ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.273
Committed: Fri Jun 23 22:33:06 2017 UTC (6 years, 11 months ago) by root
Branch: MAIN
Changes since 1.272: +5 -3 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.265 IO::AIO - Asynchronous/Advanced Input/Output
4 root 1.1
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.1 =head1 DESCRIPTION
32    
33     This module implements asynchronous I/O using whatever means your
34 root 1.156 operating system supports. It is implemented as an interface to C<libeio>
35     (L<http://software.schmorp.de/pkg/libeio.html>).
36 root 1.1
37 root 1.85 Asynchronous means that operations that can normally block your program
38     (e.g. reading from disk) will be done asynchronously: the operation
39     will still block, but you can do something else in the meantime. This
40     is extremely useful for programs that need to stay interactive even
41     when doing heavy I/O (GUI programs, high performance network servers
42     etc.), but can also be used to easily do operations in parallel that are
43     normally done sequentially, e.g. stat'ing many files, which is much faster
44     on a RAID volume or over NFS when you do a number of stat operations
45     concurrently.
46    
47 root 1.108 While most of this works on all types of file descriptors (for
48     example sockets), using these functions on file descriptors that
49 root 1.156 support nonblocking operation (again, sockets, pipes etc.) is
50     very inefficient. Use an event loop for that (such as the L<EV>
51 root 1.108 module): IO::AIO will naturally fit into such an event loop itself.
52 root 1.85
53 root 1.72 In this version, a number of threads are started that execute your
54     requests and signal their completion. You don't need thread support
55     in perl, and the threads created by this module will not be visible
56     to perl. In the future, this module might make use of the native aio
57     functions available on many operating systems. However, they are often
58 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
59 root 1.72 files currently, for example), and they would only support aio_read and
60     aio_write, so the remaining functionality would have to be implemented
61     using threads anyway.
62    
63 root 1.265 In addition to asynchronous I/O, this module also exports some rather
64     arcane interfaces, such as C<madvise> or linux's C<splice> system call,
65     which is why the C<A> in C<AIO> can also mean I<advanced>.
66    
67 root 1.108 Although the module will work in the presence of other (Perl-) threads,
68     it is currently not reentrant in any way, so use appropriate locking
69     yourself, always call C<poll_cb> from within the same thread, or never
70     call C<poll_cb> (or other C<aio_> functions) recursively.
71 root 1.72
72 root 1.86 =head2 EXAMPLE
73    
74 root 1.156 This is a simple example that uses the EV module and loads
75 root 1.86 F</etc/passwd> asynchronously:
76    
77 root 1.156 use EV;
78 root 1.86 use IO::AIO;
79    
80 root 1.156 # register the IO::AIO callback with EV
81     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
82 root 1.86
83     # queue the request to open /etc/passwd
84 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
85 root 1.94 my $fh = shift
86 root 1.86 or die "error while opening: $!";
87    
88     # stat'ing filehandles is generally non-blocking
89     my $size = -s $fh;
90    
91     # queue a request to read the file
92     my $contents;
93     aio_read $fh, 0, $size, $contents, 0, sub {
94     $_[0] == $size
95     or die "short read: $!";
96    
97     close $fh;
98    
99     # file contents now in $contents
100     print $contents;
101    
102     # exit event loop and program
103 root 1.257 EV::break;
104 root 1.86 };
105     };
106    
107     # possibly queue up other requests, or open GUI windows,
108     # check for sockets etc. etc.
109    
110     # process events as long as there are some:
111 root 1.257 EV::run;
112 root 1.86
113 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
114    
115     Every C<aio_*> function creates a request. which is a C data structure not
116     directly visible to Perl.
117    
118     If called in non-void context, every request function returns a Perl
119     object representing the request. In void context, nothing is returned,
120     which saves a bit of memory.
121    
122     The perl object is a fairly standard ref-to-hash object. The hash contents
123     are not used by IO::AIO so you are free to store anything you like in it.
124    
125     During their existance, aio requests travel through the following states,
126     in order:
127    
128     =over 4
129    
130     =item ready
131    
132     Immediately after a request is created it is put into the ready state,
133     waiting for a thread to execute it.
134    
135     =item execute
136    
137     A thread has accepted the request for processing and is currently
138     executing it (e.g. blocking in read).
139    
140     =item pending
141    
142     The request has been executed and is waiting for result processing.
143    
144     While request submission and execution is fully asynchronous, result
145     processing is not and relies on the perl interpreter calling C<poll_cb>
146     (or another function with the same effect).
147    
148     =item result
149    
150     The request results are processed synchronously by C<poll_cb>.
151    
152     The C<poll_cb> function will process all outstanding aio requests by
153     calling their callbacks, freeing memory associated with them and managing
154     any groups they are contained in.
155    
156     =item done
157    
158     Request has reached the end of its lifetime and holds no resources anymore
159     (except possibly for the Perl object, but its connection to the actual
160     aio request is severed and calling its methods will either do nothing or
161     result in a runtime error).
162 root 1.1
163 root 1.88 =back
164    
165 root 1.1 =cut
166    
167     package IO::AIO;
168    
169 root 1.117 use Carp ();
170    
171 root 1.161 use common::sense;
172 root 1.23
173 root 1.1 use base 'Exporter';
174    
175     BEGIN {
176 root 1.268 our $VERSION = 4.35;
177 root 1.1
178 root 1.220 our @AIO_REQ = qw(aio_sendfile aio_seek aio_read aio_write aio_open aio_close
179 root 1.148 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
180 root 1.259 aio_scandir aio_symlink aio_readlink aio_realpath aio_fcntl aio_ioctl
181     aio_sync aio_fsync aio_syncfs aio_fdatasync aio_sync_file_range
182     aio_pathsync aio_readahead aio_fiemap aio_allocate
183 root 1.270 aio_rename aio_rename2 aio_link aio_move aio_copy aio_group
184 root 1.120 aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
185 root 1.170 aio_chmod aio_utime aio_truncate
186 root 1.182 aio_msync aio_mtouch aio_mlock aio_mlockall
187 root 1.208 aio_statvfs
188     aio_wd);
189 root 1.120
190 root 1.123 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice));
191 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
192 root 1.188 min_parallel max_parallel max_idle idle_timeout
193 root 1.86 nreqs nready npending nthreads
194 root 1.157 max_poll_time max_poll_reqs
195 root 1.182 sendfile fadvise madvise
196     mmap munmap munlock munlockall);
197 root 1.1
198 root 1.143 push @AIO_REQ, qw(aio_busy); # not exported
199    
200 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
201    
202 root 1.1 require XSLoader;
203 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
204 root 1.1 }
205    
206 root 1.5 =head1 FUNCTIONS
207 root 1.1
208 root 1.175 =head2 QUICK OVERVIEW
209    
210 root 1.230 This section simply lists the prototypes most of the functions for
211     quick reference. See the following sections for function-by-function
212 root 1.175 documentation.
213    
214 root 1.208 aio_wd $pathname, $callback->($wd)
215 root 1.175 aio_open $pathname, $flags, $mode, $callback->($fh)
216     aio_close $fh, $callback->($status)
217 root 1.220 aio_seek $fh,$offset,$whence, $callback->($offs)
218 root 1.175 aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
219     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
220     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
221     aio_readahead $fh,$offset,$length, $callback->($retval)
222     aio_stat $fh_or_path, $callback->($status)
223     aio_lstat $fh, $callback->($status)
224     aio_statvfs $fh_or_path, $callback->($statvfs)
225     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
226     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
227 root 1.220 aio_chmod $fh_or_path, $mode, $callback->($status)
228 root 1.175 aio_truncate $fh_or_path, $offset, $callback->($status)
229 root 1.229 aio_allocate $fh, $mode, $offset, $len, $callback->($status)
230 root 1.230 aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
231 root 1.175 aio_unlink $pathname, $callback->($status)
232 root 1.209 aio_mknod $pathname, $mode, $dev, $callback->($status)
233 root 1.175 aio_link $srcpath, $dstpath, $callback->($status)
234     aio_symlink $srcpath, $dstpath, $callback->($status)
235 root 1.209 aio_readlink $pathname, $callback->($link)
236 root 1.249 aio_realpath $pathname, $callback->($path)
237 root 1.175 aio_rename $srcpath, $dstpath, $callback->($status)
238 root 1.270 aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
239 root 1.175 aio_mkdir $pathname, $mode, $callback->($status)
240     aio_rmdir $pathname, $callback->($status)
241     aio_readdir $pathname, $callback->($entries)
242     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
243     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
244     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
245 root 1.215 aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
246 root 1.209 aio_load $pathname, $data, $callback->($status)
247 root 1.175 aio_copy $srcpath, $dstpath, $callback->($status)
248     aio_move $srcpath, $dstpath, $callback->($status)
249 root 1.209 aio_rmtree $pathname, $callback->($status)
250 root 1.259 aio_fcntl $fh, $cmd, $arg, $callback->($status)
251     aio_ioctl $fh, $request, $buf, $callback->($status)
252 root 1.175 aio_sync $callback->($status)
253 root 1.206 aio_syncfs $fh, $callback->($status)
254 root 1.175 aio_fsync $fh, $callback->($status)
255     aio_fdatasync $fh, $callback->($status)
256     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
257 root 1.209 aio_pathsync $pathname, $callback->($status)
258 root 1.268 aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
259 root 1.175 aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
260 root 1.182 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
261     aio_mlockall $flags, $callback->($status)
262 root 1.175 aio_group $callback->(...)
263     aio_nop $callback->()
264    
265     $prev_pri = aioreq_pri [$pri]
266     aioreq_nice $pri_adjust
267    
268     IO::AIO::poll_wait
269     IO::AIO::poll_cb
270     IO::AIO::poll
271     IO::AIO::flush
272     IO::AIO::max_poll_reqs $nreqs
273     IO::AIO::max_poll_time $seconds
274     IO::AIO::min_parallel $nthreads
275     IO::AIO::max_parallel $nthreads
276     IO::AIO::max_idle $nthreads
277 root 1.188 IO::AIO::idle_timeout $seconds
278 root 1.175 IO::AIO::max_outstanding $maxreqs
279     IO::AIO::nreqs
280     IO::AIO::nready
281     IO::AIO::npending
282    
283     IO::AIO::sendfile $ofh, $ifh, $offset, $count
284     IO::AIO::fadvise $fh, $offset, $len, $advice
285 root 1.226 IO::AIO::mmap $scalar, $length, $prot, $flags[, $fh[, $offset]]
286     IO::AIO::munmap $scalar
287 root 1.184 IO::AIO::madvise $scalar, $offset, $length, $advice
288     IO::AIO::mprotect $scalar, $offset, $length, $protect
289 root 1.182 IO::AIO::munlock $scalar, $offset = 0, $length = undef
290 root 1.175 IO::AIO::munlockall
291    
292 root 1.219 =head2 API NOTES
293 root 1.1
294 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
295     with the same name (sans C<aio_>). The arguments are similar or identical,
296 root 1.14 and they all accept an additional (and optional) C<$callback> argument
297 root 1.212 which must be a code reference. This code reference will be called after
298     the syscall has been executed in an asynchronous fashion. The results
299     of the request will be passed as arguments to the callback (and, if an
300     error occured, in C<$!>) - for most requests the syscall return code (e.g.
301     most syscalls return C<-1> on error, unlike perl, which usually delivers
302     "false").
303    
304     Some requests (such as C<aio_readdir>) pass the actual results and
305     communicate failures by passing C<undef>.
306 root 1.1
307 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
308     internally until the request has finished.
309 root 1.1
310 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
311     further manipulation of those requests while they are in-flight.
312 root 1.52
313 root 1.209 The pathnames you pass to these routines I<should> be absolute. The
314     reason for this is that at the time the request is being executed, the
315 root 1.212 current working directory could have changed. Alternatively, you can
316     make sure that you never change the current working directory anywhere
317     in the program and then use relative paths. You can also take advantage
318     of IO::AIOs working directory abstraction, that lets you specify paths
319     relative to some previously-opened "working directory object" - see the
320     description of the C<IO::AIO::WD> class later in this document.
321 root 1.28
322 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
323     in filenames you got from outside (command line, readdir etc.) without
324 root 1.212 tinkering, b) are in your native filesystem encoding, c) use the Encode
325     module and encode your pathnames to the locale (or other) encoding in
326     effect in the user environment, d) use Glib::filename_from_unicode on
327     unicode filenames or e) use something else to ensure your scalar has the
328     correct contents.
329 root 1.87
330     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
331 root 1.136 handles correctly whether it is set or not.
332 root 1.1
333 root 1.219 =head2 AIO REQUEST FUNCTIONS
334    
335 root 1.5 =over 4
336 root 1.1
337 root 1.80 =item $prev_pri = aioreq_pri [$pri]
338 root 1.68
339 root 1.80 Returns the priority value that would be used for the next request and, if
340     C<$pri> is given, sets the priority for the next aio request.
341 root 1.68
342 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
343     and C<4>, respectively. Requests with higher priority will be serviced
344     first.
345    
346     The priority will be reset to C<0> after each call to one of the C<aio_*>
347 root 1.68 functions.
348    
349 root 1.69 Example: open a file with low priority, then read something from it with
350     higher priority so the read request is serviced before other low priority
351     open requests (potentially spamming the cache):
352    
353     aioreq_pri -3;
354     aio_open ..., sub {
355     return unless $_[0];
356    
357     aioreq_pri -2;
358     aio_read $_[0], ..., sub {
359     ...
360     };
361     };
362    
363 root 1.106
364 root 1.69 =item aioreq_nice $pri_adjust
365    
366     Similar to C<aioreq_pri>, but subtracts the given value from the current
367 root 1.87 priority, so the effect is cumulative.
368 root 1.69
369 root 1.106
370 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
371 root 1.1
372 root 1.2 Asynchronously open or create a file and call the callback with a newly
373 root 1.233 created filehandle for the file (or C<undef> in case of an error).
374 root 1.1
375     The pathname passed to C<aio_open> must be absolute. See API NOTES, above,
376     for an explanation.
377    
378 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
379     list. They are the same as used by C<sysopen>.
380    
381     Likewise, C<$mode> specifies the mode of the newly created file, if it
382     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
383     except that it is mandatory (i.e. use C<0> if you don't create new files,
384 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
385     by the umask in effect then the request is being executed, so better never
386     change the umask.
387 root 1.1
388     Example:
389    
390 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
391 root 1.2 if ($_[0]) {
392     print "open successful, fh is $_[0]\n";
393 root 1.1 ...
394     } else {
395     die "open failed: $!\n";
396     }
397     };
398    
399 root 1.194 In addition to all the common open modes/flags (C<O_RDONLY>, C<O_WRONLY>,
400     C<O_RDWR>, C<O_CREAT>, C<O_TRUNC>, C<O_EXCL> and C<O_APPEND>), the
401     following POSIX and non-POSIX constants are available (missing ones on
402     your system are, as usual, C<0>):
403    
404     C<O_ASYNC>, C<O_DIRECT>, C<O_NOATIME>, C<O_CLOEXEC>, C<O_NOCTTY>, C<O_NOFOLLOW>,
405     C<O_NONBLOCK>, C<O_EXEC>, C<O_SEARCH>, C<O_DIRECTORY>, C<O_DSYNC>,
406 root 1.255 C<O_RSYNC>, C<O_SYNC>, C<O_PATH>, C<O_TMPFILE>, and C<O_TTY_INIT>.
407 root 1.194
408 root 1.106
409 root 1.40 =item aio_close $fh, $callback->($status)
410 root 1.1
411 root 1.2 Asynchronously close a file and call the callback with the result
412 root 1.116 code.
413    
414 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
415 root 1.121 closing the file descriptor associated with the filehandle itself.
416 root 1.117
417 root 1.121 Therefore, C<aio_close> will not close the filehandle - instead it will
418     use dup2 to overwrite the file descriptor with the write-end of a pipe
419     (the pipe fd will be created on demand and will be cached).
420 root 1.117
421 root 1.121 Or in other words: the file descriptor will be closed, but it will not be
422     free for reuse until the perl filehandle is closed.
423 root 1.117
424     =cut
425    
426 root 1.220 =item aio_seek $fh, $offset, $whence, $callback->($offs)
427    
428 root 1.221 Seeks the filehandle to the new C<$offset>, similarly to perl's
429 root 1.220 C<sysseek>. The C<$whence> can use the traditional values (C<0> for
430     C<IO::AIO::SEEK_SET>, C<1> for C<IO::AIO::SEEK_CUR> or C<2> for
431     C<IO::AIO::SEEK_END>).
432    
433     The resulting absolute offset will be passed to the callback, or C<-1> in
434     case of an error.
435    
436     In theory, the C<$whence> constants could be different than the
437     corresponding values from L<Fcntl>, but perl guarantees they are the same,
438     so don't panic.
439    
440 root 1.225 As a GNU/Linux (and maybe Solaris) extension, also the constants
441     C<IO::AIO::SEEK_DATA> and C<IO::AIO::SEEK_HOLE> are available, if they
442     could be found. No guarantees about suitability for use in C<aio_seek> or
443     Perl's C<sysseek> can be made though, although I would naively assume they
444     "just work".
445    
446 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
447 root 1.1
448 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
449 root 1.1
450 root 1.145 Reads or writes C<$length> bytes from or to the specified C<$fh> and
451 root 1.267 C<$offset> into the scalar given by C<$data> and offset C<$dataoffset> and
452     calls the callback with the actual number of bytes transferred (or -1 on
453 root 1.145 error, just like the syscall).
454 root 1.109
455 root 1.146 C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
456     offset plus the actual number of bytes read.
457    
458 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
459     be used (and updated), otherwise the file descriptor offset will not be
460     changed by these calls.
461 root 1.109
462 root 1.145 If C<$length> is undefined in C<aio_write>, use the remaining length of
463     C<$data>.
464 root 1.109
465     If C<$dataoffset> is less than zero, it will be counted from the end of
466     C<$data>.
467 root 1.1
468 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
469 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
470     the necessary/optional hardware is installed).
471 root 1.31
472 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
473 root 1.1 offset C<0> within the scalar:
474    
475     aio_read $fh, 7, 15, $buffer, 0, sub {
476 root 1.9 $_[0] > 0 or die "read error: $!";
477     print "read $_[0] bytes: <$buffer>\n";
478 root 1.1 };
479    
480 root 1.106
481 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
482 root 1.35
483     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
484     reading at byte offset C<$in_offset>, and starts writing at the current
485     file offset of C<$out_fh>. Because of that, it is not safe to issue more
486     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
487 root 1.196 other. The same C<$in_fh> works fine though, as this function does not
488     move or use the file offset of C<$in_fh>.
489 root 1.35
490 root 1.185 Please note that C<aio_sendfile> can read more bytes from C<$in_fh> than
491 root 1.196 are written, and there is no way to find out how many more bytes have been
492     read from C<aio_sendfile> alone, as C<aio_sendfile> only provides the
493     number of bytes written to C<$out_fh>. Only if the result value equals
494     C<$length> one can assume that C<$length> bytes have been read.
495 root 1.185
496     Unlike with other C<aio_> functions, it makes a lot of sense to use
497     C<aio_sendfile> on non-blocking sockets, as long as one end (typically
498     the C<$in_fh>) is a file - the file I/O will then be asynchronous, while
499 root 1.196 the socket I/O will be non-blocking. Note, however, that you can run
500     into a trap where C<aio_sendfile> reads some data with readahead, then
501     fails to write all data, and when the socket is ready the next time, the
502     data in the cache is already lost, forcing C<aio_sendfile> to again hit
503     the disk. Explicit C<aio_read> + C<aio_write> let's you better control
504     resource usage.
505    
506     This call tries to make use of a native C<sendfile>-like syscall to
507     provide zero-copy operation. For this to work, C<$out_fh> should refer to
508     a socket, and C<$in_fh> should refer to an mmap'able file.
509 root 1.35
510 root 1.170 If a native sendfile cannot be found or it fails with C<ENOSYS>,
511 root 1.196 C<EINVAL>, C<ENOTSUP>, C<EOPNOTSUPP>, C<EAFNOSUPPORT>, C<EPROTOTYPE> or
512     C<ENOTSOCK>, it will be emulated, so you can call C<aio_sendfile> on any
513     type of filehandle regardless of the limitations of the operating system.
514    
515     As native sendfile syscalls (as practically any non-POSIX interface hacked
516     together in a hurry to improve benchmark numbers) tend to be rather buggy
517     on many systems, this implementation tries to work around some known bugs
518     in Linux and FreeBSD kernels (probably others, too), but that might fail,
519     so you really really should check the return value of C<aio_sendfile> -
520 root 1.262 fewer bytes than expected might have been transferred.
521 root 1.35
522 root 1.106
523 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
524 root 1.1
525 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
526 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
527     argument specifies the starting point from which data is to be read and
528     C<$length> specifies the number of bytes to be read. I/O is performed in
529     whole pages, so that offset is effectively rounded down to a page boundary
530     and bytes are read up to the next page boundary greater than or equal to
531 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
532 root 1.1 file. The current file offset of the file is left unchanged.
533    
534 root 1.261 If that syscall doesn't exist (likely if your kernel isn't Linux) it will
535     be emulated by simply reading the data, which would have a similar effect.
536 root 1.26
537 root 1.106
538 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
539 root 1.1
540 root 1.40 =item aio_lstat $fh, $callback->($status)
541 root 1.1
542     Works like perl's C<stat> or C<lstat> in void context. The callback will
543     be called after the stat and the results will be available using C<stat _>
544     or C<-s _> etc...
545    
546     The pathname passed to C<aio_stat> must be absolute. See API NOTES, above,
547     for an explanation.
548    
549     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
550     error when stat'ing a large file, the results will be silently truncated
551     unless perl itself is compiled with large file support.
552    
553 root 1.187 To help interpret the mode and dev/rdev stat values, IO::AIO offers the
554     following constants and functions (if not implemented, the constants will
555     be C<0> and the functions will either C<croak> or fall back on traditional
556     behaviour).
557    
558     C<S_IFMT>, C<S_IFIFO>, C<S_IFCHR>, C<S_IFBLK>, C<S_IFLNK>, C<S_IFREG>,
559     C<S_IFDIR>, C<S_IFWHT>, C<S_IFSOCK>, C<IO::AIO::major $dev_t>,
560     C<IO::AIO::minor $dev_t>, C<IO::AIO::makedev $major, $minor>.
561    
562 root 1.1 Example: Print the length of F</etc/passwd>:
563    
564     aio_stat "/etc/passwd", sub {
565     $_[0] and die "stat failed: $!";
566     print "size is ", -s _, "\n";
567     };
568    
569 root 1.106
570 root 1.175 =item aio_statvfs $fh_or_path, $callback->($statvfs)
571 root 1.172
572     Works like the POSIX C<statvfs> or C<fstatvfs> syscalls, depending on
573     whether a file handle or path was passed.
574    
575     On success, the callback is passed a hash reference with the following
576     members: C<bsize>, C<frsize>, C<blocks>, C<bfree>, C<bavail>, C<files>,
577     C<ffree>, C<favail>, C<fsid>, C<flag> and C<namemax>. On failure, C<undef>
578     is passed.
579    
580     The following POSIX IO::AIO::ST_* constants are defined: C<ST_RDONLY> and
581     C<ST_NOSUID>.
582    
583     The following non-POSIX IO::AIO::ST_* flag masks are defined to
584     their correct value when available, or to C<0> on systems that do
585     not support them: C<ST_NODEV>, C<ST_NOEXEC>, C<ST_SYNCHRONOUS>,
586     C<ST_MANDLOCK>, C<ST_WRITE>, C<ST_APPEND>, C<ST_IMMUTABLE>, C<ST_NOATIME>,
587     C<ST_NODIRATIME> and C<ST_RELATIME>.
588    
589     Example: stat C</wd> and dump out the data if successful.
590    
591     aio_statvfs "/wd", sub {
592     my $f = $_[0]
593     or die "statvfs: $!";
594    
595     use Data::Dumper;
596     say Dumper $f;
597     };
598    
599     # result:
600     {
601     bsize => 1024,
602     bfree => 4333064312,
603     blocks => 10253828096,
604     files => 2050765568,
605     flag => 4096,
606     favail => 2042092649,
607     bavail => 4333064312,
608     ffree => 2042092649,
609     namemax => 255,
610     frsize => 1024,
611     fsid => 1810
612     }
613    
614 root 1.244 Here is a (likely partial - send me updates!) list of fsid values used by
615     Linux - it is safe to hardcode these when C<$^O> is C<linux>:
616 root 1.235
617     0x0000adf5 adfs
618     0x0000adff affs
619     0x5346414f afs
620     0x09041934 anon-inode filesystem
621     0x00000187 autofs
622     0x42465331 befs
623     0x1badface bfs
624     0x42494e4d binfmt_misc
625     0x9123683e btrfs
626     0x0027e0eb cgroupfs
627     0xff534d42 cifs
628     0x73757245 coda
629     0x012ff7b7 coh
630     0x28cd3d45 cramfs
631     0x453dcd28 cramfs-wend (wrong endianness)
632     0x64626720 debugfs
633     0x00001373 devfs
634     0x00001cd1 devpts
635     0x0000f15f ecryptfs
636     0x00414a53 efs
637     0x0000137d ext
638 root 1.257 0x0000ef53 ext2/ext3/ext4
639 root 1.235 0x0000ef51 ext2
640 root 1.257 0xf2f52010 f2fs
641 root 1.235 0x00004006 fat
642     0x65735546 fuseblk
643     0x65735543 fusectl
644     0x0bad1dea futexfs
645     0x01161970 gfs2
646     0x47504653 gpfs
647     0x00004244 hfs
648     0xf995e849 hpfs
649 root 1.257 0x00c0ffee hostfs
650 root 1.235 0x958458f6 hugetlbfs
651     0x2bad1dea inotifyfs
652     0x00009660 isofs
653     0x000072b6 jffs2
654     0x3153464a jfs
655     0x6b414653 k-afs
656     0x0bd00bd0 lustre
657     0x0000137f minix
658     0x0000138f minix 30 char names
659     0x00002468 minix v2
660     0x00002478 minix v2 30 char names
661     0x00004d5a minix v3
662     0x19800202 mqueue
663     0x00004d44 msdos
664     0x0000564c novell
665     0x00006969 nfs
666     0x6e667364 nfsd
667     0x00003434 nilfs
668     0x5346544e ntfs
669     0x00009fa1 openprom
670     0x7461636F ocfs2
671     0x00009fa0 proc
672     0x6165676c pstorefs
673     0x0000002f qnx4
674 root 1.257 0x68191122 qnx6
675 root 1.235 0x858458f6 ramfs
676     0x52654973 reiserfs
677     0x00007275 romfs
678     0x67596969 rpc_pipefs
679     0x73636673 securityfs
680     0xf97cff8c selinux
681     0x0000517b smb
682     0x534f434b sockfs
683     0x73717368 squashfs
684     0x62656572 sysfs
685     0x012ff7b6 sysv2
686     0x012ff7b5 sysv4
687     0x01021994 tmpfs
688     0x15013346 udf
689     0x00011954 ufs
690     0x54190100 ufs byteswapped
691     0x00009fa2 usbdevfs
692     0x01021997 v9fs
693     0xa501fcf5 vxfs
694     0xabba1974 xenfs
695     0x012ff7b4 xenix
696     0x58465342 xfs
697     0x012fd16d xia
698 root 1.172
699 root 1.106 =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
700    
701     Works like perl's C<utime> function (including the special case of $atime
702     and $mtime being undef). Fractional times are supported if the underlying
703     syscalls support them.
704    
705     When called with a pathname, uses utimes(2) if available, otherwise
706     utime(2). If called on a file descriptor, uses futimes(2) if available,
707     otherwise returns ENOSYS, so this is not portable.
708    
709     Examples:
710    
711 root 1.107 # set atime and mtime to current time (basically touch(1)):
712 root 1.106 aio_utime "path", undef, undef;
713     # set atime to current time and mtime to beginning of the epoch:
714     aio_utime "path", time, undef; # undef==0
715    
716    
717     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
718    
719     Works like perl's C<chown> function, except that C<undef> for either $uid
720     or $gid is being interpreted as "do not change" (but -1 can also be used).
721    
722     Examples:
723    
724     # same as "chown root path" in the shell:
725     aio_chown "path", 0, -1;
726     # same as above:
727     aio_chown "path", 0, undef;
728    
729    
730 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
731    
732     Works like truncate(2) or ftruncate(2).
733    
734    
735 root 1.229 =item aio_allocate $fh, $mode, $offset, $len, $callback->($status)
736    
737 root 1.249 Allocates or frees disk space according to the C<$mode> argument. See the
738     linux C<fallocate> documentation for details.
739 root 1.229
740 root 1.252 C<$mode> is usually C<0> or C<IO::AIO::FALLOC_FL_KEEP_SIZE> to allocate
741     space, or C<IO::AIO::FALLOC_FL_PUNCH_HOLE | IO::AIO::FALLOC_FL_KEEP_SIZE>,
742     to deallocate a file range.
743    
744     IO::AIO also supports C<FALLOC_FL_COLLAPSE_RANGE>, to remove a range
745 root 1.273 (without leaving a hole), C<FALLOC_FL_ZERO_RANGE>, to zero a range,
746     C<FALLOC_FL_INSERT_RANGE> to insert a range and C<FALLOC_FL_UNSHARE_RANGE>
747     to unshare shared blocks (see your L<fallocate(2)> manpage).
748 root 1.229
749     The file system block size used by C<fallocate> is presumably the
750 root 1.273 C<f_bsize> returned by C<statvfs>, but different filesystems and filetypes
751     can dictate other limitations.
752 root 1.229
753     If C<fallocate> isn't available or cannot be emulated (currently no
754     emulation will be attempted), passes C<-1> and sets C<$!> to C<ENOSYS>.
755    
756    
757 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
758    
759     Works like perl's C<chmod> function.
760    
761    
762 root 1.40 =item aio_unlink $pathname, $callback->($status)
763 root 1.1
764     Asynchronously unlink (delete) a file and call the callback with the
765     result code.
766    
767 root 1.106
768 root 1.209 =item aio_mknod $pathname, $mode, $dev, $callback->($status)
769 root 1.82
770 root 1.86 [EXPERIMENTAL]
771    
772 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
773    
774 root 1.86 The only (POSIX-) portable way of calling this function is:
775 root 1.83
776 root 1.209 aio_mknod $pathname, IO::AIO::S_IFIFO | $mode, 0, sub { ...
777 root 1.82
778 root 1.187 See C<aio_stat> for info about some potentially helpful extra constants
779     and functions.
780 root 1.106
781 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
782    
783     Asynchronously create a new link to the existing object at C<$srcpath> at
784     the path C<$dstpath> and call the callback with the result code.
785    
786 root 1.106
787 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
788    
789     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
790     the path C<$dstpath> and call the callback with the result code.
791    
792 root 1.106
793 root 1.209 =item aio_readlink $pathname, $callback->($link)
794 root 1.90
795     Asynchronously read the symlink specified by C<$path> and pass it to
796     the callback. If an error occurs, nothing or undef gets passed to the
797     callback.
798    
799 root 1.106
800 root 1.209 =item aio_realpath $pathname, $callback->($path)
801 root 1.201
802     Asynchronously make the path absolute and resolve any symlinks in
803 root 1.239 C<$path>. The resulting path only consists of directories (same as
804 root 1.202 L<Cwd::realpath>).
805 root 1.201
806     This request can be used to get the absolute path of the current working
807     directory by passing it a path of F<.> (a single dot).
808    
809    
810 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
811    
812     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
813     rename(2) and call the callback with the result code.
814    
815 root 1.241 On systems that support the AIO::WD working directory abstraction
816     natively, the case C<[$wd, "."]> as C<$srcpath> is specialcased - instead
817     of failing, C<rename> is called on the absolute path of C<$wd>.
818    
819 root 1.106
820 root 1.270 =item aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
821    
822     Basically a version of C<aio_rename> with an additional C<$flags>
823     argument. Calling this with C<$flags=0> is the same as calling
824     C<aio_rename>.
825    
826     Non-zero flags are currently only supported on GNU/Linux systems that
827     support renameat2. Other systems fail with C<ENOSYS> in this case.
828    
829     The following constants are available (missing ones are, as usual C<0>),
830     see renameat2(2) for details:
831    
832     C<IO::AIO::RENAME_NOREPLACE>, C<IO::AIO::RENAME_EXCHANGE>
833     and C<IO::AIO::RENAME_WHITEOUT>.
834    
835    
836 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
837    
838     Asynchronously mkdir (create) a directory and call the callback with
839     the result code. C<$mode> will be modified by the umask at the time the
840     request is executed, so do not change your umask.
841    
842 root 1.106
843 root 1.40 =item aio_rmdir $pathname, $callback->($status)
844 root 1.27
845     Asynchronously rmdir (delete) a directory and call the callback with the
846     result code.
847    
848 root 1.241 On systems that support the AIO::WD working directory abstraction
849     natively, the case C<[$wd, "."]> is specialcased - instead of failing,
850     C<rmdir> is called on the absolute path of C<$wd>.
851    
852 root 1.106
853 root 1.46 =item aio_readdir $pathname, $callback->($entries)
854 root 1.37
855     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
856     directory (i.e. opendir + readdir + closedir). The entries will not be
857     sorted, and will B<NOT> include the C<.> and C<..> entries.
858    
859 root 1.148 The callback is passed a single argument which is either C<undef> or an
860     array-ref with the filenames.
861    
862    
863     =item aio_readdirx $pathname, $flags, $callback->($entries, $flags)
864    
865 root 1.207 Quite similar to C<aio_readdir>, but the C<$flags> argument allows one to
866     tune behaviour and output format. In case of an error, C<$entries> will be
867 root 1.148 C<undef>.
868    
869     The flags are a combination of the following constants, ORed together (the
870     flags will also be passed to the callback, possibly modified):
871    
872     =over 4
873    
874 root 1.150 =item IO::AIO::READDIR_DENTS
875 root 1.148
876 root 1.190 When this flag is off, then the callback gets an arrayref consisting of
877     names only (as with C<aio_readdir>), otherwise it gets an arrayref with
878 root 1.150 C<[$name, $type, $inode]> arrayrefs, each describing a single directory
879 root 1.148 entry in more detail.
880    
881     C<$name> is the name of the entry.
882    
883 root 1.150 C<$type> is one of the C<IO::AIO::DT_xxx> constants:
884 root 1.148
885 root 1.150 C<IO::AIO::DT_UNKNOWN>, C<IO::AIO::DT_FIFO>, C<IO::AIO::DT_CHR>, C<IO::AIO::DT_DIR>,
886     C<IO::AIO::DT_BLK>, C<IO::AIO::DT_REG>, C<IO::AIO::DT_LNK>, C<IO::AIO::DT_SOCK>,
887     C<IO::AIO::DT_WHT>.
888 root 1.148
889 root 1.150 C<IO::AIO::DT_UNKNOWN> means just that: readdir does not know. If you need to
890 root 1.148 know, you have to run stat yourself. Also, for speed reasons, the C<$type>
891     scalars are read-only: you can not modify them.
892    
893 root 1.150 C<$inode> is the inode number (which might not be exact on systems with 64
894 root 1.155 bit inode numbers and 32 bit perls). This field has unspecified content on
895     systems that do not deliver the inode information.
896 root 1.150
897     =item IO::AIO::READDIR_DIRS_FIRST
898 root 1.148
899     When this flag is set, then the names will be returned in an order where
900 root 1.193 likely directories come first, in optimal stat order. This is useful when
901     you need to quickly find directories, or you want to find all directories
902     while avoiding to stat() each entry.
903 root 1.148
904 root 1.149 If the system returns type information in readdir, then this is used
905 root 1.193 to find directories directly. Otherwise, likely directories are names
906     beginning with ".", or otherwise names with no dots, of which names with
907 root 1.149 short names are tried first.
908    
909 root 1.150 =item IO::AIO::READDIR_STAT_ORDER
910 root 1.148
911     When this flag is set, then the names will be returned in an order
912     suitable for stat()'ing each one. That is, when you plan to stat()
913     all files in the given directory, then the returned order will likely
914     be fastest.
915    
916 root 1.150 If both this flag and C<IO::AIO::READDIR_DIRS_FIRST> are specified, then
917     the likely dirs come first, resulting in a less optimal stat order.
918 root 1.148
919 root 1.150 =item IO::AIO::READDIR_FOUND_UNKNOWN
920 root 1.148
921     This flag should not be set when calling C<aio_readdirx>. Instead, it
922     is being set by C<aio_readdirx>, when any of the C<$type>'s found were
923 root 1.207 C<IO::AIO::DT_UNKNOWN>. The absence of this flag therefore indicates that all
924 root 1.148 C<$type>'s are known, which can be used to speed up some algorithms.
925    
926     =back
927 root 1.37
928 root 1.106
929 root 1.209 =item aio_load $pathname, $data, $callback->($status)
930 root 1.98
931     This is a composite request that tries to fully load the given file into
932     memory. Status is the same as with aio_read.
933    
934     =cut
935    
936     sub aio_load($$;$) {
937 root 1.123 my ($path, undef, $cb) = @_;
938     my $data = \$_[1];
939 root 1.98
940 root 1.123 my $pri = aioreq_pri;
941     my $grp = aio_group $cb;
942    
943     aioreq_pri $pri;
944     add $grp aio_open $path, O_RDONLY, 0, sub {
945     my $fh = shift
946     or return $grp->result (-1);
947 root 1.98
948     aioreq_pri $pri;
949 root 1.123 add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
950     $grp->result ($_[0]);
951 root 1.98 };
952 root 1.123 };
953 root 1.98
954 root 1.123 $grp
955 root 1.98 }
956    
957 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
958    
959     Try to copy the I<file> (directories not supported as either source or
960     destination) from C<$srcpath> to C<$dstpath> and call the callback with
961 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
962 root 1.82
963 root 1.134 This is a composite request that creates the destination file with
964 root 1.82 mode 0200 and copies the contents of the source file into it using
965     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
966     uid/gid, in that order.
967    
968     If an error occurs, the partial destination file will be unlinked, if
969     possible, except when setting atime, mtime, access mode and uid/gid, where
970     errors are being ignored.
971    
972     =cut
973    
974     sub aio_copy($$;$) {
975 root 1.123 my ($src, $dst, $cb) = @_;
976 root 1.82
977 root 1.123 my $pri = aioreq_pri;
978     my $grp = aio_group $cb;
979 root 1.82
980 root 1.123 aioreq_pri $pri;
981     add $grp aio_open $src, O_RDONLY, 0, sub {
982     if (my $src_fh = $_[0]) {
983 root 1.166 my @stat = stat $src_fh; # hmm, might block over nfs?
984 root 1.95
985 root 1.123 aioreq_pri $pri;
986     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
987     if (my $dst_fh = $_[0]) {
988     aioreq_pri $pri;
989     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
990     if ($_[0] == $stat[7]) {
991     $grp->result (0);
992     close $src_fh;
993    
994 root 1.147 my $ch = sub {
995     aioreq_pri $pri;
996     add $grp aio_chmod $dst_fh, $stat[2] & 07777, sub {
997     aioreq_pri $pri;
998     add $grp aio_chown $dst_fh, $stat[4], $stat[5], sub {
999     aioreq_pri $pri;
1000     add $grp aio_close $dst_fh;
1001     }
1002     };
1003     };
1004 root 1.123
1005     aioreq_pri $pri;
1006 root 1.147 add $grp aio_utime $dst_fh, $stat[8], $stat[9], sub {
1007     if ($_[0] < 0 && $! == ENOSYS) {
1008     aioreq_pri $pri;
1009     add $grp aio_utime $dst, $stat[8], $stat[9], $ch;
1010     } else {
1011     $ch->();
1012     }
1013     };
1014 root 1.123 } else {
1015     $grp->result (-1);
1016     close $src_fh;
1017     close $dst_fh;
1018    
1019     aioreq $pri;
1020     add $grp aio_unlink $dst;
1021     }
1022     };
1023     } else {
1024     $grp->result (-1);
1025     }
1026     },
1027 root 1.82
1028 root 1.123 } else {
1029     $grp->result (-1);
1030     }
1031     };
1032 root 1.82
1033 root 1.123 $grp
1034 root 1.82 }
1035    
1036     =item aio_move $srcpath, $dstpath, $callback->($status)
1037    
1038     Try to move the I<file> (directories not supported as either source or
1039     destination) from C<$srcpath> to C<$dstpath> and call the callback with
1040 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
1041 root 1.82
1042 root 1.137 This is a composite request that tries to rename(2) the file first; if
1043     rename fails with C<EXDEV>, it copies the file with C<aio_copy> and, if
1044     that is successful, unlinks the C<$srcpath>.
1045 root 1.82
1046     =cut
1047    
1048     sub aio_move($$;$) {
1049 root 1.123 my ($src, $dst, $cb) = @_;
1050 root 1.82
1051 root 1.123 my $pri = aioreq_pri;
1052     my $grp = aio_group $cb;
1053 root 1.82
1054 root 1.123 aioreq_pri $pri;
1055     add $grp aio_rename $src, $dst, sub {
1056     if ($_[0] && $! == EXDEV) {
1057     aioreq_pri $pri;
1058     add $grp aio_copy $src, $dst, sub {
1059     $grp->result ($_[0]);
1060 root 1.95
1061 root 1.196 unless ($_[0]) {
1062 root 1.123 aioreq_pri $pri;
1063     add $grp aio_unlink $src;
1064     }
1065     };
1066     } else {
1067     $grp->result ($_[0]);
1068     }
1069     };
1070 root 1.82
1071 root 1.123 $grp
1072 root 1.82 }
1073    
1074 root 1.209 =item aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
1075 root 1.40
1076 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
1077 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
1078     names, directories you can recurse into (directories), and ones you cannot
1079     recurse into (everything else, including symlinks to directories).
1080 root 1.52
1081 root 1.61 C<aio_scandir> is a composite request that creates of many sub requests_
1082     C<$maxreq> specifies the maximum number of outstanding aio requests that
1083     this function generates. If it is C<< <= 0 >>, then a suitable default
1084 root 1.81 will be chosen (currently 4).
1085 root 1.40
1086     On error, the callback is called without arguments, otherwise it receives
1087     two array-refs with path-relative entry names.
1088    
1089     Example:
1090    
1091     aio_scandir $dir, 0, sub {
1092     my ($dirs, $nondirs) = @_;
1093     print "real directories: @$dirs\n";
1094     print "everything else: @$nondirs\n";
1095     };
1096    
1097     Implementation notes.
1098    
1099     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
1100    
1101 root 1.149 If readdir returns file type information, then this is used directly to
1102     find directories.
1103    
1104     Otherwise, after reading the directory, the modification time, size etc.
1105     of the directory before and after the readdir is checked, and if they
1106     match (and isn't the current time), the link count will be used to decide
1107     how many entries are directories (if >= 2). Otherwise, no knowledge of the
1108     number of subdirectories will be assumed.
1109    
1110     Then entries will be sorted into likely directories a non-initial dot
1111     currently) and likely non-directories (see C<aio_readdirx>). Then every
1112     entry plus an appended C</.> will be C<stat>'ed, likely directories first,
1113     in order of their inode numbers. If that succeeds, it assumes that the
1114     entry is a directory or a symlink to directory (which will be checked
1115 root 1.207 separately). This is often faster than stat'ing the entry itself because
1116 root 1.52 filesystems might detect the type of the entry without reading the inode
1117 root 1.149 data (e.g. ext2fs filetype feature), even on systems that cannot return
1118     the filetype information on readdir.
1119 root 1.52
1120     If the known number of directories (link count - 2) has been reached, the
1121     rest of the entries is assumed to be non-directories.
1122    
1123     This only works with certainty on POSIX (= UNIX) filesystems, which
1124     fortunately are the vast majority of filesystems around.
1125    
1126     It will also likely work on non-POSIX filesystems with reduced efficiency
1127     as those tend to return 0 or 1 as link counts, which disables the
1128     directory counting heuristic.
1129 root 1.40
1130     =cut
1131    
1132 root 1.100 sub aio_scandir($$;$) {
1133 root 1.123 my ($path, $maxreq, $cb) = @_;
1134    
1135     my $pri = aioreq_pri;
1136 root 1.40
1137 root 1.123 my $grp = aio_group $cb;
1138 root 1.80
1139 root 1.123 $maxreq = 4 if $maxreq <= 0;
1140 root 1.55
1141 root 1.210 # get a wd object
1142 root 1.123 aioreq_pri $pri;
1143 root 1.210 add $grp aio_wd $path, sub {
1144 root 1.212 $_[0]
1145     or return $grp->result ();
1146    
1147 root 1.210 my $wd = [shift, "."];
1148 root 1.40
1149 root 1.210 # stat once
1150 root 1.80 aioreq_pri $pri;
1151 root 1.210 add $grp aio_stat $wd, sub {
1152     return $grp->result () if $_[0];
1153     my $now = time;
1154     my $hash1 = join ":", (stat _)[0,1,3,7,9];
1155 root 1.40
1156 root 1.210 # read the directory entries
1157 root 1.80 aioreq_pri $pri;
1158 root 1.210 add $grp aio_readdirx $wd, READDIR_DIRS_FIRST, sub {
1159     my $entries = shift
1160     or return $grp->result ();
1161    
1162     # stat the dir another time
1163     aioreq_pri $pri;
1164     add $grp aio_stat $wd, sub {
1165     my $hash2 = join ":", (stat _)[0,1,3,7,9];
1166 root 1.95
1167 root 1.210 my $ndirs;
1168 root 1.95
1169 root 1.210 # take the slow route if anything looks fishy
1170     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
1171     $ndirs = -1;
1172     } else {
1173     # if nlink == 2, we are finished
1174     # for non-posix-fs's, we rely on nlink < 2
1175     $ndirs = (stat _)[3] - 2
1176     or return $grp->result ([], $entries);
1177     }
1178 root 1.123
1179 root 1.210 my (@dirs, @nondirs);
1180 root 1.40
1181 root 1.210 my $statgrp = add $grp aio_group sub {
1182     $grp->result (\@dirs, \@nondirs);
1183     };
1184 root 1.40
1185 root 1.210 limit $statgrp $maxreq;
1186     feed $statgrp sub {
1187     return unless @$entries;
1188     my $entry = shift @$entries;
1189    
1190     aioreq_pri $pri;
1191     $wd->[1] = "$entry/.";
1192     add $statgrp aio_stat $wd, sub {
1193     if ($_[0] < 0) {
1194     push @nondirs, $entry;
1195     } else {
1196     # need to check for real directory
1197     aioreq_pri $pri;
1198     $wd->[1] = $entry;
1199     add $statgrp aio_lstat $wd, sub {
1200     if (-d _) {
1201     push @dirs, $entry;
1202    
1203     unless (--$ndirs) {
1204     push @nondirs, @$entries;
1205     feed $statgrp;
1206     }
1207     } else {
1208     push @nondirs, $entry;
1209 root 1.74 }
1210 root 1.40 }
1211     }
1212 root 1.210 };
1213 root 1.74 };
1214 root 1.40 };
1215     };
1216     };
1217 root 1.123 };
1218 root 1.55
1219 root 1.123 $grp
1220 root 1.40 }
1221    
1222 root 1.209 =item aio_rmtree $pathname, $callback->($status)
1223 root 1.99
1224 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
1225 root 1.239 status of the final C<rmdir> only. This is a composite request that
1226 root 1.100 uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1227     everything else.
1228 root 1.99
1229     =cut
1230    
1231     sub aio_rmtree;
1232 root 1.100 sub aio_rmtree($;$) {
1233 root 1.123 my ($path, $cb) = @_;
1234 root 1.99
1235 root 1.123 my $pri = aioreq_pri;
1236     my $grp = aio_group $cb;
1237 root 1.99
1238 root 1.123 aioreq_pri $pri;
1239     add $grp aio_scandir $path, 0, sub {
1240     my ($dirs, $nondirs) = @_;
1241 root 1.99
1242 root 1.123 my $dirgrp = aio_group sub {
1243     add $grp aio_rmdir $path, sub {
1244     $grp->result ($_[0]);
1245 root 1.99 };
1246 root 1.123 };
1247 root 1.99
1248 root 1.123 (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
1249     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
1250 root 1.99
1251 root 1.123 add $grp $dirgrp;
1252     };
1253 root 1.99
1254 root 1.123 $grp
1255 root 1.99 }
1256    
1257 root 1.259 =item aio_fcntl $fh, $cmd, $arg, $callback->($status)
1258    
1259     =item aio_ioctl $fh, $request, $buf, $callback->($status)
1260    
1261     These work just like the C<fcntl> and C<ioctl> built-in functions, except
1262     they execute asynchronously and pass the return value to the callback.
1263    
1264     Both calls can be used for a lot of things, some of which make more sense
1265     to run asynchronously in their own thread, while some others make less
1266     sense. For example, calls that block waiting for external events, such
1267     as locking, will also lock down an I/O thread while it is waiting, which
1268     can deadlock the whole I/O system. At the same time, there might be no
1269     alternative to using a thread to wait.
1270    
1271     So in general, you should only use these calls for things that do
1272     (filesystem) I/O, not for things that wait for other events (network,
1273     other processes), although if you are careful and know what you are doing,
1274     you still can.
1275    
1276 root 1.264 The following constants are available (missing ones are, as usual C<0>):
1277    
1278 root 1.271 C<F_DUPFD_CLOEXEC>,
1279    
1280     C<F_OFD_GETLK>, C<F_OFD_SETLK>, C<F_OFD_GETLKW>,
1281    
1282 root 1.264 C<FIFREEZE>, C<FITHAW>, C<FITRIM>, C<FICLONE>, C<FICLONERANGE>, C<FIDEDUPERANGE>.
1283    
1284     C<FS_IOC_GETFLAGS>, C<FS_IOC_SETFLAGS>, C<FS_IOC_GETVERSION>, C<FS_IOC_SETVERSION>,
1285     C<FS_IOC_FIEMAP>.
1286    
1287     C<FS_IOC_FSGETXATTR>, C<FS_IOC_FSSETXATTR>, C<FS_IOC_SET_ENCRYPTION_POLICY>,
1288     C<FS_IOC_GET_ENCRYPTION_PWSALT>, C<FS_IOC_GET_ENCRYPTION_POLICY>, C<FS_KEY_DESCRIPTOR_SIZE>.
1289    
1290     C<FS_SECRM_FL>, C<FS_UNRM_FL>, C<FS_COMPR_FL>, C<FS_SYNC_FL>, C<FS_IMMUTABLE_FL>,
1291     C<FS_APPEND_FL>, C<FS_NODUMP_FL>, C<FS_NOATIME_FL>, C<FS_DIRTY_FL>,
1292     C<FS_COMPRBLK_FL>, C<FS_NOCOMP_FL>, C<FS_ENCRYPT_FL>, C<FS_BTREE_FL>,
1293     C<FS_INDEX_FL>, C<FS_JOURNAL_DATA_FL>, C<FS_NOTAIL_FL>, C<FS_DIRSYNC_FL>, C<FS_TOPDIR_FL>,
1294     C<FS_FL_USER_MODIFIABLE>.
1295    
1296     C<FS_XFLAG_REALTIME>, C<FS_XFLAG_PREALLOC>, C<FS_XFLAG_IMMUTABLE>, C<FS_XFLAG_APPEND>,
1297     C<FS_XFLAG_SYNC>, C<FS_XFLAG_NOATIME>, C<FS_XFLAG_NODUMP>, C<FS_XFLAG_RTINHERIT>,
1298     C<FS_XFLAG_PROJINHERIT>, C<FS_XFLAG_NOSYMLINKS>, C<FS_XFLAG_EXTSIZE>, C<FS_XFLAG_EXTSZINHERIT>,
1299     C<FS_XFLAG_NODEFRAG>, C<FS_XFLAG_FILESTREAM>, C<FS_XFLAG_DAX>, C<FS_XFLAG_HASATTR>,
1300    
1301 root 1.119 =item aio_sync $callback->($status)
1302    
1303     Asynchronously call sync and call the callback when finished.
1304    
1305 root 1.40 =item aio_fsync $fh, $callback->($status)
1306 root 1.1
1307     Asynchronously call fsync on the given filehandle and call the callback
1308     with the fsync result code.
1309    
1310 root 1.40 =item aio_fdatasync $fh, $callback->($status)
1311 root 1.1
1312     Asynchronously call fdatasync on the given filehandle and call the
1313 root 1.26 callback with the fdatasync result code.
1314    
1315     If this call isn't available because your OS lacks it or it couldn't be
1316     detected, it will be emulated by calling C<fsync> instead.
1317 root 1.1
1318 root 1.206 =item aio_syncfs $fh, $callback->($status)
1319    
1320     Asynchronously call the syncfs syscall to sync the filesystem associated
1321     to the given filehandle and call the callback with the syncfs result
1322     code. If syncfs is not available, calls sync(), but returns C<-1> and sets
1323     errno to C<ENOSYS> nevertheless.
1324    
1325 root 1.142 =item aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
1326    
1327     Sync the data portion of the file specified by C<$offset> and C<$length>
1328     to disk (but NOT the metadata), by calling the Linux-specific
1329     sync_file_range call. If sync_file_range is not available or it returns
1330     ENOSYS, then fdatasync or fsync is being substituted.
1331    
1332     C<$flags> can be a combination of C<IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE>,
1333     C<IO::AIO::SYNC_FILE_RANGE_WRITE> and
1334     C<IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER>: refer to the sync_file_range
1335     manpage for details.
1336    
1337 root 1.209 =item aio_pathsync $pathname, $callback->($status)
1338 root 1.120
1339     This request tries to open, fsync and close the given path. This is a
1340 root 1.135 composite request intended to sync directories after directory operations
1341 root 1.120 (E.g. rename). This might not work on all operating systems or have any
1342     specific effect, but usually it makes sure that directory changes get
1343     written to disc. It works for anything that can be opened for read-only,
1344     not just directories.
1345    
1346 root 1.162 Future versions of this function might fall back to other methods when
1347     C<fsync> on the directory fails (such as calling C<sync>).
1348    
1349 root 1.120 Passes C<0> when everything went ok, and C<-1> on error.
1350    
1351     =cut
1352    
1353     sub aio_pathsync($;$) {
1354 root 1.123 my ($path, $cb) = @_;
1355    
1356     my $pri = aioreq_pri;
1357     my $grp = aio_group $cb;
1358 root 1.120
1359 root 1.123 aioreq_pri $pri;
1360     add $grp aio_open $path, O_RDONLY, 0, sub {
1361     my ($fh) = @_;
1362     if ($fh) {
1363     aioreq_pri $pri;
1364     add $grp aio_fsync $fh, sub {
1365     $grp->result ($_[0]);
1366 root 1.120
1367     aioreq_pri $pri;
1368 root 1.123 add $grp aio_close $fh;
1369     };
1370     } else {
1371     $grp->result (-1);
1372     }
1373     };
1374 root 1.120
1375 root 1.123 $grp
1376 root 1.120 }
1377    
1378 root 1.268 =item aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
1379 root 1.170
1380     This is a rather advanced IO::AIO call, which only works on mmap(2)ed
1381 root 1.176 scalars (see the C<IO::AIO::mmap> function, although it also works on data
1382     scalars managed by the L<Sys::Mmap> or L<Mmap> modules, note that the
1383     scalar must only be modified in-place while an aio operation is pending on
1384     it).
1385 root 1.170
1386     It calls the C<msync> function of your OS, if available, with the memory
1387     area starting at C<$offset> in the string and ending C<$length> bytes
1388     later. If C<$length> is negative, counts from the end, and if C<$length>
1389     is C<undef>, then it goes till the end of the string. The flags can be
1390 root 1.268 either C<IO::AIO::MS_ASYNC> or C<IO::AIO::MS_SYNC>, plus an optional
1391     C<IO::AIO::MS_INVALIDATE>.
1392 root 1.170
1393     =item aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1394    
1395     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1396     scalars.
1397    
1398     It touches (reads or writes) all memory pages in the specified
1399 root 1.239 range inside the scalar. All caveats and parameters are the same
1400 root 1.170 as for C<aio_msync>, above, except for flags, which must be either
1401     C<0> (which reads all pages and ensures they are instantiated) or
1402 root 1.239 C<IO::AIO::MT_MODIFY>, which modifies the memory pages (by reading and
1403 root 1.170 writing an octet from it, which dirties the page).
1404    
1405 root 1.182 =item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1406    
1407     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1408     scalars.
1409    
1410     It reads in all the pages of the underlying storage into memory (if any)
1411     and locks them, so they are not getting swapped/paged out or removed.
1412    
1413     If C<$length> is undefined, then the scalar will be locked till the end.
1414    
1415     On systems that do not implement C<mlock>, this function returns C<-1>
1416     and sets errno to C<ENOSYS>.
1417    
1418     Note that the corresponding C<munlock> is synchronous and is
1419     documented under L<MISCELLANEOUS FUNCTIONS>.
1420    
1421 root 1.183 Example: open a file, mmap and mlock it - both will be undone when
1422     C<$data> gets destroyed.
1423    
1424     open my $fh, "<", $path or die "$path: $!";
1425     my $data;
1426     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1427     aio_mlock $data; # mlock in background
1428    
1429 root 1.182 =item aio_mlockall $flags, $callback->($status)
1430    
1431     Calls the C<mlockall> function with the given C<$flags> (a combination of
1432     C<IO::AIO::MCL_CURRENT> and C<IO::AIO::MCL_FUTURE>).
1433    
1434     On systems that do not implement C<mlockall>, this function returns C<-1>
1435     and sets errno to C<ENOSYS>.
1436    
1437     Note that the corresponding C<munlockall> is synchronous and is
1438     documented under L<MISCELLANEOUS FUNCTIONS>.
1439    
1440 root 1.183 Example: asynchronously lock all current and future pages into memory.
1441    
1442     aio_mlockall IO::AIO::MCL_FUTURE;
1443    
1444 root 1.223 =item aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
1445    
1446 root 1.234 Queries the extents of the given file (by calling the Linux C<FIEMAP>
1447     ioctl, see L<http://cvs.schmorp.de/IO-AIO/doc/fiemap.txt> for details). If
1448     the ioctl is not available on your OS, then this request will fail with
1449 root 1.223 C<ENOSYS>.
1450    
1451     C<$start> is the starting offset to query extents for, C<$length> is the
1452     size of the range to query - if it is C<undef>, then the whole file will
1453     be queried.
1454    
1455     C<$flags> is a combination of flags (C<IO::AIO::FIEMAP_FLAG_SYNC> or
1456     C<IO::AIO::FIEMAP_FLAG_XATTR> - C<IO::AIO::FIEMAP_FLAGS_COMPAT> is also
1457     exported), and is normally C<0> or C<IO::AIO::FIEMAP_FLAG_SYNC> to query
1458     the data portion.
1459    
1460     C<$count> is the maximum number of extent records to return. If it is
1461 root 1.232 C<undef>, then IO::AIO queries all extents of the range. As a very special
1462 root 1.223 case, if it is C<0>, then the callback receives the number of extents
1463 root 1.232 instead of the extents themselves (which is unreliable, see below).
1464 root 1.223
1465     If an error occurs, the callback receives no arguments. The special
1466     C<errno> value C<IO::AIO::EBADR> is available to test for flag errors.
1467    
1468     Otherwise, the callback receives an array reference with extent
1469     structures. Each extent structure is an array reference itself, with the
1470     following members:
1471    
1472     [$logical, $physical, $length, $flags]
1473    
1474     Flags is any combination of the following flag values (typically either C<0>
1475 root 1.231 or C<IO::AIO::FIEMAP_EXTENT_LAST> (1)):
1476 root 1.223
1477     C<IO::AIO::FIEMAP_EXTENT_LAST>, C<IO::AIO::FIEMAP_EXTENT_UNKNOWN>,
1478     C<IO::AIO::FIEMAP_EXTENT_DELALLOC>, C<IO::AIO::FIEMAP_EXTENT_ENCODED>,
1479     C<IO::AIO::FIEMAP_EXTENT_DATA_ENCRYPTED>, C<IO::AIO::FIEMAP_EXTENT_NOT_ALIGNED>,
1480     C<IO::AIO::FIEMAP_EXTENT_DATA_INLINE>, C<IO::AIO::FIEMAP_EXTENT_DATA_TAIL>,
1481     C<IO::AIO::FIEMAP_EXTENT_UNWRITTEN>, C<IO::AIO::FIEMAP_EXTENT_MERGED> or
1482     C<IO::AIO::FIEMAP_EXTENT_SHARED>.
1483    
1484 root 1.232 At the time of this writing (Linux 3.2), this requets is unreliable unless
1485     C<$count> is C<undef>, as the kernel has all sorts of bugs preventing
1486     it to return all extents of a range for files with large number of
1487     extents. The code works around all these issues if C<$count> is undef.
1488    
1489 root 1.58 =item aio_group $callback->(...)
1490 root 1.54
1491 root 1.55 This is a very special aio request: Instead of doing something, it is a
1492     container for other aio requests, which is useful if you want to bundle
1493 root 1.71 many requests into a single, composite, request with a definite callback
1494     and the ability to cancel the whole request with its subrequests.
1495 root 1.55
1496     Returns an object of class L<IO::AIO::GRP>. See its documentation below
1497     for more info.
1498    
1499     Example:
1500    
1501     my $grp = aio_group sub {
1502     print "all stats done\n";
1503     };
1504    
1505     add $grp
1506     (aio_stat ...),
1507     (aio_stat ...),
1508     ...;
1509    
1510 root 1.63 =item aio_nop $callback->()
1511    
1512     This is a special request - it does nothing in itself and is only used for
1513     side effects, such as when you want to add a dummy request to a group so
1514     that finishing the requests in the group depends on executing the given
1515     code.
1516    
1517 root 1.64 While this request does nothing, it still goes through the execution
1518     phase and still requires a worker thread. Thus, the callback will not
1519     be executed immediately but only after other requests in the queue have
1520     entered their execution phase. This can be used to measure request
1521     latency.
1522    
1523 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1524 root 1.54
1525     Mainly used for debugging and benchmarking, this aio request puts one of
1526     the request workers to sleep for the given time.
1527    
1528 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1529 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1530     immense (it blocks a thread for a long time) so do not use this function
1531     except to put your application under artificial I/O pressure.
1532 root 1.56
1533 root 1.5 =back
1534    
1535 root 1.209
1536     =head2 IO::AIO::WD - multiple working directories
1537    
1538     Your process only has one current working directory, which is used by all
1539     threads. This makes it hard to use relative paths (some other component
1540     could call C<chdir> at any time, and it is hard to control when the path
1541     will be used by IO::AIO).
1542    
1543     One solution for this is to always use absolute paths. This usually works,
1544     but can be quite slow (the kernel has to walk the whole path on every
1545     access), and can also be a hassle to implement.
1546    
1547     Newer POSIX systems have a number of functions (openat, fdopendir,
1548     futimensat and so on) that make it possible to specify working directories
1549     per operation.
1550    
1551     For portability, and because the clowns who "designed", or shall I write,
1552     perpetrated this new interface were obviously half-drunk, this abstraction
1553     cannot be perfect, though.
1554    
1555     IO::AIO allows you to convert directory paths into a so-called IO::AIO::WD
1556     object. This object stores the canonicalised, absolute version of the
1557     path, and on systems that allow it, also a directory file descriptor.
1558    
1559     Everywhere where a pathname is accepted by IO::AIO (e.g. in C<aio_stat>
1560     or C<aio_unlink>), one can specify an array reference with an IO::AIO::WD
1561 root 1.214 object and a pathname instead (or the IO::AIO::WD object alone, which
1562     gets interpreted as C<[$wd, "."]>). If the pathname is absolute, the
1563 root 1.213 IO::AIO::WD object is ignored, otherwise the pathname is resolved relative
1564 root 1.209 to that IO::AIO::WD object.
1565    
1566     For example, to get a wd object for F</etc> and then stat F<passwd>
1567     inside, you would write:
1568    
1569     aio_wd "/etc", sub {
1570     my $etcdir = shift;
1571    
1572     # although $etcdir can be undef on error, there is generally no reason
1573     # to check for errors here, as aio_stat will fail with ENOENT
1574     # when $etcdir is undef.
1575    
1576     aio_stat [$etcdir, "passwd"], sub {
1577     # yay
1578     };
1579     };
1580    
1581 root 1.250 The fact that C<aio_wd> is a request and not a normal function shows that
1582     creating an IO::AIO::WD object is itself a potentially blocking operation,
1583     which is why it is done asynchronously.
1584 root 1.214
1585     To stat the directory obtained with C<aio_wd> above, one could write
1586     either of the following three request calls:
1587    
1588     aio_lstat "/etc" , sub { ... # pathname as normal string
1589     aio_lstat [$wd, "."], sub { ... # "." relative to $wd (i.e. $wd itself)
1590     aio_lstat $wd , sub { ... # shorthand for the previous
1591 root 1.209
1592     As with normal pathnames, IO::AIO keeps a copy of the working directory
1593     object and the pathname string, so you could write the following without
1594     causing any issues due to C<$path> getting reused:
1595    
1596     my $path = [$wd, undef];
1597    
1598     for my $name (qw(abc def ghi)) {
1599     $path->[1] = $name;
1600     aio_stat $path, sub {
1601     # ...
1602     };
1603     }
1604    
1605     There are some caveats: when directories get renamed (or deleted), the
1606     pathname string doesn't change, so will point to the new directory (or
1607     nowhere at all), while the directory fd, if available on the system,
1608     will still point to the original directory. Most functions accepting a
1609     pathname will use the directory fd on newer systems, and the string on
1610     older systems. Some functions (such as realpath) will always rely on the
1611     string form of the pathname.
1612    
1613 root 1.239 So this functionality is mainly useful to get some protection against
1614 root 1.209 C<chdir>, to easily get an absolute path out of a relative path for future
1615     reference, and to speed up doing many operations in the same directory
1616     (e.g. when stat'ing all files in a directory).
1617    
1618     The following functions implement this working directory abstraction:
1619    
1620     =over 4
1621    
1622     =item aio_wd $pathname, $callback->($wd)
1623    
1624     Asynchonously canonicalise the given pathname and convert it to an
1625     IO::AIO::WD object representing it. If possible and supported on the
1626     system, also open a directory fd to speed up pathname resolution relative
1627     to this working directory.
1628    
1629     If something goes wrong, then C<undef> is passwd to the callback instead
1630     of a working directory object and C<$!> is set appropriately. Since
1631     passing C<undef> as working directory component of a pathname fails the
1632     request with C<ENOENT>, there is often no need for error checking in the
1633     C<aio_wd> callback, as future requests using the value will fail in the
1634     expected way.
1635    
1636     =item IO::AIO::CWD
1637    
1638     This is a compiletime constant (object) that represents the process
1639     current working directory.
1640    
1641 root 1.239 Specifying this object as working directory object for a pathname is as if
1642     the pathname would be specified directly, without a directory object. For
1643     example, these calls are functionally identical:
1644 root 1.209
1645     aio_stat "somefile", sub { ... };
1646     aio_stat [IO::AIO::CWD, "somefile"], sub { ... };
1647    
1648     =back
1649    
1650 root 1.239 To recover the path associated with an IO::AIO::WD object, you can use
1651     C<aio_realpath>:
1652    
1653     aio_realpath $wd, sub {
1654     warn "path is $_[0]\n";
1655     };
1656    
1657 root 1.241 Currently, C<aio_statvfs> always, and C<aio_rename> and C<aio_rmdir>
1658     sometimes, fall back to using an absolue path.
1659 root 1.209
1660 root 1.53 =head2 IO::AIO::REQ CLASS
1661 root 1.52
1662     All non-aggregate C<aio_*> functions return an object of this class when
1663     called in non-void context.
1664    
1665     =over 4
1666    
1667 root 1.65 =item cancel $req
1668 root 1.52
1669     Cancels the request, if possible. Has the effect of skipping execution
1670     when entering the B<execute> state and skipping calling the callback when
1671     entering the the B<result> state, but will leave the request otherwise
1672 root 1.151 untouched (with the exception of readdir). That means that requests that
1673     currently execute will not be stopped and resources held by the request
1674     will not be freed prematurely.
1675 root 1.52
1676 root 1.65 =item cb $req $callback->(...)
1677    
1678     Replace (or simply set) the callback registered to the request.
1679    
1680 root 1.52 =back
1681    
1682 root 1.55 =head2 IO::AIO::GRP CLASS
1683    
1684     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1685     objects of this class, too.
1686    
1687     A IO::AIO::GRP object is a special request that can contain multiple other
1688     aio requests.
1689    
1690     You create one by calling the C<aio_group> constructing function with a
1691     callback that will be called when all contained requests have entered the
1692     C<done> state:
1693    
1694     my $grp = aio_group sub {
1695     print "all requests are done\n";
1696     };
1697    
1698     You add requests by calling the C<add> method with one or more
1699     C<IO::AIO::REQ> objects:
1700    
1701     $grp->add (aio_unlink "...");
1702    
1703 root 1.58 add $grp aio_stat "...", sub {
1704     $_[0] or return $grp->result ("error");
1705    
1706     # add another request dynamically, if first succeeded
1707     add $grp aio_open "...", sub {
1708     $grp->result ("ok");
1709     };
1710     };
1711 root 1.55
1712     This makes it very easy to create composite requests (see the source of
1713     C<aio_move> for an application) that work and feel like simple requests.
1714    
1715 root 1.62 =over 4
1716    
1717     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1718 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1719    
1720 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1721 root 1.59 only the request itself, but also all requests it contains.
1722 root 1.55
1723 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1724 root 1.55
1725 root 1.62 =item * You must not add requests to a group from within the group callback (or
1726 root 1.60 any later time).
1727    
1728 root 1.62 =back
1729    
1730 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1731     will finish very quickly. If they contain only requests that are in the
1732     C<done> state, they will also finish. Otherwise they will continue to
1733     exist.
1734    
1735 root 1.133 That means after creating a group you have some time to add requests
1736     (precisely before the callback has been invoked, which is only done within
1737     the C<poll_cb>). And in the callbacks of those requests, you can add
1738     further requests to the group. And only when all those requests have
1739     finished will the the group itself finish.
1740 root 1.57
1741 root 1.55 =over 4
1742    
1743 root 1.65 =item add $grp ...
1744    
1745 root 1.55 =item $grp->add (...)
1746    
1747 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1748     be added, including other groups, as long as you do not create circular
1749     dependencies.
1750    
1751     Returns all its arguments.
1752 root 1.55
1753 root 1.74 =item $grp->cancel_subs
1754    
1755     Cancel all subrequests and clears any feeder, but not the group request
1756     itself. Useful when you queued a lot of events but got a result early.
1757    
1758 root 1.168 The group request will finish normally (you cannot add requests to the
1759     group).
1760    
1761 root 1.58 =item $grp->result (...)
1762    
1763     Set the result value(s) that will be passed to the group callback when all
1764 root 1.120 subrequests have finished and set the groups errno to the current value
1765 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1766     no argument will be passed and errno is zero.
1767    
1768     =item $grp->errno ([$errno])
1769    
1770     Sets the group errno value to C<$errno>, or the current value of errno
1771     when the argument is missing.
1772    
1773     Every aio request has an associated errno value that is restored when
1774     the callback is invoked. This method lets you change this value from its
1775     default (0).
1776    
1777     Calling C<result> will also set errno, so make sure you either set C<$!>
1778     before the call to C<result>, or call c<errno> after it.
1779 root 1.58
1780 root 1.65 =item feed $grp $callback->($grp)
1781 root 1.60
1782     Sets a feeder/generator on this group: every group can have an attached
1783     generator that generates requests if idle. The idea behind this is that,
1784     although you could just queue as many requests as you want in a group,
1785 root 1.139 this might starve other requests for a potentially long time. For example,
1786 root 1.211 C<aio_scandir> might generate hundreds of thousands of C<aio_stat>
1787     requests, delaying any later requests for a long time.
1788 root 1.60
1789     To avoid this, and allow incremental generation of requests, you can
1790     instead a group and set a feeder on it that generates those requests. The
1791 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1792 root 1.60 below) requests active in the group itself and is expected to queue more
1793     requests.
1794    
1795 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1796     not impose any limits).
1797 root 1.60
1798 root 1.65 If the feed does not queue more requests when called, it will be
1799 root 1.60 automatically removed from the group.
1800    
1801 root 1.138 If the feed limit is C<0> when this method is called, it will be set to
1802     C<2> automatically.
1803 root 1.60
1804     Example:
1805    
1806     # stat all files in @files, but only ever use four aio requests concurrently:
1807    
1808     my $grp = aio_group sub { print "finished\n" };
1809 root 1.68 limit $grp 4;
1810 root 1.65 feed $grp sub {
1811 root 1.60 my $file = pop @files
1812     or return;
1813    
1814     add $grp aio_stat $file, sub { ... };
1815 root 1.65 };
1816 root 1.60
1817 root 1.68 =item limit $grp $num
1818 root 1.60
1819     Sets the feeder limit for the group: The feeder will be called whenever
1820     the group contains less than this many requests.
1821    
1822     Setting the limit to C<0> will pause the feeding process.
1823    
1824 root 1.138 The default value for the limit is C<0>, but note that setting a feeder
1825     automatically bumps it up to C<2>.
1826    
1827 root 1.55 =back
1828    
1829 root 1.5 =head2 SUPPORT FUNCTIONS
1830    
1831 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1832    
1833 root 1.5 =over 4
1834    
1835     =item $fileno = IO::AIO::poll_fileno
1836    
1837 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1838 root 1.156 polled for reading by some mechanism outside this module (e.g. EV, Glib,
1839     select and so on, see below or the SYNOPSIS). If the pipe becomes readable
1840     you have to call C<poll_cb> to check the results.
1841 root 1.5
1842     See C<poll_cb> for an example.
1843    
1844     =item IO::AIO::poll_cb
1845    
1846 root 1.240 Process some requests that have reached the result phase (i.e. they have
1847     been executed but the results are not yet reported). You have to call
1848     this "regularly" to finish outstanding requests.
1849    
1850     Returns C<0> if all events could be processed (or there were no
1851     events to process), or C<-1> if it returned earlier for whatever
1852     reason. Returns immediately when no events are outstanding. The amount
1853     of events processed depends on the settings of C<IO::AIO::max_poll_req>,
1854     C<IO::AIO::max_poll_time> and C<IO::AIO::max_outstanding>.
1855    
1856     If not all requests were processed for whatever reason, the poll file
1857     descriptor will still be ready when C<poll_cb> returns, so normally you
1858     don't have to do anything special to have it called later.
1859 root 1.78
1860 root 1.192 Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes
1861     ready, it can be beneficial to call this function from loops which submit
1862     a lot of requests, to make sure the results get processed when they become
1863     available and not just when the loop is finished and the event loop takes
1864     over again. This function returns very fast when there are no outstanding
1865     requests.
1866    
1867 root 1.20 Example: Install an Event watcher that automatically calls
1868 root 1.156 IO::AIO::poll_cb with high priority (more examples can be found in the
1869     SYNOPSIS section, at the top of this document):
1870 root 1.5
1871     Event->io (fd => IO::AIO::poll_fileno,
1872     poll => 'r', async => 1,
1873     cb => \&IO::AIO::poll_cb);
1874    
1875 root 1.175 =item IO::AIO::poll_wait
1876    
1877 root 1.240 Wait until either at least one request is in the result phase or no
1878     requests are outstanding anymore.
1879    
1880     This is useful if you want to synchronously wait for some requests to
1881     become ready, without actually handling them.
1882 root 1.175
1883     See C<nreqs> for an example.
1884    
1885     =item IO::AIO::poll
1886    
1887     Waits until some requests have been handled.
1888    
1889     Returns the number of requests processed, but is otherwise strictly
1890     equivalent to:
1891    
1892     IO::AIO::poll_wait, IO::AIO::poll_cb
1893    
1894     =item IO::AIO::flush
1895    
1896     Wait till all outstanding AIO requests have been handled.
1897    
1898     Strictly equivalent to:
1899    
1900     IO::AIO::poll_wait, IO::AIO::poll_cb
1901     while IO::AIO::nreqs;
1902    
1903 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1904    
1905     =item IO::AIO::max_poll_time $seconds
1906    
1907     These set the maximum number of requests (default C<0>, meaning infinity)
1908     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1909     the maximum amount of time (default C<0>, meaning infinity) spent in
1910     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1911     of time C<poll_cb> is allowed to use).
1912 root 1.78
1913 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1914     syscall per request processed, which is not normally a problem unless your
1915     callbacks are really really fast or your OS is really really slow (I am
1916     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1917    
1918 root 1.86 Setting these is useful if you want to ensure some level of
1919     interactiveness when perl is not fast enough to process all requests in
1920     time.
1921 root 1.78
1922 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
1923 root 1.78
1924     Example: Install an Event watcher that automatically calls
1925 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
1926 root 1.78 program get the CPU sometimes even under high AIO load.
1927    
1928 root 1.86 # try not to spend much more than 0.1s in poll_cb
1929     IO::AIO::max_poll_time 0.1;
1930    
1931     # use a low priority so other tasks have priority
1932 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
1933     poll => 'r', nice => 1,
1934 root 1.86 cb => &IO::AIO::poll_cb);
1935 root 1.78
1936 root 1.104 =back
1937    
1938 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
1939 root 1.13
1940 root 1.105 =over
1941    
1942 root 1.5 =item IO::AIO::min_parallel $nthreads
1943    
1944 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
1945     default is C<8>, which means eight asynchronous operations can execute
1946     concurrently at any one time (the number of outstanding requests,
1947     however, is unlimited).
1948 root 1.5
1949 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
1950 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
1951     create demand for a hundred threads, even if it turns out that everything
1952     is in the cache and could have been processed faster by a single thread.
1953 root 1.34
1954 root 1.61 It is recommended to keep the number of threads relatively low, as some
1955     Linux kernel versions will scale negatively with the number of threads
1956     (higher parallelity => MUCH higher latency). With current Linux 2.6
1957     versions, 4-32 threads should be fine.
1958 root 1.5
1959 root 1.34 Under most circumstances you don't need to call this function, as the
1960     module selects a default that is suitable for low to moderate load.
1961 root 1.5
1962     =item IO::AIO::max_parallel $nthreads
1963    
1964 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
1965     specified number of threads are currently running, this function kills
1966     them. This function blocks until the limit is reached.
1967    
1968     While C<$nthreads> are zero, aio requests get queued but not executed
1969     until the number of threads has been increased again.
1970 root 1.5
1971     This module automatically runs C<max_parallel 0> at program end, to ensure
1972     that all threads are killed and that there are no outstanding requests.
1973    
1974     Under normal circumstances you don't need to call this function.
1975    
1976 root 1.86 =item IO::AIO::max_idle $nthreads
1977    
1978 root 1.188 Limit the number of threads (default: 4) that are allowed to idle
1979     (i.e., threads that did not get a request to process within the idle
1980     timeout (default: 10 seconds). That means if a thread becomes idle while
1981     C<$nthreads> other threads are also idle, it will free its resources and
1982     exit.
1983 root 1.86
1984     This is useful when you allow a large number of threads (e.g. 100 or 1000)
1985     to allow for extremely high load situations, but want to free resources
1986     under normal circumstances (1000 threads can easily consume 30MB of RAM).
1987    
1988     The default is probably ok in most situations, especially if thread
1989     creation is fast. If thread creation is very slow on your system you might
1990     want to use larger values.
1991    
1992 root 1.188 =item IO::AIO::idle_timeout $seconds
1993    
1994     Sets the minimum idle timeout (default 10) after which worker threads are
1995     allowed to exit. SEe C<IO::AIO::max_idle>.
1996    
1997 root 1.123 =item IO::AIO::max_outstanding $maxreqs
1998 root 1.5
1999 root 1.195 Sets the maximum number of outstanding requests to C<$nreqs>. If
2000     you do queue up more than this number of requests, the next call to
2001     C<IO::AIO::poll_cb> (and other functions calling C<poll_cb>, such as
2002     C<IO::AIO::flush> or C<IO::AIO::poll>) will block until the limit is no
2003     longer exceeded.
2004    
2005     In other words, this setting does not enforce a queue limit, but can be
2006     used to make poll functions block if the limit is exceeded.
2007    
2008 root 1.79 This is a very bad function to use in interactive programs because it
2009     blocks, and a bad way to reduce concurrency because it is inexact: Better
2010     use an C<aio_group> together with a feed callback.
2011    
2012 root 1.248 Its main use is in scripts without an event loop - when you want to stat
2013 root 1.195 a lot of files, you can write somehting like this:
2014    
2015     IO::AIO::max_outstanding 32;
2016    
2017     for my $path (...) {
2018     aio_stat $path , ...;
2019     IO::AIO::poll_cb;
2020     }
2021    
2022     IO::AIO::flush;
2023    
2024     The call to C<poll_cb> inside the loop will normally return instantly, but
2025     as soon as more thna C<32> reqeusts are in-flight, it will block until
2026     some requests have been handled. This keeps the loop from pushing a large
2027     number of C<aio_stat> requests onto the queue.
2028    
2029     The default value for C<max_outstanding> is very large, so there is no
2030     practical limit on the number of outstanding requests.
2031 root 1.5
2032 root 1.104 =back
2033    
2034 root 1.86 =head3 STATISTICAL INFORMATION
2035    
2036 root 1.104 =over
2037    
2038 root 1.86 =item IO::AIO::nreqs
2039    
2040     Returns the number of requests currently in the ready, execute or pending
2041     states (i.e. for which their callback has not been invoked yet).
2042    
2043     Example: wait till there are no outstanding requests anymore:
2044    
2045     IO::AIO::poll_wait, IO::AIO::poll_cb
2046     while IO::AIO::nreqs;
2047    
2048     =item IO::AIO::nready
2049    
2050     Returns the number of requests currently in the ready state (not yet
2051     executed).
2052    
2053     =item IO::AIO::npending
2054    
2055     Returns the number of requests currently in the pending state (executed,
2056     but not yet processed by poll_cb).
2057    
2058 root 1.5 =back
2059    
2060 root 1.157 =head3 MISCELLANEOUS FUNCTIONS
2061    
2062 root 1.248 IO::AIO implements some functions that are useful when you want to use
2063     some "Advanced I/O" function not available to in Perl, without going the
2064     "Asynchronous I/O" route. Many of these have an asynchronous C<aio_*>
2065     counterpart.
2066 root 1.157
2067     =over 4
2068    
2069     =item IO::AIO::sendfile $ofh, $ifh, $offset, $count
2070    
2071     Calls the C<eio_sendfile_sync> function, which is like C<aio_sendfile>,
2072     but is blocking (this makes most sense if you know the input data is
2073     likely cached already and the output filehandle is set to non-blocking
2074     operations).
2075    
2076     Returns the number of bytes copied, or C<-1> on error.
2077    
2078     =item IO::AIO::fadvise $fh, $offset, $len, $advice
2079    
2080 root 1.184 Simply calls the C<posix_fadvise> function (see its
2081 root 1.157 manpage for details). The following advice constants are
2082 root 1.207 available: C<IO::AIO::FADV_NORMAL>, C<IO::AIO::FADV_SEQUENTIAL>,
2083 root 1.157 C<IO::AIO::FADV_RANDOM>, C<IO::AIO::FADV_NOREUSE>,
2084     C<IO::AIO::FADV_WILLNEED>, C<IO::AIO::FADV_DONTNEED>.
2085    
2086     On systems that do not implement C<posix_fadvise>, this function returns
2087     ENOSYS, otherwise the return value of C<posix_fadvise>.
2088    
2089 root 1.184 =item IO::AIO::madvise $scalar, $offset, $len, $advice
2090    
2091     Simply calls the C<posix_madvise> function (see its
2092     manpage for details). The following advice constants are
2093 root 1.207 available: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
2094 root 1.272 C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>,
2095     C<IO::AIO::MADV_DONTNEED>.
2096 root 1.184
2097 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2098     the remaining length of the C<$scalar> is used. If possible, C<$length>
2099     will be reduced to fit into the C<$scalar>.
2100    
2101 root 1.184 On systems that do not implement C<posix_madvise>, this function returns
2102     ENOSYS, otherwise the return value of C<posix_madvise>.
2103    
2104     =item IO::AIO::mprotect $scalar, $offset, $len, $protect
2105    
2106     Simply calls the C<mprotect> function on the preferably AIO::mmap'ed
2107     $scalar (see its manpage for details). The following protect
2108 root 1.207 constants are available: C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_READ>,
2109 root 1.184 C<IO::AIO::PROT_WRITE>, C<IO::AIO::PROT_EXEC>.
2110    
2111 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2112     the remaining length of the C<$scalar> is used. If possible, C<$length>
2113     will be reduced to fit into the C<$scalar>.
2114    
2115 root 1.184 On systems that do not implement C<mprotect>, this function returns
2116     ENOSYS, otherwise the return value of C<mprotect>.
2117    
2118 root 1.176 =item IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
2119    
2120     Memory-maps a file (or anonymous memory range) and attaches it to the
2121 root 1.228 given C<$scalar>, which will act like a string scalar. Returns true on
2122     success, and false otherwise.
2123 root 1.176
2124 root 1.268 The scalar must exist, but its contents do not matter - this means you
2125     cannot use a nonexistant array or hash element. When in doubt, C<undef>
2126     the scalar first.
2127    
2128     The only operations allowed on the mmapped scalar are C<substr>/C<vec>,
2129     which don't change the string length, and most read-only operations such
2130     as copying it or searching it with regexes and so on.
2131 root 1.176
2132     Anything else is unsafe and will, at best, result in memory leaks.
2133    
2134     The memory map associated with the C<$scalar> is automatically removed
2135 root 1.268 when the C<$scalar> is undef'd or destroyed, or when the C<IO::AIO::mmap>
2136     or C<IO::AIO::munmap> functions are called on it.
2137 root 1.176
2138     This calls the C<mmap>(2) function internally. See your system's manual
2139     page for details on the C<$length>, C<$prot> and C<$flags> parameters.
2140    
2141     The C<$length> must be larger than zero and smaller than the actual
2142     filesize.
2143    
2144     C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
2145     C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
2146    
2147 root 1.256 C<$flags> can be a combination of
2148     C<IO::AIO::MAP_SHARED> or
2149     C<IO::AIO::MAP_PRIVATE>,
2150     or a number of system-specific flags (when not available, the are C<0>):
2151     C<IO::AIO::MAP_ANONYMOUS> (which is set to C<MAP_ANON> if your system only provides this constant),
2152     C<IO::AIO::MAP_LOCKED>,
2153     C<IO::AIO::MAP_NORESERVE>,
2154     C<IO::AIO::MAP_POPULATE>,
2155     C<IO::AIO::MAP_NONBLOCK>,
2156     C<IO::AIO::MAP_FIXED>,
2157     C<IO::AIO::MAP_GROWSDOWN>,
2158     C<IO::AIO::MAP_32BIT>,
2159     C<IO::AIO::MAP_HUGETLB> or
2160     C<IO::AIO::MAP_STACK>.
2161 root 1.176
2162     If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
2163    
2164 root 1.179 C<$offset> is the offset from the start of the file - it generally must be
2165     a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
2166    
2167 root 1.177 Example:
2168    
2169     use Digest::MD5;
2170     use IO::AIO;
2171    
2172     open my $fh, "<verybigfile"
2173     or die "$!";
2174    
2175     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
2176     or die "verybigfile: $!";
2177    
2178     my $fast_md5 = md5 $data;
2179    
2180 root 1.176 =item IO::AIO::munmap $scalar
2181    
2182     Removes a previous mmap and undefines the C<$scalar>.
2183    
2184 root 1.182 =item IO::AIO::munlock $scalar, $offset = 0, $length = undef
2185 root 1.174
2186 root 1.182 Calls the C<munlock> function, undoing the effects of a previous
2187     C<aio_mlock> call (see its description for details).
2188 root 1.174
2189     =item IO::AIO::munlockall
2190    
2191     Calls the C<munlockall> function.
2192    
2193     On systems that do not implement C<munlockall>, this function returns
2194     ENOSYS, otherwise the return value of C<munlockall>.
2195    
2196 root 1.225 =item IO::AIO::splice $r_fh, $r_off, $w_fh, $w_off, $length, $flags
2197    
2198     Calls the GNU/Linux C<splice(2)> syscall, if available. If C<$r_off> or
2199     C<$w_off> are C<undef>, then C<NULL> is passed for these, otherwise they
2200     should be the file offset.
2201    
2202 root 1.227 C<$r_fh> and C<$w_fh> should not refer to the same file, as splice might
2203     silently corrupt the data in this case.
2204    
2205 root 1.225 The following symbol flag values are available: C<IO::AIO::SPLICE_F_MOVE>,
2206     C<IO::AIO::SPLICE_F_NONBLOCK>, C<IO::AIO::SPLICE_F_MORE> and
2207     C<IO::AIO::SPLICE_F_GIFT>.
2208    
2209     See the C<splice(2)> manpage for details.
2210    
2211     =item IO::AIO::tee $r_fh, $w_fh, $length, $flags
2212    
2213 root 1.248 Calls the GNU/Linux C<tee(2)> syscall, see its manpage and the
2214 root 1.225 description for C<IO::AIO::splice> above for details.
2215    
2216 root 1.243 =item $actual_size = IO::AIO::pipesize $r_fh[, $new_size]
2217    
2218     Attempts to query or change the pipe buffer size. Obviously works only
2219     on pipes, and currently works only on GNU/Linux systems, and fails with
2220     C<-1>/C<ENOSYS> everywhere else. If anybody knows how to influence pipe buffer
2221     size on other systems, drop me a note.
2222    
2223 root 1.253 =item ($rfh, $wfh) = IO::AIO::pipe2 [$flags]
2224    
2225     This is a direct interface to the Linux L<pipe2(2)> system call. If
2226     C<$flags> is missing or C<0>, then this should be the same as a call to
2227 root 1.254 perl's built-in C<pipe> function and create a new pipe, and works on
2228     systems that lack the pipe2 syscall. On win32, this case invokes C<_pipe
2229     (..., 4096, O_BINARY)>.
2230 root 1.253
2231     If C<$flags> is non-zero, it tries to invoke the pipe2 system call with
2232     the given flags (Linux 2.6.27, glibc 2.9).
2233    
2234     On success, the read and write file handles are returned.
2235    
2236     On error, nothing will be returned. If the pipe2 syscall is missing and
2237     C<$flags> is non-zero, fails with C<ENOSYS>.
2238    
2239     Please refer to L<pipe2(2)> for more info on the C<$flags>, but at the
2240     time of this writing, C<IO::AIO::O_CLOEXEC>, C<IO::AIO::O_NONBLOCK> and
2241     C<IO::AIO::O_DIRECT> (Linux 3.4, for packet-based pipes) were supported.
2242    
2243 root 1.157 =back
2244    
2245 root 1.1 =cut
2246    
2247 root 1.61 min_parallel 8;
2248 root 1.1
2249 root 1.95 END { flush }
2250 root 1.82
2251 root 1.1 1;
2252    
2253 root 1.175 =head1 EVENT LOOP INTEGRATION
2254    
2255     It is recommended to use L<AnyEvent::AIO> to integrate IO::AIO
2256     automatically into many event loops:
2257    
2258     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
2259     use AnyEvent::AIO;
2260    
2261     You can also integrate IO::AIO manually into many event loops, here are
2262     some examples of how to do this:
2263    
2264     # EV integration
2265     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
2266    
2267     # Event integration
2268     Event->io (fd => IO::AIO::poll_fileno,
2269     poll => 'r',
2270     cb => \&IO::AIO::poll_cb);
2271    
2272     # Glib/Gtk2 integration
2273     add_watch Glib::IO IO::AIO::poll_fileno,
2274     in => sub { IO::AIO::poll_cb; 1 };
2275    
2276     # Tk integration
2277     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
2278     readable => \&IO::AIO::poll_cb);
2279    
2280     # Danga::Socket integration
2281     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
2282     \&IO::AIO::poll_cb);
2283    
2284 root 1.27 =head2 FORK BEHAVIOUR
2285    
2286 root 1.197 Usage of pthreads in a program changes the semantics of fork
2287     considerably. Specifically, only async-safe functions can be called after
2288     fork. Perl doesn't know about this, so in general, you cannot call fork
2289 root 1.204 with defined behaviour in perl if pthreads are involved. IO::AIO uses
2290     pthreads, so this applies, but many other extensions and (for inexplicable
2291     reasons) perl itself often is linked against pthreads, so this limitation
2292     applies to quite a lot of perls.
2293    
2294     This module no longer tries to fight your OS, or POSIX. That means IO::AIO
2295     only works in the process that loaded it. Forking is fully supported, but
2296     using IO::AIO in the child is not.
2297    
2298     You might get around by not I<using> IO::AIO before (or after)
2299     forking. You could also try to call the L<IO::AIO::reinit> function in the
2300     child:
2301    
2302     =over 4
2303    
2304     =item IO::AIO::reinit
2305    
2306 root 1.207 Abandons all current requests and I/O threads and simply reinitialises all
2307     data structures. This is not an operation supported by any standards, but
2308 root 1.204 happens to work on GNU/Linux and some newer BSD systems.
2309    
2310     The only reasonable use for this function is to call it after forking, if
2311     C<IO::AIO> was used in the parent. Calling it while IO::AIO is active in
2312     the process will result in undefined behaviour. Calling it at any time
2313     will also result in any undefined (by POSIX) behaviour.
2314    
2315     =back
2316 root 1.52
2317 root 1.60 =head2 MEMORY USAGE
2318    
2319 root 1.72 Per-request usage:
2320    
2321     Each aio request uses - depending on your architecture - around 100-200
2322     bytes of memory. In addition, stat requests need a stat buffer (possibly
2323     a few hundred bytes), readdir requires a result buffer and so on. Perl
2324     scalars and other data passed into aio requests will also be locked and
2325     will consume memory till the request has entered the done state.
2326 root 1.60
2327 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
2328 root 1.60 problem.
2329    
2330 root 1.72 Per-thread usage:
2331    
2332     In the execution phase, some aio requests require more memory for
2333     temporary buffers, and each thread requires a stack and other data
2334     structures (usually around 16k-128k, depending on the OS).
2335    
2336     =head1 KNOWN BUGS
2337    
2338 root 1.73 Known bugs will be fixed in the next release.
2339 root 1.60
2340 root 1.1 =head1 SEE ALSO
2341    
2342 root 1.125 L<AnyEvent::AIO> for easy integration into event loops, L<Coro::AIO> for a
2343     more natural syntax.
2344 root 1.1
2345     =head1 AUTHOR
2346    
2347     Marc Lehmann <schmorp@schmorp.de>
2348     http://home.schmorp.de/
2349    
2350     =cut
2351