.34
1757 root 1.61 It is recommended to keep the number of threads relatively low, as some
1758     Linux kernel versions will scale negatively with the number of threads
1759     (higher parallelity => MUCH higher latency). With current Linux 2.6
1760     versions, 4-32 threads should be fine.
1761 root 1.5
1762 root 1.34 Under most circumstances you don't need to call this function, as the
1763     module selects a default that is suitable for low to moderate load.
1764 root 1.5
1765     =item IO::AIO::max_parallel $nthreads
1766    
1767 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
1768     specified number of threads are currently running, this function kills
1769     them. This function blocks until the limit is reached.
1770    
1771     While C<$nthreads> are zero, aio requests get queued but not executed
1772     until the number of threads has been increased again.
1773 root 1.5
1774     This module automatically runs C<max_parallel 0> at program end, to ensure
1775     that all threads are killed and that there are no outstanding requests.
1776    
1777     Under normal circumstances you don't need to call this function.
1778    
1779 root 1.86 =item IO::AIO::max_idle $nthreads
1780    
1781 root 1.188 Limit the number of threads (default: 4) that are allowed to idle
1782     (i.e., threads that did not get a request to process within the idle
1783     timeout (default: 10 seconds). That means if a thread becomes idle while
1784     C<$nthreads> other threads are also idle, it will free its resources and
1785     exit.
1786 root 1.86
1787     This is useful when you allow a large number of threads (e.g. 100 or 1000)
1788     to allow for extremely high load situations, but want to free resources
1789     under normal circumstances (1000 threads can easily consume 30MB of RAM).
1790    
1791     The default is probably ok in most situations, especially if thread
1792     creation is fast. If thread creation is very slow on your system you might
1793     want to use larger values.
1794    
1795 root 1.188 =item IO::AIO::idle_timeout $seconds
1796    
1797     Sets the minimum idle timeout (default 10) after which worker threads are
1798     allowed to exit. SEe C<IO::AIO::max_idle>.
1799    
1800 root 1.123 =item IO::AIO::max_outstanding $maxreqs
1801 root 1.5
1802 root 1.195 Sets the maximum number of outstanding requests to C<$nreqs>. If
1803     you do queue up more than this number of requests, the next call to
1804     C<IO::AIO::poll_cb> (and other functions calling C<poll_cb>, such as
1805     C<IO::AIO::flush> or C<IO::AIO::poll>) will block until the limit is no
1806     longer exceeded.
1807    
1808     In other words, this setting does not enforce a queue limit, but can be
1809     used to make poll functions block if the limit is exceeded.
1810    
1811 root 1.79 This is a very bad function to use in interactive programs because it
1812     blocks, and a bad way to reduce concurrency because it is inexact: Better
1813     use an C<aio_group> together with a feed callback.
1814    
1815 root 1.195 It's main use is in scripts without an event loop - when you want to stat
1816     a lot of files, you can write somehting like this:
1817    
1818     IO::AIO::max_outstanding 32;
1819    
1820     for my $path (...) {
1821     aio_stat $path , ...;
1822     IO::AIO::poll_cb;
1823     }
1824    
1825     IO::AIO::flush;
1826    
1827     The call to C<poll_cb> inside the loop will normally return instantly, but
1828     as soon as more thna C<32> reqeusts are in-flight, it will block until
1829     some requests have been handled. This keeps the loop from pushing a large
1830     number of C<aio_stat> requests onto the queue.
1831    
1832     The default value for C<max_outstanding> is very large, so there is no
1833     practical limit on the number of outstanding requests.
1834 root 1.5
1835 root 1.104 =back
1836    
1837 root 1.86 =head3 STATISTICAL INFORMATION
1838    
1839 root 1.104 =over
1840    
1841 root 1.86 =item IO::AIO::nreqs
1842    
1843     Returns the number of requests currently in the ready, execute or pending
1844     states (i.e. for which their callback has not been invoked yet).
1845    
1846     Example: wait till there are no outstanding requests anymore:
1847    
1848     IO::AIO::poll_wait, IO::AIO::poll_cb
1849     while IO::AIO::nreqs;
1850    
1851     =item IO::AIO::nready
1852    
1853     Returns the number of requests currently in the ready state (not yet
1854     executed).
1855    
1856     =item IO::AIO::npending
1857    
1858     Returns the number of requests currently in the pending state (executed,
1859     but not yet processed by poll_cb).
1860    
1861 root 1.5 =back
1862    
1863 root 1.157 =head3 MISCELLANEOUS FUNCTIONS
1864    
1865     IO::AIO implements some functions that might be useful, but are not
1866     asynchronous.
1867    
1868     =over 4
1869    
1870     =item IO::AIO::sendfile $ofh, $ifh, $offset, $count
1871    
1872     Calls the C<eio_sendfile_sync> function, which is like C<aio_sendfile>,
1873     but is blocking (this makes most sense if you know the input data is
1874     likely cached already and the output filehandle is set to non-blocking
1875     operations).
1876    
1877     Returns the number of bytes copied, or C<-1> on error.
1878    
1879     =item IO::AIO::fadvise $fh, $offset, $len, $advice
1880    
1881 root 1.184 Simply calls the C<posix_fadvise> function (see its
1882 root 1.157 manpage for details). The following advice constants are
1883 root 1.207 available: C<IO::AIO::FADV_NORMAL>, C<IO::AIO::FADV_SEQUENTIAL>,
1884 root 1.157 C<IO::AIO::FADV_RANDOM>, C<IO::AIO::FADV_NOREUSE>,
1885     C<IO::AIO::FADV_WILLNEED>, C<IO::AIO::FADV_DONTNEED>.
1886    
1887     On systems that do not implement C<posix_fadvise>, this function returns
1888     ENOSYS, otherwise the return value of C<posix_fadvise>.
1889    
1890 root 1.184 =item IO::AIO::madvise $scalar, $offset, $len, $advice
1891    
1892     Simply calls the C<posix_madvise> function (see its
1893     manpage for details). The following advice constants are
1894 root 1.207 available: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
1895 root 1.184 C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>, C<IO::AIO::MADV_DONTNEED>.
1896    
1897     On systems that do not implement C<posix_madvise>, this function returns
1898     ENOSYS, otherwise the return value of C<posix_madvise>.
1899    
1900     =item IO::AIO::mprotect $scalar, $offset, $len, $protect
1901    
1902     Simply calls the C<mprotect> function on the preferably AIO::mmap'ed
1903     $scalar (see its manpage for details). The following protect
1904 root 1.207 constants are available: C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_READ>,
1905 root 1.184 C<IO::AIO::PROT_WRITE>, C<IO::AIO::PROT_EXEC>.
1906    
1907     On systems that do not implement C<mprotect>, this function returns
1908     ENOSYS, otherwise the return value of C<mprotect>.
1909    
1910 root 1.176 =item IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
1911    
1912     Memory-maps a file (or anonymous memory range) and attaches it to the
1913 root 1.228 given C<$scalar>, which will act like a string scalar. Returns true on
1914     success, and false otherwise.
1915 root 1.176
1916     The only operations allowed on the scalar are C<substr>/C<vec> that don't
1917     change the string length, and most read-only operations such as copying it
1918     or searching it with regexes and so on.
1919    
1920     Anything else is unsafe and will, at best, result in memory leaks.
1921    
1922     The memory map associated with the C<$scalar> is automatically removed
1923     when the C<$scalar> is destroyed, or when the C<IO::AIO::mmap> or
1924     C<IO::AIO::munmap> functions are called.
1925    
1926     This calls the C<mmap>(2) function internally. See your system's manual
1927     page for details on the C<$length>, C<$prot> and C<$flags> parameters.
1928    
1929     The C<$length> must be larger than zero and smaller than the actual
1930     filesize.
1931    
1932     C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
1933     C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
1934    
1935     C<$flags> can be a combination of C<IO::AIO::MAP_SHARED> or
1936     C<IO::AIO::MAP_PRIVATE>, or a number of system-specific flags (when
1937     not available, the are defined as 0): C<IO::AIO::MAP_ANONYMOUS>
1938     (which is set to C<MAP_ANON> if your system only provides this
1939     constant), C<IO::AIO::MAP_HUGETLB>, C<IO::AIO::MAP_LOCKED>,
1940     C<IO::AIO::MAP_NORESERVE>, C<IO::AIO::MAP_POPULATE> or
1941     C<IO::AIO::MAP_NONBLOCK>
1942    
1943     If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
1944    
1945 root 1.179 C<$offset> is the offset from the start of the file - it generally must be
1946     a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
1947    
1948 root 1.177 Example:
1949    
1950     use Digest::MD5;
1951     use IO::AIO;
1952    
1953     open my $fh, "<verybigfile"
1954     or die "$!";
1955    
1956     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
1957     or die "verybigfile: $!";
1958    
1959     my $fast_md5 = md5 $data;
1960    
1961 root 1.176 =item IO::AIO::munmap $scalar
1962    
1963     Removes a previous mmap and undefines the C<$scalar>.
1964    
1965 root 1.182 =item IO::AIO::munlock $scalar, $offset = 0, $length = undef
1966 root 1.174
1967 root 1.182 Calls the C<munlock> function, undoing the effects of a previous
1968     C<aio_mlock> call (see its description for details).
1969 root 1.174
1970     =item IO::AIO::munlockall
1971    
1972     Calls the C<munlockall> function.
1973    
1974     On systems that do not implement C<munlockall>, this function returns
1975     ENOSYS, otherwise the return value of C<munlockall>.
1976    
1977 root 1.225 =item IO::AIO::splice $r_fh, $r_off, $w_fh, $w_off, $length, $flags
1978    
1979     Calls the GNU/Linux C<splice(2)> syscall, if available. If C<$r_off> or
1980     C<$w_off> are C<undef>, then C<NULL> is passed for these, otherwise they
1981     should be the file offset.
1982    
1983 root 1.227 C<$r_fh> and C<$w_fh> should not refer to the same file, as splice might
1984     silently corrupt the data in this case.
1985    
1986 root 1.225 The following symbol flag values are available: C<IO::AIO::SPLICE_F_MOVE>,
1987     C<IO::AIO::SPLICE_F_NONBLOCK>, C<IO::AIO::SPLICE_F_MORE> and
1988     C<IO::AIO::SPLICE_F_GIFT>.
1989    
1990     See the C<splice(2)> manpage for details.
1991    
1992     =item IO::AIO::tee $r_fh, $w_fh, $length, $flags
1993    
1994     Calls the GNU/Linux C<tee(2)> syscall, see it's manpage and the
1995     description for C<IO::AIO::splice> above for details.
1996    
1997 root 1.157 =back
1998    
1999 root 1.1 =cut
2000    
2001 root 1.61 min_parallel 8;
2002 root 1.1
2003 root 1.95 END { flush }
2004 root 1.82
2005 root 1.1 1;
2006    
2007 root 1.175 =head1 EVENT LOOP INTEGRATION
2008    
2009     It is recommended to use L<AnyEvent::AIO> to integrate IO::AIO
2010     automatically into many event loops:
2011    
2012     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
2013     use AnyEvent::AIO;
2014    
2015     You can also integrate IO::AIO manually into many event loops, here are
2016     some examples of how to do this:
2017    
2018     # EV integration
2019     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
2020    
2021     # Event integration
2022     Event->io (fd => IO::AIO::poll_fileno,
2023     poll => 'r',
2024     cb => \&IO::AIO::poll_cb);
2025    
2026     # Glib/Gtk2 integration
2027     add_watch Glib::IO IO::AIO::poll_fileno,
2028     in => sub { IO::AIO::poll_cb; 1 };
2029    
2030     # Tk integration
2031     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
2032     readable => \&IO::AIO::poll_cb);
2033    
2034     # Danga::Socket integration
2035     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
2036     \&IO::AIO::poll_cb);
2037    
2038 root 1.27 =head2 FORK BEHAVIOUR
2039    
2040 root 1.197 Usage of pthreads in a program changes the semantics of fork
2041     considerably. Specifically, only async-safe functions can be called after
2042     fork. Perl doesn't know about this, so in general, you cannot call fork
2043 root 1.204 with defined behaviour in perl if pthreads are involved. IO::AIO uses
2044     pthreads, so this applies, but many other extensions and (for inexplicable
2045     reasons) perl itself often is linked against pthreads, so this limitation
2046     applies to quite a lot of perls.
2047    
2048     This module no longer tries to fight your OS, or POSIX. That means IO::AIO
2049     only works in the process that loaded it. Forking is fully supported, but
2050     using IO::AIO in the child is not.
2051    
2052     You might get around by not I<using> IO::AIO before (or after)
2053     forking. You could also try to call the L<IO::AIO::reinit> function in the
2054     child:
2055    
2056     =over 4
2057    
2058     =item IO::AIO::reinit
2059    
2060 root 1.207 Abandons all current requests and I/O threads and simply reinitialises all
2061     data structures. This is not an operation supported by any standards, but
2062 root 1.204 happens to work on GNU/Linux and some newer BSD systems.
2063    
2064     The only reasonable use for this function is to call it after forking, if
2065     C<IO::AIO> was used in the parent. Calling it while IO::AIO is active in
2066     the process will result in undefined behaviour. Calling it at any time
2067     will also result in any undefined (by POSIX) behaviour.
2068    
2069     =back
2070 root 1.52
2071 root 1.60 =head2 MEMORY USAGE
2072    
2073 root 1.72 Per-request usage:
2074    
2075     Each aio request uses - depending on your architecture - around 100-200
2076     bytes of memory. In addition, stat requests need a stat buffer (possibly
2077     a few hundred bytes), readdir requires a result buffer and so on. Perl
2078     scalars and other data passed into aio requests will also be locked and
2079     will consume memory till the request has entered the done state.
2080 root 1.60
2081 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
2082 root 1.60 problem.
2083    
2084 root 1.72 Per-thread usage:
2085    
2086     In the execution phase, some aio requests require more memory for
2087     temporary buffers, and each thread requires a stack and other data
2088     structures (usually around 16k-128k, depending on the OS).
2089    
2090     =head1 KNOWN BUGS
2091    
2092 root 1.73 Known bugs will be fixed in the next release.
2093 root 1.60
2094 root 1.1 =head1 SEE ALSO
2095    
2096 root 1.125 L<AnyEvent::AIO> for easy integration into event loops, L<Coro::AIO> for a
2097     more natural syntax.
2098 root 1.1
2099     =head1 AUTHOR
2100    
2101     Marc Lehmann <schmorp@schmorp.de>
2102     http://home.schmorp.de/
2103    
2104     =cut
2105