ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.261
Committed: Sat May 21 04:43:31 2016 UTC (8 years ago) by root
Branch: MAIN
Changes since 1.260: +2 -2 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3     IO::AIO - Asynchronous Input/Output
4    
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.1 =head1 DESCRIPTION
32    
33     This module implements asynchronous I/O using whatever means your
34 root 1.156 operating system supports. It is implemented as an interface to C<libeio>
35     (L<http://software.schmorp.de/pkg/libeio.html>).
36 root 1.1
37 root 1.85 Asynchronous means that operations that can normally block your program
38     (e.g. reading from disk) will be done asynchronously: the operation
39     will still block, but you can do something else in the meantime. This
40     is extremely useful for programs that need to stay interactive even
41     when doing heavy I/O (GUI programs, high performance network servers
42     etc.), but can also be used to easily do operations in parallel that are
43     normally done sequentially, e.g. stat'ing many files, which is much faster
44     on a RAID volume or over NFS when you do a number of stat operations
45     concurrently.
46    
47 root 1.108 While most of this works on all types of file descriptors (for
48     example sockets), using these functions on file descriptors that
49 root 1.156 support nonblocking operation (again, sockets, pipes etc.) is
50     very inefficient. Use an event loop for that (such as the L<EV>
51 root 1.108 module): IO::AIO will naturally fit into such an event loop itself.
52 root 1.85
53 root 1.72 In this version, a number of threads are started that execute your
54     requests and signal their completion. You don't need thread support
55     in perl, and the threads created by this module will not be visible
56     to perl. In the future, this module might make use of the native aio
57     functions available on many operating systems. However, they are often
58 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
59 root 1.72 files currently, for example), and they would only support aio_read and
60     aio_write, so the remaining functionality would have to be implemented
61     using threads anyway.
62    
63 root 1.108 Although the module will work in the presence of other (Perl-) threads,
64     it is currently not reentrant in any way, so use appropriate locking
65     yourself, always call C<poll_cb> from within the same thread, or never
66     call C<poll_cb> (or other C<aio_> functions) recursively.
67 root 1.72
68 root 1.86 =head2 EXAMPLE
69    
70 root 1.156 This is a simple example that uses the EV module and loads
71 root 1.86 F</etc/passwd> asynchronously:
72    
73 root 1.156 use EV;
74 root 1.86 use IO::AIO;
75    
76 root 1.156 # register the IO::AIO callback with EV
77     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
78 root 1.86
79     # queue the request to open /etc/passwd
80 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
81 root 1.94 my $fh = shift
82 root 1.86 or die "error while opening: $!";
83    
84     # stat'ing filehandles is generally non-blocking
85     my $size = -s $fh;
86    
87     # queue a request to read the file
88     my $contents;
89     aio_read $fh, 0, $size, $contents, 0, sub {
90     $_[0] == $size
91     or die "short read: $!";
92    
93     close $fh;
94    
95     # file contents now in $contents
96     print $contents;
97    
98     # exit event loop and program
99 root 1.257 EV::break;
100 root 1.86 };
101     };
102    
103     # possibly queue up other requests, or open GUI windows,
104     # check for sockets etc. etc.
105    
106     # process events as long as there are some:
107 root 1.257 EV::run;
108 root 1.86
109 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
110    
111     Every C<aio_*> function creates a request. which is a C data structure not
112     directly visible to Perl.
113    
114     If called in non-void context, every request function returns a Perl
115     object representing the request. In void context, nothing is returned,
116     which saves a bit of memory.
117    
118     The perl object is a fairly standard ref-to-hash object. The hash contents
119     are not used by IO::AIO so you are free to store anything you like in it.
120    
121     During their existance, aio requests travel through the following states,
122     in order:
123    
124     =over 4
125    
126     =item ready
127    
128     Immediately after a request is created it is put into the ready state,
129     waiting for a thread to execute it.
130    
131     =item execute
132    
133     A thread has accepted the request for processing and is currently
134     executing it (e.g. blocking in read).
135    
136     =item pending
137    
138     The request has been executed and is waiting for result processing.
139    
140     While request submission and execution is fully asynchronous, result
141     processing is not and relies on the perl interpreter calling C<poll_cb>
142     (or another function with the same effect).
143    
144     =item result
145    
146     The request results are processed synchronously by C<poll_cb>.
147    
148     The C<poll_cb> function will process all outstanding aio requests by
149     calling their callbacks, freeing memory associated with them and managing
150     any groups they are contained in.
151    
152     =item done
153    
154     Request has reached the end of its lifetime and holds no resources anymore
155     (except possibly for the Perl object, but its connection to the actual
156     aio request is severed and calling its methods will either do nothing or
157     result in a runtime error).
158 root 1.1
159 root 1.88 =back
160    
161 root 1.1 =cut
162    
163     package IO::AIO;
164    
165 root 1.117 use Carp ();
166    
167 root 1.161 use common::sense;
168 root 1.23
169 root 1.1 use base 'Exporter';
170    
171     BEGIN {
172 root 1.260 our $VERSION = 4.34;
173 root 1.1
174 root 1.220 our @AIO_REQ = qw(aio_sendfile aio_seek aio_read aio_write aio_open aio_close
175 root 1.148 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
176 root 1.259 aio_scandir aio_symlink aio_readlink aio_realpath aio_fcntl aio_ioctl
177     aio_sync aio_fsync aio_syncfs aio_fdatasync aio_sync_file_range
178     aio_pathsync aio_readahead aio_fiemap aio_allocate
179 root 1.120 aio_rename aio_link aio_move aio_copy aio_group
180     aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
181 root 1.170 aio_chmod aio_utime aio_truncate
182 root 1.182 aio_msync aio_mtouch aio_mlock aio_mlockall
183 root 1.208 aio_statvfs
184     aio_wd);
185 root 1.120
186 root 1.123 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice));
187 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
188 root 1.188 min_parallel max_parallel max_idle idle_timeout
189 root 1.86 nreqs nready npending nthreads
190 root 1.157 max_poll_time max_poll_reqs
191 root 1.182 sendfile fadvise madvise
192     mmap munmap munlock munlockall);
193 root 1.1
194 root 1.143 push @AIO_REQ, qw(aio_busy); # not exported
195    
196 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
197    
198 root 1.1 require XSLoader;
199 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
200 root 1.1 }
201    
202 root 1.5 =head1 FUNCTIONS
203 root 1.1
204 root 1.175 =head2 QUICK OVERVIEW
205    
206 root 1.230 This section simply lists the prototypes most of the functions for
207     quick reference. See the following sections for function-by-function
208 root 1.175 documentation.
209    
210 root 1.208 aio_wd $pathname, $callback->($wd)
211 root 1.175 aio_open $pathname, $flags, $mode, $callback->($fh)
212     aio_close $fh, $callback->($status)
213 root 1.220 aio_seek $fh,$offset,$whence, $callback->($offs)
214 root 1.175 aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
215     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
216     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
217     aio_readahead $fh,$offset,$length, $callback->($retval)
218     aio_stat $fh_or_path, $callback->($status)
219     aio_lstat $fh, $callback->($status)
220     aio_statvfs $fh_or_path, $callback->($statvfs)
221     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
222     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
223 root 1.220 aio_chmod $fh_or_path, $mode, $callback->($status)
224 root 1.175 aio_truncate $fh_or_path, $offset, $callback->($status)
225 root 1.229 aio_allocate $fh, $mode, $offset, $len, $callback->($status)
226 root 1.230 aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
227 root 1.175 aio_unlink $pathname, $callback->($status)
228 root 1.209 aio_mknod $pathname, $mode, $dev, $callback->($status)
229 root 1.175 aio_link $srcpath, $dstpath, $callback->($status)
230     aio_symlink $srcpath, $dstpath, $callback->($status)
231 root 1.209 aio_readlink $pathname, $callback->($link)
232 root 1.249 aio_realpath $pathname, $callback->($path)
233 root 1.175 aio_rename $srcpath, $dstpath, $callback->($status)
234     aio_mkdir $pathname, $mode, $callback->($status)
235     aio_rmdir $pathname, $callback->($status)
236     aio_readdir $pathname, $callback->($entries)
237     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
238     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
239     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
240 root 1.215 aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
241 root 1.209 aio_load $pathname, $data, $callback->($status)
242 root 1.175 aio_copy $srcpath, $dstpath, $callback->($status)
243     aio_move $srcpath, $dstpath, $callback->($status)
244 root 1.209 aio_rmtree $pathname, $callback->($status)
245 root 1.259 aio_fcntl $fh, $cmd, $arg, $callback->($status)
246     aio_ioctl $fh, $request, $buf, $callback->($status)
247 root 1.175 aio_sync $callback->($status)
248 root 1.206 aio_syncfs $fh, $callback->($status)
249 root 1.175 aio_fsync $fh, $callback->($status)
250     aio_fdatasync $fh, $callback->($status)
251     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
252 root 1.209 aio_pathsync $pathname, $callback->($status)
253 root 1.175 aio_msync $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
254     aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
255 root 1.182 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
256     aio_mlockall $flags, $callback->($status)
257 root 1.175 aio_group $callback->(...)
258     aio_nop $callback->()
259    
260     $prev_pri = aioreq_pri [$pri]
261     aioreq_nice $pri_adjust
262    
263     IO::AIO::poll_wait
264     IO::AIO::poll_cb
265     IO::AIO::poll
266     IO::AIO::flush
267     IO::AIO::max_poll_reqs $nreqs
268     IO::AIO::max_poll_time $seconds
269     IO::AIO::min_parallel $nthreads
270     IO::AIO::max_parallel $nthreads
271     IO::AIO::max_idle $nthreads
272 root 1.188 IO::AIO::idle_timeout $seconds
273 root 1.175 IO::AIO::max_outstanding $maxreqs
274     IO::AIO::nreqs
275     IO::AIO::nready
276     IO::AIO::npending
277    
278     IO::AIO::sendfile $ofh, $ifh, $offset, $count
279     IO::AIO::fadvise $fh, $offset, $len, $advice
280 root 1.226 IO::AIO::mmap $scalar, $length, $prot, $flags[, $fh[, $offset]]
281     IO::AIO::munmap $scalar
282 root 1.184 IO::AIO::madvise $scalar, $offset, $length, $advice
283     IO::AIO::mprotect $scalar, $offset, $length, $protect
284 root 1.182 IO::AIO::munlock $scalar, $offset = 0, $length = undef
285 root 1.175 IO::AIO::munlockall
286    
287 root 1.219 =head2 API NOTES
288 root 1.1
289 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
290     with the same name (sans C<aio_>). The arguments are similar or identical,
291 root 1.14 and they all accept an additional (and optional) C<$callback> argument
292 root 1.212 which must be a code reference. This code reference will be called after
293     the syscall has been executed in an asynchronous fashion. The results
294     of the request will be passed as arguments to the callback (and, if an
295     error occured, in C<$!>) - for most requests the syscall return code (e.g.
296     most syscalls return C<-1> on error, unlike perl, which usually delivers
297     "false").
298    
299     Some requests (such as C<aio_readdir>) pass the actual results and
300     communicate failures by passing C<undef>.
301 root 1.1
302 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
303     internally until the request has finished.
304 root 1.1
305 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
306     further manipulation of those requests while they are in-flight.
307 root 1.52
308 root 1.209 The pathnames you pass to these routines I<should> be absolute. The
309     reason for this is that at the time the request is being executed, the
310 root 1.212 current working directory could have changed. Alternatively, you can
311     make sure that you never change the current working directory anywhere
312     in the program and then use relative paths. You can also take advantage
313     of IO::AIOs working directory abstraction, that lets you specify paths
314     relative to some previously-opened "working directory object" - see the
315     description of the C<IO::AIO::WD> class later in this document.
316 root 1.28
317 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
318     in filenames you got from outside (command line, readdir etc.) without
319 root 1.212 tinkering, b) are in your native filesystem encoding, c) use the Encode
320     module and encode your pathnames to the locale (or other) encoding in
321     effect in the user environment, d) use Glib::filename_from_unicode on
322     unicode filenames or e) use something else to ensure your scalar has the
323     correct contents.
324 root 1.87
325     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
326 root 1.136 handles correctly whether it is set or not.
327 root 1.1
328 root 1.219 =head2 AIO REQUEST FUNCTIONS
329    
330 root 1.5 =over 4
331 root 1.1
332 root 1.80 =item $prev_pri = aioreq_pri [$pri]
333 root 1.68
334 root 1.80 Returns the priority value that would be used for the next request and, if
335     C<$pri> is given, sets the priority for the next aio request.
336 root 1.68
337 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
338     and C<4>, respectively. Requests with higher priority will be serviced
339     first.
340    
341     The priority will be reset to C<0> after each call to one of the C<aio_*>
342 root 1.68 functions.
343    
344 root 1.69 Example: open a file with low priority, then read something from it with
345     higher priority so the read request is serviced before other low priority
346     open requests (potentially spamming the cache):
347    
348     aioreq_pri -3;
349     aio_open ..., sub {
350     return unless $_[0];
351    
352     aioreq_pri -2;
353     aio_read $_[0], ..., sub {
354     ...
355     };
356     };
357    
358 root 1.106
359 root 1.69 =item aioreq_nice $pri_adjust
360    
361     Similar to C<aioreq_pri>, but subtracts the given value from the current
362 root 1.87 priority, so the effect is cumulative.
363 root 1.69
364 root 1.106
365 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
366 root 1.1
367 root 1.2 Asynchronously open or create a file and call the callback with a newly
368 root 1.233 created filehandle for the file (or C<undef> in case of an error).
369 root 1.1
370     The pathname passed to C<aio_open> must be absolute. See API NOTES, above,
371     for an explanation.
372    
373 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
374     list. They are the same as used by C<sysopen>.
375    
376     Likewise, C<$mode> specifies the mode of the newly created file, if it
377     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
378     except that it is mandatory (i.e. use C<0> if you don't create new files,
379 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
380     by the umask in effect then the request is being executed, so better never
381     change the umask.
382 root 1.1
383     Example:
384    
385 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
386 root 1.2 if ($_[0]) {
387     print "open successful, fh is $_[0]\n";
388 root 1.1 ...
389     } else {
390     die "open failed: $!\n";
391     }
392     };
393    
394 root 1.194 In addition to all the common open modes/flags (C<O_RDONLY>, C<O_WRONLY>,
395     C<O_RDWR>, C<O_CREAT>, C<O_TRUNC>, C<O_EXCL> and C<O_APPEND>), the
396     following POSIX and non-POSIX constants are available (missing ones on
397     your system are, as usual, C<0>):
398    
399     C<O_ASYNC>, C<O_DIRECT>, C<O_NOATIME>, C<O_CLOEXEC>, C<O_NOCTTY>, C<O_NOFOLLOW>,
400     C<O_NONBLOCK>, C<O_EXEC>, C<O_SEARCH>, C<O_DIRECTORY>, C<O_DSYNC>,
401 root 1.255 C<O_RSYNC>, C<O_SYNC>, C<O_PATH>, C<O_TMPFILE>, and C<O_TTY_INIT>.
402 root 1.194
403 root 1.106
404 root 1.40 =item aio_close $fh, $callback->($status)
405 root 1.1
406 root 1.2 Asynchronously close a file and call the callback with the result
407 root 1.116 code.
408    
409 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
410 root 1.121 closing the file descriptor associated with the filehandle itself.
411 root 1.117
412 root 1.121 Therefore, C<aio_close> will not close the filehandle - instead it will
413     use dup2 to overwrite the file descriptor with the write-end of a pipe
414     (the pipe fd will be created on demand and will be cached).
415 root 1.117
416 root 1.121 Or in other words: the file descriptor will be closed, but it will not be
417     free for reuse until the perl filehandle is closed.
418 root 1.117
419     =cut
420    
421 root 1.220 =item aio_seek $fh, $offset, $whence, $callback->($offs)
422    
423 root 1.221 Seeks the filehandle to the new C<$offset>, similarly to perl's
424 root 1.220 C<sysseek>. The C<$whence> can use the traditional values (C<0> for
425     C<IO::AIO::SEEK_SET>, C<1> for C<IO::AIO::SEEK_CUR> or C<2> for
426     C<IO::AIO::SEEK_END>).
427    
428     The resulting absolute offset will be passed to the callback, or C<-1> in
429     case of an error.
430    
431     In theory, the C<$whence> constants could be different than the
432     corresponding values from L<Fcntl>, but perl guarantees they are the same,
433     so don't panic.
434    
435 root 1.225 As a GNU/Linux (and maybe Solaris) extension, also the constants
436     C<IO::AIO::SEEK_DATA> and C<IO::AIO::SEEK_HOLE> are available, if they
437     could be found. No guarantees about suitability for use in C<aio_seek> or
438     Perl's C<sysseek> can be made though, although I would naively assume they
439     "just work".
440    
441 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
442 root 1.1
443 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
444 root 1.1
445 root 1.145 Reads or writes C<$length> bytes from or to the specified C<$fh> and
446     C<$offset> into the scalar given by C<$data> and offset C<$dataoffset>
447     and calls the callback without the actual number of bytes read (or -1 on
448     error, just like the syscall).
449 root 1.109
450 root 1.146 C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
451     offset plus the actual number of bytes read.
452    
453 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
454     be used (and updated), otherwise the file descriptor offset will not be
455     changed by these calls.
456 root 1.109
457 root 1.145 If C<$length> is undefined in C<aio_write>, use the remaining length of
458     C<$data>.
459 root 1.109
460     If C<$dataoffset> is less than zero, it will be counted from the end of
461     C<$data>.
462 root 1.1
463 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
464 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
465     the necessary/optional hardware is installed).
466 root 1.31
467 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
468 root 1.1 offset C<0> within the scalar:
469    
470     aio_read $fh, 7, 15, $buffer, 0, sub {
471 root 1.9 $_[0] > 0 or die "read error: $!";
472     print "read $_[0] bytes: <$buffer>\n";
473 root 1.1 };
474    
475 root 1.106
476 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
477 root 1.35
478     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
479     reading at byte offset C<$in_offset>, and starts writing at the current
480     file offset of C<$out_fh>. Because of that, it is not safe to issue more
481     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
482 root 1.196 other. The same C<$in_fh> works fine though, as this function does not
483     move or use the file offset of C<$in_fh>.
484 root 1.35
485 root 1.185 Please note that C<aio_sendfile> can read more bytes from C<$in_fh> than
486 root 1.196 are written, and there is no way to find out how many more bytes have been
487     read from C<aio_sendfile> alone, as C<aio_sendfile> only provides the
488     number of bytes written to C<$out_fh>. Only if the result value equals
489     C<$length> one can assume that C<$length> bytes have been read.
490 root 1.185
491     Unlike with other C<aio_> functions, it makes a lot of sense to use
492     C<aio_sendfile> on non-blocking sockets, as long as one end (typically
493     the C<$in_fh>) is a file - the file I/O will then be asynchronous, while
494 root 1.196 the socket I/O will be non-blocking. Note, however, that you can run
495     into a trap where C<aio_sendfile> reads some data with readahead, then
496     fails to write all data, and when the socket is ready the next time, the
497     data in the cache is already lost, forcing C<aio_sendfile> to again hit
498     the disk. Explicit C<aio_read> + C<aio_write> let's you better control
499     resource usage.
500    
501     This call tries to make use of a native C<sendfile>-like syscall to
502     provide zero-copy operation. For this to work, C<$out_fh> should refer to
503     a socket, and C<$in_fh> should refer to an mmap'able file.
504 root 1.35
505 root 1.170 If a native sendfile cannot be found or it fails with C<ENOSYS>,
506 root 1.196 C<EINVAL>, C<ENOTSUP>, C<EOPNOTSUPP>, C<EAFNOSUPPORT>, C<EPROTOTYPE> or
507     C<ENOTSOCK>, it will be emulated, so you can call C<aio_sendfile> on any
508     type of filehandle regardless of the limitations of the operating system.
509    
510     As native sendfile syscalls (as practically any non-POSIX interface hacked
511     together in a hurry to improve benchmark numbers) tend to be rather buggy
512     on many systems, this implementation tries to work around some known bugs
513     in Linux and FreeBSD kernels (probably others, too), but that might fail,
514     so you really really should check the return value of C<aio_sendfile> -
515     fewre bytes than expected might have been transferred.
516 root 1.35
517 root 1.106
518 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
519 root 1.1
520 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
521 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
522     argument specifies the starting point from which data is to be read and
523     C<$length> specifies the number of bytes to be read. I/O is performed in
524     whole pages, so that offset is effectively rounded down to a page boundary
525     and bytes are read up to the next page boundary greater than or equal to
526 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
527 root 1.1 file. The current file offset of the file is left unchanged.
528    
529 root 1.261 If that syscall doesn't exist (likely if your kernel isn't Linux) it will
530     be emulated by simply reading the data, which would have a similar effect.
531 root 1.26
532 root 1.106
533 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
534 root 1.1
535 root 1.40 =item aio_lstat $fh, $callback->($status)
536 root 1.1
537     Works like perl's C<stat> or C<lstat> in void context. The callback will
538     be called after the stat and the results will be available using C<stat _>
539     or C<-s _> etc...
540    
541     The pathname passed to C<aio_stat> must be absolute. See API NOTES, above,
542     for an explanation.
543    
544     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
545     error when stat'ing a large file, the results will be silently truncated
546     unless perl itself is compiled with large file support.
547    
548 root 1.187 To help interpret the mode and dev/rdev stat values, IO::AIO offers the
549     following constants and functions (if not implemented, the constants will
550     be C<0> and the functions will either C<croak> or fall back on traditional
551     behaviour).
552    
553     C<S_IFMT>, C<S_IFIFO>, C<S_IFCHR>, C<S_IFBLK>, C<S_IFLNK>, C<S_IFREG>,
554     C<S_IFDIR>, C<S_IFWHT>, C<S_IFSOCK>, C<IO::AIO::major $dev_t>,
555     C<IO::AIO::minor $dev_t>, C<IO::AIO::makedev $major, $minor>.
556    
557 root 1.1 Example: Print the length of F</etc/passwd>:
558    
559     aio_stat "/etc/passwd", sub {
560     $_[0] and die "stat failed: $!";
561     print "size is ", -s _, "\n";
562     };
563    
564 root 1.106
565 root 1.175 =item aio_statvfs $fh_or_path, $callback->($statvfs)
566 root 1.172
567     Works like the POSIX C<statvfs> or C<fstatvfs> syscalls, depending on
568     whether a file handle or path was passed.
569    
570     On success, the callback is passed a hash reference with the following
571     members: C<bsize>, C<frsize>, C<blocks>, C<bfree>, C<bavail>, C<files>,
572     C<ffree>, C<favail>, C<fsid>, C<flag> and C<namemax>. On failure, C<undef>
573     is passed.
574    
575     The following POSIX IO::AIO::ST_* constants are defined: C<ST_RDONLY> and
576     C<ST_NOSUID>.
577    
578     The following non-POSIX IO::AIO::ST_* flag masks are defined to
579     their correct value when available, or to C<0> on systems that do
580     not support them: C<ST_NODEV>, C<ST_NOEXEC>, C<ST_SYNCHRONOUS>,
581     C<ST_MANDLOCK>, C<ST_WRITE>, C<ST_APPEND>, C<ST_IMMUTABLE>, C<ST_NOATIME>,
582     C<ST_NODIRATIME> and C<ST_RELATIME>.
583    
584     Example: stat C</wd> and dump out the data if successful.
585    
586     aio_statvfs "/wd", sub {
587     my $f = $_[0]
588     or die "statvfs: $!";
589    
590     use Data::Dumper;
591     say Dumper $f;
592     };
593    
594     # result:
595     {
596     bsize => 1024,
597     bfree => 4333064312,
598     blocks => 10253828096,
599     files => 2050765568,
600     flag => 4096,
601     favail => 2042092649,
602     bavail => 4333064312,
603     ffree => 2042092649,
604     namemax => 255,
605     frsize => 1024,
606     fsid => 1810
607     }
608    
609 root 1.244 Here is a (likely partial - send me updates!) list of fsid values used by
610     Linux - it is safe to hardcode these when C<$^O> is C<linux>:
611 root 1.235
612     0x0000adf5 adfs
613     0x0000adff affs
614     0x5346414f afs
615     0x09041934 anon-inode filesystem
616     0x00000187 autofs
617     0x42465331 befs
618     0x1badface bfs
619     0x42494e4d binfmt_misc
620     0x9123683e btrfs
621     0x0027e0eb cgroupfs
622     0xff534d42 cifs
623     0x73757245 coda
624     0x012ff7b7 coh
625     0x28cd3d45 cramfs
626     0x453dcd28 cramfs-wend (wrong endianness)
627     0x64626720 debugfs
628     0x00001373 devfs
629     0x00001cd1 devpts
630     0x0000f15f ecryptfs
631     0x00414a53 efs
632     0x0000137d ext
633 root 1.257 0x0000ef53 ext2/ext3/ext4
634 root 1.235 0x0000ef51 ext2
635 root 1.257 0xf2f52010 f2fs
636 root 1.235 0x00004006 fat
637     0x65735546 fuseblk
638     0x65735543 fusectl
639     0x0bad1dea futexfs
640     0x01161970 gfs2
641     0x47504653 gpfs
642     0x00004244 hfs
643     0xf995e849 hpfs
644 root 1.257 0x00c0ffee hostfs
645 root 1.235 0x958458f6 hugetlbfs
646     0x2bad1dea inotifyfs
647     0x00009660 isofs
648     0x000072b6 jffs2
649     0x3153464a jfs
650     0x6b414653 k-afs
651     0x0bd00bd0 lustre
652     0x0000137f minix
653     0x0000138f minix 30 char names
654     0x00002468 minix v2
655     0x00002478 minix v2 30 char names
656     0x00004d5a minix v3
657     0x19800202 mqueue
658     0x00004d44 msdos
659     0x0000564c novell
660     0x00006969 nfs
661     0x6e667364 nfsd
662     0x00003434 nilfs
663     0x5346544e ntfs
664     0x00009fa1 openprom
665     0x7461636F ocfs2
666     0x00009fa0 proc
667     0x6165676c pstorefs
668     0x0000002f qnx4
669 root 1.257 0x68191122 qnx6
670 root 1.235 0x858458f6 ramfs
671     0x52654973 reiserfs
672     0x00007275 romfs
673     0x67596969 rpc_pipefs
674     0x73636673 securityfs
675     0xf97cff8c selinux
676     0x0000517b smb
677     0x534f434b sockfs
678     0x73717368 squashfs
679     0x62656572 sysfs
680     0x012ff7b6 sysv2
681     0x012ff7b5 sysv4
682     0x01021994 tmpfs
683     0x15013346 udf
684     0x00011954 ufs
685     0x54190100 ufs byteswapped
686     0x00009fa2 usbdevfs
687     0x01021997 v9fs
688     0xa501fcf5 vxfs
689     0xabba1974 xenfs
690     0x012ff7b4 xenix
691     0x58465342 xfs
692     0x012fd16d xia
693 root 1.172
694 root 1.106 =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
695    
696     Works like perl's C<utime> function (including the special case of $atime
697     and $mtime being undef). Fractional times are supported if the underlying
698     syscalls support them.
699    
700     When called with a pathname, uses utimes(2) if available, otherwise
701     utime(2). If called on a file descriptor, uses futimes(2) if available,
702     otherwise returns ENOSYS, so this is not portable.
703    
704     Examples:
705    
706 root 1.107 # set atime and mtime to current time (basically touch(1)):
707 root 1.106 aio_utime "path", undef, undef;
708     # set atime to current time and mtime to beginning of the epoch:
709     aio_utime "path", time, undef; # undef==0
710    
711    
712     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
713    
714     Works like perl's C<chown> function, except that C<undef> for either $uid
715     or $gid is being interpreted as "do not change" (but -1 can also be used).
716    
717     Examples:
718    
719     # same as "chown root path" in the shell:
720     aio_chown "path", 0, -1;
721     # same as above:
722     aio_chown "path", 0, undef;
723    
724    
725 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
726    
727     Works like truncate(2) or ftruncate(2).
728    
729    
730 root 1.229 =item aio_allocate $fh, $mode, $offset, $len, $callback->($status)
731    
732 root 1.249 Allocates or frees disk space according to the C<$mode> argument. See the
733     linux C<fallocate> documentation for details.
734 root 1.229
735 root 1.252 C<$mode> is usually C<0> or C<IO::AIO::FALLOC_FL_KEEP_SIZE> to allocate
736     space, or C<IO::AIO::FALLOC_FL_PUNCH_HOLE | IO::AIO::FALLOC_FL_KEEP_SIZE>,
737     to deallocate a file range.
738    
739     IO::AIO also supports C<FALLOC_FL_COLLAPSE_RANGE>, to remove a range
740     (without leaving a hole) and C<FALLOC_FL_ZERO_RANGE>, to zero a range (see
741     your L<fallocate(2)> manpage).
742 root 1.229
743     The file system block size used by C<fallocate> is presumably the
744     C<f_bsize> returned by C<statvfs>.
745    
746     If C<fallocate> isn't available or cannot be emulated (currently no
747     emulation will be attempted), passes C<-1> and sets C<$!> to C<ENOSYS>.
748    
749    
750 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
751    
752     Works like perl's C<chmod> function.
753    
754    
755 root 1.40 =item aio_unlink $pathname, $callback->($status)
756 root 1.1
757     Asynchronously unlink (delete) a file and call the callback with the
758     result code.
759    
760 root 1.106
761 root 1.209 =item aio_mknod $pathname, $mode, $dev, $callback->($status)
762 root 1.82
763 root 1.86 [EXPERIMENTAL]
764    
765 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
766    
767 root 1.86 The only (POSIX-) portable way of calling this function is:
768 root 1.83
769 root 1.209 aio_mknod $pathname, IO::AIO::S_IFIFO | $mode, 0, sub { ...
770 root 1.82
771 root 1.187 See C<aio_stat> for info about some potentially helpful extra constants
772     and functions.
773 root 1.106
774 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
775    
776     Asynchronously create a new link to the existing object at C<$srcpath> at
777     the path C<$dstpath> and call the callback with the result code.
778    
779 root 1.106
780 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
781    
782     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
783     the path C<$dstpath> and call the callback with the result code.
784    
785 root 1.106
786 root 1.209 =item aio_readlink $pathname, $callback->($link)
787 root 1.90
788     Asynchronously read the symlink specified by C<$path> and pass it to
789     the callback. If an error occurs, nothing or undef gets passed to the
790     callback.
791    
792 root 1.106
793 root 1.209 =item aio_realpath $pathname, $callback->($path)
794 root 1.201
795     Asynchronously make the path absolute and resolve any symlinks in
796 root 1.239 C<$path>. The resulting path only consists of directories (same as
797 root 1.202 L<Cwd::realpath>).
798 root 1.201
799     This request can be used to get the absolute path of the current working
800     directory by passing it a path of F<.> (a single dot).
801    
802    
803 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
804    
805     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
806     rename(2) and call the callback with the result code.
807    
808 root 1.241 On systems that support the AIO::WD working directory abstraction
809     natively, the case C<[$wd, "."]> as C<$srcpath> is specialcased - instead
810     of failing, C<rename> is called on the absolute path of C<$wd>.
811    
812 root 1.106
813 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
814    
815     Asynchronously mkdir (create) a directory and call the callback with
816     the result code. C<$mode> will be modified by the umask at the time the
817     request is executed, so do not change your umask.
818    
819 root 1.106
820 root 1.40 =item aio_rmdir $pathname, $callback->($status)
821 root 1.27
822     Asynchronously rmdir (delete) a directory and call the callback with the
823     result code.
824    
825 root 1.241 On systems that support the AIO::WD working directory abstraction
826     natively, the case C<[$wd, "."]> is specialcased - instead of failing,
827     C<rmdir> is called on the absolute path of C<$wd>.
828    
829 root 1.106
830 root 1.46 =item aio_readdir $pathname, $callback->($entries)
831 root 1.37
832     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
833     directory (i.e. opendir + readdir + closedir). The entries will not be
834     sorted, and will B<NOT> include the C<.> and C<..> entries.
835    
836 root 1.148 The callback is passed a single argument which is either C<undef> or an
837     array-ref with the filenames.
838    
839    
840     =item aio_readdirx $pathname, $flags, $callback->($entries, $flags)
841    
842 root 1.207 Quite similar to C<aio_readdir>, but the C<$flags> argument allows one to
843     tune behaviour and output format. In case of an error, C<$entries> will be
844 root 1.148 C<undef>.
845    
846     The flags are a combination of the following constants, ORed together (the
847     flags will also be passed to the callback, possibly modified):
848    
849     =over 4
850    
851 root 1.150 =item IO::AIO::READDIR_DENTS
852 root 1.148
853 root 1.190 When this flag is off, then the callback gets an arrayref consisting of
854     names only (as with C<aio_readdir>), otherwise it gets an arrayref with
855 root 1.150 C<[$name, $type, $inode]> arrayrefs, each describing a single directory
856 root 1.148 entry in more detail.
857    
858     C<$name> is the name of the entry.
859    
860 root 1.150 C<$type> is one of the C<IO::AIO::DT_xxx> constants:
861 root 1.148
862 root 1.150 C<IO::AIO::DT_UNKNOWN>, C<IO::AIO::DT_FIFO>, C<IO::AIO::DT_CHR>, C<IO::AIO::DT_DIR>,
863     C<IO::AIO::DT_BLK>, C<IO::AIO::DT_REG>, C<IO::AIO::DT_LNK>, C<IO::AIO::DT_SOCK>,
864     C<IO::AIO::DT_WHT>.
865 root 1.148
866 root 1.150 C<IO::AIO::DT_UNKNOWN> means just that: readdir does not know. If you need to
867 root 1.148 know, you have to run stat yourself. Also, for speed reasons, the C<$type>
868     scalars are read-only: you can not modify them.
869    
870 root 1.150 C<$inode> is the inode number (which might not be exact on systems with 64
871 root 1.155 bit inode numbers and 32 bit perls). This field has unspecified content on
872     systems that do not deliver the inode information.
873 root 1.150
874     =item IO::AIO::READDIR_DIRS_FIRST
875 root 1.148
876     When this flag is set, then the names will be returned in an order where
877 root 1.193 likely directories come first, in optimal stat order. This is useful when
878     you need to quickly find directories, or you want to find all directories
879     while avoiding to stat() each entry.
880 root 1.148
881 root 1.149 If the system returns type information in readdir, then this is used
882 root 1.193 to find directories directly. Otherwise, likely directories are names
883     beginning with ".", or otherwise names with no dots, of which names with
884 root 1.149 short names are tried first.
885    
886 root 1.150 =item IO::AIO::READDIR_STAT_ORDER
887 root 1.148
888     When this flag is set, then the names will be returned in an order
889     suitable for stat()'ing each one. That is, when you plan to stat()
890     all files in the given directory, then the returned order will likely
891     be fastest.
892    
893 root 1.150 If both this flag and C<IO::AIO::READDIR_DIRS_FIRST> are specified, then
894     the likely dirs come first, resulting in a less optimal stat order.
895 root 1.148
896 root 1.150 =item IO::AIO::READDIR_FOUND_UNKNOWN
897 root 1.148
898     This flag should not be set when calling C<aio_readdirx>. Instead, it
899     is being set by C<aio_readdirx>, when any of the C<$type>'s found were
900 root 1.207 C<IO::AIO::DT_UNKNOWN>. The absence of this flag therefore indicates that all
901 root 1.148 C<$type>'s are known, which can be used to speed up some algorithms.
902    
903     =back
904 root 1.37
905 root 1.106
906 root 1.209 =item aio_load $pathname, $data, $callback->($status)
907 root 1.98
908     This is a composite request that tries to fully load the given file into
909     memory. Status is the same as with aio_read.
910    
911     =cut
912    
913     sub aio_load($$;$) {
914 root 1.123 my ($path, undef, $cb) = @_;
915     my $data = \$_[1];
916 root 1.98
917 root 1.123 my $pri = aioreq_pri;
918     my $grp = aio_group $cb;
919    
920     aioreq_pri $pri;
921     add $grp aio_open $path, O_RDONLY, 0, sub {
922     my $fh = shift
923     or return $grp->result (-1);
924 root 1.98
925     aioreq_pri $pri;
926 root 1.123 add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
927     $grp->result ($_[0]);
928 root 1.98 };
929 root 1.123 };
930 root 1.98
931 root 1.123 $grp
932 root 1.98 }
933    
934 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
935    
936     Try to copy the I<file> (directories not supported as either source or
937     destination) from C<$srcpath> to C<$dstpath> and call the callback with
938 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
939 root 1.82
940 root 1.134 This is a composite request that creates the destination file with
941 root 1.82 mode 0200 and copies the contents of the source file into it using
942     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
943     uid/gid, in that order.
944    
945     If an error occurs, the partial destination file will be unlinked, if
946     possible, except when setting atime, mtime, access mode and uid/gid, where
947     errors are being ignored.
948    
949     =cut
950    
951     sub aio_copy($$;$) {
952 root 1.123 my ($src, $dst, $cb) = @_;
953 root 1.82
954 root 1.123 my $pri = aioreq_pri;
955     my $grp = aio_group $cb;
956 root 1.82
957 root 1.123 aioreq_pri $pri;
958     add $grp aio_open $src, O_RDONLY, 0, sub {
959     if (my $src_fh = $_[0]) {
960 root 1.166 my @stat = stat $src_fh; # hmm, might block over nfs?
961 root 1.95
962 root 1.123 aioreq_pri $pri;
963     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
964     if (my $dst_fh = $_[0]) {
965     aioreq_pri $pri;
966     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
967     if ($_[0] == $stat[7]) {
968     $grp->result (0);
969     close $src_fh;
970    
971 root 1.147 my $ch = sub {
972     aioreq_pri $pri;
973     add $grp aio_chmod $dst_fh, $stat[2] & 07777, sub {
974     aioreq_pri $pri;
975     add $grp aio_chown $dst_fh, $stat[4], $stat[5], sub {
976     aioreq_pri $pri;
977     add $grp aio_close $dst_fh;
978     }
979     };
980     };
981 root 1.123
982     aioreq_pri $pri;
983 root 1.147 add $grp aio_utime $dst_fh, $stat[8], $stat[9], sub {
984     if ($_[0] < 0 && $! == ENOSYS) {
985     aioreq_pri $pri;
986     add $grp aio_utime $dst, $stat[8], $stat[9], $ch;
987     } else {
988     $ch->();
989     }
990     };
991 root 1.123 } else {
992     $grp->result (-1);
993     close $src_fh;
994     close $dst_fh;
995    
996     aioreq $pri;
997     add $grp aio_unlink $dst;
998     }
999     };
1000     } else {
1001     $grp->result (-1);
1002     }
1003     },
1004 root 1.82
1005 root 1.123 } else {
1006     $grp->result (-1);
1007     }
1008     };
1009 root 1.82
1010 root 1.123 $grp
1011 root 1.82 }
1012    
1013     =item aio_move $srcpath, $dstpath, $callback->($status)
1014    
1015     Try to move the I<file> (directories not supported as either source or
1016     destination) from C<$srcpath> to C<$dstpath> and call the callback with
1017 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
1018 root 1.82
1019 root 1.137 This is a composite request that tries to rename(2) the file first; if
1020     rename fails with C<EXDEV>, it copies the file with C<aio_copy> and, if
1021     that is successful, unlinks the C<$srcpath>.
1022 root 1.82
1023     =cut
1024    
1025     sub aio_move($$;$) {
1026 root 1.123 my ($src, $dst, $cb) = @_;
1027 root 1.82
1028 root 1.123 my $pri = aioreq_pri;
1029     my $grp = aio_group $cb;
1030 root 1.82
1031 root 1.123 aioreq_pri $pri;
1032     add $grp aio_rename $src, $dst, sub {
1033     if ($_[0] && $! == EXDEV) {
1034     aioreq_pri $pri;
1035     add $grp aio_copy $src, $dst, sub {
1036     $grp->result ($_[0]);
1037 root 1.95
1038 root 1.196 unless ($_[0]) {
1039 root 1.123 aioreq_pri $pri;
1040     add $grp aio_unlink $src;
1041     }
1042     };
1043     } else {
1044     $grp->result ($_[0]);
1045     }
1046     };
1047 root 1.82
1048 root 1.123 $grp
1049 root 1.82 }
1050    
1051 root 1.209 =item aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
1052 root 1.40
1053 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
1054 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
1055     names, directories you can recurse into (directories), and ones you cannot
1056     recurse into (everything else, including symlinks to directories).
1057 root 1.52
1058 root 1.61 C<aio_scandir> is a composite request that creates of many sub requests_
1059     C<$maxreq> specifies the maximum number of outstanding aio requests that
1060     this function generates. If it is C<< <= 0 >>, then a suitable default
1061 root 1.81 will be chosen (currently 4).
1062 root 1.40
1063     On error, the callback is called without arguments, otherwise it receives
1064     two array-refs with path-relative entry names.
1065    
1066     Example:
1067    
1068     aio_scandir $dir, 0, sub {
1069     my ($dirs, $nondirs) = @_;
1070     print "real directories: @$dirs\n";
1071     print "everything else: @$nondirs\n";
1072     };
1073    
1074     Implementation notes.
1075    
1076     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
1077    
1078 root 1.149 If readdir returns file type information, then this is used directly to
1079     find directories.
1080    
1081     Otherwise, after reading the directory, the modification time, size etc.
1082     of the directory before and after the readdir is checked, and if they
1083     match (and isn't the current time), the link count will be used to decide
1084     how many entries are directories (if >= 2). Otherwise, no knowledge of the
1085     number of subdirectories will be assumed.
1086    
1087     Then entries will be sorted into likely directories a non-initial dot
1088     currently) and likely non-directories (see C<aio_readdirx>). Then every
1089     entry plus an appended C</.> will be C<stat>'ed, likely directories first,
1090     in order of their inode numbers. If that succeeds, it assumes that the
1091     entry is a directory or a symlink to directory (which will be checked
1092 root 1.207 separately). This is often faster than stat'ing the entry itself because
1093 root 1.52 filesystems might detect the type of the entry without reading the inode
1094 root 1.149 data (e.g. ext2fs filetype feature), even on systems that cannot return
1095     the filetype information on readdir.
1096 root 1.52
1097     If the known number of directories (link count - 2) has been reached, the
1098     rest of the entries is assumed to be non-directories.
1099    
1100     This only works with certainty on POSIX (= UNIX) filesystems, which
1101     fortunately are the vast majority of filesystems around.
1102    
1103     It will also likely work on non-POSIX filesystems with reduced efficiency
1104     as those tend to return 0 or 1 as link counts, which disables the
1105     directory counting heuristic.
1106 root 1.40
1107     =cut
1108    
1109 root 1.100 sub aio_scandir($$;$) {
1110 root 1.123 my ($path, $maxreq, $cb) = @_;
1111    
1112     my $pri = aioreq_pri;
1113 root 1.40
1114 root 1.123 my $grp = aio_group $cb;
1115 root 1.80
1116 root 1.123 $maxreq = 4 if $maxreq <= 0;
1117 root 1.55
1118 root 1.210 # get a wd object
1119 root 1.123 aioreq_pri $pri;
1120 root 1.210 add $grp aio_wd $path, sub {
1121 root 1.212 $_[0]
1122     or return $grp->result ();
1123    
1124 root 1.210 my $wd = [shift, "."];
1125 root 1.40
1126 root 1.210 # stat once
1127 root 1.80 aioreq_pri $pri;
1128 root 1.210 add $grp aio_stat $wd, sub {
1129     return $grp->result () if $_[0];
1130     my $now = time;
1131     my $hash1 = join ":", (stat _)[0,1,3,7,9];
1132 root 1.40
1133 root 1.210 # read the directory entries
1134 root 1.80 aioreq_pri $pri;
1135 root 1.210 add $grp aio_readdirx $wd, READDIR_DIRS_FIRST, sub {
1136     my $entries = shift
1137     or return $grp->result ();
1138    
1139     # stat the dir another time
1140     aioreq_pri $pri;
1141     add $grp aio_stat $wd, sub {
1142     my $hash2 = join ":", (stat _)[0,1,3,7,9];
1143 root 1.95
1144 root 1.210 my $ndirs;
1145 root 1.95
1146 root 1.210 # take the slow route if anything looks fishy
1147     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
1148     $ndirs = -1;
1149     } else {
1150     # if nlink == 2, we are finished
1151     # for non-posix-fs's, we rely on nlink < 2
1152     $ndirs = (stat _)[3] - 2
1153     or return $grp->result ([], $entries);
1154     }
1155 root 1.123
1156 root 1.210 my (@dirs, @nondirs);
1157 root 1.40
1158 root 1.210 my $statgrp = add $grp aio_group sub {
1159     $grp->result (\@dirs, \@nondirs);
1160     };
1161 root 1.40
1162 root 1.210 limit $statgrp $maxreq;
1163     feed $statgrp sub {
1164     return unless @$entries;
1165     my $entry = shift @$entries;
1166    
1167     aioreq_pri $pri;
1168     $wd->[1] = "$entry/.";
1169     add $statgrp aio_stat $wd, sub {
1170     if ($_[0] < 0) {
1171     push @nondirs, $entry;
1172     } else {
1173     # need to check for real directory
1174     aioreq_pri $pri;
1175     $wd->[1] = $entry;
1176     add $statgrp aio_lstat $wd, sub {
1177     if (-d _) {
1178     push @dirs, $entry;
1179    
1180     unless (--$ndirs) {
1181     push @nondirs, @$entries;
1182     feed $statgrp;
1183     }
1184     } else {
1185     push @nondirs, $entry;
1186 root 1.74 }
1187 root 1.40 }
1188     }
1189 root 1.210 };
1190 root 1.74 };
1191 root 1.40 };
1192     };
1193     };
1194 root 1.123 };
1195 root 1.55
1196 root 1.123 $grp
1197 root 1.40 }
1198    
1199 root 1.209 =item aio_rmtree $pathname, $callback->($status)
1200 root 1.99
1201 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
1202 root 1.239 status of the final C<rmdir> only. This is a composite request that
1203 root 1.100 uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1204     everything else.
1205 root 1.99
1206     =cut
1207    
1208     sub aio_rmtree;
1209 root 1.100 sub aio_rmtree($;$) {
1210 root 1.123 my ($path, $cb) = @_;
1211 root 1.99
1212 root 1.123 my $pri = aioreq_pri;
1213     my $grp = aio_group $cb;
1214 root 1.99
1215 root 1.123 aioreq_pri $pri;
1216     add $grp aio_scandir $path, 0, sub {
1217     my ($dirs, $nondirs) = @_;
1218 root 1.99
1219 root 1.123 my $dirgrp = aio_group sub {
1220     add $grp aio_rmdir $path, sub {
1221     $grp->result ($_[0]);
1222 root 1.99 };
1223 root 1.123 };
1224 root 1.99
1225 root 1.123 (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
1226     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
1227 root 1.99
1228 root 1.123 add $grp $dirgrp;
1229     };
1230 root 1.99
1231 root 1.123 $grp
1232 root 1.99 }
1233    
1234 root 1.259 =item aio_fcntl $fh, $cmd, $arg, $callback->($status)
1235    
1236     =item aio_ioctl $fh, $request, $buf, $callback->($status)
1237    
1238     These work just like the C<fcntl> and C<ioctl> built-in functions, except
1239     they execute asynchronously and pass the return value to the callback.
1240    
1241     Both calls can be used for a lot of things, some of which make more sense
1242     to run asynchronously in their own thread, while some others make less
1243     sense. For example, calls that block waiting for external events, such
1244     as locking, will also lock down an I/O thread while it is waiting, which
1245     can deadlock the whole I/O system. At the same time, there might be no
1246     alternative to using a thread to wait.
1247    
1248     So in general, you should only use these calls for things that do
1249     (filesystem) I/O, not for things that wait for other events (network,
1250     other processes), although if you are careful and know what you are doing,
1251     you still can.
1252    
1253 root 1.119 =item aio_sync $callback->($status)
1254    
1255     Asynchronously call sync and call the callback when finished.
1256    
1257 root 1.40 =item aio_fsync $fh, $callback->($status)
1258 root 1.1
1259     Asynchronously call fsync on the given filehandle and call the callback
1260     with the fsync result code.
1261    
1262 root 1.40 =item aio_fdatasync $fh, $callback->($status)
1263 root 1.1
1264     Asynchronously call fdatasync on the given filehandle and call the
1265 root 1.26 callback with the fdatasync result code.
1266    
1267     If this call isn't available because your OS lacks it or it couldn't be
1268     detected, it will be emulated by calling C<fsync> instead.
1269 root 1.1
1270 root 1.206 =item aio_syncfs $fh, $callback->($status)
1271    
1272     Asynchronously call the syncfs syscall to sync the filesystem associated
1273     to the given filehandle and call the callback with the syncfs result
1274     code. If syncfs is not available, calls sync(), but returns C<-1> and sets
1275     errno to C<ENOSYS> nevertheless.
1276    
1277 root 1.142 =item aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
1278    
1279     Sync the data portion of the file specified by C<$offset> and C<$length>
1280     to disk (but NOT the metadata), by calling the Linux-specific
1281     sync_file_range call. If sync_file_range is not available or it returns
1282     ENOSYS, then fdatasync or fsync is being substituted.
1283    
1284     C<$flags> can be a combination of C<IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE>,
1285     C<IO::AIO::SYNC_FILE_RANGE_WRITE> and
1286     C<IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER>: refer to the sync_file_range
1287     manpage for details.
1288    
1289 root 1.209 =item aio_pathsync $pathname, $callback->($status)
1290 root 1.120
1291     This request tries to open, fsync and close the given path. This is a
1292 root 1.135 composite request intended to sync directories after directory operations
1293 root 1.120 (E.g. rename). This might not work on all operating systems or have any
1294     specific effect, but usually it makes sure that directory changes get
1295     written to disc. It works for anything that can be opened for read-only,
1296     not just directories.
1297    
1298 root 1.162 Future versions of this function might fall back to other methods when
1299     C<fsync> on the directory fails (such as calling C<sync>).
1300    
1301 root 1.120 Passes C<0> when everything went ok, and C<-1> on error.
1302    
1303     =cut
1304    
1305     sub aio_pathsync($;$) {
1306 root 1.123 my ($path, $cb) = @_;
1307    
1308     my $pri = aioreq_pri;
1309     my $grp = aio_group $cb;
1310 root 1.120
1311 root 1.123 aioreq_pri $pri;
1312     add $grp aio_open $path, O_RDONLY, 0, sub {
1313     my ($fh) = @_;
1314     if ($fh) {
1315     aioreq_pri $pri;
1316     add $grp aio_fsync $fh, sub {
1317     $grp->result ($_[0]);
1318 root 1.120
1319     aioreq_pri $pri;
1320 root 1.123 add $grp aio_close $fh;
1321     };
1322     } else {
1323     $grp->result (-1);
1324     }
1325     };
1326 root 1.120
1327 root 1.123 $grp
1328 root 1.120 }
1329    
1330 root 1.170 =item aio_msync $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1331    
1332     This is a rather advanced IO::AIO call, which only works on mmap(2)ed
1333 root 1.176 scalars (see the C<IO::AIO::mmap> function, although it also works on data
1334     scalars managed by the L<Sys::Mmap> or L<Mmap> modules, note that the
1335     scalar must only be modified in-place while an aio operation is pending on
1336     it).
1337 root 1.170
1338     It calls the C<msync> function of your OS, if available, with the memory
1339     area starting at C<$offset> in the string and ending C<$length> bytes
1340     later. If C<$length> is negative, counts from the end, and if C<$length>
1341     is C<undef>, then it goes till the end of the string. The flags can be
1342     a combination of C<IO::AIO::MS_ASYNC>, C<IO::AIO::MS_INVALIDATE> and
1343     C<IO::AIO::MS_SYNC>.
1344    
1345     =item aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1346    
1347     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1348     scalars.
1349    
1350     It touches (reads or writes) all memory pages in the specified
1351 root 1.239 range inside the scalar. All caveats and parameters are the same
1352 root 1.170 as for C<aio_msync>, above, except for flags, which must be either
1353     C<0> (which reads all pages and ensures they are instantiated) or
1354 root 1.239 C<IO::AIO::MT_MODIFY>, which modifies the memory pages (by reading and
1355 root 1.170 writing an octet from it, which dirties the page).
1356    
1357 root 1.182 =item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1358    
1359     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1360     scalars.
1361    
1362     It reads in all the pages of the underlying storage into memory (if any)
1363     and locks them, so they are not getting swapped/paged out or removed.
1364    
1365     If C<$length> is undefined, then the scalar will be locked till the end.
1366    
1367     On systems that do not implement C<mlock>, this function returns C<-1>
1368     and sets errno to C<ENOSYS>.
1369    
1370     Note that the corresponding C<munlock> is synchronous and is
1371     documented under L<MISCELLANEOUS FUNCTIONS>.
1372    
1373 root 1.183 Example: open a file, mmap and mlock it - both will be undone when
1374     C<$data> gets destroyed.
1375    
1376     open my $fh, "<", $path or die "$path: $!";
1377     my $data;
1378     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1379     aio_mlock $data; # mlock in background
1380    
1381 root 1.182 =item aio_mlockall $flags, $callback->($status)
1382    
1383     Calls the C<mlockall> function with the given C<$flags> (a combination of
1384     C<IO::AIO::MCL_CURRENT> and C<IO::AIO::MCL_FUTURE>).
1385    
1386     On systems that do not implement C<mlockall>, this function returns C<-1>
1387     and sets errno to C<ENOSYS>.
1388    
1389     Note that the corresponding C<munlockall> is synchronous and is
1390     documented under L<MISCELLANEOUS FUNCTIONS>.
1391    
1392 root 1.183 Example: asynchronously lock all current and future pages into memory.
1393    
1394     aio_mlockall IO::AIO::MCL_FUTURE;
1395    
1396 root 1.223 =item aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
1397    
1398 root 1.234 Queries the extents of the given file (by calling the Linux C<FIEMAP>
1399     ioctl, see L<http://cvs.schmorp.de/IO-AIO/doc/fiemap.txt> for details). If
1400     the ioctl is not available on your OS, then this request will fail with
1401 root 1.223 C<ENOSYS>.
1402    
1403     C<$start> is the starting offset to query extents for, C<$length> is the
1404     size of the range to query - if it is C<undef>, then the whole file will
1405     be queried.
1406    
1407     C<$flags> is a combination of flags (C<IO::AIO::FIEMAP_FLAG_SYNC> or
1408     C<IO::AIO::FIEMAP_FLAG_XATTR> - C<IO::AIO::FIEMAP_FLAGS_COMPAT> is also
1409     exported), and is normally C<0> or C<IO::AIO::FIEMAP_FLAG_SYNC> to query
1410     the data portion.
1411    
1412     C<$count> is the maximum number of extent records to return. If it is
1413 root 1.232 C<undef>, then IO::AIO queries all extents of the range. As a very special
1414 root 1.223 case, if it is C<0>, then the callback receives the number of extents
1415 root 1.232 instead of the extents themselves (which is unreliable, see below).
1416 root 1.223
1417     If an error occurs, the callback receives no arguments. The special
1418     C<errno> value C<IO::AIO::EBADR> is available to test for flag errors.
1419    
1420     Otherwise, the callback receives an array reference with extent
1421     structures. Each extent structure is an array reference itself, with the
1422     following members:
1423    
1424     [$logical, $physical, $length, $flags]
1425    
1426     Flags is any combination of the following flag values (typically either C<0>
1427 root 1.231 or C<IO::AIO::FIEMAP_EXTENT_LAST> (1)):
1428 root 1.223
1429     C<IO::AIO::FIEMAP_EXTENT_LAST>, C<IO::AIO::FIEMAP_EXTENT_UNKNOWN>,
1430     C<IO::AIO::FIEMAP_EXTENT_DELALLOC>, C<IO::AIO::FIEMAP_EXTENT_ENCODED>,
1431     C<IO::AIO::FIEMAP_EXTENT_DATA_ENCRYPTED>, C<IO::AIO::FIEMAP_EXTENT_NOT_ALIGNED>,
1432     C<IO::AIO::FIEMAP_EXTENT_DATA_INLINE>, C<IO::AIO::FIEMAP_EXTENT_DATA_TAIL>,
1433     C<IO::AIO::FIEMAP_EXTENT_UNWRITTEN>, C<IO::AIO::FIEMAP_EXTENT_MERGED> or
1434     C<IO::AIO::FIEMAP_EXTENT_SHARED>.
1435    
1436 root 1.232 At the time of this writing (Linux 3.2), this requets is unreliable unless
1437     C<$count> is C<undef>, as the kernel has all sorts of bugs preventing
1438     it to return all extents of a range for files with large number of
1439     extents. The code works around all these issues if C<$count> is undef.
1440    
1441 root 1.58 =item aio_group $callback->(...)
1442 root 1.54
1443 root 1.55 This is a very special aio request: Instead of doing something, it is a
1444     container for other aio requests, which is useful if you want to bundle
1445 root 1.71 many requests into a single, composite, request with a definite callback
1446     and the ability to cancel the whole request with its subrequests.
1447 root 1.55
1448     Returns an object of class L<IO::AIO::GRP>. See its documentation below
1449     for more info.
1450    
1451     Example:
1452    
1453     my $grp = aio_group sub {
1454     print "all stats done\n";
1455     };
1456    
1457     add $grp
1458     (aio_stat ...),
1459     (aio_stat ...),
1460     ...;
1461    
1462 root 1.63 =item aio_nop $callback->()
1463    
1464     This is a special request - it does nothing in itself and is only used for
1465     side effects, such as when you want to add a dummy request to a group so
1466     that finishing the requests in the group depends on executing the given
1467     code.
1468    
1469 root 1.64 While this request does nothing, it still goes through the execution
1470     phase and still requires a worker thread. Thus, the callback will not
1471     be executed immediately but only after other requests in the queue have
1472     entered their execution phase. This can be used to measure request
1473     latency.
1474    
1475 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1476 root 1.54
1477     Mainly used for debugging and benchmarking, this aio request puts one of
1478     the request workers to sleep for the given time.
1479    
1480 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1481 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1482     immense (it blocks a thread for a long time) so do not use this function
1483     except to put your application under artificial I/O pressure.
1484 root 1.56
1485 root 1.5 =back
1486    
1487 root 1.209
1488     =head2 IO::AIO::WD - multiple working directories
1489    
1490     Your process only has one current working directory, which is used by all
1491     threads. This makes it hard to use relative paths (some other component
1492     could call C<chdir> at any time, and it is hard to control when the path
1493     will be used by IO::AIO).
1494    
1495     One solution for this is to always use absolute paths. This usually works,
1496     but can be quite slow (the kernel has to walk the whole path on every
1497     access), and can also be a hassle to implement.
1498    
1499     Newer POSIX systems have a number of functions (openat, fdopendir,
1500     futimensat and so on) that make it possible to specify working directories
1501     per operation.
1502    
1503     For portability, and because the clowns who "designed", or shall I write,
1504     perpetrated this new interface were obviously half-drunk, this abstraction
1505     cannot be perfect, though.
1506    
1507     IO::AIO allows you to convert directory paths into a so-called IO::AIO::WD
1508     object. This object stores the canonicalised, absolute version of the
1509     path, and on systems that allow it, also a directory file descriptor.
1510    
1511     Everywhere where a pathname is accepted by IO::AIO (e.g. in C<aio_stat>
1512     or C<aio_unlink>), one can specify an array reference with an IO::AIO::WD
1513 root 1.214 object and a pathname instead (or the IO::AIO::WD object alone, which
1514     gets interpreted as C<[$wd, "."]>). If the pathname is absolute, the
1515 root 1.213 IO::AIO::WD object is ignored, otherwise the pathname is resolved relative
1516 root 1.209 to that IO::AIO::WD object.
1517    
1518     For example, to get a wd object for F</etc> and then stat F<passwd>
1519     inside, you would write:
1520    
1521     aio_wd "/etc", sub {
1522     my $etcdir = shift;
1523    
1524     # although $etcdir can be undef on error, there is generally no reason
1525     # to check for errors here, as aio_stat will fail with ENOENT
1526     # when $etcdir is undef.
1527    
1528     aio_stat [$etcdir, "passwd"], sub {
1529     # yay
1530     };
1531     };
1532    
1533 root 1.250 The fact that C<aio_wd> is a request and not a normal function shows that
1534     creating an IO::AIO::WD object is itself a potentially blocking operation,
1535     which is why it is done asynchronously.
1536 root 1.214
1537     To stat the directory obtained with C<aio_wd> above, one could write
1538     either of the following three request calls:
1539    
1540     aio_lstat "/etc" , sub { ... # pathname as normal string
1541     aio_lstat [$wd, "."], sub { ... # "." relative to $wd (i.e. $wd itself)
1542     aio_lstat $wd , sub { ... # shorthand for the previous
1543 root 1.209
1544     As with normal pathnames, IO::AIO keeps a copy of the working directory
1545     object and the pathname string, so you could write the following without
1546     causing any issues due to C<$path> getting reused:
1547    
1548     my $path = [$wd, undef];
1549    
1550     for my $name (qw(abc def ghi)) {
1551     $path->[1] = $name;
1552     aio_stat $path, sub {
1553     # ...
1554     };
1555     }
1556    
1557     There are some caveats: when directories get renamed (or deleted), the
1558     pathname string doesn't change, so will point to the new directory (or
1559     nowhere at all), while the directory fd, if available on the system,
1560     will still point to the original directory. Most functions accepting a
1561     pathname will use the directory fd on newer systems, and the string on
1562     older systems. Some functions (such as realpath) will always rely on the
1563     string form of the pathname.
1564    
1565 root 1.239 So this functionality is mainly useful to get some protection against
1566 root 1.209 C<chdir>, to easily get an absolute path out of a relative path for future
1567     reference, and to speed up doing many operations in the same directory
1568     (e.g. when stat'ing all files in a directory).
1569    
1570     The following functions implement this working directory abstraction:
1571    
1572     =over 4
1573    
1574     =item aio_wd $pathname, $callback->($wd)
1575    
1576     Asynchonously canonicalise the given pathname and convert it to an
1577     IO::AIO::WD object representing it. If possible and supported on the
1578     system, also open a directory fd to speed up pathname resolution relative
1579     to this working directory.
1580    
1581     If something goes wrong, then C<undef> is passwd to the callback instead
1582     of a working directory object and C<$!> is set appropriately. Since
1583     passing C<undef> as working directory component of a pathname fails the
1584     request with C<ENOENT>, there is often no need for error checking in the
1585     C<aio_wd> callback, as future requests using the value will fail in the
1586     expected way.
1587    
1588     =item IO::AIO::CWD
1589    
1590     This is a compiletime constant (object) that represents the process
1591     current working directory.
1592    
1593 root 1.239 Specifying this object as working directory object for a pathname is as if
1594     the pathname would be specified directly, without a directory object. For
1595     example, these calls are functionally identical:
1596 root 1.209
1597     aio_stat "somefile", sub { ... };
1598     aio_stat [IO::AIO::CWD, "somefile"], sub { ... };
1599    
1600     =back
1601    
1602 root 1.239 To recover the path associated with an IO::AIO::WD object, you can use
1603     C<aio_realpath>:
1604    
1605     aio_realpath $wd, sub {
1606     warn "path is $_[0]\n";
1607     };
1608    
1609 root 1.241 Currently, C<aio_statvfs> always, and C<aio_rename> and C<aio_rmdir>
1610     sometimes, fall back to using an absolue path.
1611 root 1.209
1612 root 1.53 =head2 IO::AIO::REQ CLASS
1613 root 1.52
1614     All non-aggregate C<aio_*> functions return an object of this class when
1615     called in non-void context.
1616    
1617     =over 4
1618    
1619 root 1.65 =item cancel $req
1620 root 1.52
1621     Cancels the request, if possible. Has the effect of skipping execution
1622     when entering the B<execute> state and skipping calling the callback when
1623     entering the the B<result> state, but will leave the request otherwise
1624 root 1.151 untouched (with the exception of readdir). That means that requests that
1625     currently execute will not be stopped and resources held by the request
1626     will not be freed prematurely.
1627 root 1.52
1628 root 1.65 =item cb $req $callback->(...)
1629    
1630     Replace (or simply set) the callback registered to the request.
1631    
1632 root 1.52 =back
1633    
1634 root 1.55 =head2 IO::AIO::GRP CLASS
1635    
1636     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1637     objects of this class, too.
1638    
1639     A IO::AIO::GRP object is a special request that can contain multiple other
1640     aio requests.
1641    
1642     You create one by calling the C<aio_group> constructing function with a
1643     callback that will be called when all contained requests have entered the
1644     C<done> state:
1645    
1646     my $grp = aio_group sub {
1647     print "all requests are done\n";
1648     };
1649    
1650     You add requests by calling the C<add> method with one or more
1651     C<IO::AIO::REQ> objects:
1652    
1653     $grp->add (aio_unlink "...");
1654    
1655 root 1.58 add $grp aio_stat "...", sub {
1656     $_[0] or return $grp->result ("error");
1657    
1658     # add another request dynamically, if first succeeded
1659     add $grp aio_open "...", sub {
1660     $grp->result ("ok");
1661     };
1662     };
1663 root 1.55
1664     This makes it very easy to create composite requests (see the source of
1665     C<aio_move> for an application) that work and feel like simple requests.
1666    
1667 root 1.62 =over 4
1668    
1669     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1670 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1671    
1672 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1673 root 1.59 only the request itself, but also all requests it contains.
1674 root 1.55
1675 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1676 root 1.55
1677 root 1.62 =item * You must not add requests to a group from within the group callback (or
1678 root 1.60 any later time).
1679    
1680 root 1.62 =back
1681    
1682 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1683     will finish very quickly. If they contain only requests that are in the
1684     C<done> state, they will also finish. Otherwise they will continue to
1685     exist.
1686    
1687 root 1.133 That means after creating a group you have some time to add requests
1688     (precisely before the callback has been invoked, which is only done within
1689     the C<poll_cb>). And in the callbacks of those requests, you can add
1690     further requests to the group. And only when all those requests have
1691     finished will the the group itself finish.
1692 root 1.57
1693 root 1.55 =over 4
1694    
1695 root 1.65 =item add $grp ...
1696    
1697 root 1.55 =item $grp->add (...)
1698    
1699 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1700     be added, including other groups, as long as you do not create circular
1701     dependencies.
1702    
1703     Returns all its arguments.
1704 root 1.55
1705 root 1.74 =item $grp->cancel_subs
1706    
1707     Cancel all subrequests and clears any feeder, but not the group request
1708     itself. Useful when you queued a lot of events but got a result early.
1709    
1710 root 1.168 The group request will finish normally (you cannot add requests to the
1711     group).
1712    
1713 root 1.58 =item $grp->result (...)
1714    
1715     Set the result value(s) that will be passed to the group callback when all
1716 root 1.120 subrequests have finished and set the groups errno to the current value
1717 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1718     no argument will be passed and errno is zero.
1719    
1720     =item $grp->errno ([$errno])
1721    
1722     Sets the group errno value to C<$errno>, or the current value of errno
1723     when the argument is missing.
1724    
1725     Every aio request has an associated errno value that is restored when
1726     the callback is invoked. This method lets you change this value from its
1727     default (0).
1728    
1729     Calling C<result> will also set errno, so make sure you either set C<$!>
1730     before the call to C<result>, or call c<errno> after it.
1731 root 1.58
1732 root 1.65 =item feed $grp $callback->($grp)
1733 root 1.60
1734     Sets a feeder/generator on this group: every group can have an attached
1735     generator that generates requests if idle. The idea behind this is that,
1736     although you could just queue as many requests as you want in a group,
1737 root 1.139 this might starve other requests for a potentially long time. For example,
1738 root 1.211 C<aio_scandir> might generate hundreds of thousands of C<aio_stat>
1739     requests, delaying any later requests for a long time.
1740 root 1.60
1741     To avoid this, and allow incremental generation of requests, you can
1742     instead a group and set a feeder on it that generates those requests. The
1743 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1744 root 1.60 below) requests active in the group itself and is expected to queue more
1745     requests.
1746    
1747 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1748     not impose any limits).
1749 root 1.60
1750 root 1.65 If the feed does not queue more requests when called, it will be
1751 root 1.60 automatically removed from the group.
1752    
1753 root 1.138 If the feed limit is C<0> when this method is called, it will be set to
1754     C<2> automatically.
1755 root 1.60
1756     Example:
1757    
1758     # stat all files in @files, but only ever use four aio requests concurrently:
1759    
1760     my $grp = aio_group sub { print "finished\n" };
1761 root 1.68 limit $grp 4;
1762 root 1.65 feed $grp sub {
1763 root 1.60 my $file = pop @files
1764     or return;
1765    
1766     add $grp aio_stat $file, sub { ... };
1767 root 1.65 };
1768 root 1.60
1769 root 1.68 =item limit $grp $num
1770 root 1.60
1771     Sets the feeder limit for the group: The feeder will be called whenever
1772     the group contains less than this many requests.
1773    
1774     Setting the limit to C<0> will pause the feeding process.
1775    
1776 root 1.138 The default value for the limit is C<0>, but note that setting a feeder
1777     automatically bumps it up to C<2>.
1778    
1779 root 1.55 =back
1780    
1781 root 1.5 =head2 SUPPORT FUNCTIONS
1782    
1783 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1784    
1785 root 1.5 =over 4
1786    
1787     =item $fileno = IO::AIO::poll_fileno
1788    
1789 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1790 root 1.156 polled for reading by some mechanism outside this module (e.g. EV, Glib,
1791     select and so on, see below or the SYNOPSIS). If the pipe becomes readable
1792     you have to call C<poll_cb> to check the results.
1793 root 1.5
1794     See C<poll_cb> for an example.
1795    
1796     =item IO::AIO::poll_cb
1797    
1798 root 1.240 Process some requests that have reached the result phase (i.e. they have
1799     been executed but the results are not yet reported). You have to call
1800     this "regularly" to finish outstanding requests.
1801    
1802     Returns C<0> if all events could be processed (or there were no
1803     events to process), or C<-1> if it returned earlier for whatever
1804     reason. Returns immediately when no events are outstanding. The amount
1805     of events processed depends on the settings of C<IO::AIO::max_poll_req>,
1806     C<IO::AIO::max_poll_time> and C<IO::AIO::max_outstanding>.
1807    
1808     If not all requests were processed for whatever reason, the poll file
1809     descriptor will still be ready when C<poll_cb> returns, so normally you
1810     don't have to do anything special to have it called later.
1811 root 1.78
1812 root 1.192 Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes
1813     ready, it can be beneficial to call this function from loops which submit
1814     a lot of requests, to make sure the results get processed when they become
1815     available and not just when the loop is finished and the event loop takes
1816     over again. This function returns very fast when there are no outstanding
1817     requests.
1818    
1819 root 1.20 Example: Install an Event watcher that automatically calls
1820 root 1.156 IO::AIO::poll_cb with high priority (more examples can be found in the
1821     SYNOPSIS section, at the top of this document):
1822 root 1.5
1823     Event->io (fd => IO::AIO::poll_fileno,
1824     poll => 'r', async => 1,
1825     cb => \&IO::AIO::poll_cb);
1826    
1827 root 1.175 =item IO::AIO::poll_wait
1828    
1829 root 1.240 Wait until either at least one request is in the result phase or no
1830     requests are outstanding anymore.
1831    
1832     This is useful if you want to synchronously wait for some requests to
1833     become ready, without actually handling them.
1834 root 1.175
1835     See C<nreqs> for an example.
1836    
1837     =item IO::AIO::poll
1838    
1839     Waits until some requests have been handled.
1840    
1841     Returns the number of requests processed, but is otherwise strictly
1842     equivalent to:
1843    
1844     IO::AIO::poll_wait, IO::AIO::poll_cb
1845    
1846     =item IO::AIO::flush
1847    
1848     Wait till all outstanding AIO requests have been handled.
1849    
1850     Strictly equivalent to:
1851    
1852     IO::AIO::poll_wait, IO::AIO::poll_cb
1853     while IO::AIO::nreqs;
1854    
1855 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1856    
1857     =item IO::AIO::max_poll_time $seconds
1858    
1859     These set the maximum number of requests (default C<0>, meaning infinity)
1860     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1861     the maximum amount of time (default C<0>, meaning infinity) spent in
1862     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1863     of time C<poll_cb> is allowed to use).
1864 root 1.78
1865 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1866     syscall per request processed, which is not normally a problem unless your
1867     callbacks are really really fast or your OS is really really slow (I am
1868     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1869    
1870 root 1.86 Setting these is useful if you want to ensure some level of
1871     interactiveness when perl is not fast enough to process all requests in
1872     time.
1873 root 1.78
1874 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
1875 root 1.78
1876     Example: Install an Event watcher that automatically calls
1877 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
1878 root 1.78 program get the CPU sometimes even under high AIO load.
1879    
1880 root 1.86 # try not to spend much more than 0.1s in poll_cb
1881     IO::AIO::max_poll_time 0.1;
1882    
1883     # use a low priority so other tasks have priority
1884 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
1885     poll => 'r', nice => 1,
1886 root 1.86 cb => &IO::AIO::poll_cb);
1887 root 1.78
1888 root 1.104 =back
1889    
1890 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
1891 root 1.13
1892 root 1.105 =over
1893    
1894 root 1.5 =item IO::AIO::min_parallel $nthreads
1895    
1896 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
1897     default is C<8>, which means eight asynchronous operations can execute
1898     concurrently at any one time (the number of outstanding requests,
1899     however, is unlimited).
1900 root 1.5
1901 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
1902 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
1903     create demand for a hundred threads, even if it turns out that everything
1904     is in the cache and could have been processed faster by a single thread.
1905 root 1.34
1906 root 1.61 It is recommended to keep the number of threads relatively low, as some
1907     Linux kernel versions will scale negatively with the number of threads
1908     (higher parallelity => MUCH higher latency). With current Linux 2.6
1909     versions, 4-32 threads should be fine.
1910 root 1.5
1911 root 1.34 Under most circumstances you don't need to call this function, as the
1912     module selects a default that is suitable for low to moderate load.
1913 root 1.5
1914     =item IO::AIO::max_parallel $nthreads
1915    
1916 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
1917     specified number of threads are currently running, this function kills
1918     them. This function blocks until the limit is reached.
1919    
1920     While C<$nthreads> are zero, aio requests get queued but not executed
1921     until the number of threads has been increased again.
1922 root 1.5
1923     This module automatically runs C<max_parallel 0> at program end, to ensure
1924     that all threads are killed and that there are no outstanding requests.
1925    
1926     Under normal circumstances you don't need to call this function.
1927    
1928 root 1.86 =item IO::AIO::max_idle $nthreads
1929    
1930 root 1.188 Limit the number of threads (default: 4) that are allowed to idle
1931     (i.e., threads that did not get a request to process within the idle
1932     timeout (default: 10 seconds). That means if a thread becomes idle while
1933     C<$nthreads> other threads are also idle, it will free its resources and
1934     exit.
1935 root 1.86
1936     This is useful when you allow a large number of threads (e.g. 100 or 1000)
1937     to allow for extremely high load situations, but want to free resources
1938     under normal circumstances (1000 threads can easily consume 30MB of RAM).
1939    
1940     The default is probably ok in most situations, especially if thread
1941     creation is fast. If thread creation is very slow on your system you might
1942     want to use larger values.
1943    
1944 root 1.188 =item IO::AIO::idle_timeout $seconds
1945    
1946     Sets the minimum idle timeout (default 10) after which worker threads are
1947     allowed to exit. SEe C<IO::AIO::max_idle>.
1948    
1949 root 1.123 =item IO::AIO::max_outstanding $maxreqs
1950 root 1.5
1951 root 1.195 Sets the maximum number of outstanding requests to C<$nreqs>. If
1952     you do queue up more than this number of requests, the next call to
1953     C<IO::AIO::poll_cb> (and other functions calling C<poll_cb>, such as
1954     C<IO::AIO::flush> or C<IO::AIO::poll>) will block until the limit is no
1955     longer exceeded.
1956    
1957     In other words, this setting does not enforce a queue limit, but can be
1958     used to make poll functions block if the limit is exceeded.
1959    
1960 root 1.79 This is a very bad function to use in interactive programs because it
1961     blocks, and a bad way to reduce concurrency because it is inexact: Better
1962     use an C<aio_group> together with a feed callback.
1963    
1964 root 1.248 Its main use is in scripts without an event loop - when you want to stat
1965 root 1.195 a lot of files, you can write somehting like this:
1966    
1967     IO::AIO::max_outstanding 32;
1968    
1969     for my $path (...) {
1970     aio_stat $path , ...;
1971     IO::AIO::poll_cb;
1972     }
1973    
1974     IO::AIO::flush;
1975    
1976     The call to C<poll_cb> inside the loop will normally return instantly, but
1977     as soon as more thna C<32> reqeusts are in-flight, it will block until
1978     some requests have been handled. This keeps the loop from pushing a large
1979     number of C<aio_stat> requests onto the queue.
1980    
1981     The default value for C<max_outstanding> is very large, so there is no
1982     practical limit on the number of outstanding requests.
1983 root 1.5
1984 root 1.104 =back
1985    
1986 root 1.86 =head3 STATISTICAL INFORMATION
1987    
1988 root 1.104 =over
1989    
1990 root 1.86 =item IO::AIO::nreqs
1991    
1992     Returns the number of requests currently in the ready, execute or pending
1993     states (i.e. for which their callback has not been invoked yet).
1994    
1995     Example: wait till there are no outstanding requests anymore:
1996    
1997     IO::AIO::poll_wait, IO::AIO::poll_cb
1998     while IO::AIO::nreqs;
1999    
2000     =item IO::AIO::nready
2001    
2002     Returns the number of requests currently in the ready state (not yet
2003     executed).
2004    
2005     =item IO::AIO::npending
2006    
2007     Returns the number of requests currently in the pending state (executed,
2008     but not yet processed by poll_cb).
2009    
2010 root 1.5 =back
2011    
2012 root 1.157 =head3 MISCELLANEOUS FUNCTIONS
2013    
2014 root 1.248 IO::AIO implements some functions that are useful when you want to use
2015     some "Advanced I/O" function not available to in Perl, without going the
2016     "Asynchronous I/O" route. Many of these have an asynchronous C<aio_*>
2017     counterpart.
2018 root 1.157
2019     =over 4
2020    
2021     =item IO::AIO::sendfile $ofh, $ifh, $offset, $count
2022    
2023     Calls the C<eio_sendfile_sync> function, which is like C<aio_sendfile>,
2024     but is blocking (this makes most sense if you know the input data is
2025     likely cached already and the output filehandle is set to non-blocking
2026     operations).
2027    
2028     Returns the number of bytes copied, or C<-1> on error.
2029    
2030     =item IO::AIO::fadvise $fh, $offset, $len, $advice
2031    
2032 root 1.184 Simply calls the C<posix_fadvise> function (see its
2033 root 1.157 manpage for details). The following advice constants are
2034 root 1.207 available: C<IO::AIO::FADV_NORMAL>, C<IO::AIO::FADV_SEQUENTIAL>,
2035 root 1.157 C<IO::AIO::FADV_RANDOM>, C<IO::AIO::FADV_NOREUSE>,
2036     C<IO::AIO::FADV_WILLNEED>, C<IO::AIO::FADV_DONTNEED>.
2037    
2038     On systems that do not implement C<posix_fadvise>, this function returns
2039     ENOSYS, otherwise the return value of C<posix_fadvise>.
2040    
2041 root 1.184 =item IO::AIO::madvise $scalar, $offset, $len, $advice
2042    
2043     Simply calls the C<posix_madvise> function (see its
2044     manpage for details). The following advice constants are
2045 root 1.207 available: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
2046 root 1.184 C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>, C<IO::AIO::MADV_DONTNEED>.
2047    
2048     On systems that do not implement C<posix_madvise>, this function returns
2049     ENOSYS, otherwise the return value of C<posix_madvise>.
2050    
2051     =item IO::AIO::mprotect $scalar, $offset, $len, $protect
2052    
2053     Simply calls the C<mprotect> function on the preferably AIO::mmap'ed
2054     $scalar (see its manpage for details). The following protect
2055 root 1.207 constants are available: C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_READ>,
2056 root 1.184 C<IO::AIO::PROT_WRITE>, C<IO::AIO::PROT_EXEC>.
2057    
2058     On systems that do not implement C<mprotect>, this function returns
2059     ENOSYS, otherwise the return value of C<mprotect>.
2060    
2061 root 1.176 =item IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
2062    
2063     Memory-maps a file (or anonymous memory range) and attaches it to the
2064 root 1.228 given C<$scalar>, which will act like a string scalar. Returns true on
2065     success, and false otherwise.
2066 root 1.176
2067     The only operations allowed on the scalar are C<substr>/C<vec> that don't
2068     change the string length, and most read-only operations such as copying it
2069     or searching it with regexes and so on.
2070    
2071     Anything else is unsafe and will, at best, result in memory leaks.
2072    
2073     The memory map associated with the C<$scalar> is automatically removed
2074     when the C<$scalar> is destroyed, or when the C<IO::AIO::mmap> or
2075     C<IO::AIO::munmap> functions are called.
2076    
2077     This calls the C<mmap>(2) function internally. See your system's manual
2078     page for details on the C<$length>, C<$prot> and C<$flags> parameters.
2079    
2080     The C<$length> must be larger than zero and smaller than the actual
2081     filesize.
2082    
2083     C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
2084     C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
2085    
2086 root 1.256 C<$flags> can be a combination of
2087     C<IO::AIO::MAP_SHARED> or
2088     C<IO::AIO::MAP_PRIVATE>,
2089     or a number of system-specific flags (when not available, the are C<0>):
2090     C<IO::AIO::MAP_ANONYMOUS> (which is set to C<MAP_ANON> if your system only provides this constant),
2091     C<IO::AIO::MAP_LOCKED>,
2092     C<IO::AIO::MAP_NORESERVE>,
2093     C<IO::AIO::MAP_POPULATE>,
2094     C<IO::AIO::MAP_NONBLOCK>,
2095     C<IO::AIO::MAP_FIXED>,
2096     C<IO::AIO::MAP_GROWSDOWN>,
2097     C<IO::AIO::MAP_32BIT>,
2098     C<IO::AIO::MAP_HUGETLB> or
2099     C<IO::AIO::MAP_STACK>.
2100 root 1.176
2101     If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
2102    
2103 root 1.179 C<$offset> is the offset from the start of the file - it generally must be
2104     a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
2105    
2106 root 1.177 Example:
2107    
2108     use Digest::MD5;
2109     use IO::AIO;
2110    
2111     open my $fh, "<verybigfile"
2112     or die "$!";
2113    
2114     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
2115     or die "verybigfile: $!";
2116    
2117     my $fast_md5 = md5 $data;
2118    
2119 root 1.176 =item IO::AIO::munmap $scalar
2120    
2121     Removes a previous mmap and undefines the C<$scalar>.
2122    
2123 root 1.182 =item IO::AIO::munlock $scalar, $offset = 0, $length = undef
2124 root 1.174
2125 root 1.182 Calls the C<munlock> function, undoing the effects of a previous
2126     C<aio_mlock> call (see its description for details).
2127 root 1.174
2128     =item IO::AIO::munlockall
2129    
2130     Calls the C<munlockall> function.
2131    
2132     On systems that do not implement C<munlockall>, this function returns
2133     ENOSYS, otherwise the return value of C<munlockall>.
2134    
2135 root 1.225 =item IO::AIO::splice $r_fh, $r_off, $w_fh, $w_off, $length, $flags
2136    
2137     Calls the GNU/Linux C<splice(2)> syscall, if available. If C<$r_off> or
2138     C<$w_off> are C<undef>, then C<NULL> is passed for these, otherwise they
2139     should be the file offset.
2140    
2141 root 1.227 C<$r_fh> and C<$w_fh> should not refer to the same file, as splice might
2142     silently corrupt the data in this case.
2143    
2144 root 1.225 The following symbol flag values are available: C<IO::AIO::SPLICE_F_MOVE>,
2145     C<IO::AIO::SPLICE_F_NONBLOCK>, C<IO::AIO::SPLICE_F_MORE> and
2146     C<IO::AIO::SPLICE_F_GIFT>.
2147    
2148     See the C<splice(2)> manpage for details.
2149    
2150     =item IO::AIO::tee $r_fh, $w_fh, $length, $flags
2151    
2152 root 1.248 Calls the GNU/Linux C<tee(2)> syscall, see its manpage and the
2153 root 1.225 description for C<IO::AIO::splice> above for details.
2154    
2155 root 1.243 =item $actual_size = IO::AIO::pipesize $r_fh[, $new_size]
2156    
2157     Attempts to query or change the pipe buffer size. Obviously works only
2158     on pipes, and currently works only on GNU/Linux systems, and fails with
2159     C<-1>/C<ENOSYS> everywhere else. If anybody knows how to influence pipe buffer
2160     size on other systems, drop me a note.
2161    
2162 root 1.253 =item ($rfh, $wfh) = IO::AIO::pipe2 [$flags]
2163    
2164     This is a direct interface to the Linux L<pipe2(2)> system call. If
2165     C<$flags> is missing or C<0>, then this should be the same as a call to
2166 root 1.254 perl's built-in C<pipe> function and create a new pipe, and works on
2167     systems that lack the pipe2 syscall. On win32, this case invokes C<_pipe
2168     (..., 4096, O_BINARY)>.
2169 root 1.253
2170     If C<$flags> is non-zero, it tries to invoke the pipe2 system call with
2171     the given flags (Linux 2.6.27, glibc 2.9).
2172    
2173     On success, the read and write file handles are returned.
2174    
2175     On error, nothing will be returned. If the pipe2 syscall is missing and
2176     C<$flags> is non-zero, fails with C<ENOSYS>.
2177    
2178     Please refer to L<pipe2(2)> for more info on the C<$flags>, but at the
2179     time of this writing, C<IO::AIO::O_CLOEXEC>, C<IO::AIO::O_NONBLOCK> and
2180     C<IO::AIO::O_DIRECT> (Linux 3.4, for packet-based pipes) were supported.
2181    
2182 root 1.157 =back
2183    
2184 root 1.1 =cut
2185    
2186 root 1.61 min_parallel 8;
2187 root 1.1
2188 root 1.95 END { flush }
2189 root 1.82
2190 root 1.1 1;
2191    
2192 root 1.175 =head1 EVENT LOOP INTEGRATION
2193    
2194     It is recommended to use L<AnyEvent::AIO> to integrate IO::AIO
2195     automatically into many event loops:
2196    
2197     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
2198     use AnyEvent::AIO;
2199    
2200     You can also integrate IO::AIO manually into many event loops, here are
2201     some examples of how to do this:
2202    
2203     # EV integration
2204     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
2205    
2206     # Event integration
2207     Event->io (fd => IO::AIO::poll_fileno,
2208     poll => 'r',
2209     cb => \&IO::AIO::poll_cb);
2210    
2211     # Glib/Gtk2 integration
2212     add_watch Glib::IO IO::AIO::poll_fileno,
2213     in => sub { IO::AIO::poll_cb; 1 };
2214    
2215     # Tk integration
2216     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
2217     readable => \&IO::AIO::poll_cb);
2218    
2219     # Danga::Socket integration
2220     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
2221     \&IO::AIO::poll_cb);
2222    
2223 root 1.27 =head2 FORK BEHAVIOUR
2224    
2225 root 1.197 Usage of pthreads in a program changes the semantics of fork
2226     considerably. Specifically, only async-safe functions can be called after
2227     fork. Perl doesn't know about this, so in general, you cannot call fork
2228 root 1.204 with defined behaviour in perl if pthreads are involved. IO::AIO uses
2229     pthreads, so this applies, but many other extensions and (for inexplicable
2230     reasons) perl itself often is linked against pthreads, so this limitation
2231     applies to quite a lot of perls.
2232    
2233     This module no longer tries to fight your OS, or POSIX. That means IO::AIO
2234     only works in the process that loaded it. Forking is fully supported, but
2235     using IO::AIO in the child is not.
2236    
2237     You might get around by not I<using> IO::AIO before (or after)
2238     forking. You could also try to call the L<IO::AIO::reinit> function in the
2239     child:
2240    
2241     =over 4
2242    
2243     =item IO::AIO::reinit
2244    
2245 root 1.207 Abandons all current requests and I/O threads and simply reinitialises all
2246     data structures. This is not an operation supported by any standards, but
2247 root 1.204 happens to work on GNU/Linux and some newer BSD systems.
2248    
2249     The only reasonable use for this function is to call it after forking, if
2250     C<IO::AIO> was used in the parent. Calling it while IO::AIO is active in
2251     the process will result in undefined behaviour. Calling it at any time
2252     will also result in any undefined (by POSIX) behaviour.
2253    
2254     =back
2255 root 1.52
2256 root 1.60 =head2 MEMORY USAGE
2257    
2258 root 1.72 Per-request usage:
2259    
2260     Each aio request uses - depending on your architecture - around 100-200
2261     bytes of memory. In addition, stat requests need a stat buffer (possibly
2262     a few hundred bytes), readdir requires a result buffer and so on. Perl
2263     scalars and other data passed into aio requests will also be locked and
2264     will consume memory till the request has entered the done state.
2265 root 1.60
2266 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
2267 root 1.60 problem.
2268    
2269 root 1.72 Per-thread usage:
2270    
2271     In the execution phase, some aio requests require more memory for
2272     temporary buffers, and each thread requires a stack and other data
2273     structures (usually around 16k-128k, depending on the OS).
2274    
2275     =head1 KNOWN BUGS
2276    
2277 root 1.73 Known bugs will be fixed in the next release.
2278 root 1.60
2279 root 1.1 =head1 SEE ALSO
2280    
2281 root 1.125 L<AnyEvent::AIO> for easy integration into event loops, L<Coro::AIO> for a
2282     more natural syntax.
2283 root 1.1
2284     =head1 AUTHOR
2285    
2286     Marc Lehmann <schmorp@schmorp.de>
2287     http://home.schmorp.de/
2288    
2289     =cut
2290