ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.270
Committed: Fri Jun 23 03:23:19 2017 UTC (6 years, 11 months ago) by root
Branch: MAIN
Changes since 1.269: +18 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.265 IO::AIO - Asynchronous/Advanced Input/Output
4 root 1.1
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.1 =head1 DESCRIPTION
32    
33     This module implements asynchronous I/O using whatever means your
34 root 1.156 operating system supports. It is implemented as an interface to C<libeio>
35     (L<http://software.schmorp.de/pkg/libeio.html>).
36 root 1.1
37 root 1.85 Asynchronous means that operations that can normally block your program
38     (e.g. reading from disk) will be done asynchronously: the operation
39     will still block, but you can do something else in the meantime. This
40     is extremely useful for programs that need to stay interactive even
41     when doing heavy I/O (GUI programs, high performance network servers
42     etc.), but can also be used to easily do operations in parallel that are
43     normally done sequentially, e.g. stat'ing many files, which is much faster
44     on a RAID volume or over NFS when you do a number of stat operations
45     concurrently.
46    
47 root 1.108 While most of this works on all types of file descriptors (for
48     example sockets), using these functions on file descriptors that
49 root 1.156 support nonblocking operation (again, sockets, pipes etc.) is
50     very inefficient. Use an event loop for that (such as the L<EV>
51 root 1.108 module): IO::AIO will naturally fit into such an event loop itself.
52 root 1.85
53 root 1.72 In this version, a number of threads are started that execute your
54     requests and signal their completion. You don't need thread support
55     in perl, and the threads created by this module will not be visible
56     to perl. In the future, this module might make use of the native aio
57     functions available on many operating systems. However, they are often
58 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
59 root 1.72 files currently, for example), and they would only support aio_read and
60     aio_write, so the remaining functionality would have to be implemented
61     using threads anyway.
62    
63 root 1.265 In addition to asynchronous I/O, this module also exports some rather
64     arcane interfaces, such as C<madvise> or linux's C<splice> system call,
65     which is why the C<A> in C<AIO> can also mean I<advanced>.
66    
67 root 1.108 Although the module will work in the presence of other (Perl-) threads,
68     it is currently not reentrant in any way, so use appropriate locking
69     yourself, always call C<poll_cb> from within the same thread, or never
70     call C<poll_cb> (or other C<aio_> functions) recursively.
71 root 1.72
72 root 1.86 =head2 EXAMPLE
73    
74 root 1.156 This is a simple example that uses the EV module and loads
75 root 1.86 F</etc/passwd> asynchronously:
76    
77 root 1.156 use EV;
78 root 1.86 use IO::AIO;
79    
80 root 1.156 # register the IO::AIO callback with EV
81     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
82 root 1.86
83     # queue the request to open /etc/passwd
84 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
85 root 1.94 my $fh = shift
86 root 1.86 or die "error while opening: $!";
87    
88     # stat'ing filehandles is generally non-blocking
89     my $size = -s $fh;
90    
91     # queue a request to read the file
92     my $contents;
93     aio_read $fh, 0, $size, $contents, 0, sub {
94     $_[0] == $size
95     or die "short read: $!";
96    
97     close $fh;
98    
99     # file contents now in $contents
100     print $contents;
101    
102     # exit event loop and program
103 root 1.257 EV::break;
104 root 1.86 };
105     };
106    
107     # possibly queue up other requests, or open GUI windows,
108     # check for sockets etc. etc.
109    
110     # process events as long as there are some:
111 root 1.257 EV::run;
112 root 1.86
113 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
114    
115     Every C<aio_*> function creates a request. which is a C data structure not
116     directly visible to Perl.
117    
118     If called in non-void context, every request function returns a Perl
119     object representing the request. In void context, nothing is returned,
120     which saves a bit of memory.
121    
122     The perl object is a fairly standard ref-to-hash object. The hash contents
123     are not used by IO::AIO so you are free to store anything you like in it.
124    
125     During their existance, aio requests travel through the following states,
126     in order:
127    
128     =over 4
129    
130     =item ready
131    
132     Immediately after a request is created it is put into the ready state,
133     waiting for a thread to execute it.
134    
135     =item execute
136    
137     A thread has accepted the request for processing and is currently
138     executing it (e.g. blocking in read).
139    
140     =item pending
141    
142     The request has been executed and is waiting for result processing.
143    
144     While request submission and execution is fully asynchronous, result
145     processing is not and relies on the perl interpreter calling C<poll_cb>
146     (or another function with the same effect).
147    
148     =item result
149    
150     The request results are processed synchronously by C<poll_cb>.
151    
152     The C<poll_cb> function will process all outstanding aio requests by
153     calling their callbacks, freeing memory associated with them and managing
154     any groups they are contained in.
155    
156     =item done
157    
158     Request has reached the end of its lifetime and holds no resources anymore
159     (except possibly for the Perl object, but its connection to the actual
160     aio request is severed and calling its methods will either do nothing or
161     result in a runtime error).
162 root 1.1
163 root 1.88 =back
164    
165 root 1.1 =cut
166    
167     package IO::AIO;
168    
169 root 1.117 use Carp ();
170    
171 root 1.161 use common::sense;
172 root 1.23
173 root 1.1 use base 'Exporter';
174    
175     BEGIN {
176 root 1.268 our $VERSION = 4.35;
177 root 1.1
178 root 1.220 our @AIO_REQ = qw(aio_sendfile aio_seek aio_read aio_write aio_open aio_close
179 root 1.148 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
180 root 1.259 aio_scandir aio_symlink aio_readlink aio_realpath aio_fcntl aio_ioctl
181     aio_sync aio_fsync aio_syncfs aio_fdatasync aio_sync_file_range
182     aio_pathsync aio_readahead aio_fiemap aio_allocate
183 root 1.270 aio_rename aio_rename2 aio_link aio_move aio_copy aio_group
184 root 1.120 aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
185 root 1.170 aio_chmod aio_utime aio_truncate
186 root 1.182 aio_msync aio_mtouch aio_mlock aio_mlockall
187 root 1.208 aio_statvfs
188     aio_wd);
189 root 1.120
190 root 1.123 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice));
191 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
192 root 1.188 min_parallel max_parallel max_idle idle_timeout
193 root 1.86 nreqs nready npending nthreads
194 root 1.157 max_poll_time max_poll_reqs
195 root 1.182 sendfile fadvise madvise
196     mmap munmap munlock munlockall);
197 root 1.1
198 root 1.143 push @AIO_REQ, qw(aio_busy); # not exported
199    
200 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
201    
202 root 1.1 require XSLoader;
203 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
204 root 1.1 }
205    
206 root 1.5 =head1 FUNCTIONS
207 root 1.1
208 root 1.175 =head2 QUICK OVERVIEW
209    
210 root 1.230 This section simply lists the prototypes most of the functions for
211     quick reference. See the following sections for function-by-function
212 root 1.175 documentation.
213    
214 root 1.208 aio_wd $pathname, $callback->($wd)
215 root 1.175 aio_open $pathname, $flags, $mode, $callback->($fh)
216     aio_close $fh, $callback->($status)
217 root 1.220 aio_seek $fh,$offset,$whence, $callback->($offs)
218 root 1.175 aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
219     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
220     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
221     aio_readahead $fh,$offset,$length, $callback->($retval)
222     aio_stat $fh_or_path, $callback->($status)
223     aio_lstat $fh, $callback->($status)
224     aio_statvfs $fh_or_path, $callback->($statvfs)
225     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
226     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
227 root 1.220 aio_chmod $fh_or_path, $mode, $callback->($status)
228 root 1.175 aio_truncate $fh_or_path, $offset, $callback->($status)
229 root 1.229 aio_allocate $fh, $mode, $offset, $len, $callback->($status)
230 root 1.230 aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
231 root 1.175 aio_unlink $pathname, $callback->($status)
232 root 1.209 aio_mknod $pathname, $mode, $dev, $callback->($status)
233 root 1.175 aio_link $srcpath, $dstpath, $callback->($status)
234     aio_symlink $srcpath, $dstpath, $callback->($status)
235 root 1.209 aio_readlink $pathname, $callback->($link)
236 root 1.249 aio_realpath $pathname, $callback->($path)
237 root 1.175 aio_rename $srcpath, $dstpath, $callback->($status)
238 root 1.270 aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
239 root 1.175 aio_mkdir $pathname, $mode, $callback->($status)
240     aio_rmdir $pathname, $callback->($status)
241     aio_readdir $pathname, $callback->($entries)
242     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
243     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
244     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
245 root 1.215 aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
246 root 1.209 aio_load $pathname, $data, $callback->($status)
247 root 1.175 aio_copy $srcpath, $dstpath, $callback->($status)
248     aio_move $srcpath, $dstpath, $callback->($status)
249 root 1.209 aio_rmtree $pathname, $callback->($status)
250 root 1.259 aio_fcntl $fh, $cmd, $arg, $callback->($status)
251     aio_ioctl $fh, $request, $buf, $callback->($status)
252 root 1.175 aio_sync $callback->($status)
253 root 1.206 aio_syncfs $fh, $callback->($status)
254 root 1.175 aio_fsync $fh, $callback->($status)
255     aio_fdatasync $fh, $callback->($status)
256     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
257 root 1.209 aio_pathsync $pathname, $callback->($status)
258 root 1.268 aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
259 root 1.175 aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
260 root 1.182 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
261     aio_mlockall $flags, $callback->($status)
262 root 1.175 aio_group $callback->(...)
263     aio_nop $callback->()
264    
265     $prev_pri = aioreq_pri [$pri]
266     aioreq_nice $pri_adjust
267    
268     IO::AIO::poll_wait
269     IO::AIO::poll_cb
270     IO::AIO::poll
271     IO::AIO::flush
272     IO::AIO::max_poll_reqs $nreqs
273     IO::AIO::max_poll_time $seconds
274     IO::AIO::min_parallel $nthreads
275     IO::AIO::max_parallel $nthreads
276     IO::AIO::max_idle $nthreads
277 root 1.188 IO::AIO::idle_timeout $seconds
278 root 1.175 IO::AIO::max_outstanding $maxreqs
279     IO::AIO::nreqs
280     IO::AIO::nready
281     IO::AIO::npending
282    
283     IO::AIO::sendfile $ofh, $ifh, $offset, $count
284     IO::AIO::fadvise $fh, $offset, $len, $advice
285 root 1.226 IO::AIO::mmap $scalar, $length, $prot, $flags[, $fh[, $offset]]
286     IO::AIO::munmap $scalar
287 root 1.184 IO::AIO::madvise $scalar, $offset, $length, $advice
288     IO::AIO::mprotect $scalar, $offset, $length, $protect
289 root 1.182 IO::AIO::munlock $scalar, $offset = 0, $length = undef
290 root 1.175 IO::AIO::munlockall
291    
292 root 1.219 =head2 API NOTES
293 root 1.1
294 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
295     with the same name (sans C<aio_>). The arguments are similar or identical,
296 root 1.14 and they all accept an additional (and optional) C<$callback> argument
297 root 1.212 which must be a code reference. This code reference will be called after
298     the syscall has been executed in an asynchronous fashion. The results
299     of the request will be passed as arguments to the callback (and, if an
300     error occured, in C<$!>) - for most requests the syscall return code (e.g.
301     most syscalls return C<-1> on error, unlike perl, which usually delivers
302     "false").
303    
304     Some requests (such as C<aio_readdir>) pass the actual results and
305     communicate failures by passing C<undef>.
306 root 1.1
307 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
308     internally until the request has finished.
309 root 1.1
310 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
311     further manipulation of those requests while they are in-flight.
312 root 1.52
313 root 1.209 The pathnames you pass to these routines I<should> be absolute. The
314     reason for this is that at the time the request is being executed, the
315 root 1.212 current working directory could have changed. Alternatively, you can
316     make sure that you never change the current working directory anywhere
317     in the program and then use relative paths. You can also take advantage
318     of IO::AIOs working directory abstraction, that lets you specify paths
319     relative to some previously-opened "working directory object" - see the
320     description of the C<IO::AIO::WD> class later in this document.
321 root 1.28
322 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
323     in filenames you got from outside (command line, readdir etc.) without
324 root 1.212 tinkering, b) are in your native filesystem encoding, c) use the Encode
325     module and encode your pathnames to the locale (or other) encoding in
326     effect in the user environment, d) use Glib::filename_from_unicode on
327     unicode filenames or e) use something else to ensure your scalar has the
328     correct contents.
329 root 1.87
330     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
331 root 1.136 handles correctly whether it is set or not.
332 root 1.1
333 root 1.219 =head2 AIO REQUEST FUNCTIONS
334    
335 root 1.5 =over 4
336 root 1.1
337 root 1.80 =item $prev_pri = aioreq_pri [$pri]
338 root 1.68
339 root 1.80 Returns the priority value that would be used for the next request and, if
340     C<$pri> is given, sets the priority for the next aio request.
341 root 1.68
342 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
343     and C<4>, respectively. Requests with higher priority will be serviced
344     first.
345    
346     The priority will be reset to C<0> after each call to one of the C<aio_*>
347 root 1.68 functions.
348    
349 root 1.69 Example: open a file with low priority, then read something from it with
350     higher priority so the read request is serviced before other low priority
351     open requests (potentially spamming the cache):
352    
353     aioreq_pri -3;
354     aio_open ..., sub {
355     return unless $_[0];
356    
357     aioreq_pri -2;
358     aio_read $_[0], ..., sub {
359     ...
360     };
361     };
362    
363 root 1.106
364 root 1.69 =item aioreq_nice $pri_adjust
365    
366     Similar to C<aioreq_pri>, but subtracts the given value from the current
367 root 1.87 priority, so the effect is cumulative.
368 root 1.69
369 root 1.106
370 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
371 root 1.1
372 root 1.2 Asynchronously open or create a file and call the callback with a newly
373 root 1.233 created filehandle for the file (or C<undef> in case of an error).
374 root 1.1
375     The pathname passed to C<aio_open> must be absolute. See API NOTES, above,
376     for an explanation.
377    
378 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
379     list. They are the same as used by C<sysopen>.
380    
381     Likewise, C<$mode> specifies the mode of the newly created file, if it
382     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
383     except that it is mandatory (i.e. use C<0> if you don't create new files,
384 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
385     by the umask in effect then the request is being executed, so better never
386     change the umask.
387 root 1.1
388     Example:
389    
390 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
391 root 1.2 if ($_[0]) {
392     print "open successful, fh is $_[0]\n";
393 root 1.1 ...
394     } else {
395     die "open failed: $!\n";
396     }
397     };
398    
399 root 1.194 In addition to all the common open modes/flags (C<O_RDONLY>, C<O_WRONLY>,
400     C<O_RDWR>, C<O_CREAT>, C<O_TRUNC>, C<O_EXCL> and C<O_APPEND>), the
401     following POSIX and non-POSIX constants are available (missing ones on
402     your system are, as usual, C<0>):
403    
404     C<O_ASYNC>, C<O_DIRECT>, C<O_NOATIME>, C<O_CLOEXEC>, C<O_NOCTTY>, C<O_NOFOLLOW>,
405     C<O_NONBLOCK>, C<O_EXEC>, C<O_SEARCH>, C<O_DIRECTORY>, C<O_DSYNC>,
406 root 1.255 C<O_RSYNC>, C<O_SYNC>, C<O_PATH>, C<O_TMPFILE>, and C<O_TTY_INIT>.
407 root 1.194
408 root 1.106
409 root 1.40 =item aio_close $fh, $callback->($status)
410 root 1.1
411 root 1.2 Asynchronously close a file and call the callback with the result
412 root 1.116 code.
413    
414 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
415 root 1.121 closing the file descriptor associated with the filehandle itself.
416 root 1.117
417 root 1.121 Therefore, C<aio_close> will not close the filehandle - instead it will
418     use dup2 to overwrite the file descriptor with the write-end of a pipe
419     (the pipe fd will be created on demand and will be cached).
420 root 1.117
421 root 1.121 Or in other words: the file descriptor will be closed, but it will not be
422     free for reuse until the perl filehandle is closed.
423 root 1.117
424     =cut
425    
426 root 1.220 =item aio_seek $fh, $offset, $whence, $callback->($offs)
427    
428 root 1.221 Seeks the filehandle to the new C<$offset>, similarly to perl's
429 root 1.220 C<sysseek>. The C<$whence> can use the traditional values (C<0> for
430     C<IO::AIO::SEEK_SET>, C<1> for C<IO::AIO::SEEK_CUR> or C<2> for
431     C<IO::AIO::SEEK_END>).
432    
433     The resulting absolute offset will be passed to the callback, or C<-1> in
434     case of an error.
435    
436     In theory, the C<$whence> constants could be different than the
437     corresponding values from L<Fcntl>, but perl guarantees they are the same,
438     so don't panic.
439    
440 root 1.225 As a GNU/Linux (and maybe Solaris) extension, also the constants
441     C<IO::AIO::SEEK_DATA> and C<IO::AIO::SEEK_HOLE> are available, if they
442     could be found. No guarantees about suitability for use in C<aio_seek> or
443     Perl's C<sysseek> can be made though, although I would naively assume they
444     "just work".
445    
446 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
447 root 1.1
448 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
449 root 1.1
450 root 1.145 Reads or writes C<$length> bytes from or to the specified C<$fh> and
451 root 1.267 C<$offset> into the scalar given by C<$data> and offset C<$dataoffset> and
452     calls the callback with the actual number of bytes transferred (or -1 on
453 root 1.145 error, just like the syscall).
454 root 1.109
455 root 1.146 C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
456     offset plus the actual number of bytes read.
457    
458 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
459     be used (and updated), otherwise the file descriptor offset will not be
460     changed by these calls.
461 root 1.109
462 root 1.145 If C<$length> is undefined in C<aio_write>, use the remaining length of
463     C<$data>.
464 root 1.109
465     If C<$dataoffset> is less than zero, it will be counted from the end of
466     C<$data>.
467 root 1.1
468 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
469 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
470     the necessary/optional hardware is installed).
471 root 1.31
472 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
473 root 1.1 offset C<0> within the scalar:
474    
475     aio_read $fh, 7, 15, $buffer, 0, sub {
476 root 1.9 $_[0] > 0 or die "read error: $!";
477     print "read $_[0] bytes: <$buffer>\n";
478 root 1.1 };
479    
480 root 1.106
481 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
482 root 1.35
483     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
484     reading at byte offset C<$in_offset>, and starts writing at the current
485     file offset of C<$out_fh>. Because of that, it is not safe to issue more
486     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
487 root 1.196 other. The same C<$in_fh> works fine though, as this function does not
488     move or use the file offset of C<$in_fh>.
489 root 1.35
490 root 1.185 Please note that C<aio_sendfile> can read more bytes from C<$in_fh> than
491 root 1.196 are written, and there is no way to find out how many more bytes have been
492     read from C<aio_sendfile> alone, as C<aio_sendfile> only provides the
493     number of bytes written to C<$out_fh>. Only if the result value equals
494     C<$length> one can assume that C<$length> bytes have been read.
495 root 1.185
496     Unlike with other C<aio_> functions, it makes a lot of sense to use
497     C<aio_sendfile> on non-blocking sockets, as long as one end (typically
498     the C<$in_fh>) is a file - the file I/O will then be asynchronous, while
499 root 1.196 the socket I/O will be non-blocking. Note, however, that you can run
500     into a trap where C<aio_sendfile> reads some data with readahead, then
501     fails to write all data, and when the socket is ready the next time, the
502     data in the cache is already lost, forcing C<aio_sendfile> to again hit
503     the disk. Explicit C<aio_read> + C<aio_write> let's you better control
504     resource usage.
505    
506     This call tries to make use of a native C<sendfile>-like syscall to
507     provide zero-copy operation. For this to work, C<$out_fh> should refer to
508     a socket, and C<$in_fh> should refer to an mmap'able file.
509 root 1.35
510 root 1.170 If a native sendfile cannot be found or it fails with C<ENOSYS>,
511 root 1.196 C<EINVAL>, C<ENOTSUP>, C<EOPNOTSUPP>, C<EAFNOSUPPORT>, C<EPROTOTYPE> or
512     C<ENOTSOCK>, it will be emulated, so you can call C<aio_sendfile> on any
513     type of filehandle regardless of the limitations of the operating system.
514    
515     As native sendfile syscalls (as practically any non-POSIX interface hacked
516     together in a hurry to improve benchmark numbers) tend to be rather buggy
517     on many systems, this implementation tries to work around some known bugs
518     in Linux and FreeBSD kernels (probably others, too), but that might fail,
519     so you really really should check the return value of C<aio_sendfile> -
520 root 1.262 fewer bytes than expected might have been transferred.
521 root 1.35
522 root 1.106
523 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
524 root 1.1
525 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
526 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
527     argument specifies the starting point from which data is to be read and
528     C<$length> specifies the number of bytes to be read. I/O is performed in
529     whole pages, so that offset is effectively rounded down to a page boundary
530     and bytes are read up to the next page boundary greater than or equal to
531 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
532 root 1.1 file. The current file offset of the file is left unchanged.
533    
534 root 1.261 If that syscall doesn't exist (likely if your kernel isn't Linux) it will
535     be emulated by simply reading the data, which would have a similar effect.
536 root 1.26
537 root 1.106
538 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
539 root 1.1
540 root 1.40 =item aio_lstat $fh, $callback->($status)
541 root 1.1
542     Works like perl's C<stat> or C<lstat> in void context. The callback will
543     be called after the stat and the results will be available using C<stat _>
544     or C<-s _> etc...
545    
546     The pathname passed to C<aio_stat> must be absolute. See API NOTES, above,
547     for an explanation.
548    
549     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
550     error when stat'ing a large file, the results will be silently truncated
551     unless perl itself is compiled with large file support.
552    
553 root 1.187 To help interpret the mode and dev/rdev stat values, IO::AIO offers the
554     following constants and functions (if not implemented, the constants will
555     be C<0> and the functions will either C<croak> or fall back on traditional
556     behaviour).
557    
558     C<S_IFMT>, C<S_IFIFO>, C<S_IFCHR>, C<S_IFBLK>, C<S_IFLNK>, C<S_IFREG>,
559     C<S_IFDIR>, C<S_IFWHT>, C<S_IFSOCK>, C<IO::AIO::major $dev_t>,
560     C<IO::AIO::minor $dev_t>, C<IO::AIO::makedev $major, $minor>.
561    
562 root 1.1 Example: Print the length of F</etc/passwd>:
563    
564     aio_stat "/etc/passwd", sub {
565     $_[0] and die "stat failed: $!";
566     print "size is ", -s _, "\n";
567     };
568    
569 root 1.106
570 root 1.175 =item aio_statvfs $fh_or_path, $callback->($statvfs)
571 root 1.172
572     Works like the POSIX C<statvfs> or C<fstatvfs> syscalls, depending on
573     whether a file handle or path was passed.
574    
575     On success, the callback is passed a hash reference with the following
576     members: C<bsize>, C<frsize>, C<blocks>, C<bfree>, C<bavail>, C<files>,
577     C<ffree>, C<favail>, C<fsid>, C<flag> and C<namemax>. On failure, C<undef>
578     is passed.
579    
580     The following POSIX IO::AIO::ST_* constants are defined: C<ST_RDONLY> and
581     C<ST_NOSUID>.
582    
583     The following non-POSIX IO::AIO::ST_* flag masks are defined to
584     their correct value when available, or to C<0> on systems that do
585     not support them: C<ST_NODEV>, C<ST_NOEXEC>, C<ST_SYNCHRONOUS>,
586     C<ST_MANDLOCK>, C<ST_WRITE>, C<ST_APPEND>, C<ST_IMMUTABLE>, C<ST_NOATIME>,
587     C<ST_NODIRATIME> and C<ST_RELATIME>.
588    
589     Example: stat C</wd> and dump out the data if successful.
590    
591     aio_statvfs "/wd", sub {
592     my $f = $_[0]
593     or die "statvfs: $!";
594    
595     use Data::Dumper;
596     say Dumper $f;
597     };
598    
599     # result:
600     {
601     bsize => 1024,
602     bfree => 4333064312,
603     blocks => 10253828096,
604     files => 2050765568,
605     flag => 4096,
606     favail => 2042092649,
607     bavail => 4333064312,
608     ffree => 2042092649,
609     namemax => 255,
610     frsize => 1024,
611     fsid => 1810
612     }
613    
614 root 1.244 Here is a (likely partial - send me updates!) list of fsid values used by
615     Linux - it is safe to hardcode these when C<$^O> is C<linux>:
616 root 1.235
617     0x0000adf5 adfs
618     0x0000adff affs
619     0x5346414f afs
620     0x09041934 anon-inode filesystem
621     0x00000187 autofs
622     0x42465331 befs
623     0x1badface bfs
624     0x42494e4d binfmt_misc
625     0x9123683e btrfs
626     0x0027e0eb cgroupfs
627     0xff534d42 cifs
628     0x73757245 coda
629     0x012ff7b7 coh
630     0x28cd3d45 cramfs
631     0x453dcd28 cramfs-wend (wrong endianness)
632     0x64626720 debugfs
633     0x00001373 devfs
634     0x00001cd1 devpts
635     0x0000f15f ecryptfs
636     0x00414a53 efs
637     0x0000137d ext
638 root 1.257 0x0000ef53 ext2/ext3/ext4
639 root 1.235 0x0000ef51 ext2
640 root 1.257 0xf2f52010 f2fs
641 root 1.235 0x00004006 fat
642     0x65735546 fuseblk
643     0x65735543 fusectl
644     0x0bad1dea futexfs
645     0x01161970 gfs2
646     0x47504653 gpfs
647     0x00004244 hfs
648     0xf995e849 hpfs
649 root 1.257 0x00c0ffee hostfs
650 root 1.235 0x958458f6 hugetlbfs
651     0x2bad1dea inotifyfs
652     0x00009660 isofs
653     0x000072b6 jffs2
654     0x3153464a jfs
655     0x6b414653 k-afs
656     0x0bd00bd0 lustre
657     0x0000137f minix
658     0x0000138f minix 30 char names
659     0x00002468 minix v2
660     0x00002478 minix v2 30 char names
661     0x00004d5a minix v3
662     0x19800202 mqueue
663     0x00004d44 msdos
664     0x0000564c novell
665     0x00006969 nfs
666     0x6e667364 nfsd
667     0x00003434 nilfs
668     0x5346544e ntfs
669     0x00009fa1 openprom
670     0x7461636F ocfs2
671     0x00009fa0 proc
672     0x6165676c pstorefs
673     0x0000002f qnx4
674 root 1.257 0x68191122 qnx6
675 root 1.235 0x858458f6 ramfs
676     0x52654973 reiserfs
677     0x00007275 romfs
678     0x67596969 rpc_pipefs
679     0x73636673 securityfs
680     0xf97cff8c selinux
681     0x0000517b smb
682     0x534f434b sockfs
683     0x73717368 squashfs
684     0x62656572 sysfs
685     0x012ff7b6 sysv2
686     0x012ff7b5 sysv4
687     0x01021994 tmpfs
688     0x15013346 udf
689     0x00011954 ufs
690     0x54190100 ufs byteswapped
691     0x00009fa2 usbdevfs
692     0x01021997 v9fs
693     0xa501fcf5 vxfs
694     0xabba1974 xenfs
695     0x012ff7b4 xenix
696     0x58465342 xfs
697     0x012fd16d xia
698 root 1.172
699 root 1.106 =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
700    
701     Works like perl's C<utime> function (including the special case of $atime
702     and $mtime being undef). Fractional times are supported if the underlying
703     syscalls support them.
704    
705     When called with a pathname, uses utimes(2) if available, otherwise
706     utime(2). If called on a file descriptor, uses futimes(2) if available,
707     otherwise returns ENOSYS, so this is not portable.
708    
709     Examples:
710    
711 root 1.107 # set atime and mtime to current time (basically touch(1)):
712 root 1.106 aio_utime "path", undef, undef;
713     # set atime to current time and mtime to beginning of the epoch:
714     aio_utime "path", time, undef; # undef==0
715    
716    
717     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
718    
719     Works like perl's C<chown> function, except that C<undef> for either $uid
720     or $gid is being interpreted as "do not change" (but -1 can also be used).
721    
722     Examples:
723    
724     # same as "chown root path" in the shell:
725     aio_chown "path", 0, -1;
726     # same as above:
727     aio_chown "path", 0, undef;
728    
729    
730 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
731    
732     Works like truncate(2) or ftruncate(2).
733    
734    
735 root 1.229 =item aio_allocate $fh, $mode, $offset, $len, $callback->($status)
736    
737 root 1.249 Allocates or frees disk space according to the C<$mode> argument. See the
738     linux C<fallocate> documentation for details.
739 root 1.229
740 root 1.252 C<$mode> is usually C<0> or C<IO::AIO::FALLOC_FL_KEEP_SIZE> to allocate
741     space, or C<IO::AIO::FALLOC_FL_PUNCH_HOLE | IO::AIO::FALLOC_FL_KEEP_SIZE>,
742     to deallocate a file range.
743    
744     IO::AIO also supports C<FALLOC_FL_COLLAPSE_RANGE>, to remove a range
745     (without leaving a hole) and C<FALLOC_FL_ZERO_RANGE>, to zero a range (see
746     your L<fallocate(2)> manpage).
747 root 1.229
748     The file system block size used by C<fallocate> is presumably the
749     C<f_bsize> returned by C<statvfs>.
750    
751     If C<fallocate> isn't available or cannot be emulated (currently no
752     emulation will be attempted), passes C<-1> and sets C<$!> to C<ENOSYS>.
753    
754    
755 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
756    
757     Works like perl's C<chmod> function.
758    
759    
760 root 1.40 =item aio_unlink $pathname, $callback->($status)
761 root 1.1
762     Asynchronously unlink (delete) a file and call the callback with the
763     result code.
764    
765 root 1.106
766 root 1.209 =item aio_mknod $pathname, $mode, $dev, $callback->($status)
767 root 1.82
768 root 1.86 [EXPERIMENTAL]
769    
770 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
771    
772 root 1.86 The only (POSIX-) portable way of calling this function is:
773 root 1.83
774 root 1.209 aio_mknod $pathname, IO::AIO::S_IFIFO | $mode, 0, sub { ...
775 root 1.82
776 root 1.187 See C<aio_stat> for info about some potentially helpful extra constants
777     and functions.
778 root 1.106
779 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
780    
781     Asynchronously create a new link to the existing object at C<$srcpath> at
782     the path C<$dstpath> and call the callback with the result code.
783    
784 root 1.106
785 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
786    
787     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
788     the path C<$dstpath> and call the callback with the result code.
789    
790 root 1.106
791 root 1.209 =item aio_readlink $pathname, $callback->($link)
792 root 1.90
793     Asynchronously read the symlink specified by C<$path> and pass it to
794     the callback. If an error occurs, nothing or undef gets passed to the
795     callback.
796    
797 root 1.106
798 root 1.209 =item aio_realpath $pathname, $callback->($path)
799 root 1.201
800     Asynchronously make the path absolute and resolve any symlinks in
801 root 1.239 C<$path>. The resulting path only consists of directories (same as
802 root 1.202 L<Cwd::realpath>).
803 root 1.201
804     This request can be used to get the absolute path of the current working
805     directory by passing it a path of F<.> (a single dot).
806    
807    
808 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
809    
810     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
811     rename(2) and call the callback with the result code.
812    
813 root 1.241 On systems that support the AIO::WD working directory abstraction
814     natively, the case C<[$wd, "."]> as C<$srcpath> is specialcased - instead
815     of failing, C<rename> is called on the absolute path of C<$wd>.
816    
817 root 1.106
818 root 1.270 =item aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
819    
820     Basically a version of C<aio_rename> with an additional C<$flags>
821     argument. Calling this with C<$flags=0> is the same as calling
822     C<aio_rename>.
823    
824     Non-zero flags are currently only supported on GNU/Linux systems that
825     support renameat2. Other systems fail with C<ENOSYS> in this case.
826    
827     The following constants are available (missing ones are, as usual C<0>),
828     see renameat2(2) for details:
829    
830     C<IO::AIO::RENAME_NOREPLACE>, C<IO::AIO::RENAME_EXCHANGE>
831     and C<IO::AIO::RENAME_WHITEOUT>.
832    
833    
834 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
835    
836     Asynchronously mkdir (create) a directory and call the callback with
837     the result code. C<$mode> will be modified by the umask at the time the
838     request is executed, so do not change your umask.
839    
840 root 1.106
841 root 1.40 =item aio_rmdir $pathname, $callback->($status)
842 root 1.27
843     Asynchronously rmdir (delete) a directory and call the callback with the
844     result code.
845    
846 root 1.241 On systems that support the AIO::WD working directory abstraction
847     natively, the case C<[$wd, "."]> is specialcased - instead of failing,
848     C<rmdir> is called on the absolute path of C<$wd>.
849    
850 root 1.106
851 root 1.46 =item aio_readdir $pathname, $callback->($entries)
852 root 1.37
853     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
854     directory (i.e. opendir + readdir + closedir). The entries will not be
855     sorted, and will B<NOT> include the C<.> and C<..> entries.
856    
857 root 1.148 The callback is passed a single argument which is either C<undef> or an
858     array-ref with the filenames.
859    
860    
861     =item aio_readdirx $pathname, $flags, $callback->($entries, $flags)
862    
863 root 1.207 Quite similar to C<aio_readdir>, but the C<$flags> argument allows one to
864     tune behaviour and output format. In case of an error, C<$entries> will be
865 root 1.148 C<undef>.
866    
867     The flags are a combination of the following constants, ORed together (the
868     flags will also be passed to the callback, possibly modified):
869    
870     =over 4
871    
872 root 1.150 =item IO::AIO::READDIR_DENTS
873 root 1.148
874 root 1.190 When this flag is off, then the callback gets an arrayref consisting of
875     names only (as with C<aio_readdir>), otherwise it gets an arrayref with
876 root 1.150 C<[$name, $type, $inode]> arrayrefs, each describing a single directory
877 root 1.148 entry in more detail.
878    
879     C<$name> is the name of the entry.
880    
881 root 1.150 C<$type> is one of the C<IO::AIO::DT_xxx> constants:
882 root 1.148
883 root 1.150 C<IO::AIO::DT_UNKNOWN>, C<IO::AIO::DT_FIFO>, C<IO::AIO::DT_CHR>, C<IO::AIO::DT_DIR>,
884     C<IO::AIO::DT_BLK>, C<IO::AIO::DT_REG>, C<IO::AIO::DT_LNK>, C<IO::AIO::DT_SOCK>,
885     C<IO::AIO::DT_WHT>.
886 root 1.148
887 root 1.150 C<IO::AIO::DT_UNKNOWN> means just that: readdir does not know. If you need to
888 root 1.148 know, you have to run stat yourself. Also, for speed reasons, the C<$type>
889     scalars are read-only: you can not modify them.
890    
891 root 1.150 C<$inode> is the inode number (which might not be exact on systems with 64
892 root 1.155 bit inode numbers and 32 bit perls). This field has unspecified content on
893     systems that do not deliver the inode information.
894 root 1.150
895     =item IO::AIO::READDIR_DIRS_FIRST
896 root 1.148
897     When this flag is set, then the names will be returned in an order where
898 root 1.193 likely directories come first, in optimal stat order. This is useful when
899     you need to quickly find directories, or you want to find all directories
900     while avoiding to stat() each entry.
901 root 1.148
902 root 1.149 If the system returns type information in readdir, then this is used
903 root 1.193 to find directories directly. Otherwise, likely directories are names
904     beginning with ".", or otherwise names with no dots, of which names with
905 root 1.149 short names are tried first.
906    
907 root 1.150 =item IO::AIO::READDIR_STAT_ORDER
908 root 1.148
909     When this flag is set, then the names will be returned in an order
910     suitable for stat()'ing each one. That is, when you plan to stat()
911     all files in the given directory, then the returned order will likely
912     be fastest.
913    
914 root 1.150 If both this flag and C<IO::AIO::READDIR_DIRS_FIRST> are specified, then
915     the likely dirs come first, resulting in a less optimal stat order.
916 root 1.148
917 root 1.150 =item IO::AIO::READDIR_FOUND_UNKNOWN
918 root 1.148
919     This flag should not be set when calling C<aio_readdirx>. Instead, it
920     is being set by C<aio_readdirx>, when any of the C<$type>'s found were
921 root 1.207 C<IO::AIO::DT_UNKNOWN>. The absence of this flag therefore indicates that all
922 root 1.148 C<$type>'s are known, which can be used to speed up some algorithms.
923    
924     =back
925 root 1.37
926 root 1.106
927 root 1.209 =item aio_load $pathname, $data, $callback->($status)
928 root 1.98
929     This is a composite request that tries to fully load the given file into
930     memory. Status is the same as with aio_read.
931    
932     =cut
933    
934     sub aio_load($$;$) {
935 root 1.123 my ($path, undef, $cb) = @_;
936     my $data = \$_[1];
937 root 1.98
938 root 1.123 my $pri = aioreq_pri;
939     my $grp = aio_group $cb;
940    
941     aioreq_pri $pri;
942     add $grp aio_open $path, O_RDONLY, 0, sub {
943     my $fh = shift
944     or return $grp->result (-1);
945 root 1.98
946     aioreq_pri $pri;
947 root 1.123 add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
948     $grp->result ($_[0]);
949 root 1.98 };
950 root 1.123 };
951 root 1.98
952 root 1.123 $grp
953 root 1.98 }
954    
955 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
956    
957     Try to copy the I<file> (directories not supported as either source or
958     destination) from C<$srcpath> to C<$dstpath> and call the callback with
959 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
960 root 1.82
961 root 1.134 This is a composite request that creates the destination file with
962 root 1.82 mode 0200 and copies the contents of the source file into it using
963     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
964     uid/gid, in that order.
965    
966     If an error occurs, the partial destination file will be unlinked, if
967     possible, except when setting atime, mtime, access mode and uid/gid, where
968     errors are being ignored.
969    
970     =cut
971    
972     sub aio_copy($$;$) {
973 root 1.123 my ($src, $dst, $cb) = @_;
974 root 1.82
975 root 1.123 my $pri = aioreq_pri;
976     my $grp = aio_group $cb;
977 root 1.82
978 root 1.123 aioreq_pri $pri;
979     add $grp aio_open $src, O_RDONLY, 0, sub {
980     if (my $src_fh = $_[0]) {
981 root 1.166 my @stat = stat $src_fh; # hmm, might block over nfs?
982 root 1.95
983 root 1.123 aioreq_pri $pri;
984     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
985     if (my $dst_fh = $_[0]) {
986     aioreq_pri $pri;
987     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
988     if ($_[0] == $stat[7]) {
989     $grp->result (0);
990     close $src_fh;
991    
992 root 1.147 my $ch = sub {
993     aioreq_pri $pri;
994     add $grp aio_chmod $dst_fh, $stat[2] & 07777, sub {
995     aioreq_pri $pri;
996     add $grp aio_chown $dst_fh, $stat[4], $stat[5], sub {
997     aioreq_pri $pri;
998     add $grp aio_close $dst_fh;
999     }
1000     };
1001     };
1002 root 1.123
1003     aioreq_pri $pri;
1004 root 1.147 add $grp aio_utime $dst_fh, $stat[8], $stat[9], sub {
1005     if ($_[0] < 0 && $! == ENOSYS) {
1006     aioreq_pri $pri;
1007     add $grp aio_utime $dst, $stat[8], $stat[9], $ch;
1008     } else {
1009     $ch->();
1010     }
1011     };
1012 root 1.123 } else {
1013     $grp->result (-1);
1014     close $src_fh;
1015     close $dst_fh;
1016    
1017     aioreq $pri;
1018     add $grp aio_unlink $dst;
1019     }
1020     };
1021     } else {
1022     $grp->result (-1);
1023     }
1024     },
1025 root 1.82
1026 root 1.123 } else {
1027     $grp->result (-1);
1028     }
1029     };
1030 root 1.82
1031 root 1.123 $grp
1032 root 1.82 }
1033    
1034     =item aio_move $srcpath, $dstpath, $callback->($status)
1035    
1036     Try to move the I<file> (directories not supported as either source or
1037     destination) from C<$srcpath> to C<$dstpath> and call the callback with
1038 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
1039 root 1.82
1040 root 1.137 This is a composite request that tries to rename(2) the file first; if
1041     rename fails with C<EXDEV>, it copies the file with C<aio_copy> and, if
1042     that is successful, unlinks the C<$srcpath>.
1043 root 1.82
1044     =cut
1045    
1046     sub aio_move($$;$) {
1047 root 1.123 my ($src, $dst, $cb) = @_;
1048 root 1.82
1049 root 1.123 my $pri = aioreq_pri;
1050     my $grp = aio_group $cb;
1051 root 1.82
1052 root 1.123 aioreq_pri $pri;
1053     add $grp aio_rename $src, $dst, sub {
1054     if ($_[0] && $! == EXDEV) {
1055     aioreq_pri $pri;
1056     add $grp aio_copy $src, $dst, sub {
1057     $grp->result ($_[0]);
1058 root 1.95
1059 root 1.196 unless ($_[0]) {
1060 root 1.123 aioreq_pri $pri;
1061     add $grp aio_unlink $src;
1062     }
1063     };
1064     } else {
1065     $grp->result ($_[0]);
1066     }
1067     };
1068 root 1.82
1069 root 1.123 $grp
1070 root 1.82 }
1071    
1072 root 1.209 =item aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
1073 root 1.40
1074 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
1075 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
1076     names, directories you can recurse into (directories), and ones you cannot
1077     recurse into (everything else, including symlinks to directories).
1078 root 1.52
1079 root 1.61 C<aio_scandir> is a composite request that creates of many sub requests_
1080     C<$maxreq> specifies the maximum number of outstanding aio requests that
1081     this function generates. If it is C<< <= 0 >>, then a suitable default
1082 root 1.81 will be chosen (currently 4).
1083 root 1.40
1084     On error, the callback is called without arguments, otherwise it receives
1085     two array-refs with path-relative entry names.
1086    
1087     Example:
1088    
1089     aio_scandir $dir, 0, sub {
1090     my ($dirs, $nondirs) = @_;
1091     print "real directories: @$dirs\n";
1092     print "everything else: @$nondirs\n";
1093     };
1094    
1095     Implementation notes.
1096    
1097     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
1098    
1099 root 1.149 If readdir returns file type information, then this is used directly to
1100     find directories.
1101    
1102     Otherwise, after reading the directory, the modification time, size etc.
1103     of the directory before and after the readdir is checked, and if they
1104     match (and isn't the current time), the link count will be used to decide
1105     how many entries are directories (if >= 2). Otherwise, no knowledge of the
1106     number of subdirectories will be assumed.
1107    
1108     Then entries will be sorted into likely directories a non-initial dot
1109     currently) and likely non-directories (see C<aio_readdirx>). Then every
1110     entry plus an appended C</.> will be C<stat>'ed, likely directories first,
1111     in order of their inode numbers. If that succeeds, it assumes that the
1112     entry is a directory or a symlink to directory (which will be checked
1113 root 1.207 separately). This is often faster than stat'ing the entry itself because
1114 root 1.52 filesystems might detect the type of the entry without reading the inode
1115 root 1.149 data (e.g. ext2fs filetype feature), even on systems that cannot return
1116     the filetype information on readdir.
1117 root 1.52
1118     If the known number of directories (link count - 2) has been reached, the
1119     rest of the entries is assumed to be non-directories.
1120    
1121     This only works with certainty on POSIX (= UNIX) filesystems, which
1122     fortunately are the vast majority of filesystems around.
1123    
1124     It will also likely work on non-POSIX filesystems with reduced efficiency
1125     as those tend to return 0 or 1 as link counts, which disables the
1126     directory counting heuristic.
1127 root 1.40
1128     =cut
1129    
1130 root 1.100 sub aio_scandir($$;$) {
1131 root 1.123 my ($path, $maxreq, $cb) = @_;
1132    
1133     my $pri = aioreq_pri;
1134 root 1.40
1135 root 1.123 my $grp = aio_group $cb;
1136 root 1.80
1137 root 1.123 $maxreq = 4 if $maxreq <= 0;
1138 root 1.55
1139 root 1.210 # get a wd object
1140 root 1.123 aioreq_pri $pri;
1141 root 1.210 add $grp aio_wd $path, sub {
1142 root 1.212 $_[0]
1143     or return $grp->result ();
1144    
1145 root 1.210 my $wd = [shift, "."];
1146 root 1.40
1147 root 1.210 # stat once
1148 root 1.80 aioreq_pri $pri;
1149 root 1.210 add $grp aio_stat $wd, sub {
1150     return $grp->result () if $_[0];
1151     my $now = time;
1152     my $hash1 = join ":", (stat _)[0,1,3,7,9];
1153 root 1.40
1154 root 1.210 # read the directory entries
1155 root 1.80 aioreq_pri $pri;
1156 root 1.210 add $grp aio_readdirx $wd, READDIR_DIRS_FIRST, sub {
1157     my $entries = shift
1158     or return $grp->result ();
1159    
1160     # stat the dir another time
1161     aioreq_pri $pri;
1162     add $grp aio_stat $wd, sub {
1163     my $hash2 = join ":", (stat _)[0,1,3,7,9];
1164 root 1.95
1165 root 1.210 my $ndirs;
1166 root 1.95
1167 root 1.210 # take the slow route if anything looks fishy
1168     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
1169     $ndirs = -1;
1170     } else {
1171     # if nlink == 2, we are finished
1172     # for non-posix-fs's, we rely on nlink < 2
1173     $ndirs = (stat _)[3] - 2
1174     or return $grp->result ([], $entries);
1175     }
1176 root 1.123
1177 root 1.210 my (@dirs, @nondirs);
1178 root 1.40
1179 root 1.210 my $statgrp = add $grp aio_group sub {
1180     $grp->result (\@dirs, \@nondirs);
1181     };
1182 root 1.40
1183 root 1.210 limit $statgrp $maxreq;
1184     feed $statgrp sub {
1185     return unless @$entries;
1186     my $entry = shift @$entries;
1187    
1188     aioreq_pri $pri;
1189     $wd->[1] = "$entry/.";
1190     add $statgrp aio_stat $wd, sub {
1191     if ($_[0] < 0) {
1192     push @nondirs, $entry;
1193     } else {
1194     # need to check for real directory
1195     aioreq_pri $pri;
1196     $wd->[1] = $entry;
1197     add $statgrp aio_lstat $wd, sub {
1198     if (-d _) {
1199     push @dirs, $entry;
1200    
1201     unless (--$ndirs) {
1202     push @nondirs, @$entries;
1203     feed $statgrp;
1204     }
1205     } else {
1206     push @nondirs, $entry;
1207 root 1.74 }
1208 root 1.40 }
1209     }
1210 root 1.210 };
1211 root 1.74 };
1212 root 1.40 };
1213     };
1214     };
1215 root 1.123 };
1216 root 1.55
1217 root 1.123 $grp
1218 root 1.40 }
1219    
1220 root 1.209 =item aio_rmtree $pathname, $callback->($status)
1221 root 1.99
1222 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
1223 root 1.239 status of the final C<rmdir> only. This is a composite request that
1224 root 1.100 uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1225     everything else.
1226 root 1.99
1227     =cut
1228    
1229     sub aio_rmtree;
1230 root 1.100 sub aio_rmtree($;$) {
1231 root 1.123 my ($path, $cb) = @_;
1232 root 1.99
1233 root 1.123 my $pri = aioreq_pri;
1234     my $grp = aio_group $cb;
1235 root 1.99
1236 root 1.123 aioreq_pri $pri;
1237     add $grp aio_scandir $path, 0, sub {
1238     my ($dirs, $nondirs) = @_;
1239 root 1.99
1240 root 1.123 my $dirgrp = aio_group sub {
1241     add $grp aio_rmdir $path, sub {
1242     $grp->result ($_[0]);
1243 root 1.99 };
1244 root 1.123 };
1245 root 1.99
1246 root 1.123 (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
1247     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
1248 root 1.99
1249 root 1.123 add $grp $dirgrp;
1250     };
1251 root 1.99
1252 root 1.123 $grp
1253 root 1.99 }
1254    
1255 root 1.259 =item aio_fcntl $fh, $cmd, $arg, $callback->($status)
1256    
1257     =item aio_ioctl $fh, $request, $buf, $callback->($status)
1258    
1259     These work just like the C<fcntl> and C<ioctl> built-in functions, except
1260     they execute asynchronously and pass the return value to the callback.
1261    
1262     Both calls can be used for a lot of things, some of which make more sense
1263     to run asynchronously in their own thread, while some others make less
1264     sense. For example, calls that block waiting for external events, such
1265     as locking, will also lock down an I/O thread while it is waiting, which
1266     can deadlock the whole I/O system. At the same time, there might be no
1267     alternative to using a thread to wait.
1268    
1269     So in general, you should only use these calls for things that do
1270     (filesystem) I/O, not for things that wait for other events (network,
1271     other processes), although if you are careful and know what you are doing,
1272     you still can.
1273    
1274 root 1.264 The following constants are available (missing ones are, as usual C<0>):
1275    
1276     C<FIFREEZE>, C<FITHAW>, C<FITRIM>, C<FICLONE>, C<FICLONERANGE>, C<FIDEDUPERANGE>.
1277    
1278     C<FS_IOC_GETFLAGS>, C<FS_IOC_SETFLAGS>, C<FS_IOC_GETVERSION>, C<FS_IOC_SETVERSION>,
1279     C<FS_IOC_FIEMAP>.
1280    
1281     C<FS_IOC_FSGETXATTR>, C<FS_IOC_FSSETXATTR>, C<FS_IOC_SET_ENCRYPTION_POLICY>,
1282     C<FS_IOC_GET_ENCRYPTION_PWSALT>, C<FS_IOC_GET_ENCRYPTION_POLICY>, C<FS_KEY_DESCRIPTOR_SIZE>.
1283    
1284     C<FS_SECRM_FL>, C<FS_UNRM_FL>, C<FS_COMPR_FL>, C<FS_SYNC_FL>, C<FS_IMMUTABLE_FL>,
1285     C<FS_APPEND_FL>, C<FS_NODUMP_FL>, C<FS_NOATIME_FL>, C<FS_DIRTY_FL>,
1286     C<FS_COMPRBLK_FL>, C<FS_NOCOMP_FL>, C<FS_ENCRYPT_FL>, C<FS_BTREE_FL>,
1287     C<FS_INDEX_FL>, C<FS_JOURNAL_DATA_FL>, C<FS_NOTAIL_FL>, C<FS_DIRSYNC_FL>, C<FS_TOPDIR_FL>,
1288     C<FS_FL_USER_MODIFIABLE>.
1289    
1290     C<FS_XFLAG_REALTIME>, C<FS_XFLAG_PREALLOC>, C<FS_XFLAG_IMMUTABLE>, C<FS_XFLAG_APPEND>,
1291     C<FS_XFLAG_SYNC>, C<FS_XFLAG_NOATIME>, C<FS_XFLAG_NODUMP>, C<FS_XFLAG_RTINHERIT>,
1292     C<FS_XFLAG_PROJINHERIT>, C<FS_XFLAG_NOSYMLINKS>, C<FS_XFLAG_EXTSIZE>, C<FS_XFLAG_EXTSZINHERIT>,
1293     C<FS_XFLAG_NODEFRAG>, C<FS_XFLAG_FILESTREAM>, C<FS_XFLAG_DAX>, C<FS_XFLAG_HASATTR>,
1294    
1295 root 1.119 =item aio_sync $callback->($status)
1296    
1297     Asynchronously call sync and call the callback when finished.
1298    
1299 root 1.40 =item aio_fsync $fh, $callback->($status)
1300 root 1.1
1301     Asynchronously call fsync on the given filehandle and call the callback
1302     with the fsync result code.
1303    
1304 root 1.40 =item aio_fdatasync $fh, $callback->($status)
1305 root 1.1
1306     Asynchronously call fdatasync on the given filehandle and call the
1307 root 1.26 callback with the fdatasync result code.
1308    
1309     If this call isn't available because your OS lacks it or it couldn't be
1310     detected, it will be emulated by calling C<fsync> instead.
1311 root 1.1
1312 root 1.206 =item aio_syncfs $fh, $callback->($status)
1313    
1314     Asynchronously call the syncfs syscall to sync the filesystem associated
1315     to the given filehandle and call the callback with the syncfs result
1316     code. If syncfs is not available, calls sync(), but returns C<-1> and sets
1317     errno to C<ENOSYS> nevertheless.
1318    
1319 root 1.142 =item aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
1320    
1321     Sync the data portion of the file specified by C<$offset> and C<$length>
1322     to disk (but NOT the metadata), by calling the Linux-specific
1323     sync_file_range call. If sync_file_range is not available or it returns
1324     ENOSYS, then fdatasync or fsync is being substituted.
1325    
1326     C<$flags> can be a combination of C<IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE>,
1327     C<IO::AIO::SYNC_FILE_RANGE_WRITE> and
1328     C<IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER>: refer to the sync_file_range
1329     manpage for details.
1330    
1331 root 1.209 =item aio_pathsync $pathname, $callback->($status)
1332 root 1.120
1333     This request tries to open, fsync and close the given path. This is a
1334 root 1.135 composite request intended to sync directories after directory operations
1335 root 1.120 (E.g. rename). This might not work on all operating systems or have any
1336     specific effect, but usually it makes sure that directory changes get
1337     written to disc. It works for anything that can be opened for read-only,
1338     not just directories.
1339    
1340 root 1.162 Future versions of this function might fall back to other methods when
1341     C<fsync> on the directory fails (such as calling C<sync>).
1342    
1343 root 1.120 Passes C<0> when everything went ok, and C<-1> on error.
1344    
1345     =cut
1346    
1347     sub aio_pathsync($;$) {
1348 root 1.123 my ($path, $cb) = @_;
1349    
1350     my $pri = aioreq_pri;
1351     my $grp = aio_group $cb;
1352 root 1.120
1353 root 1.123 aioreq_pri $pri;
1354     add $grp aio_open $path, O_RDONLY, 0, sub {
1355     my ($fh) = @_;
1356     if ($fh) {
1357     aioreq_pri $pri;
1358     add $grp aio_fsync $fh, sub {
1359     $grp->result ($_[0]);
1360 root 1.120
1361     aioreq_pri $pri;
1362 root 1.123 add $grp aio_close $fh;
1363     };
1364     } else {
1365     $grp->result (-1);
1366     }
1367     };
1368 root 1.120
1369 root 1.123 $grp
1370 root 1.120 }
1371    
1372 root 1.268 =item aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
1373 root 1.170
1374     This is a rather advanced IO::AIO call, which only works on mmap(2)ed
1375 root 1.176 scalars (see the C<IO::AIO::mmap> function, although it also works on data
1376     scalars managed by the L<Sys::Mmap> or L<Mmap> modules, note that the
1377     scalar must only be modified in-place while an aio operation is pending on
1378     it).
1379 root 1.170
1380     It calls the C<msync> function of your OS, if available, with the memory
1381     area starting at C<$offset> in the string and ending C<$length> bytes
1382     later. If C<$length> is negative, counts from the end, and if C<$length>
1383     is C<undef>, then it goes till the end of the string. The flags can be
1384 root 1.268 either C<IO::AIO::MS_ASYNC> or C<IO::AIO::MS_SYNC>, plus an optional
1385     C<IO::AIO::MS_INVALIDATE>.
1386 root 1.170
1387     =item aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1388    
1389     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1390     scalars.
1391    
1392     It touches (reads or writes) all memory pages in the specified
1393 root 1.239 range inside the scalar. All caveats and parameters are the same
1394 root 1.170 as for C<aio_msync>, above, except for flags, which must be either
1395     C<0> (which reads all pages and ensures they are instantiated) or
1396 root 1.239 C<IO::AIO::MT_MODIFY>, which modifies the memory pages (by reading and
1397 root 1.170 writing an octet from it, which dirties the page).
1398    
1399 root 1.182 =item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1400    
1401     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1402     scalars.
1403    
1404     It reads in all the pages of the underlying storage into memory (if any)
1405     and locks them, so they are not getting swapped/paged out or removed.
1406    
1407     If C<$length> is undefined, then the scalar will be locked till the end.
1408    
1409     On systems that do not implement C<mlock>, this function returns C<-1>
1410     and sets errno to C<ENOSYS>.
1411    
1412     Note that the corresponding C<munlock> is synchronous and is
1413     documented under L<MISCELLANEOUS FUNCTIONS>.
1414    
1415 root 1.183 Example: open a file, mmap and mlock it - both will be undone when
1416     C<$data> gets destroyed.
1417    
1418     open my $fh, "<", $path or die "$path: $!";
1419     my $data;
1420     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1421     aio_mlock $data; # mlock in background
1422    
1423 root 1.182 =item aio_mlockall $flags, $callback->($status)
1424    
1425     Calls the C<mlockall> function with the given C<$flags> (a combination of
1426     C<IO::AIO::MCL_CURRENT> and C<IO::AIO::MCL_FUTURE>).
1427    
1428     On systems that do not implement C<mlockall>, this function returns C<-1>
1429     and sets errno to C<ENOSYS>.
1430    
1431     Note that the corresponding C<munlockall> is synchronous and is
1432     documented under L<MISCELLANEOUS FUNCTIONS>.
1433    
1434 root 1.183 Example: asynchronously lock all current and future pages into memory.
1435    
1436     aio_mlockall IO::AIO::MCL_FUTURE;
1437    
1438 root 1.223 =item aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
1439    
1440 root 1.234 Queries the extents of the given file (by calling the Linux C<FIEMAP>
1441     ioctl, see L<http://cvs.schmorp.de/IO-AIO/doc/fiemap.txt> for details). If
1442     the ioctl is not available on your OS, then this request will fail with
1443 root 1.223 C<ENOSYS>.
1444    
1445     C<$start> is the starting offset to query extents for, C<$length> is the
1446     size of the range to query - if it is C<undef>, then the whole file will
1447     be queried.
1448    
1449     C<$flags> is a combination of flags (C<IO::AIO::FIEMAP_FLAG_SYNC> or
1450     C<IO::AIO::FIEMAP_FLAG_XATTR> - C<IO::AIO::FIEMAP_FLAGS_COMPAT> is also
1451     exported), and is normally C<0> or C<IO::AIO::FIEMAP_FLAG_SYNC> to query
1452     the data portion.
1453    
1454     C<$count> is the maximum number of extent records to return. If it is
1455 root 1.232 C<undef>, then IO::AIO queries all extents of the range. As a very special
1456 root 1.223 case, if it is C<0>, then the callback receives the number of extents
1457 root 1.232 instead of the extents themselves (which is unreliable, see below).
1458 root 1.223
1459     If an error occurs, the callback receives no arguments. The special
1460     C<errno> value C<IO::AIO::EBADR> is available to test for flag errors.
1461    
1462     Otherwise, the callback receives an array reference with extent
1463     structures. Each extent structure is an array reference itself, with the
1464     following members:
1465    
1466     [$logical, $physical, $length, $flags]
1467    
1468     Flags is any combination of the following flag values (typically either C<0>
1469 root 1.231 or C<IO::AIO::FIEMAP_EXTENT_LAST> (1)):
1470 root 1.223
1471     C<IO::AIO::FIEMAP_EXTENT_LAST>, C<IO::AIO::FIEMAP_EXTENT_UNKNOWN>,
1472     C<IO::AIO::FIEMAP_EXTENT_DELALLOC>, C<IO::AIO::FIEMAP_EXTENT_ENCODED>,
1473     C<IO::AIO::FIEMAP_EXTENT_DATA_ENCRYPTED>, C<IO::AIO::FIEMAP_EXTENT_NOT_ALIGNED>,
1474     C<IO::AIO::FIEMAP_EXTENT_DATA_INLINE>, C<IO::AIO::FIEMAP_EXTENT_DATA_TAIL>,
1475     C<IO::AIO::FIEMAP_EXTENT_UNWRITTEN>, C<IO::AIO::FIEMAP_EXTENT_MERGED> or
1476     C<IO::AIO::FIEMAP_EXTENT_SHARED>.
1477    
1478 root 1.232 At the time of this writing (Linux 3.2), this requets is unreliable unless
1479     C<$count> is C<undef>, as the kernel has all sorts of bugs preventing
1480     it to return all extents of a range for files with large number of
1481     extents. The code works around all these issues if C<$count> is undef.
1482    
1483 root 1.58 =item aio_group $callback->(...)
1484 root 1.54
1485 root 1.55 This is a very special aio request: Instead of doing something, it is a
1486     container for other aio requests, which is useful if you want to bundle
1487 root 1.71 many requests into a single, composite, request with a definite callback
1488     and the ability to cancel the whole request with its subrequests.
1489 root 1.55
1490     Returns an object of class L<IO::AIO::GRP>. See its documentation below
1491     for more info.
1492    
1493     Example:
1494    
1495     my $grp = aio_group sub {
1496     print "all stats done\n";
1497     };
1498    
1499     add $grp
1500     (aio_stat ...),
1501     (aio_stat ...),
1502     ...;
1503    
1504 root 1.63 =item aio_nop $callback->()
1505    
1506     This is a special request - it does nothing in itself and is only used for
1507     side effects, such as when you want to add a dummy request to a group so
1508     that finishing the requests in the group depends on executing the given
1509     code.
1510    
1511 root 1.64 While this request does nothing, it still goes through the execution
1512     phase and still requires a worker thread. Thus, the callback will not
1513     be executed immediately but only after other requests in the queue have
1514     entered their execution phase. This can be used to measure request
1515     latency.
1516    
1517 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1518 root 1.54
1519     Mainly used for debugging and benchmarking, this aio request puts one of
1520     the request workers to sleep for the given time.
1521    
1522 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1523 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1524     immense (it blocks a thread for a long time) so do not use this function
1525     except to put your application under artificial I/O pressure.
1526 root 1.56
1527 root 1.5 =back
1528    
1529 root 1.209
1530     =head2 IO::AIO::WD - multiple working directories
1531    
1532     Your process only has one current working directory, which is used by all
1533     threads. This makes it hard to use relative paths (some other component
1534     could call C<chdir> at any time, and it is hard to control when the path
1535     will be used by IO::AIO).
1536    
1537     One solution for this is to always use absolute paths. This usually works,
1538     but can be quite slow (the kernel has to walk the whole path on every
1539     access), and can also be a hassle to implement.
1540    
1541     Newer POSIX systems have a number of functions (openat, fdopendir,
1542     futimensat and so on) that make it possible to specify working directories
1543     per operation.
1544    
1545     For portability, and because the clowns who "designed", or shall I write,
1546     perpetrated this new interface were obviously half-drunk, this abstraction
1547     cannot be perfect, though.
1548    
1549     IO::AIO allows you to convert directory paths into a so-called IO::AIO::WD
1550     object. This object stores the canonicalised, absolute version of the
1551     path, and on systems that allow it, also a directory file descriptor.
1552    
1553     Everywhere where a pathname is accepted by IO::AIO (e.g. in C<aio_stat>
1554     or C<aio_unlink>), one can specify an array reference with an IO::AIO::WD
1555 root 1.214 object and a pathname instead (or the IO::AIO::WD object alone, which
1556     gets interpreted as C<[$wd, "."]>). If the pathname is absolute, the
1557 root 1.213 IO::AIO::WD object is ignored, otherwise the pathname is resolved relative
1558 root 1.209 to that IO::AIO::WD object.
1559    
1560     For example, to get a wd object for F</etc> and then stat F<passwd>
1561     inside, you would write:
1562    
1563     aio_wd "/etc", sub {
1564     my $etcdir = shift;
1565    
1566     # although $etcdir can be undef on error, there is generally no reason
1567     # to check for errors here, as aio_stat will fail with ENOENT
1568     # when $etcdir is undef.
1569    
1570     aio_stat [$etcdir, "passwd"], sub {
1571     # yay
1572     };
1573     };
1574    
1575 root 1.250 The fact that C<aio_wd> is a request and not a normal function shows that
1576     creating an IO::AIO::WD object is itself a potentially blocking operation,
1577     which is why it is done asynchronously.
1578 root 1.214
1579     To stat the directory obtained with C<aio_wd> above, one could write
1580     either of the following three request calls:
1581    
1582     aio_lstat "/etc" , sub { ... # pathname as normal string
1583     aio_lstat [$wd, "."], sub { ... # "." relative to $wd (i.e. $wd itself)
1584     aio_lstat $wd , sub { ... # shorthand for the previous
1585 root 1.209
1586     As with normal pathnames, IO::AIO keeps a copy of the working directory
1587     object and the pathname string, so you could write the following without
1588     causing any issues due to C<$path> getting reused:
1589    
1590     my $path = [$wd, undef];
1591    
1592     for my $name (qw(abc def ghi)) {
1593     $path->[1] = $name;
1594     aio_stat $path, sub {
1595     # ...
1596     };
1597     }
1598    
1599     There are some caveats: when directories get renamed (or deleted), the
1600     pathname string doesn't change, so will point to the new directory (or
1601     nowhere at all), while the directory fd, if available on the system,
1602     will still point to the original directory. Most functions accepting a
1603     pathname will use the directory fd on newer systems, and the string on
1604     older systems. Some functions (such as realpath) will always rely on the
1605     string form of the pathname.
1606    
1607 root 1.239 So this functionality is mainly useful to get some protection against
1608 root 1.209 C<chdir>, to easily get an absolute path out of a relative path for future
1609     reference, and to speed up doing many operations in the same directory
1610     (e.g. when stat'ing all files in a directory).
1611    
1612     The following functions implement this working directory abstraction:
1613    
1614     =over 4
1615    
1616     =item aio_wd $pathname, $callback->($wd)
1617    
1618     Asynchonously canonicalise the given pathname and convert it to an
1619     IO::AIO::WD object representing it. If possible and supported on the
1620     system, also open a directory fd to speed up pathname resolution relative
1621     to this working directory.
1622    
1623     If something goes wrong, then C<undef> is passwd to the callback instead
1624     of a working directory object and C<$!> is set appropriately. Since
1625     passing C<undef> as working directory component of a pathname fails the
1626     request with C<ENOENT>, there is often no need for error checking in the
1627     C<aio_wd> callback, as future requests using the value will fail in the
1628     expected way.
1629    
1630     =item IO::AIO::CWD
1631    
1632     This is a compiletime constant (object) that represents the process
1633     current working directory.
1634    
1635 root 1.239 Specifying this object as working directory object for a pathname is as if
1636     the pathname would be specified directly, without a directory object. For
1637     example, these calls are functionally identical:
1638 root 1.209
1639     aio_stat "somefile", sub { ... };
1640     aio_stat [IO::AIO::CWD, "somefile"], sub { ... };
1641    
1642     =back
1643    
1644 root 1.239 To recover the path associated with an IO::AIO::WD object, you can use
1645     C<aio_realpath>:
1646    
1647     aio_realpath $wd, sub {
1648     warn "path is $_[0]\n";
1649     };
1650    
1651 root 1.241 Currently, C<aio_statvfs> always, and C<aio_rename> and C<aio_rmdir>
1652     sometimes, fall back to using an absolue path.
1653 root 1.209
1654 root 1.53 =head2 IO::AIO::REQ CLASS
1655 root 1.52
1656     All non-aggregate C<aio_*> functions return an object of this class when
1657     called in non-void context.
1658    
1659     =over 4
1660    
1661 root 1.65 =item cancel $req
1662 root 1.52
1663     Cancels the request, if possible. Has the effect of skipping execution
1664     when entering the B<execute> state and skipping calling the callback when
1665     entering the the B<result> state, but will leave the request otherwise
1666 root 1.151 untouched (with the exception of readdir). That means that requests that
1667     currently execute will not be stopped and resources held by the request
1668     will not be freed prematurely.
1669 root 1.52
1670 root 1.65 =item cb $req $callback->(...)
1671    
1672     Replace (or simply set) the callback registered to the request.
1673    
1674 root 1.52 =back
1675    
1676 root 1.55 =head2 IO::AIO::GRP CLASS
1677    
1678     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1679     objects of this class, too.
1680    
1681     A IO::AIO::GRP object is a special request that can contain multiple other
1682     aio requests.
1683    
1684     You create one by calling the C<aio_group> constructing function with a
1685     callback that will be called when all contained requests have entered the
1686     C<done> state:
1687    
1688     my $grp = aio_group sub {
1689     print "all requests are done\n";
1690     };
1691    
1692     You add requests by calling the C<add> method with one or more
1693     C<IO::AIO::REQ> objects:
1694    
1695     $grp->add (aio_unlink "...");
1696    
1697 root 1.58 add $grp aio_stat "...", sub {
1698     $_[0] or return $grp->result ("error");
1699    
1700     # add another request dynamically, if first succeeded
1701     add $grp aio_open "...", sub {
1702     $grp->result ("ok");
1703     };
1704     };
1705 root 1.55
1706     This makes it very easy to create composite requests (see the source of
1707     C<aio_move> for an application) that work and feel like simple requests.
1708    
1709 root 1.62 =over 4
1710    
1711     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1712 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1713    
1714 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1715 root 1.59 only the request itself, but also all requests it contains.
1716 root 1.55
1717 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1718 root 1.55
1719 root 1.62 =item * You must not add requests to a group from within the group callback (or
1720 root 1.60 any later time).
1721    
1722 root 1.62 =back
1723    
1724 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1725     will finish very quickly. If they contain only requests that are in the
1726     C<done> state, they will also finish. Otherwise they will continue to
1727     exist.
1728    
1729 root 1.133 That means after creating a group you have some time to add requests
1730     (precisely before the callback has been invoked, which is only done within
1731     the C<poll_cb>). And in the callbacks of those requests, you can add
1732     further requests to the group. And only when all those requests have
1733     finished will the the group itself finish.
1734 root 1.57
1735 root 1.55 =over 4
1736    
1737 root 1.65 =item add $grp ...
1738    
1739 root 1.55 =item $grp->add (...)
1740    
1741 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1742     be added, including other groups, as long as you do not create circular
1743     dependencies.
1744    
1745     Returns all its arguments.
1746 root 1.55
1747 root 1.74 =item $grp->cancel_subs
1748    
1749     Cancel all subrequests and clears any feeder, but not the group request
1750     itself. Useful when you queued a lot of events but got a result early.
1751    
1752 root 1.168 The group request will finish normally (you cannot add requests to the
1753     group).
1754    
1755 root 1.58 =item $grp->result (...)
1756    
1757     Set the result value(s) that will be passed to the group callback when all
1758 root 1.120 subrequests have finished and set the groups errno to the current value
1759 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1760     no argument will be passed and errno is zero.
1761    
1762     =item $grp->errno ([$errno])
1763    
1764     Sets the group errno value to C<$errno>, or the current value of errno
1765     when the argument is missing.
1766    
1767     Every aio request has an associated errno value that is restored when
1768     the callback is invoked. This method lets you change this value from its
1769     default (0).
1770    
1771     Calling C<result> will also set errno, so make sure you either set C<$!>
1772     before the call to C<result>, or call c<errno> after it.
1773 root 1.58
1774 root 1.65 =item feed $grp $callback->($grp)
1775 root 1.60
1776     Sets a feeder/generator on this group: every group can have an attached
1777     generator that generates requests if idle. The idea behind this is that,
1778     although you could just queue as many requests as you want in a group,
1779 root 1.139 this might starve other requests for a potentially long time. For example,
1780 root 1.211 C<aio_scandir> might generate hundreds of thousands of C<aio_stat>
1781     requests, delaying any later requests for a long time.
1782 root 1.60
1783     To avoid this, and allow incremental generation of requests, you can
1784     instead a group and set a feeder on it that generates those requests. The
1785 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1786 root 1.60 below) requests active in the group itself and is expected to queue more
1787     requests.
1788    
1789 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1790     not impose any limits).
1791 root 1.60
1792 root 1.65 If the feed does not queue more requests when called, it will be
1793 root 1.60 automatically removed from the group.
1794    
1795 root 1.138 If the feed limit is C<0> when this method is called, it will be set to
1796     C<2> automatically.
1797 root 1.60
1798     Example:
1799    
1800     # stat all files in @files, but only ever use four aio requests concurrently:
1801    
1802     my $grp = aio_group sub { print "finished\n" };
1803 root 1.68 limit $grp 4;
1804 root 1.65 feed $grp sub {
1805 root 1.60 my $file = pop @files
1806     or return;
1807    
1808     add $grp aio_stat $file, sub { ... };
1809 root 1.65 };
1810 root 1.60
1811 root 1.68 =item limit $grp $num
1812 root 1.60
1813     Sets the feeder limit for the group: The feeder will be called whenever
1814     the group contains less than this many requests.
1815    
1816     Setting the limit to C<0> will pause the feeding process.
1817    
1818 root 1.138 The default value for the limit is C<0>, but note that setting a feeder
1819     automatically bumps it up to C<2>.
1820    
1821 root 1.55 =back
1822    
1823 root 1.5 =head2 SUPPORT FUNCTIONS
1824    
1825 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1826    
1827 root 1.5 =over 4
1828    
1829     =item $fileno = IO::AIO::poll_fileno
1830    
1831 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1832 root 1.156 polled for reading by some mechanism outside this module (e.g. EV, Glib,
1833     select and so on, see below or the SYNOPSIS). If the pipe becomes readable
1834     you have to call C<poll_cb> to check the results.
1835 root 1.5
1836     See C<poll_cb> for an example.
1837    
1838     =item IO::AIO::poll_cb
1839    
1840 root 1.240 Process some requests that have reached the result phase (i.e. they have
1841     been executed but the results are not yet reported). You have to call
1842     this "regularly" to finish outstanding requests.
1843    
1844     Returns C<0> if all events could be processed (or there were no
1845     events to process), or C<-1> if it returned earlier for whatever
1846     reason. Returns immediately when no events are outstanding. The amount
1847     of events processed depends on the settings of C<IO::AIO::max_poll_req>,
1848     C<IO::AIO::max_poll_time> and C<IO::AIO::max_outstanding>.
1849    
1850     If not all requests were processed for whatever reason, the poll file
1851     descriptor will still be ready when C<poll_cb> returns, so normally you
1852     don't have to do anything special to have it called later.
1853 root 1.78
1854 root 1.192 Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes
1855     ready, it can be beneficial to call this function from loops which submit
1856     a lot of requests, to make sure the results get processed when they become
1857     available and not just when the loop is finished and the event loop takes
1858     over again. This function returns very fast when there are no outstanding
1859     requests.
1860    
1861 root 1.20 Example: Install an Event watcher that automatically calls
1862 root 1.156 IO::AIO::poll_cb with high priority (more examples can be found in the
1863     SYNOPSIS section, at the top of this document):
1864 root 1.5
1865     Event->io (fd => IO::AIO::poll_fileno,
1866     poll => 'r', async => 1,
1867     cb => \&IO::AIO::poll_cb);
1868    
1869 root 1.175 =item IO::AIO::poll_wait
1870    
1871 root 1.240 Wait until either at least one request is in the result phase or no
1872     requests are outstanding anymore.
1873    
1874     This is useful if you want to synchronously wait for some requests to
1875     become ready, without actually handling them.
1876 root 1.175
1877     See C<nreqs> for an example.
1878    
1879     =item IO::AIO::poll
1880    
1881     Waits until some requests have been handled.
1882    
1883     Returns the number of requests processed, but is otherwise strictly
1884     equivalent to:
1885    
1886     IO::AIO::poll_wait, IO::AIO::poll_cb
1887    
1888     =item IO::AIO::flush
1889    
1890     Wait till all outstanding AIO requests have been handled.
1891    
1892     Strictly equivalent to:
1893    
1894     IO::AIO::poll_wait, IO::AIO::poll_cb
1895     while IO::AIO::nreqs;
1896    
1897 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1898    
1899     =item IO::AIO::max_poll_time $seconds
1900    
1901     These set the maximum number of requests (default C<0>, meaning infinity)
1902     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1903     the maximum amount of time (default C<0>, meaning infinity) spent in
1904     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1905     of time C<poll_cb> is allowed to use).
1906 root 1.78
1907 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1908     syscall per request processed, which is not normally a problem unless your
1909     callbacks are really really fast or your OS is really really slow (I am
1910     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1911    
1912 root 1.86 Setting these is useful if you want to ensure some level of
1913     interactiveness when perl is not fast enough to process all requests in
1914     time.
1915 root 1.78
1916 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
1917 root 1.78
1918     Example: Install an Event watcher that automatically calls
1919 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
1920 root 1.78 program get the CPU sometimes even under high AIO load.
1921    
1922 root 1.86 # try not to spend much more than 0.1s in poll_cb
1923     IO::AIO::max_poll_time 0.1;
1924    
1925     # use a low priority so other tasks have priority
1926 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
1927     poll => 'r', nice => 1,
1928 root 1.86 cb => &IO::AIO::poll_cb);
1929 root 1.78
1930 root 1.104 =back
1931    
1932 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
1933 root 1.13
1934 root 1.105 =over
1935    
1936 root 1.5 =item IO::AIO::min_parallel $nthreads
1937    
1938 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
1939     default is C<8>, which means eight asynchronous operations can execute
1940     concurrently at any one time (the number of outstanding requests,
1941     however, is unlimited).
1942 root 1.5
1943 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
1944 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
1945     create demand for a hundred threads, even if it turns out that everything
1946     is in the cache and could have been processed faster by a single thread.
1947 root 1.34
1948 root 1.61 It is recommended to keep the number of threads relatively low, as some
1949     Linux kernel versions will scale negatively with the number of threads
1950     (higher parallelity => MUCH higher latency). With current Linux 2.6
1951     versions, 4-32 threads should be fine.
1952 root 1.5
1953 root 1.34 Under most circumstances you don't need to call this function, as the
1954     module selects a default that is suitable for low to moderate load.
1955 root 1.5
1956     =item IO::AIO::max_parallel $nthreads
1957    
1958 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
1959     specified number of threads are currently running, this function kills
1960     them. This function blocks until the limit is reached.
1961    
1962     While C<$nthreads> are zero, aio requests get queued but not executed
1963     until the number of threads has been increased again.
1964 root 1.5
1965     This module automatically runs C<max_parallel 0> at program end, to ensure
1966     that all threads are killed and that there are no outstanding requests.
1967    
1968     Under normal circumstances you don't need to call this function.
1969    
1970 root 1.86 =item IO::AIO::max_idle $nthreads
1971    
1972 root 1.188 Limit the number of threads (default: 4) that are allowed to idle
1973     (i.e., threads that did not get a request to process within the idle
1974     timeout (default: 10 seconds). That means if a thread becomes idle while
1975     C<$nthreads> other threads are also idle, it will free its resources and
1976     exit.
1977 root 1.86
1978     This is useful when you allow a large number of threads (e.g. 100 or 1000)
1979     to allow for extremely high load situations, but want to free resources
1980     under normal circumstances (1000 threads can easily consume 30MB of RAM).
1981    
1982     The default is probably ok in most situations, especially if thread
1983     creation is fast. If thread creation is very slow on your system you might
1984     want to use larger values.
1985    
1986 root 1.188 =item IO::AIO::idle_timeout $seconds
1987    
1988     Sets the minimum idle timeout (default 10) after which worker threads are
1989     allowed to exit. SEe C<IO::AIO::max_idle>.
1990    
1991 root 1.123 =item IO::AIO::max_outstanding $maxreqs
1992 root 1.5
1993 root 1.195 Sets the maximum number of outstanding requests to C<$nreqs>. If
1994     you do queue up more than this number of requests, the next call to
1995     C<IO::AIO::poll_cb> (and other functions calling C<poll_cb>, such as
1996     C<IO::AIO::flush> or C<IO::AIO::poll>) will block until the limit is no
1997     longer exceeded.
1998    
1999     In other words, this setting does not enforce a queue limit, but can be
2000     used to make poll functions block if the limit is exceeded.
2001    
2002 root 1.79 This is a very bad function to use in interactive programs because it
2003     blocks, and a bad way to reduce concurrency because it is inexact: Better
2004     use an C<aio_group> together with a feed callback.
2005    
2006 root 1.248 Its main use is in scripts without an event loop - when you want to stat
2007 root 1.195 a lot of files, you can write somehting like this:
2008    
2009     IO::AIO::max_outstanding 32;
2010    
2011     for my $path (...) {
2012     aio_stat $path , ...;
2013     IO::AIO::poll_cb;
2014     }
2015    
2016     IO::AIO::flush;
2017    
2018     The call to C<poll_cb> inside the loop will normally return instantly, but
2019     as soon as more thna C<32> reqeusts are in-flight, it will block until
2020     some requests have been handled. This keeps the loop from pushing a large
2021     number of C<aio_stat> requests onto the queue.
2022    
2023     The default value for C<max_outstanding> is very large, so there is no
2024     practical limit on the number of outstanding requests.
2025 root 1.5
2026 root 1.104 =back
2027    
2028 root 1.86 =head3 STATISTICAL INFORMATION
2029    
2030 root 1.104 =over
2031    
2032 root 1.86 =item IO::AIO::nreqs
2033    
2034     Returns the number of requests currently in the ready, execute or pending
2035     states (i.e. for which their callback has not been invoked yet).
2036    
2037     Example: wait till there are no outstanding requests anymore:
2038    
2039     IO::AIO::poll_wait, IO::AIO::poll_cb
2040     while IO::AIO::nreqs;
2041    
2042     =item IO::AIO::nready
2043    
2044     Returns the number of requests currently in the ready state (not yet
2045     executed).
2046    
2047     =item IO::AIO::npending
2048    
2049     Returns the number of requests currently in the pending state (executed,
2050     but not yet processed by poll_cb).
2051    
2052 root 1.5 =back
2053    
2054 root 1.157 =head3 MISCELLANEOUS FUNCTIONS
2055    
2056 root 1.248 IO::AIO implements some functions that are useful when you want to use
2057     some "Advanced I/O" function not available to in Perl, without going the
2058     "Asynchronous I/O" route. Many of these have an asynchronous C<aio_*>
2059     counterpart.
2060 root 1.157
2061     =over 4
2062    
2063     =item IO::AIO::sendfile $ofh, $ifh, $offset, $count
2064    
2065     Calls the C<eio_sendfile_sync> function, which is like C<aio_sendfile>,
2066     but is blocking (this makes most sense if you know the input data is
2067     likely cached already and the output filehandle is set to non-blocking
2068     operations).
2069    
2070     Returns the number of bytes copied, or C<-1> on error.
2071    
2072     =item IO::AIO::fadvise $fh, $offset, $len, $advice
2073    
2074 root 1.184 Simply calls the C<posix_fadvise> function (see its
2075 root 1.157 manpage for details). The following advice constants are
2076 root 1.207 available: C<IO::AIO::FADV_NORMAL>, C<IO::AIO::FADV_SEQUENTIAL>,
2077 root 1.157 C<IO::AIO::FADV_RANDOM>, C<IO::AIO::FADV_NOREUSE>,
2078     C<IO::AIO::FADV_WILLNEED>, C<IO::AIO::FADV_DONTNEED>.
2079    
2080     On systems that do not implement C<posix_fadvise>, this function returns
2081     ENOSYS, otherwise the return value of C<posix_fadvise>.
2082    
2083 root 1.184 =item IO::AIO::madvise $scalar, $offset, $len, $advice
2084    
2085     Simply calls the C<posix_madvise> function (see its
2086     manpage for details). The following advice constants are
2087 root 1.207 available: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
2088 root 1.263 C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>, C<IO::AIO::MADV_DONTNEED>,
2089     C<IO::AIO::MADV_FREE>.
2090 root 1.184
2091 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2092     the remaining length of the C<$scalar> is used. If possible, C<$length>
2093     will be reduced to fit into the C<$scalar>.
2094    
2095 root 1.184 On systems that do not implement C<posix_madvise>, this function returns
2096     ENOSYS, otherwise the return value of C<posix_madvise>.
2097    
2098     =item IO::AIO::mprotect $scalar, $offset, $len, $protect
2099    
2100     Simply calls the C<mprotect> function on the preferably AIO::mmap'ed
2101     $scalar (see its manpage for details). The following protect
2102 root 1.207 constants are available: C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_READ>,
2103 root 1.184 C<IO::AIO::PROT_WRITE>, C<IO::AIO::PROT_EXEC>.
2104    
2105 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2106     the remaining length of the C<$scalar> is used. If possible, C<$length>
2107     will be reduced to fit into the C<$scalar>.
2108    
2109 root 1.184 On systems that do not implement C<mprotect>, this function returns
2110     ENOSYS, otherwise the return value of C<mprotect>.
2111    
2112 root 1.176 =item IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
2113    
2114     Memory-maps a file (or anonymous memory range) and attaches it to the
2115 root 1.228 given C<$scalar>, which will act like a string scalar. Returns true on
2116     success, and false otherwise.
2117 root 1.176
2118 root 1.268 The scalar must exist, but its contents do not matter - this means you
2119     cannot use a nonexistant array or hash element. When in doubt, C<undef>
2120     the scalar first.
2121    
2122     The only operations allowed on the mmapped scalar are C<substr>/C<vec>,
2123     which don't change the string length, and most read-only operations such
2124     as copying it or searching it with regexes and so on.
2125 root 1.176
2126     Anything else is unsafe and will, at best, result in memory leaks.
2127    
2128     The memory map associated with the C<$scalar> is automatically removed
2129 root 1.268 when the C<$scalar> is undef'd or destroyed, or when the C<IO::AIO::mmap>
2130     or C<IO::AIO::munmap> functions are called on it.
2131 root 1.176
2132     This calls the C<mmap>(2) function internally. See your system's manual
2133     page for details on the C<$length>, C<$prot> and C<$flags> parameters.
2134    
2135     The C<$length> must be larger than zero and smaller than the actual
2136     filesize.
2137    
2138     C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
2139     C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
2140    
2141 root 1.256 C<$flags> can be a combination of
2142     C<IO::AIO::MAP_SHARED> or
2143     C<IO::AIO::MAP_PRIVATE>,
2144     or a number of system-specific flags (when not available, the are C<0>):
2145     C<IO::AIO::MAP_ANONYMOUS> (which is set to C<MAP_ANON> if your system only provides this constant),
2146     C<IO::AIO::MAP_LOCKED>,
2147     C<IO::AIO::MAP_NORESERVE>,
2148     C<IO::AIO::MAP_POPULATE>,
2149     C<IO::AIO::MAP_NONBLOCK>,
2150     C<IO::AIO::MAP_FIXED>,
2151     C<IO::AIO::MAP_GROWSDOWN>,
2152     C<IO::AIO::MAP_32BIT>,
2153     C<IO::AIO::MAP_HUGETLB> or
2154     C<IO::AIO::MAP_STACK>.
2155 root 1.176
2156     If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
2157    
2158 root 1.179 C<$offset> is the offset from the start of the file - it generally must be
2159     a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
2160    
2161 root 1.177 Example:
2162    
2163     use Digest::MD5;
2164     use IO::AIO;
2165    
2166     open my $fh, "<verybigfile"
2167     or die "$!";
2168    
2169     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
2170     or die "verybigfile: $!";
2171    
2172     my $fast_md5 = md5 $data;
2173    
2174 root 1.176 =item IO::AIO::munmap $scalar
2175    
2176     Removes a previous mmap and undefines the C<$scalar>.
2177    
2178 root 1.182 =item IO::AIO::munlock $scalar, $offset = 0, $length = undef
2179 root 1.174
2180 root 1.182 Calls the C<munlock> function, undoing the effects of a previous
2181     C<aio_mlock> call (see its description for details).
2182 root 1.174
2183     =item IO::AIO::munlockall
2184    
2185     Calls the C<munlockall> function.
2186    
2187     On systems that do not implement C<munlockall>, this function returns
2188     ENOSYS, otherwise the return value of C<munlockall>.
2189    
2190 root 1.225 =item IO::AIO::splice $r_fh, $r_off, $w_fh, $w_off, $length, $flags
2191    
2192     Calls the GNU/Linux C<splice(2)> syscall, if available. If C<$r_off> or
2193     C<$w_off> are C<undef>, then C<NULL> is passed for these, otherwise they
2194     should be the file offset.
2195    
2196 root 1.227 C<$r_fh> and C<$w_fh> should not refer to the same file, as splice might
2197     silently corrupt the data in this case.
2198    
2199 root 1.225 The following symbol flag values are available: C<IO::AIO::SPLICE_F_MOVE>,
2200     C<IO::AIO::SPLICE_F_NONBLOCK>, C<IO::AIO::SPLICE_F_MORE> and
2201     C<IO::AIO::SPLICE_F_GIFT>.
2202    
2203     See the C<splice(2)> manpage for details.
2204    
2205     =item IO::AIO::tee $r_fh, $w_fh, $length, $flags
2206    
2207 root 1.248 Calls the GNU/Linux C<tee(2)> syscall, see its manpage and the
2208 root 1.225 description for C<IO::AIO::splice> above for details.
2209    
2210 root 1.243 =item $actual_size = IO::AIO::pipesize $r_fh[, $new_size]
2211    
2212     Attempts to query or change the pipe buffer size. Obviously works only
2213     on pipes, and currently works only on GNU/Linux systems, and fails with
2214     C<-1>/C<ENOSYS> everywhere else. If anybody knows how to influence pipe buffer
2215     size on other systems, drop me a note.
2216    
2217 root 1.253 =item ($rfh, $wfh) = IO::AIO::pipe2 [$flags]
2218    
2219     This is a direct interface to the Linux L<pipe2(2)> system call. If
2220     C<$flags> is missing or C<0>, then this should be the same as a call to
2221 root 1.254 perl's built-in C<pipe> function and create a new pipe, and works on
2222     systems that lack the pipe2 syscall. On win32, this case invokes C<_pipe
2223     (..., 4096, O_BINARY)>.
2224 root 1.253
2225     If C<$flags> is non-zero, it tries to invoke the pipe2 system call with
2226     the given flags (Linux 2.6.27, glibc 2.9).
2227    
2228     On success, the read and write file handles are returned.
2229    
2230     On error, nothing will be returned. If the pipe2 syscall is missing and
2231     C<$flags> is non-zero, fails with C<ENOSYS>.
2232    
2233     Please refer to L<pipe2(2)> for more info on the C<$flags>, but at the
2234     time of this writing, C<IO::AIO::O_CLOEXEC>, C<IO::AIO::O_NONBLOCK> and
2235     C<IO::AIO::O_DIRECT> (Linux 3.4, for packet-based pipes) were supported.
2236    
2237 root 1.157 =back
2238    
2239 root 1.1 =cut
2240    
2241 root 1.61 min_parallel 8;
2242 root 1.1
2243 root 1.95 END { flush }
2244 root 1.82
2245 root 1.1 1;
2246    
2247 root 1.175 =head1 EVENT LOOP INTEGRATION
2248    
2249     It is recommended to use L<AnyEvent::AIO> to integrate IO::AIO
2250     automatically into many event loops:
2251    
2252     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
2253     use AnyEvent::AIO;
2254    
2255     You can also integrate IO::AIO manually into many event loops, here are
2256     some examples of how to do this:
2257    
2258     # EV integration
2259     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
2260    
2261     # Event integration
2262     Event->io (fd => IO::AIO::poll_fileno,
2263     poll => 'r',
2264     cb => \&IO::AIO::poll_cb);
2265    
2266     # Glib/Gtk2 integration
2267     add_watch Glib::IO IO::AIO::poll_fileno,
2268     in => sub { IO::AIO::poll_cb; 1 };
2269    
2270     # Tk integration
2271     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
2272     readable => \&IO::AIO::poll_cb);
2273    
2274     # Danga::Socket integration
2275     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
2276     \&IO::AIO::poll_cb);
2277    
2278 root 1.27 =head2 FORK BEHAVIOUR
2279    
2280 root 1.197 Usage of pthreads in a program changes the semantics of fork
2281     considerably. Specifically, only async-safe functions can be called after
2282     fork. Perl doesn't know about this, so in general, you cannot call fork
2283 root 1.204 with defined behaviour in perl if pthreads are involved. IO::AIO uses
2284     pthreads, so this applies, but many other extensions and (for inexplicable
2285     reasons) perl itself often is linked against pthreads, so this limitation
2286     applies to quite a lot of perls.
2287    
2288     This module no longer tries to fight your OS, or POSIX. That means IO::AIO
2289     only works in the process that loaded it. Forking is fully supported, but
2290     using IO::AIO in the child is not.
2291    
2292     You might get around by not I<using> IO::AIO before (or after)
2293     forking. You could also try to call the L<IO::AIO::reinit> function in the
2294     child:
2295    
2296     =over 4
2297    
2298     =item IO::AIO::reinit
2299    
2300 root 1.207 Abandons all current requests and I/O threads and simply reinitialises all
2301     data structures. This is not an operation supported by any standards, but
2302 root 1.204 happens to work on GNU/Linux and some newer BSD systems.
2303    
2304     The only reasonable use for this function is to call it after forking, if
2305     C<IO::AIO> was used in the parent. Calling it while IO::AIO is active in
2306     the process will result in undefined behaviour. Calling it at any time
2307     will also result in any undefined (by POSIX) behaviour.
2308    
2309     =back
2310 root 1.52
2311 root 1.60 =head2 MEMORY USAGE
2312    
2313 root 1.72 Per-request usage:
2314    
2315     Each aio request uses - depending on your architecture - around 100-200
2316     bytes of memory. In addition, stat requests need a stat buffer (possibly
2317     a few hundred bytes), readdir requires a result buffer and so on. Perl
2318     scalars and other data passed into aio requests will also be locked and
2319     will consume memory till the request has entered the done state.
2320 root 1.60
2321 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
2322 root 1.60 problem.
2323    
2324 root 1.72 Per-thread usage:
2325    
2326     In the execution phase, some aio requests require more memory for
2327     temporary buffers, and each thread requires a stack and other data
2328     structures (usually around 16k-128k, depending on the OS).
2329    
2330     =head1 KNOWN BUGS
2331    
2332 root 1.73 Known bugs will be fixed in the next release.
2333 root 1.60
2334 root 1.1 =head1 SEE ALSO
2335    
2336 root 1.125 L<AnyEvent::AIO> for easy integration into event loops, L<Coro::AIO> for a
2337     more natural syntax.
2338 root 1.1
2339     =head1 AUTHOR
2340    
2341     Marc Lehmann <schmorp@schmorp.de>
2342     http://home.schmorp.de/
2343    
2344     =cut
2345