ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.279
Committed: Sat Jan 6 01:04:42 2018 UTC (6 years, 4 months ago) by root
Branch: MAIN
Changes since 1.278: +33 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.265 IO::AIO - Asynchronous/Advanced Input/Output
4 root 1.1
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.1 =head1 DESCRIPTION
32    
33     This module implements asynchronous I/O using whatever means your
34 root 1.156 operating system supports. It is implemented as an interface to C<libeio>
35     (L<http://software.schmorp.de/pkg/libeio.html>).
36 root 1.1
37 root 1.85 Asynchronous means that operations that can normally block your program
38     (e.g. reading from disk) will be done asynchronously: the operation
39     will still block, but you can do something else in the meantime. This
40     is extremely useful for programs that need to stay interactive even
41     when doing heavy I/O (GUI programs, high performance network servers
42     etc.), but can also be used to easily do operations in parallel that are
43     normally done sequentially, e.g. stat'ing many files, which is much faster
44     on a RAID volume or over NFS when you do a number of stat operations
45     concurrently.
46    
47 root 1.108 While most of this works on all types of file descriptors (for
48     example sockets), using these functions on file descriptors that
49 root 1.156 support nonblocking operation (again, sockets, pipes etc.) is
50     very inefficient. Use an event loop for that (such as the L<EV>
51 root 1.108 module): IO::AIO will naturally fit into such an event loop itself.
52 root 1.85
53 root 1.72 In this version, a number of threads are started that execute your
54     requests and signal their completion. You don't need thread support
55     in perl, and the threads created by this module will not be visible
56     to perl. In the future, this module might make use of the native aio
57     functions available on many operating systems. However, they are often
58 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
59 root 1.72 files currently, for example), and they would only support aio_read and
60     aio_write, so the remaining functionality would have to be implemented
61     using threads anyway.
62    
63 root 1.265 In addition to asynchronous I/O, this module also exports some rather
64     arcane interfaces, such as C<madvise> or linux's C<splice> system call,
65     which is why the C<A> in C<AIO> can also mean I<advanced>.
66    
67 root 1.108 Although the module will work in the presence of other (Perl-) threads,
68     it is currently not reentrant in any way, so use appropriate locking
69     yourself, always call C<poll_cb> from within the same thread, or never
70     call C<poll_cb> (or other C<aio_> functions) recursively.
71 root 1.72
72 root 1.86 =head2 EXAMPLE
73    
74 root 1.156 This is a simple example that uses the EV module and loads
75 root 1.86 F</etc/passwd> asynchronously:
76    
77 root 1.156 use EV;
78 root 1.86 use IO::AIO;
79    
80 root 1.156 # register the IO::AIO callback with EV
81     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
82 root 1.86
83     # queue the request to open /etc/passwd
84 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
85 root 1.94 my $fh = shift
86 root 1.86 or die "error while opening: $!";
87    
88     # stat'ing filehandles is generally non-blocking
89     my $size = -s $fh;
90    
91     # queue a request to read the file
92     my $contents;
93     aio_read $fh, 0, $size, $contents, 0, sub {
94     $_[0] == $size
95     or die "short read: $!";
96    
97     close $fh;
98    
99     # file contents now in $contents
100     print $contents;
101    
102     # exit event loop and program
103 root 1.257 EV::break;
104 root 1.86 };
105     };
106    
107     # possibly queue up other requests, or open GUI windows,
108     # check for sockets etc. etc.
109    
110     # process events as long as there are some:
111 root 1.257 EV::run;
112 root 1.86
113 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
114    
115     Every C<aio_*> function creates a request. which is a C data structure not
116     directly visible to Perl.
117    
118     If called in non-void context, every request function returns a Perl
119     object representing the request. In void context, nothing is returned,
120     which saves a bit of memory.
121    
122     The perl object is a fairly standard ref-to-hash object. The hash contents
123     are not used by IO::AIO so you are free to store anything you like in it.
124    
125     During their existance, aio requests travel through the following states,
126     in order:
127    
128     =over 4
129    
130     =item ready
131    
132     Immediately after a request is created it is put into the ready state,
133     waiting for a thread to execute it.
134    
135     =item execute
136    
137     A thread has accepted the request for processing and is currently
138     executing it (e.g. blocking in read).
139    
140     =item pending
141    
142     The request has been executed and is waiting for result processing.
143    
144     While request submission and execution is fully asynchronous, result
145     processing is not and relies on the perl interpreter calling C<poll_cb>
146     (or another function with the same effect).
147    
148     =item result
149    
150     The request results are processed synchronously by C<poll_cb>.
151    
152     The C<poll_cb> function will process all outstanding aio requests by
153     calling their callbacks, freeing memory associated with them and managing
154     any groups they are contained in.
155    
156     =item done
157    
158     Request has reached the end of its lifetime and holds no resources anymore
159     (except possibly for the Perl object, but its connection to the actual
160     aio request is severed and calling its methods will either do nothing or
161     result in a runtime error).
162 root 1.1
163 root 1.88 =back
164    
165 root 1.1 =cut
166    
167     package IO::AIO;
168    
169 root 1.117 use Carp ();
170    
171 root 1.161 use common::sense;
172 root 1.23
173 root 1.1 use base 'Exporter';
174    
175     BEGIN {
176 root 1.279 our $VERSION = 4.4;
177 root 1.1
178 root 1.220 our @AIO_REQ = qw(aio_sendfile aio_seek aio_read aio_write aio_open aio_close
179 root 1.148 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
180 root 1.259 aio_scandir aio_symlink aio_readlink aio_realpath aio_fcntl aio_ioctl
181     aio_sync aio_fsync aio_syncfs aio_fdatasync aio_sync_file_range
182     aio_pathsync aio_readahead aio_fiemap aio_allocate
183 root 1.270 aio_rename aio_rename2 aio_link aio_move aio_copy aio_group
184 root 1.120 aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
185 root 1.170 aio_chmod aio_utime aio_truncate
186 root 1.182 aio_msync aio_mtouch aio_mlock aio_mlockall
187 root 1.208 aio_statvfs
188 root 1.279 aio_slurp
189 root 1.208 aio_wd);
190 root 1.120
191 root 1.123 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice));
192 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
193 root 1.188 min_parallel max_parallel max_idle idle_timeout
194 root 1.86 nreqs nready npending nthreads
195 root 1.157 max_poll_time max_poll_reqs
196 root 1.182 sendfile fadvise madvise
197     mmap munmap munlock munlockall);
198 root 1.1
199 root 1.143 push @AIO_REQ, qw(aio_busy); # not exported
200    
201 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
202    
203 root 1.1 require XSLoader;
204 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
205 root 1.1 }
206    
207 root 1.5 =head1 FUNCTIONS
208 root 1.1
209 root 1.175 =head2 QUICK OVERVIEW
210    
211 root 1.230 This section simply lists the prototypes most of the functions for
212     quick reference. See the following sections for function-by-function
213 root 1.175 documentation.
214    
215 root 1.208 aio_wd $pathname, $callback->($wd)
216 root 1.175 aio_open $pathname, $flags, $mode, $callback->($fh)
217     aio_close $fh, $callback->($status)
218 root 1.220 aio_seek $fh,$offset,$whence, $callback->($offs)
219 root 1.175 aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
220     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
221     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
222     aio_readahead $fh,$offset,$length, $callback->($retval)
223     aio_stat $fh_or_path, $callback->($status)
224     aio_lstat $fh, $callback->($status)
225     aio_statvfs $fh_or_path, $callback->($statvfs)
226     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
227     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
228 root 1.220 aio_chmod $fh_or_path, $mode, $callback->($status)
229 root 1.175 aio_truncate $fh_or_path, $offset, $callback->($status)
230 root 1.229 aio_allocate $fh, $mode, $offset, $len, $callback->($status)
231 root 1.230 aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
232 root 1.175 aio_unlink $pathname, $callback->($status)
233 root 1.209 aio_mknod $pathname, $mode, $dev, $callback->($status)
234 root 1.175 aio_link $srcpath, $dstpath, $callback->($status)
235     aio_symlink $srcpath, $dstpath, $callback->($status)
236 root 1.209 aio_readlink $pathname, $callback->($link)
237 root 1.249 aio_realpath $pathname, $callback->($path)
238 root 1.175 aio_rename $srcpath, $dstpath, $callback->($status)
239 root 1.270 aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
240 root 1.175 aio_mkdir $pathname, $mode, $callback->($status)
241     aio_rmdir $pathname, $callback->($status)
242     aio_readdir $pathname, $callback->($entries)
243     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
244     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
245     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
246 root 1.215 aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
247 root 1.209 aio_load $pathname, $data, $callback->($status)
248 root 1.175 aio_copy $srcpath, $dstpath, $callback->($status)
249     aio_move $srcpath, $dstpath, $callback->($status)
250 root 1.209 aio_rmtree $pathname, $callback->($status)
251 root 1.259 aio_fcntl $fh, $cmd, $arg, $callback->($status)
252     aio_ioctl $fh, $request, $buf, $callback->($status)
253 root 1.175 aio_sync $callback->($status)
254 root 1.206 aio_syncfs $fh, $callback->($status)
255 root 1.175 aio_fsync $fh, $callback->($status)
256     aio_fdatasync $fh, $callback->($status)
257     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
258 root 1.209 aio_pathsync $pathname, $callback->($status)
259 root 1.268 aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
260 root 1.175 aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
261 root 1.182 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
262     aio_mlockall $flags, $callback->($status)
263 root 1.175 aio_group $callback->(...)
264     aio_nop $callback->()
265    
266     $prev_pri = aioreq_pri [$pri]
267     aioreq_nice $pri_adjust
268    
269     IO::AIO::poll_wait
270     IO::AIO::poll_cb
271     IO::AIO::poll
272     IO::AIO::flush
273     IO::AIO::max_poll_reqs $nreqs
274     IO::AIO::max_poll_time $seconds
275     IO::AIO::min_parallel $nthreads
276     IO::AIO::max_parallel $nthreads
277     IO::AIO::max_idle $nthreads
278 root 1.188 IO::AIO::idle_timeout $seconds
279 root 1.175 IO::AIO::max_outstanding $maxreqs
280     IO::AIO::nreqs
281     IO::AIO::nready
282     IO::AIO::npending
283 root 1.278 $nfd = IO::AIO::get_fdlimit [EXPERIMENTAL]
284     IO::AIO::min_fdlimit $nfd [EXPERIMENTAL]
285 root 1.175
286     IO::AIO::sendfile $ofh, $ifh, $offset, $count
287     IO::AIO::fadvise $fh, $offset, $len, $advice
288 root 1.226 IO::AIO::mmap $scalar, $length, $prot, $flags[, $fh[, $offset]]
289     IO::AIO::munmap $scalar
290 root 1.184 IO::AIO::madvise $scalar, $offset, $length, $advice
291     IO::AIO::mprotect $scalar, $offset, $length, $protect
292 root 1.182 IO::AIO::munlock $scalar, $offset = 0, $length = undef
293 root 1.175 IO::AIO::munlockall
294    
295 root 1.219 =head2 API NOTES
296 root 1.1
297 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
298     with the same name (sans C<aio_>). The arguments are similar or identical,
299 root 1.14 and they all accept an additional (and optional) C<$callback> argument
300 root 1.212 which must be a code reference. This code reference will be called after
301     the syscall has been executed in an asynchronous fashion. The results
302     of the request will be passed as arguments to the callback (and, if an
303     error occured, in C<$!>) - for most requests the syscall return code (e.g.
304     most syscalls return C<-1> on error, unlike perl, which usually delivers
305     "false").
306    
307     Some requests (such as C<aio_readdir>) pass the actual results and
308     communicate failures by passing C<undef>.
309 root 1.1
310 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
311     internally until the request has finished.
312 root 1.1
313 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
314     further manipulation of those requests while they are in-flight.
315 root 1.52
316 root 1.209 The pathnames you pass to these routines I<should> be absolute. The
317     reason for this is that at the time the request is being executed, the
318 root 1.212 current working directory could have changed. Alternatively, you can
319     make sure that you never change the current working directory anywhere
320     in the program and then use relative paths. You can also take advantage
321     of IO::AIOs working directory abstraction, that lets you specify paths
322     relative to some previously-opened "working directory object" - see the
323     description of the C<IO::AIO::WD> class later in this document.
324 root 1.28
325 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
326     in filenames you got from outside (command line, readdir etc.) without
327 root 1.212 tinkering, b) are in your native filesystem encoding, c) use the Encode
328     module and encode your pathnames to the locale (or other) encoding in
329     effect in the user environment, d) use Glib::filename_from_unicode on
330     unicode filenames or e) use something else to ensure your scalar has the
331     correct contents.
332 root 1.87
333     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
334 root 1.136 handles correctly whether it is set or not.
335 root 1.1
336 root 1.219 =head2 AIO REQUEST FUNCTIONS
337    
338 root 1.5 =over 4
339 root 1.1
340 root 1.80 =item $prev_pri = aioreq_pri [$pri]
341 root 1.68
342 root 1.80 Returns the priority value that would be used for the next request and, if
343     C<$pri> is given, sets the priority for the next aio request.
344 root 1.68
345 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
346     and C<4>, respectively. Requests with higher priority will be serviced
347     first.
348    
349     The priority will be reset to C<0> after each call to one of the C<aio_*>
350 root 1.68 functions.
351    
352 root 1.69 Example: open a file with low priority, then read something from it with
353     higher priority so the read request is serviced before other low priority
354     open requests (potentially spamming the cache):
355    
356     aioreq_pri -3;
357     aio_open ..., sub {
358     return unless $_[0];
359    
360     aioreq_pri -2;
361     aio_read $_[0], ..., sub {
362     ...
363     };
364     };
365    
366 root 1.106
367 root 1.69 =item aioreq_nice $pri_adjust
368    
369     Similar to C<aioreq_pri>, but subtracts the given value from the current
370 root 1.87 priority, so the effect is cumulative.
371 root 1.69
372 root 1.106
373 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
374 root 1.1
375 root 1.2 Asynchronously open or create a file and call the callback with a newly
376 root 1.233 created filehandle for the file (or C<undef> in case of an error).
377 root 1.1
378     The pathname passed to C<aio_open> must be absolute. See API NOTES, above,
379     for an explanation.
380    
381 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
382     list. They are the same as used by C<sysopen>.
383    
384     Likewise, C<$mode> specifies the mode of the newly created file, if it
385     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
386     except that it is mandatory (i.e. use C<0> if you don't create new files,
387 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
388     by the umask in effect then the request is being executed, so better never
389     change the umask.
390 root 1.1
391     Example:
392    
393 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
394 root 1.2 if ($_[0]) {
395     print "open successful, fh is $_[0]\n";
396 root 1.1 ...
397     } else {
398     die "open failed: $!\n";
399     }
400     };
401    
402 root 1.194 In addition to all the common open modes/flags (C<O_RDONLY>, C<O_WRONLY>,
403     C<O_RDWR>, C<O_CREAT>, C<O_TRUNC>, C<O_EXCL> and C<O_APPEND>), the
404     following POSIX and non-POSIX constants are available (missing ones on
405     your system are, as usual, C<0>):
406    
407     C<O_ASYNC>, C<O_DIRECT>, C<O_NOATIME>, C<O_CLOEXEC>, C<O_NOCTTY>, C<O_NOFOLLOW>,
408     C<O_NONBLOCK>, C<O_EXEC>, C<O_SEARCH>, C<O_DIRECTORY>, C<O_DSYNC>,
409 root 1.255 C<O_RSYNC>, C<O_SYNC>, C<O_PATH>, C<O_TMPFILE>, and C<O_TTY_INIT>.
410 root 1.194
411 root 1.106
412 root 1.40 =item aio_close $fh, $callback->($status)
413 root 1.1
414 root 1.2 Asynchronously close a file and call the callback with the result
415 root 1.116 code.
416    
417 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
418 root 1.121 closing the file descriptor associated with the filehandle itself.
419 root 1.117
420 root 1.121 Therefore, C<aio_close> will not close the filehandle - instead it will
421     use dup2 to overwrite the file descriptor with the write-end of a pipe
422     (the pipe fd will be created on demand and will be cached).
423 root 1.117
424 root 1.121 Or in other words: the file descriptor will be closed, but it will not be
425     free for reuse until the perl filehandle is closed.
426 root 1.117
427     =cut
428    
429 root 1.220 =item aio_seek $fh, $offset, $whence, $callback->($offs)
430    
431 root 1.221 Seeks the filehandle to the new C<$offset>, similarly to perl's
432 root 1.220 C<sysseek>. The C<$whence> can use the traditional values (C<0> for
433     C<IO::AIO::SEEK_SET>, C<1> for C<IO::AIO::SEEK_CUR> or C<2> for
434     C<IO::AIO::SEEK_END>).
435    
436     The resulting absolute offset will be passed to the callback, or C<-1> in
437     case of an error.
438    
439     In theory, the C<$whence> constants could be different than the
440     corresponding values from L<Fcntl>, but perl guarantees they are the same,
441     so don't panic.
442    
443 root 1.225 As a GNU/Linux (and maybe Solaris) extension, also the constants
444     C<IO::AIO::SEEK_DATA> and C<IO::AIO::SEEK_HOLE> are available, if they
445     could be found. No guarantees about suitability for use in C<aio_seek> or
446     Perl's C<sysseek> can be made though, although I would naively assume they
447     "just work".
448    
449 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
450 root 1.1
451 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
452 root 1.1
453 root 1.145 Reads or writes C<$length> bytes from or to the specified C<$fh> and
454 root 1.267 C<$offset> into the scalar given by C<$data> and offset C<$dataoffset> and
455     calls the callback with the actual number of bytes transferred (or -1 on
456 root 1.145 error, just like the syscall).
457 root 1.109
458 root 1.146 C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
459     offset plus the actual number of bytes read.
460    
461 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
462     be used (and updated), otherwise the file descriptor offset will not be
463     changed by these calls.
464 root 1.109
465 root 1.145 If C<$length> is undefined in C<aio_write>, use the remaining length of
466     C<$data>.
467 root 1.109
468     If C<$dataoffset> is less than zero, it will be counted from the end of
469     C<$data>.
470 root 1.1
471 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
472 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
473     the necessary/optional hardware is installed).
474 root 1.31
475 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
476 root 1.1 offset C<0> within the scalar:
477    
478     aio_read $fh, 7, 15, $buffer, 0, sub {
479 root 1.9 $_[0] > 0 or die "read error: $!";
480     print "read $_[0] bytes: <$buffer>\n";
481 root 1.1 };
482    
483 root 1.106
484 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
485 root 1.35
486     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
487     reading at byte offset C<$in_offset>, and starts writing at the current
488     file offset of C<$out_fh>. Because of that, it is not safe to issue more
489     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
490 root 1.196 other. The same C<$in_fh> works fine though, as this function does not
491     move or use the file offset of C<$in_fh>.
492 root 1.35
493 root 1.185 Please note that C<aio_sendfile> can read more bytes from C<$in_fh> than
494 root 1.196 are written, and there is no way to find out how many more bytes have been
495     read from C<aio_sendfile> alone, as C<aio_sendfile> only provides the
496     number of bytes written to C<$out_fh>. Only if the result value equals
497     C<$length> one can assume that C<$length> bytes have been read.
498 root 1.185
499     Unlike with other C<aio_> functions, it makes a lot of sense to use
500     C<aio_sendfile> on non-blocking sockets, as long as one end (typically
501     the C<$in_fh>) is a file - the file I/O will then be asynchronous, while
502 root 1.196 the socket I/O will be non-blocking. Note, however, that you can run
503     into a trap where C<aio_sendfile> reads some data with readahead, then
504     fails to write all data, and when the socket is ready the next time, the
505     data in the cache is already lost, forcing C<aio_sendfile> to again hit
506     the disk. Explicit C<aio_read> + C<aio_write> let's you better control
507     resource usage.
508    
509     This call tries to make use of a native C<sendfile>-like syscall to
510     provide zero-copy operation. For this to work, C<$out_fh> should refer to
511     a socket, and C<$in_fh> should refer to an mmap'able file.
512 root 1.35
513 root 1.170 If a native sendfile cannot be found or it fails with C<ENOSYS>,
514 root 1.196 C<EINVAL>, C<ENOTSUP>, C<EOPNOTSUPP>, C<EAFNOSUPPORT>, C<EPROTOTYPE> or
515     C<ENOTSOCK>, it will be emulated, so you can call C<aio_sendfile> on any
516     type of filehandle regardless of the limitations of the operating system.
517    
518     As native sendfile syscalls (as practically any non-POSIX interface hacked
519     together in a hurry to improve benchmark numbers) tend to be rather buggy
520     on many systems, this implementation tries to work around some known bugs
521     in Linux and FreeBSD kernels (probably others, too), but that might fail,
522     so you really really should check the return value of C<aio_sendfile> -
523 root 1.262 fewer bytes than expected might have been transferred.
524 root 1.35
525 root 1.106
526 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
527 root 1.1
528 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
529 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
530     argument specifies the starting point from which data is to be read and
531     C<$length> specifies the number of bytes to be read. I/O is performed in
532     whole pages, so that offset is effectively rounded down to a page boundary
533     and bytes are read up to the next page boundary greater than or equal to
534 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
535 root 1.1 file. The current file offset of the file is left unchanged.
536    
537 root 1.261 If that syscall doesn't exist (likely if your kernel isn't Linux) it will
538     be emulated by simply reading the data, which would have a similar effect.
539 root 1.26
540 root 1.106
541 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
542 root 1.1
543 root 1.40 =item aio_lstat $fh, $callback->($status)
544 root 1.1
545     Works like perl's C<stat> or C<lstat> in void context. The callback will
546     be called after the stat and the results will be available using C<stat _>
547     or C<-s _> etc...
548    
549     The pathname passed to C<aio_stat> must be absolute. See API NOTES, above,
550     for an explanation.
551    
552     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
553     error when stat'ing a large file, the results will be silently truncated
554     unless perl itself is compiled with large file support.
555    
556 root 1.187 To help interpret the mode and dev/rdev stat values, IO::AIO offers the
557     following constants and functions (if not implemented, the constants will
558     be C<0> and the functions will either C<croak> or fall back on traditional
559     behaviour).
560    
561     C<S_IFMT>, C<S_IFIFO>, C<S_IFCHR>, C<S_IFBLK>, C<S_IFLNK>, C<S_IFREG>,
562     C<S_IFDIR>, C<S_IFWHT>, C<S_IFSOCK>, C<IO::AIO::major $dev_t>,
563     C<IO::AIO::minor $dev_t>, C<IO::AIO::makedev $major, $minor>.
564    
565 root 1.1 Example: Print the length of F</etc/passwd>:
566    
567     aio_stat "/etc/passwd", sub {
568     $_[0] and die "stat failed: $!";
569     print "size is ", -s _, "\n";
570     };
571    
572 root 1.106
573 root 1.175 =item aio_statvfs $fh_or_path, $callback->($statvfs)
574 root 1.172
575     Works like the POSIX C<statvfs> or C<fstatvfs> syscalls, depending on
576     whether a file handle or path was passed.
577    
578     On success, the callback is passed a hash reference with the following
579     members: C<bsize>, C<frsize>, C<blocks>, C<bfree>, C<bavail>, C<files>,
580     C<ffree>, C<favail>, C<fsid>, C<flag> and C<namemax>. On failure, C<undef>
581     is passed.
582    
583     The following POSIX IO::AIO::ST_* constants are defined: C<ST_RDONLY> and
584     C<ST_NOSUID>.
585    
586     The following non-POSIX IO::AIO::ST_* flag masks are defined to
587     their correct value when available, or to C<0> on systems that do
588     not support them: C<ST_NODEV>, C<ST_NOEXEC>, C<ST_SYNCHRONOUS>,
589     C<ST_MANDLOCK>, C<ST_WRITE>, C<ST_APPEND>, C<ST_IMMUTABLE>, C<ST_NOATIME>,
590     C<ST_NODIRATIME> and C<ST_RELATIME>.
591    
592     Example: stat C</wd> and dump out the data if successful.
593    
594     aio_statvfs "/wd", sub {
595     my $f = $_[0]
596     or die "statvfs: $!";
597    
598     use Data::Dumper;
599     say Dumper $f;
600     };
601    
602     # result:
603     {
604     bsize => 1024,
605     bfree => 4333064312,
606     blocks => 10253828096,
607     files => 2050765568,
608     flag => 4096,
609     favail => 2042092649,
610     bavail => 4333064312,
611     ffree => 2042092649,
612     namemax => 255,
613     frsize => 1024,
614     fsid => 1810
615     }
616    
617 root 1.244 Here is a (likely partial - send me updates!) list of fsid values used by
618     Linux - it is safe to hardcode these when C<$^O> is C<linux>:
619 root 1.235
620     0x0000adf5 adfs
621     0x0000adff affs
622     0x5346414f afs
623     0x09041934 anon-inode filesystem
624     0x00000187 autofs
625     0x42465331 befs
626     0x1badface bfs
627     0x42494e4d binfmt_misc
628     0x9123683e btrfs
629     0x0027e0eb cgroupfs
630     0xff534d42 cifs
631     0x73757245 coda
632     0x012ff7b7 coh
633     0x28cd3d45 cramfs
634     0x453dcd28 cramfs-wend (wrong endianness)
635     0x64626720 debugfs
636     0x00001373 devfs
637     0x00001cd1 devpts
638     0x0000f15f ecryptfs
639     0x00414a53 efs
640     0x0000137d ext
641 root 1.257 0x0000ef53 ext2/ext3/ext4
642 root 1.235 0x0000ef51 ext2
643 root 1.257 0xf2f52010 f2fs
644 root 1.235 0x00004006 fat
645     0x65735546 fuseblk
646     0x65735543 fusectl
647     0x0bad1dea futexfs
648     0x01161970 gfs2
649     0x47504653 gpfs
650     0x00004244 hfs
651     0xf995e849 hpfs
652 root 1.257 0x00c0ffee hostfs
653 root 1.235 0x958458f6 hugetlbfs
654     0x2bad1dea inotifyfs
655     0x00009660 isofs
656     0x000072b6 jffs2
657     0x3153464a jfs
658     0x6b414653 k-afs
659     0x0bd00bd0 lustre
660     0x0000137f minix
661     0x0000138f minix 30 char names
662     0x00002468 minix v2
663     0x00002478 minix v2 30 char names
664     0x00004d5a minix v3
665     0x19800202 mqueue
666     0x00004d44 msdos
667     0x0000564c novell
668     0x00006969 nfs
669     0x6e667364 nfsd
670     0x00003434 nilfs
671     0x5346544e ntfs
672     0x00009fa1 openprom
673     0x7461636F ocfs2
674     0x00009fa0 proc
675     0x6165676c pstorefs
676     0x0000002f qnx4
677 root 1.257 0x68191122 qnx6
678 root 1.235 0x858458f6 ramfs
679     0x52654973 reiserfs
680     0x00007275 romfs
681     0x67596969 rpc_pipefs
682     0x73636673 securityfs
683     0xf97cff8c selinux
684     0x0000517b smb
685     0x534f434b sockfs
686     0x73717368 squashfs
687     0x62656572 sysfs
688     0x012ff7b6 sysv2
689     0x012ff7b5 sysv4
690     0x01021994 tmpfs
691     0x15013346 udf
692     0x00011954 ufs
693     0x54190100 ufs byteswapped
694     0x00009fa2 usbdevfs
695     0x01021997 v9fs
696     0xa501fcf5 vxfs
697     0xabba1974 xenfs
698     0x012ff7b4 xenix
699     0x58465342 xfs
700     0x012fd16d xia
701 root 1.172
702 root 1.106 =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
703    
704     Works like perl's C<utime> function (including the special case of $atime
705     and $mtime being undef). Fractional times are supported if the underlying
706     syscalls support them.
707    
708     When called with a pathname, uses utimes(2) if available, otherwise
709     utime(2). If called on a file descriptor, uses futimes(2) if available,
710     otherwise returns ENOSYS, so this is not portable.
711    
712     Examples:
713    
714 root 1.107 # set atime and mtime to current time (basically touch(1)):
715 root 1.106 aio_utime "path", undef, undef;
716     # set atime to current time and mtime to beginning of the epoch:
717     aio_utime "path", time, undef; # undef==0
718    
719    
720     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
721    
722     Works like perl's C<chown> function, except that C<undef> for either $uid
723     or $gid is being interpreted as "do not change" (but -1 can also be used).
724    
725     Examples:
726    
727     # same as "chown root path" in the shell:
728     aio_chown "path", 0, -1;
729     # same as above:
730     aio_chown "path", 0, undef;
731    
732    
733 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
734    
735     Works like truncate(2) or ftruncate(2).
736    
737    
738 root 1.229 =item aio_allocate $fh, $mode, $offset, $len, $callback->($status)
739    
740 root 1.249 Allocates or frees disk space according to the C<$mode> argument. See the
741     linux C<fallocate> documentation for details.
742 root 1.229
743 root 1.252 C<$mode> is usually C<0> or C<IO::AIO::FALLOC_FL_KEEP_SIZE> to allocate
744     space, or C<IO::AIO::FALLOC_FL_PUNCH_HOLE | IO::AIO::FALLOC_FL_KEEP_SIZE>,
745     to deallocate a file range.
746    
747     IO::AIO also supports C<FALLOC_FL_COLLAPSE_RANGE>, to remove a range
748 root 1.273 (without leaving a hole), C<FALLOC_FL_ZERO_RANGE>, to zero a range,
749     C<FALLOC_FL_INSERT_RANGE> to insert a range and C<FALLOC_FL_UNSHARE_RANGE>
750     to unshare shared blocks (see your L<fallocate(2)> manpage).
751 root 1.229
752     The file system block size used by C<fallocate> is presumably the
753 root 1.273 C<f_bsize> returned by C<statvfs>, but different filesystems and filetypes
754     can dictate other limitations.
755 root 1.229
756     If C<fallocate> isn't available or cannot be emulated (currently no
757     emulation will be attempted), passes C<-1> and sets C<$!> to C<ENOSYS>.
758    
759    
760 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
761    
762     Works like perl's C<chmod> function.
763    
764    
765 root 1.40 =item aio_unlink $pathname, $callback->($status)
766 root 1.1
767     Asynchronously unlink (delete) a file and call the callback with the
768     result code.
769    
770 root 1.106
771 root 1.209 =item aio_mknod $pathname, $mode, $dev, $callback->($status)
772 root 1.82
773 root 1.86 [EXPERIMENTAL]
774    
775 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
776    
777 root 1.86 The only (POSIX-) portable way of calling this function is:
778 root 1.83
779 root 1.209 aio_mknod $pathname, IO::AIO::S_IFIFO | $mode, 0, sub { ...
780 root 1.82
781 root 1.187 See C<aio_stat> for info about some potentially helpful extra constants
782     and functions.
783 root 1.106
784 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
785    
786     Asynchronously create a new link to the existing object at C<$srcpath> at
787     the path C<$dstpath> and call the callback with the result code.
788    
789 root 1.106
790 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
791    
792     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
793     the path C<$dstpath> and call the callback with the result code.
794    
795 root 1.106
796 root 1.209 =item aio_readlink $pathname, $callback->($link)
797 root 1.90
798     Asynchronously read the symlink specified by C<$path> and pass it to
799     the callback. If an error occurs, nothing or undef gets passed to the
800     callback.
801    
802 root 1.106
803 root 1.209 =item aio_realpath $pathname, $callback->($path)
804 root 1.201
805     Asynchronously make the path absolute and resolve any symlinks in
806 root 1.239 C<$path>. The resulting path only consists of directories (same as
807 root 1.202 L<Cwd::realpath>).
808 root 1.201
809     This request can be used to get the absolute path of the current working
810     directory by passing it a path of F<.> (a single dot).
811    
812    
813 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
814    
815     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
816     rename(2) and call the callback with the result code.
817    
818 root 1.241 On systems that support the AIO::WD working directory abstraction
819     natively, the case C<[$wd, "."]> as C<$srcpath> is specialcased - instead
820     of failing, C<rename> is called on the absolute path of C<$wd>.
821    
822 root 1.106
823 root 1.270 =item aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
824    
825     Basically a version of C<aio_rename> with an additional C<$flags>
826     argument. Calling this with C<$flags=0> is the same as calling
827     C<aio_rename>.
828    
829     Non-zero flags are currently only supported on GNU/Linux systems that
830     support renameat2. Other systems fail with C<ENOSYS> in this case.
831    
832     The following constants are available (missing ones are, as usual C<0>),
833     see renameat2(2) for details:
834    
835     C<IO::AIO::RENAME_NOREPLACE>, C<IO::AIO::RENAME_EXCHANGE>
836     and C<IO::AIO::RENAME_WHITEOUT>.
837    
838    
839 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
840    
841     Asynchronously mkdir (create) a directory and call the callback with
842     the result code. C<$mode> will be modified by the umask at the time the
843     request is executed, so do not change your umask.
844    
845 root 1.106
846 root 1.40 =item aio_rmdir $pathname, $callback->($status)
847 root 1.27
848     Asynchronously rmdir (delete) a directory and call the callback with the
849     result code.
850    
851 root 1.241 On systems that support the AIO::WD working directory abstraction
852     natively, the case C<[$wd, "."]> is specialcased - instead of failing,
853     C<rmdir> is called on the absolute path of C<$wd>.
854    
855 root 1.106
856 root 1.46 =item aio_readdir $pathname, $callback->($entries)
857 root 1.37
858     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
859     directory (i.e. opendir + readdir + closedir). The entries will not be
860     sorted, and will B<NOT> include the C<.> and C<..> entries.
861    
862 root 1.148 The callback is passed a single argument which is either C<undef> or an
863     array-ref with the filenames.
864    
865    
866     =item aio_readdirx $pathname, $flags, $callback->($entries, $flags)
867    
868 root 1.207 Quite similar to C<aio_readdir>, but the C<$flags> argument allows one to
869     tune behaviour and output format. In case of an error, C<$entries> will be
870 root 1.148 C<undef>.
871    
872     The flags are a combination of the following constants, ORed together (the
873     flags will also be passed to the callback, possibly modified):
874    
875     =over 4
876    
877 root 1.150 =item IO::AIO::READDIR_DENTS
878 root 1.148
879 root 1.190 When this flag is off, then the callback gets an arrayref consisting of
880     names only (as with C<aio_readdir>), otherwise it gets an arrayref with
881 root 1.150 C<[$name, $type, $inode]> arrayrefs, each describing a single directory
882 root 1.148 entry in more detail.
883    
884     C<$name> is the name of the entry.
885    
886 root 1.150 C<$type> is one of the C<IO::AIO::DT_xxx> constants:
887 root 1.148
888 root 1.150 C<IO::AIO::DT_UNKNOWN>, C<IO::AIO::DT_FIFO>, C<IO::AIO::DT_CHR>, C<IO::AIO::DT_DIR>,
889     C<IO::AIO::DT_BLK>, C<IO::AIO::DT_REG>, C<IO::AIO::DT_LNK>, C<IO::AIO::DT_SOCK>,
890     C<IO::AIO::DT_WHT>.
891 root 1.148
892 root 1.150 C<IO::AIO::DT_UNKNOWN> means just that: readdir does not know. If you need to
893 root 1.148 know, you have to run stat yourself. Also, for speed reasons, the C<$type>
894     scalars are read-only: you can not modify them.
895    
896 root 1.150 C<$inode> is the inode number (which might not be exact on systems with 64
897 root 1.155 bit inode numbers and 32 bit perls). This field has unspecified content on
898     systems that do not deliver the inode information.
899 root 1.150
900     =item IO::AIO::READDIR_DIRS_FIRST
901 root 1.148
902     When this flag is set, then the names will be returned in an order where
903 root 1.193 likely directories come first, in optimal stat order. This is useful when
904     you need to quickly find directories, or you want to find all directories
905     while avoiding to stat() each entry.
906 root 1.148
907 root 1.149 If the system returns type information in readdir, then this is used
908 root 1.193 to find directories directly. Otherwise, likely directories are names
909     beginning with ".", or otherwise names with no dots, of which names with
910 root 1.149 short names are tried first.
911    
912 root 1.150 =item IO::AIO::READDIR_STAT_ORDER
913 root 1.148
914     When this flag is set, then the names will be returned in an order
915     suitable for stat()'ing each one. That is, when you plan to stat()
916     all files in the given directory, then the returned order will likely
917     be fastest.
918    
919 root 1.150 If both this flag and C<IO::AIO::READDIR_DIRS_FIRST> are specified, then
920     the likely dirs come first, resulting in a less optimal stat order.
921 root 1.148
922 root 1.150 =item IO::AIO::READDIR_FOUND_UNKNOWN
923 root 1.148
924     This flag should not be set when calling C<aio_readdirx>. Instead, it
925     is being set by C<aio_readdirx>, when any of the C<$type>'s found were
926 root 1.207 C<IO::AIO::DT_UNKNOWN>. The absence of this flag therefore indicates that all
927 root 1.148 C<$type>'s are known, which can be used to speed up some algorithms.
928    
929     =back
930 root 1.37
931 root 1.106
932 root 1.279 =item aio_slurp $pathname, $offset, $length, $data, $callback->($status)
933    
934     Opens, reads and closes the given file. The data is put into C<$data>,
935     which is resized as required.
936    
937     If C<$offset> is negative, then it is counted from the end of the file.
938    
939     If C<$length> is zero, then the remaining length of the file is
940     used. Also, in this case, the same limitations to modifying C<$data> apply
941     as when IO::AIO::mmap is used, i.e. it must only be modified in-place
942     with C<substr>. If the size of the file is known, specifying a non-zero
943     C<$length> results in a performance advantage.
944    
945     This request is similar to the older C<aio_load> request, but since it is
946     a single request, it might be more efficient to use.
947    
948     Example: load F</etc/passwd> into C<$passwd>.
949    
950     my $passwd;
951     aio_slurp "/etc/passwd", 0, 0, $passwd, sub {
952     $_[0] >= 0
953     or die "/etc/passwd: $!\n";
954    
955     printf "/etc/passwd is %d bytes long, and contains:\n", length $passwd;
956     print $passwd;
957     };
958     IO::AIO::flush;
959    
960    
961 root 1.209 =item aio_load $pathname, $data, $callback->($status)
962 root 1.98
963     This is a composite request that tries to fully load the given file into
964     memory. Status is the same as with aio_read.
965    
966 root 1.279 Using C<aio_slurp> might be more efficient, as it is a single request.
967    
968 root 1.98 =cut
969    
970     sub aio_load($$;$) {
971 root 1.123 my ($path, undef, $cb) = @_;
972     my $data = \$_[1];
973 root 1.98
974 root 1.123 my $pri = aioreq_pri;
975     my $grp = aio_group $cb;
976    
977     aioreq_pri $pri;
978     add $grp aio_open $path, O_RDONLY, 0, sub {
979     my $fh = shift
980     or return $grp->result (-1);
981 root 1.98
982     aioreq_pri $pri;
983 root 1.123 add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
984     $grp->result ($_[0]);
985 root 1.98 };
986 root 1.123 };
987 root 1.98
988 root 1.123 $grp
989 root 1.98 }
990    
991 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
992    
993     Try to copy the I<file> (directories not supported as either source or
994     destination) from C<$srcpath> to C<$dstpath> and call the callback with
995 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
996 root 1.82
997 root 1.275 Existing destination files will be truncated.
998    
999 root 1.134 This is a composite request that creates the destination file with
1000 root 1.82 mode 0200 and copies the contents of the source file into it using
1001     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
1002     uid/gid, in that order.
1003    
1004     If an error occurs, the partial destination file will be unlinked, if
1005     possible, except when setting atime, mtime, access mode and uid/gid, where
1006     errors are being ignored.
1007    
1008     =cut
1009    
1010     sub aio_copy($$;$) {
1011 root 1.123 my ($src, $dst, $cb) = @_;
1012 root 1.82
1013 root 1.123 my $pri = aioreq_pri;
1014     my $grp = aio_group $cb;
1015 root 1.82
1016 root 1.123 aioreq_pri $pri;
1017     add $grp aio_open $src, O_RDONLY, 0, sub {
1018     if (my $src_fh = $_[0]) {
1019 root 1.166 my @stat = stat $src_fh; # hmm, might block over nfs?
1020 root 1.95
1021 root 1.123 aioreq_pri $pri;
1022     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
1023     if (my $dst_fh = $_[0]) {
1024     aioreq_pri $pri;
1025     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
1026     if ($_[0] == $stat[7]) {
1027     $grp->result (0);
1028     close $src_fh;
1029    
1030 root 1.147 my $ch = sub {
1031     aioreq_pri $pri;
1032     add $grp aio_chmod $dst_fh, $stat[2] & 07777, sub {
1033     aioreq_pri $pri;
1034     add $grp aio_chown $dst_fh, $stat[4], $stat[5], sub {
1035     aioreq_pri $pri;
1036     add $grp aio_close $dst_fh;
1037     }
1038     };
1039     };
1040 root 1.123
1041     aioreq_pri $pri;
1042 root 1.147 add $grp aio_utime $dst_fh, $stat[8], $stat[9], sub {
1043     if ($_[0] < 0 && $! == ENOSYS) {
1044     aioreq_pri $pri;
1045     add $grp aio_utime $dst, $stat[8], $stat[9], $ch;
1046     } else {
1047     $ch->();
1048     }
1049     };
1050 root 1.123 } else {
1051     $grp->result (-1);
1052     close $src_fh;
1053     close $dst_fh;
1054    
1055     aioreq $pri;
1056     add $grp aio_unlink $dst;
1057     }
1058     };
1059     } else {
1060     $grp->result (-1);
1061     }
1062     },
1063 root 1.82
1064 root 1.123 } else {
1065     $grp->result (-1);
1066     }
1067     };
1068 root 1.82
1069 root 1.123 $grp
1070 root 1.82 }
1071    
1072     =item aio_move $srcpath, $dstpath, $callback->($status)
1073    
1074     Try to move the I<file> (directories not supported as either source or
1075     destination) from C<$srcpath> to C<$dstpath> and call the callback with
1076 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
1077 root 1.82
1078 root 1.137 This is a composite request that tries to rename(2) the file first; if
1079     rename fails with C<EXDEV>, it copies the file with C<aio_copy> and, if
1080     that is successful, unlinks the C<$srcpath>.
1081 root 1.82
1082     =cut
1083    
1084     sub aio_move($$;$) {
1085 root 1.123 my ($src, $dst, $cb) = @_;
1086 root 1.82
1087 root 1.123 my $pri = aioreq_pri;
1088     my $grp = aio_group $cb;
1089 root 1.82
1090 root 1.123 aioreq_pri $pri;
1091     add $grp aio_rename $src, $dst, sub {
1092     if ($_[0] && $! == EXDEV) {
1093     aioreq_pri $pri;
1094     add $grp aio_copy $src, $dst, sub {
1095     $grp->result ($_[0]);
1096 root 1.95
1097 root 1.196 unless ($_[0]) {
1098 root 1.123 aioreq_pri $pri;
1099     add $grp aio_unlink $src;
1100     }
1101     };
1102     } else {
1103     $grp->result ($_[0]);
1104     }
1105     };
1106 root 1.82
1107 root 1.123 $grp
1108 root 1.82 }
1109    
1110 root 1.209 =item aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
1111 root 1.40
1112 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
1113 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
1114     names, directories you can recurse into (directories), and ones you cannot
1115     recurse into (everything else, including symlinks to directories).
1116 root 1.52
1117 root 1.277 C<aio_scandir> is a composite request that generates many sub requests.
1118 root 1.61 C<$maxreq> specifies the maximum number of outstanding aio requests that
1119     this function generates. If it is C<< <= 0 >>, then a suitable default
1120 root 1.81 will be chosen (currently 4).
1121 root 1.40
1122     On error, the callback is called without arguments, otherwise it receives
1123     two array-refs with path-relative entry names.
1124    
1125     Example:
1126    
1127     aio_scandir $dir, 0, sub {
1128     my ($dirs, $nondirs) = @_;
1129     print "real directories: @$dirs\n";
1130     print "everything else: @$nondirs\n";
1131     };
1132    
1133     Implementation notes.
1134    
1135     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
1136    
1137 root 1.149 If readdir returns file type information, then this is used directly to
1138     find directories.
1139    
1140     Otherwise, after reading the directory, the modification time, size etc.
1141     of the directory before and after the readdir is checked, and if they
1142     match (and isn't the current time), the link count will be used to decide
1143     how many entries are directories (if >= 2). Otherwise, no knowledge of the
1144     number of subdirectories will be assumed.
1145    
1146     Then entries will be sorted into likely directories a non-initial dot
1147     currently) and likely non-directories (see C<aio_readdirx>). Then every
1148     entry plus an appended C</.> will be C<stat>'ed, likely directories first,
1149     in order of their inode numbers. If that succeeds, it assumes that the
1150     entry is a directory or a symlink to directory (which will be checked
1151 root 1.207 separately). This is often faster than stat'ing the entry itself because
1152 root 1.52 filesystems might detect the type of the entry without reading the inode
1153 root 1.149 data (e.g. ext2fs filetype feature), even on systems that cannot return
1154     the filetype information on readdir.
1155 root 1.52
1156     If the known number of directories (link count - 2) has been reached, the
1157     rest of the entries is assumed to be non-directories.
1158    
1159     This only works with certainty on POSIX (= UNIX) filesystems, which
1160     fortunately are the vast majority of filesystems around.
1161    
1162     It will also likely work on non-POSIX filesystems with reduced efficiency
1163     as those tend to return 0 or 1 as link counts, which disables the
1164     directory counting heuristic.
1165 root 1.40
1166     =cut
1167    
1168 root 1.100 sub aio_scandir($$;$) {
1169 root 1.123 my ($path, $maxreq, $cb) = @_;
1170    
1171     my $pri = aioreq_pri;
1172 root 1.40
1173 root 1.123 my $grp = aio_group $cb;
1174 root 1.80
1175 root 1.123 $maxreq = 4 if $maxreq <= 0;
1176 root 1.55
1177 root 1.210 # get a wd object
1178 root 1.123 aioreq_pri $pri;
1179 root 1.210 add $grp aio_wd $path, sub {
1180 root 1.212 $_[0]
1181     or return $grp->result ();
1182    
1183 root 1.210 my $wd = [shift, "."];
1184 root 1.40
1185 root 1.210 # stat once
1186 root 1.80 aioreq_pri $pri;
1187 root 1.210 add $grp aio_stat $wd, sub {
1188     return $grp->result () if $_[0];
1189     my $now = time;
1190     my $hash1 = join ":", (stat _)[0,1,3,7,9];
1191 root 1.40
1192 root 1.210 # read the directory entries
1193 root 1.80 aioreq_pri $pri;
1194 root 1.210 add $grp aio_readdirx $wd, READDIR_DIRS_FIRST, sub {
1195     my $entries = shift
1196     or return $grp->result ();
1197    
1198     # stat the dir another time
1199     aioreq_pri $pri;
1200     add $grp aio_stat $wd, sub {
1201     my $hash2 = join ":", (stat _)[0,1,3,7,9];
1202 root 1.95
1203 root 1.210 my $ndirs;
1204 root 1.95
1205 root 1.210 # take the slow route if anything looks fishy
1206     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
1207     $ndirs = -1;
1208     } else {
1209     # if nlink == 2, we are finished
1210     # for non-posix-fs's, we rely on nlink < 2
1211     $ndirs = (stat _)[3] - 2
1212     or return $grp->result ([], $entries);
1213     }
1214 root 1.123
1215 root 1.210 my (@dirs, @nondirs);
1216 root 1.40
1217 root 1.210 my $statgrp = add $grp aio_group sub {
1218     $grp->result (\@dirs, \@nondirs);
1219     };
1220 root 1.40
1221 root 1.210 limit $statgrp $maxreq;
1222     feed $statgrp sub {
1223     return unless @$entries;
1224     my $entry = shift @$entries;
1225    
1226     aioreq_pri $pri;
1227     $wd->[1] = "$entry/.";
1228     add $statgrp aio_stat $wd, sub {
1229     if ($_[0] < 0) {
1230     push @nondirs, $entry;
1231     } else {
1232     # need to check for real directory
1233     aioreq_pri $pri;
1234     $wd->[1] = $entry;
1235     add $statgrp aio_lstat $wd, sub {
1236     if (-d _) {
1237     push @dirs, $entry;
1238    
1239     unless (--$ndirs) {
1240     push @nondirs, @$entries;
1241     feed $statgrp;
1242     }
1243     } else {
1244     push @nondirs, $entry;
1245 root 1.74 }
1246 root 1.40 }
1247     }
1248 root 1.210 };
1249 root 1.74 };
1250 root 1.40 };
1251     };
1252     };
1253 root 1.123 };
1254 root 1.55
1255 root 1.123 $grp
1256 root 1.40 }
1257    
1258 root 1.209 =item aio_rmtree $pathname, $callback->($status)
1259 root 1.99
1260 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
1261 root 1.239 status of the final C<rmdir> only. This is a composite request that
1262 root 1.100 uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1263     everything else.
1264 root 1.99
1265     =cut
1266    
1267     sub aio_rmtree;
1268 root 1.100 sub aio_rmtree($;$) {
1269 root 1.123 my ($path, $cb) = @_;
1270 root 1.99
1271 root 1.123 my $pri = aioreq_pri;
1272     my $grp = aio_group $cb;
1273 root 1.99
1274 root 1.123 aioreq_pri $pri;
1275     add $grp aio_scandir $path, 0, sub {
1276     my ($dirs, $nondirs) = @_;
1277 root 1.99
1278 root 1.123 my $dirgrp = aio_group sub {
1279     add $grp aio_rmdir $path, sub {
1280     $grp->result ($_[0]);
1281 root 1.99 };
1282 root 1.123 };
1283 root 1.99
1284 root 1.123 (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
1285     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
1286 root 1.99
1287 root 1.123 add $grp $dirgrp;
1288     };
1289 root 1.99
1290 root 1.123 $grp
1291 root 1.99 }
1292    
1293 root 1.259 =item aio_fcntl $fh, $cmd, $arg, $callback->($status)
1294    
1295     =item aio_ioctl $fh, $request, $buf, $callback->($status)
1296    
1297     These work just like the C<fcntl> and C<ioctl> built-in functions, except
1298     they execute asynchronously and pass the return value to the callback.
1299    
1300     Both calls can be used for a lot of things, some of which make more sense
1301     to run asynchronously in their own thread, while some others make less
1302     sense. For example, calls that block waiting for external events, such
1303     as locking, will also lock down an I/O thread while it is waiting, which
1304     can deadlock the whole I/O system. At the same time, there might be no
1305     alternative to using a thread to wait.
1306    
1307     So in general, you should only use these calls for things that do
1308     (filesystem) I/O, not for things that wait for other events (network,
1309     other processes), although if you are careful and know what you are doing,
1310     you still can.
1311    
1312 root 1.264 The following constants are available (missing ones are, as usual C<0>):
1313    
1314 root 1.271 C<F_DUPFD_CLOEXEC>,
1315    
1316     C<F_OFD_GETLK>, C<F_OFD_SETLK>, C<F_OFD_GETLKW>,
1317    
1318 root 1.264 C<FIFREEZE>, C<FITHAW>, C<FITRIM>, C<FICLONE>, C<FICLONERANGE>, C<FIDEDUPERANGE>.
1319    
1320     C<FS_IOC_GETFLAGS>, C<FS_IOC_SETFLAGS>, C<FS_IOC_GETVERSION>, C<FS_IOC_SETVERSION>,
1321     C<FS_IOC_FIEMAP>.
1322    
1323     C<FS_IOC_FSGETXATTR>, C<FS_IOC_FSSETXATTR>, C<FS_IOC_SET_ENCRYPTION_POLICY>,
1324     C<FS_IOC_GET_ENCRYPTION_PWSALT>, C<FS_IOC_GET_ENCRYPTION_POLICY>, C<FS_KEY_DESCRIPTOR_SIZE>.
1325    
1326     C<FS_SECRM_FL>, C<FS_UNRM_FL>, C<FS_COMPR_FL>, C<FS_SYNC_FL>, C<FS_IMMUTABLE_FL>,
1327     C<FS_APPEND_FL>, C<FS_NODUMP_FL>, C<FS_NOATIME_FL>, C<FS_DIRTY_FL>,
1328     C<FS_COMPRBLK_FL>, C<FS_NOCOMP_FL>, C<FS_ENCRYPT_FL>, C<FS_BTREE_FL>,
1329     C<FS_INDEX_FL>, C<FS_JOURNAL_DATA_FL>, C<FS_NOTAIL_FL>, C<FS_DIRSYNC_FL>, C<FS_TOPDIR_FL>,
1330     C<FS_FL_USER_MODIFIABLE>.
1331    
1332     C<FS_XFLAG_REALTIME>, C<FS_XFLAG_PREALLOC>, C<FS_XFLAG_IMMUTABLE>, C<FS_XFLAG_APPEND>,
1333     C<FS_XFLAG_SYNC>, C<FS_XFLAG_NOATIME>, C<FS_XFLAG_NODUMP>, C<FS_XFLAG_RTINHERIT>,
1334     C<FS_XFLAG_PROJINHERIT>, C<FS_XFLAG_NOSYMLINKS>, C<FS_XFLAG_EXTSIZE>, C<FS_XFLAG_EXTSZINHERIT>,
1335     C<FS_XFLAG_NODEFRAG>, C<FS_XFLAG_FILESTREAM>, C<FS_XFLAG_DAX>, C<FS_XFLAG_HASATTR>,
1336    
1337 root 1.119 =item aio_sync $callback->($status)
1338    
1339     Asynchronously call sync and call the callback when finished.
1340    
1341 root 1.40 =item aio_fsync $fh, $callback->($status)
1342 root 1.1
1343     Asynchronously call fsync on the given filehandle and call the callback
1344     with the fsync result code.
1345    
1346 root 1.40 =item aio_fdatasync $fh, $callback->($status)
1347 root 1.1
1348     Asynchronously call fdatasync on the given filehandle and call the
1349 root 1.26 callback with the fdatasync result code.
1350    
1351     If this call isn't available because your OS lacks it or it couldn't be
1352     detected, it will be emulated by calling C<fsync> instead.
1353 root 1.1
1354 root 1.206 =item aio_syncfs $fh, $callback->($status)
1355    
1356     Asynchronously call the syncfs syscall to sync the filesystem associated
1357     to the given filehandle and call the callback with the syncfs result
1358     code. If syncfs is not available, calls sync(), but returns C<-1> and sets
1359     errno to C<ENOSYS> nevertheless.
1360    
1361 root 1.142 =item aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
1362    
1363     Sync the data portion of the file specified by C<$offset> and C<$length>
1364     to disk (but NOT the metadata), by calling the Linux-specific
1365     sync_file_range call. If sync_file_range is not available or it returns
1366     ENOSYS, then fdatasync or fsync is being substituted.
1367    
1368     C<$flags> can be a combination of C<IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE>,
1369     C<IO::AIO::SYNC_FILE_RANGE_WRITE> and
1370     C<IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER>: refer to the sync_file_range
1371     manpage for details.
1372    
1373 root 1.209 =item aio_pathsync $pathname, $callback->($status)
1374 root 1.120
1375     This request tries to open, fsync and close the given path. This is a
1376 root 1.135 composite request intended to sync directories after directory operations
1377 root 1.120 (E.g. rename). This might not work on all operating systems or have any
1378     specific effect, but usually it makes sure that directory changes get
1379     written to disc. It works for anything that can be opened for read-only,
1380     not just directories.
1381    
1382 root 1.162 Future versions of this function might fall back to other methods when
1383     C<fsync> on the directory fails (such as calling C<sync>).
1384    
1385 root 1.120 Passes C<0> when everything went ok, and C<-1> on error.
1386    
1387     =cut
1388    
1389     sub aio_pathsync($;$) {
1390 root 1.123 my ($path, $cb) = @_;
1391    
1392     my $pri = aioreq_pri;
1393     my $grp = aio_group $cb;
1394 root 1.120
1395 root 1.123 aioreq_pri $pri;
1396     add $grp aio_open $path, O_RDONLY, 0, sub {
1397     my ($fh) = @_;
1398     if ($fh) {
1399     aioreq_pri $pri;
1400     add $grp aio_fsync $fh, sub {
1401     $grp->result ($_[0]);
1402 root 1.120
1403     aioreq_pri $pri;
1404 root 1.123 add $grp aio_close $fh;
1405     };
1406     } else {
1407     $grp->result (-1);
1408     }
1409     };
1410 root 1.120
1411 root 1.123 $grp
1412 root 1.120 }
1413    
1414 root 1.268 =item aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
1415 root 1.170
1416     This is a rather advanced IO::AIO call, which only works on mmap(2)ed
1417 root 1.176 scalars (see the C<IO::AIO::mmap> function, although it also works on data
1418     scalars managed by the L<Sys::Mmap> or L<Mmap> modules, note that the
1419     scalar must only be modified in-place while an aio operation is pending on
1420     it).
1421 root 1.170
1422     It calls the C<msync> function of your OS, if available, with the memory
1423     area starting at C<$offset> in the string and ending C<$length> bytes
1424     later. If C<$length> is negative, counts from the end, and if C<$length>
1425     is C<undef>, then it goes till the end of the string. The flags can be
1426 root 1.268 either C<IO::AIO::MS_ASYNC> or C<IO::AIO::MS_SYNC>, plus an optional
1427     C<IO::AIO::MS_INVALIDATE>.
1428 root 1.170
1429     =item aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1430    
1431     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1432     scalars.
1433    
1434     It touches (reads or writes) all memory pages in the specified
1435 root 1.239 range inside the scalar. All caveats and parameters are the same
1436 root 1.170 as for C<aio_msync>, above, except for flags, which must be either
1437     C<0> (which reads all pages and ensures they are instantiated) or
1438 root 1.239 C<IO::AIO::MT_MODIFY>, which modifies the memory pages (by reading and
1439 root 1.170 writing an octet from it, which dirties the page).
1440    
1441 root 1.182 =item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1442    
1443     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1444     scalars.
1445    
1446     It reads in all the pages of the underlying storage into memory (if any)
1447     and locks them, so they are not getting swapped/paged out or removed.
1448    
1449     If C<$length> is undefined, then the scalar will be locked till the end.
1450    
1451     On systems that do not implement C<mlock>, this function returns C<-1>
1452     and sets errno to C<ENOSYS>.
1453    
1454     Note that the corresponding C<munlock> is synchronous and is
1455     documented under L<MISCELLANEOUS FUNCTIONS>.
1456    
1457 root 1.183 Example: open a file, mmap and mlock it - both will be undone when
1458     C<$data> gets destroyed.
1459    
1460     open my $fh, "<", $path or die "$path: $!";
1461     my $data;
1462     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1463     aio_mlock $data; # mlock in background
1464    
1465 root 1.182 =item aio_mlockall $flags, $callback->($status)
1466    
1467     Calls the C<mlockall> function with the given C<$flags> (a combination of
1468     C<IO::AIO::MCL_CURRENT> and C<IO::AIO::MCL_FUTURE>).
1469    
1470     On systems that do not implement C<mlockall>, this function returns C<-1>
1471     and sets errno to C<ENOSYS>.
1472    
1473     Note that the corresponding C<munlockall> is synchronous and is
1474     documented under L<MISCELLANEOUS FUNCTIONS>.
1475    
1476 root 1.183 Example: asynchronously lock all current and future pages into memory.
1477    
1478     aio_mlockall IO::AIO::MCL_FUTURE;
1479    
1480 root 1.223 =item aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
1481    
1482 root 1.234 Queries the extents of the given file (by calling the Linux C<FIEMAP>
1483     ioctl, see L<http://cvs.schmorp.de/IO-AIO/doc/fiemap.txt> for details). If
1484     the ioctl is not available on your OS, then this request will fail with
1485 root 1.223 C<ENOSYS>.
1486    
1487     C<$start> is the starting offset to query extents for, C<$length> is the
1488     size of the range to query - if it is C<undef>, then the whole file will
1489     be queried.
1490    
1491     C<$flags> is a combination of flags (C<IO::AIO::FIEMAP_FLAG_SYNC> or
1492     C<IO::AIO::FIEMAP_FLAG_XATTR> - C<IO::AIO::FIEMAP_FLAGS_COMPAT> is also
1493     exported), and is normally C<0> or C<IO::AIO::FIEMAP_FLAG_SYNC> to query
1494     the data portion.
1495    
1496     C<$count> is the maximum number of extent records to return. If it is
1497 root 1.232 C<undef>, then IO::AIO queries all extents of the range. As a very special
1498 root 1.223 case, if it is C<0>, then the callback receives the number of extents
1499 root 1.232 instead of the extents themselves (which is unreliable, see below).
1500 root 1.223
1501     If an error occurs, the callback receives no arguments. The special
1502     C<errno> value C<IO::AIO::EBADR> is available to test for flag errors.
1503    
1504     Otherwise, the callback receives an array reference with extent
1505     structures. Each extent structure is an array reference itself, with the
1506     following members:
1507    
1508     [$logical, $physical, $length, $flags]
1509    
1510     Flags is any combination of the following flag values (typically either C<0>
1511 root 1.231 or C<IO::AIO::FIEMAP_EXTENT_LAST> (1)):
1512 root 1.223
1513     C<IO::AIO::FIEMAP_EXTENT_LAST>, C<IO::AIO::FIEMAP_EXTENT_UNKNOWN>,
1514     C<IO::AIO::FIEMAP_EXTENT_DELALLOC>, C<IO::AIO::FIEMAP_EXTENT_ENCODED>,
1515     C<IO::AIO::FIEMAP_EXTENT_DATA_ENCRYPTED>, C<IO::AIO::FIEMAP_EXTENT_NOT_ALIGNED>,
1516     C<IO::AIO::FIEMAP_EXTENT_DATA_INLINE>, C<IO::AIO::FIEMAP_EXTENT_DATA_TAIL>,
1517     C<IO::AIO::FIEMAP_EXTENT_UNWRITTEN>, C<IO::AIO::FIEMAP_EXTENT_MERGED> or
1518     C<IO::AIO::FIEMAP_EXTENT_SHARED>.
1519    
1520 root 1.278 At the time of this writing (Linux 3.2), this request is unreliable unless
1521 root 1.232 C<$count> is C<undef>, as the kernel has all sorts of bugs preventing
1522 root 1.278 it to return all extents of a range for files with a large number of
1523     extents. The code (only) works around all these issues if C<$count> is
1524     C<undef>.
1525 root 1.232
1526 root 1.58 =item aio_group $callback->(...)
1527 root 1.54
1528 root 1.55 This is a very special aio request: Instead of doing something, it is a
1529     container for other aio requests, which is useful if you want to bundle
1530 root 1.71 many requests into a single, composite, request with a definite callback
1531     and the ability to cancel the whole request with its subrequests.
1532 root 1.55
1533     Returns an object of class L<IO::AIO::GRP>. See its documentation below
1534     for more info.
1535    
1536     Example:
1537    
1538     my $grp = aio_group sub {
1539     print "all stats done\n";
1540     };
1541    
1542     add $grp
1543     (aio_stat ...),
1544     (aio_stat ...),
1545     ...;
1546    
1547 root 1.63 =item aio_nop $callback->()
1548    
1549     This is a special request - it does nothing in itself and is only used for
1550     side effects, such as when you want to add a dummy request to a group so
1551     that finishing the requests in the group depends on executing the given
1552     code.
1553    
1554 root 1.64 While this request does nothing, it still goes through the execution
1555     phase and still requires a worker thread. Thus, the callback will not
1556     be executed immediately but only after other requests in the queue have
1557     entered their execution phase. This can be used to measure request
1558     latency.
1559    
1560 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1561 root 1.54
1562     Mainly used for debugging and benchmarking, this aio request puts one of
1563     the request workers to sleep for the given time.
1564    
1565 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1566 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1567     immense (it blocks a thread for a long time) so do not use this function
1568     except to put your application under artificial I/O pressure.
1569 root 1.56
1570 root 1.5 =back
1571    
1572 root 1.209
1573     =head2 IO::AIO::WD - multiple working directories
1574    
1575     Your process only has one current working directory, which is used by all
1576     threads. This makes it hard to use relative paths (some other component
1577     could call C<chdir> at any time, and it is hard to control when the path
1578     will be used by IO::AIO).
1579    
1580     One solution for this is to always use absolute paths. This usually works,
1581     but can be quite slow (the kernel has to walk the whole path on every
1582     access), and can also be a hassle to implement.
1583    
1584     Newer POSIX systems have a number of functions (openat, fdopendir,
1585     futimensat and so on) that make it possible to specify working directories
1586     per operation.
1587    
1588     For portability, and because the clowns who "designed", or shall I write,
1589     perpetrated this new interface were obviously half-drunk, this abstraction
1590     cannot be perfect, though.
1591    
1592     IO::AIO allows you to convert directory paths into a so-called IO::AIO::WD
1593     object. This object stores the canonicalised, absolute version of the
1594     path, and on systems that allow it, also a directory file descriptor.
1595    
1596     Everywhere where a pathname is accepted by IO::AIO (e.g. in C<aio_stat>
1597     or C<aio_unlink>), one can specify an array reference with an IO::AIO::WD
1598 root 1.214 object and a pathname instead (or the IO::AIO::WD object alone, which
1599     gets interpreted as C<[$wd, "."]>). If the pathname is absolute, the
1600 root 1.213 IO::AIO::WD object is ignored, otherwise the pathname is resolved relative
1601 root 1.209 to that IO::AIO::WD object.
1602    
1603     For example, to get a wd object for F</etc> and then stat F<passwd>
1604     inside, you would write:
1605    
1606     aio_wd "/etc", sub {
1607     my $etcdir = shift;
1608    
1609     # although $etcdir can be undef on error, there is generally no reason
1610     # to check for errors here, as aio_stat will fail with ENOENT
1611     # when $etcdir is undef.
1612    
1613     aio_stat [$etcdir, "passwd"], sub {
1614     # yay
1615     };
1616     };
1617    
1618 root 1.250 The fact that C<aio_wd> is a request and not a normal function shows that
1619     creating an IO::AIO::WD object is itself a potentially blocking operation,
1620     which is why it is done asynchronously.
1621 root 1.214
1622     To stat the directory obtained with C<aio_wd> above, one could write
1623     either of the following three request calls:
1624    
1625     aio_lstat "/etc" , sub { ... # pathname as normal string
1626     aio_lstat [$wd, "."], sub { ... # "." relative to $wd (i.e. $wd itself)
1627     aio_lstat $wd , sub { ... # shorthand for the previous
1628 root 1.209
1629     As with normal pathnames, IO::AIO keeps a copy of the working directory
1630     object and the pathname string, so you could write the following without
1631     causing any issues due to C<$path> getting reused:
1632    
1633     my $path = [$wd, undef];
1634    
1635     for my $name (qw(abc def ghi)) {
1636     $path->[1] = $name;
1637     aio_stat $path, sub {
1638     # ...
1639     };
1640     }
1641    
1642     There are some caveats: when directories get renamed (or deleted), the
1643     pathname string doesn't change, so will point to the new directory (or
1644     nowhere at all), while the directory fd, if available on the system,
1645     will still point to the original directory. Most functions accepting a
1646     pathname will use the directory fd on newer systems, and the string on
1647 root 1.277 older systems. Some functions (such as C<aio_realpath>) will always rely on
1648     the string form of the pathname.
1649 root 1.209
1650 root 1.239 So this functionality is mainly useful to get some protection against
1651 root 1.209 C<chdir>, to easily get an absolute path out of a relative path for future
1652     reference, and to speed up doing many operations in the same directory
1653     (e.g. when stat'ing all files in a directory).
1654    
1655     The following functions implement this working directory abstraction:
1656    
1657     =over 4
1658    
1659     =item aio_wd $pathname, $callback->($wd)
1660    
1661     Asynchonously canonicalise the given pathname and convert it to an
1662     IO::AIO::WD object representing it. If possible and supported on the
1663     system, also open a directory fd to speed up pathname resolution relative
1664     to this working directory.
1665    
1666     If something goes wrong, then C<undef> is passwd to the callback instead
1667     of a working directory object and C<$!> is set appropriately. Since
1668     passing C<undef> as working directory component of a pathname fails the
1669     request with C<ENOENT>, there is often no need for error checking in the
1670     C<aio_wd> callback, as future requests using the value will fail in the
1671     expected way.
1672    
1673     =item IO::AIO::CWD
1674    
1675     This is a compiletime constant (object) that represents the process
1676     current working directory.
1677    
1678 root 1.239 Specifying this object as working directory object for a pathname is as if
1679     the pathname would be specified directly, without a directory object. For
1680     example, these calls are functionally identical:
1681 root 1.209
1682     aio_stat "somefile", sub { ... };
1683     aio_stat [IO::AIO::CWD, "somefile"], sub { ... };
1684    
1685     =back
1686    
1687 root 1.239 To recover the path associated with an IO::AIO::WD object, you can use
1688     C<aio_realpath>:
1689    
1690     aio_realpath $wd, sub {
1691     warn "path is $_[0]\n";
1692     };
1693    
1694 root 1.241 Currently, C<aio_statvfs> always, and C<aio_rename> and C<aio_rmdir>
1695     sometimes, fall back to using an absolue path.
1696 root 1.209
1697 root 1.53 =head2 IO::AIO::REQ CLASS
1698 root 1.52
1699     All non-aggregate C<aio_*> functions return an object of this class when
1700     called in non-void context.
1701    
1702     =over 4
1703    
1704 root 1.65 =item cancel $req
1705 root 1.52
1706     Cancels the request, if possible. Has the effect of skipping execution
1707     when entering the B<execute> state and skipping calling the callback when
1708     entering the the B<result> state, but will leave the request otherwise
1709 root 1.151 untouched (with the exception of readdir). That means that requests that
1710     currently execute will not be stopped and resources held by the request
1711     will not be freed prematurely.
1712 root 1.52
1713 root 1.65 =item cb $req $callback->(...)
1714    
1715     Replace (or simply set) the callback registered to the request.
1716    
1717 root 1.52 =back
1718    
1719 root 1.55 =head2 IO::AIO::GRP CLASS
1720    
1721     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1722     objects of this class, too.
1723    
1724     A IO::AIO::GRP object is a special request that can contain multiple other
1725     aio requests.
1726    
1727     You create one by calling the C<aio_group> constructing function with a
1728     callback that will be called when all contained requests have entered the
1729     C<done> state:
1730    
1731     my $grp = aio_group sub {
1732     print "all requests are done\n";
1733     };
1734    
1735     You add requests by calling the C<add> method with one or more
1736     C<IO::AIO::REQ> objects:
1737    
1738     $grp->add (aio_unlink "...");
1739    
1740 root 1.58 add $grp aio_stat "...", sub {
1741     $_[0] or return $grp->result ("error");
1742    
1743     # add another request dynamically, if first succeeded
1744     add $grp aio_open "...", sub {
1745     $grp->result ("ok");
1746     };
1747     };
1748 root 1.55
1749     This makes it very easy to create composite requests (see the source of
1750     C<aio_move> for an application) that work and feel like simple requests.
1751    
1752 root 1.62 =over 4
1753    
1754     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1755 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1756    
1757 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1758 root 1.59 only the request itself, but also all requests it contains.
1759 root 1.55
1760 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1761 root 1.55
1762 root 1.62 =item * You must not add requests to a group from within the group callback (or
1763 root 1.60 any later time).
1764    
1765 root 1.62 =back
1766    
1767 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1768     will finish very quickly. If they contain only requests that are in the
1769     C<done> state, they will also finish. Otherwise they will continue to
1770     exist.
1771    
1772 root 1.133 That means after creating a group you have some time to add requests
1773     (precisely before the callback has been invoked, which is only done within
1774     the C<poll_cb>). And in the callbacks of those requests, you can add
1775     further requests to the group. And only when all those requests have
1776     finished will the the group itself finish.
1777 root 1.57
1778 root 1.55 =over 4
1779    
1780 root 1.65 =item add $grp ...
1781    
1782 root 1.55 =item $grp->add (...)
1783    
1784 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1785     be added, including other groups, as long as you do not create circular
1786     dependencies.
1787    
1788     Returns all its arguments.
1789 root 1.55
1790 root 1.74 =item $grp->cancel_subs
1791    
1792     Cancel all subrequests and clears any feeder, but not the group request
1793     itself. Useful when you queued a lot of events but got a result early.
1794    
1795 root 1.168 The group request will finish normally (you cannot add requests to the
1796     group).
1797    
1798 root 1.58 =item $grp->result (...)
1799    
1800     Set the result value(s) that will be passed to the group callback when all
1801 root 1.120 subrequests have finished and set the groups errno to the current value
1802 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1803     no argument will be passed and errno is zero.
1804    
1805     =item $grp->errno ([$errno])
1806    
1807     Sets the group errno value to C<$errno>, or the current value of errno
1808     when the argument is missing.
1809    
1810     Every aio request has an associated errno value that is restored when
1811     the callback is invoked. This method lets you change this value from its
1812     default (0).
1813    
1814     Calling C<result> will also set errno, so make sure you either set C<$!>
1815     before the call to C<result>, or call c<errno> after it.
1816 root 1.58
1817 root 1.65 =item feed $grp $callback->($grp)
1818 root 1.60
1819     Sets a feeder/generator on this group: every group can have an attached
1820     generator that generates requests if idle. The idea behind this is that,
1821     although you could just queue as many requests as you want in a group,
1822 root 1.139 this might starve other requests for a potentially long time. For example,
1823 root 1.211 C<aio_scandir> might generate hundreds of thousands of C<aio_stat>
1824     requests, delaying any later requests for a long time.
1825 root 1.60
1826     To avoid this, and allow incremental generation of requests, you can
1827     instead a group and set a feeder on it that generates those requests. The
1828 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1829 root 1.60 below) requests active in the group itself and is expected to queue more
1830     requests.
1831    
1832 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1833     not impose any limits).
1834 root 1.60
1835 root 1.65 If the feed does not queue more requests when called, it will be
1836 root 1.60 automatically removed from the group.
1837    
1838 root 1.138 If the feed limit is C<0> when this method is called, it will be set to
1839     C<2> automatically.
1840 root 1.60
1841     Example:
1842    
1843     # stat all files in @files, but only ever use four aio requests concurrently:
1844    
1845     my $grp = aio_group sub { print "finished\n" };
1846 root 1.68 limit $grp 4;
1847 root 1.65 feed $grp sub {
1848 root 1.60 my $file = pop @files
1849     or return;
1850    
1851     add $grp aio_stat $file, sub { ... };
1852 root 1.65 };
1853 root 1.60
1854 root 1.68 =item limit $grp $num
1855 root 1.60
1856     Sets the feeder limit for the group: The feeder will be called whenever
1857     the group contains less than this many requests.
1858    
1859     Setting the limit to C<0> will pause the feeding process.
1860    
1861 root 1.138 The default value for the limit is C<0>, but note that setting a feeder
1862     automatically bumps it up to C<2>.
1863    
1864 root 1.55 =back
1865    
1866 root 1.5 =head2 SUPPORT FUNCTIONS
1867    
1868 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1869    
1870 root 1.5 =over 4
1871    
1872     =item $fileno = IO::AIO::poll_fileno
1873    
1874 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1875 root 1.156 polled for reading by some mechanism outside this module (e.g. EV, Glib,
1876     select and so on, see below or the SYNOPSIS). If the pipe becomes readable
1877     you have to call C<poll_cb> to check the results.
1878 root 1.5
1879     See C<poll_cb> for an example.
1880    
1881     =item IO::AIO::poll_cb
1882    
1883 root 1.240 Process some requests that have reached the result phase (i.e. they have
1884     been executed but the results are not yet reported). You have to call
1885     this "regularly" to finish outstanding requests.
1886    
1887     Returns C<0> if all events could be processed (or there were no
1888     events to process), or C<-1> if it returned earlier for whatever
1889     reason. Returns immediately when no events are outstanding. The amount
1890     of events processed depends on the settings of C<IO::AIO::max_poll_req>,
1891     C<IO::AIO::max_poll_time> and C<IO::AIO::max_outstanding>.
1892    
1893     If not all requests were processed for whatever reason, the poll file
1894     descriptor will still be ready when C<poll_cb> returns, so normally you
1895     don't have to do anything special to have it called later.
1896 root 1.78
1897 root 1.192 Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes
1898     ready, it can be beneficial to call this function from loops which submit
1899     a lot of requests, to make sure the results get processed when they become
1900     available and not just when the loop is finished and the event loop takes
1901     over again. This function returns very fast when there are no outstanding
1902     requests.
1903    
1904 root 1.20 Example: Install an Event watcher that automatically calls
1905 root 1.156 IO::AIO::poll_cb with high priority (more examples can be found in the
1906     SYNOPSIS section, at the top of this document):
1907 root 1.5
1908     Event->io (fd => IO::AIO::poll_fileno,
1909     poll => 'r', async => 1,
1910     cb => \&IO::AIO::poll_cb);
1911    
1912 root 1.175 =item IO::AIO::poll_wait
1913    
1914 root 1.240 Wait until either at least one request is in the result phase or no
1915     requests are outstanding anymore.
1916    
1917     This is useful if you want to synchronously wait for some requests to
1918     become ready, without actually handling them.
1919 root 1.175
1920     See C<nreqs> for an example.
1921    
1922     =item IO::AIO::poll
1923    
1924     Waits until some requests have been handled.
1925    
1926     Returns the number of requests processed, but is otherwise strictly
1927     equivalent to:
1928    
1929     IO::AIO::poll_wait, IO::AIO::poll_cb
1930    
1931     =item IO::AIO::flush
1932    
1933     Wait till all outstanding AIO requests have been handled.
1934    
1935     Strictly equivalent to:
1936    
1937     IO::AIO::poll_wait, IO::AIO::poll_cb
1938     while IO::AIO::nreqs;
1939    
1940 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1941    
1942     =item IO::AIO::max_poll_time $seconds
1943    
1944     These set the maximum number of requests (default C<0>, meaning infinity)
1945     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1946     the maximum amount of time (default C<0>, meaning infinity) spent in
1947     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1948     of time C<poll_cb> is allowed to use).
1949 root 1.78
1950 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1951     syscall per request processed, which is not normally a problem unless your
1952     callbacks are really really fast or your OS is really really slow (I am
1953     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1954    
1955 root 1.86 Setting these is useful if you want to ensure some level of
1956     interactiveness when perl is not fast enough to process all requests in
1957     time.
1958 root 1.78
1959 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
1960 root 1.78
1961     Example: Install an Event watcher that automatically calls
1962 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
1963 root 1.78 program get the CPU sometimes even under high AIO load.
1964    
1965 root 1.86 # try not to spend much more than 0.1s in poll_cb
1966     IO::AIO::max_poll_time 0.1;
1967    
1968     # use a low priority so other tasks have priority
1969 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
1970     poll => 'r', nice => 1,
1971 root 1.86 cb => &IO::AIO::poll_cb);
1972 root 1.78
1973 root 1.104 =back
1974    
1975 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
1976 root 1.13
1977 root 1.105 =over
1978    
1979 root 1.5 =item IO::AIO::min_parallel $nthreads
1980    
1981 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
1982     default is C<8>, which means eight asynchronous operations can execute
1983     concurrently at any one time (the number of outstanding requests,
1984     however, is unlimited).
1985 root 1.5
1986 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
1987 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
1988     create demand for a hundred threads, even if it turns out that everything
1989     is in the cache and could have been processed faster by a single thread.
1990 root 1.34
1991 root 1.61 It is recommended to keep the number of threads relatively low, as some
1992     Linux kernel versions will scale negatively with the number of threads
1993     (higher parallelity => MUCH higher latency). With current Linux 2.6
1994     versions, 4-32 threads should be fine.
1995 root 1.5
1996 root 1.34 Under most circumstances you don't need to call this function, as the
1997     module selects a default that is suitable for low to moderate load.
1998 root 1.5
1999     =item IO::AIO::max_parallel $nthreads
2000    
2001 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
2002     specified number of threads are currently running, this function kills
2003     them. This function blocks until the limit is reached.
2004    
2005     While C<$nthreads> are zero, aio requests get queued but not executed
2006     until the number of threads has been increased again.
2007 root 1.5
2008     This module automatically runs C<max_parallel 0> at program end, to ensure
2009     that all threads are killed and that there are no outstanding requests.
2010    
2011     Under normal circumstances you don't need to call this function.
2012    
2013 root 1.86 =item IO::AIO::max_idle $nthreads
2014    
2015 root 1.188 Limit the number of threads (default: 4) that are allowed to idle
2016     (i.e., threads that did not get a request to process within the idle
2017     timeout (default: 10 seconds). That means if a thread becomes idle while
2018     C<$nthreads> other threads are also idle, it will free its resources and
2019     exit.
2020 root 1.86
2021     This is useful when you allow a large number of threads (e.g. 100 or 1000)
2022     to allow for extremely high load situations, but want to free resources
2023     under normal circumstances (1000 threads can easily consume 30MB of RAM).
2024    
2025     The default is probably ok in most situations, especially if thread
2026     creation is fast. If thread creation is very slow on your system you might
2027     want to use larger values.
2028    
2029 root 1.188 =item IO::AIO::idle_timeout $seconds
2030    
2031     Sets the minimum idle timeout (default 10) after which worker threads are
2032     allowed to exit. SEe C<IO::AIO::max_idle>.
2033    
2034 root 1.123 =item IO::AIO::max_outstanding $maxreqs
2035 root 1.5
2036 root 1.195 Sets the maximum number of outstanding requests to C<$nreqs>. If
2037     you do queue up more than this number of requests, the next call to
2038     C<IO::AIO::poll_cb> (and other functions calling C<poll_cb>, such as
2039     C<IO::AIO::flush> or C<IO::AIO::poll>) will block until the limit is no
2040     longer exceeded.
2041    
2042     In other words, this setting does not enforce a queue limit, but can be
2043     used to make poll functions block if the limit is exceeded.
2044    
2045 root 1.79 This is a very bad function to use in interactive programs because it
2046     blocks, and a bad way to reduce concurrency because it is inexact: Better
2047     use an C<aio_group> together with a feed callback.
2048    
2049 root 1.248 Its main use is in scripts without an event loop - when you want to stat
2050 root 1.274 a lot of files, you can write something like this:
2051 root 1.195
2052     IO::AIO::max_outstanding 32;
2053    
2054     for my $path (...) {
2055     aio_stat $path , ...;
2056     IO::AIO::poll_cb;
2057     }
2058    
2059     IO::AIO::flush;
2060    
2061     The call to C<poll_cb> inside the loop will normally return instantly, but
2062     as soon as more thna C<32> reqeusts are in-flight, it will block until
2063     some requests have been handled. This keeps the loop from pushing a large
2064     number of C<aio_stat> requests onto the queue.
2065    
2066     The default value for C<max_outstanding> is very large, so there is no
2067     practical limit on the number of outstanding requests.
2068 root 1.5
2069 root 1.104 =back
2070    
2071 root 1.86 =head3 STATISTICAL INFORMATION
2072    
2073 root 1.104 =over
2074    
2075 root 1.86 =item IO::AIO::nreqs
2076    
2077     Returns the number of requests currently in the ready, execute or pending
2078     states (i.e. for which their callback has not been invoked yet).
2079    
2080     Example: wait till there are no outstanding requests anymore:
2081    
2082     IO::AIO::poll_wait, IO::AIO::poll_cb
2083     while IO::AIO::nreqs;
2084    
2085     =item IO::AIO::nready
2086    
2087     Returns the number of requests currently in the ready state (not yet
2088     executed).
2089    
2090     =item IO::AIO::npending
2091    
2092     Returns the number of requests currently in the pending state (executed,
2093     but not yet processed by poll_cb).
2094    
2095 root 1.5 =back
2096    
2097 root 1.157 =head3 MISCELLANEOUS FUNCTIONS
2098    
2099 root 1.248 IO::AIO implements some functions that are useful when you want to use
2100     some "Advanced I/O" function not available to in Perl, without going the
2101     "Asynchronous I/O" route. Many of these have an asynchronous C<aio_*>
2102     counterpart.
2103 root 1.157
2104     =over 4
2105    
2106 root 1.275 =item $numfd = IO::AIO::get_fdlimit
2107    
2108 root 1.278 This function is I<EXPERIMENTAL> and subject to change.
2109    
2110 root 1.275 Tries to find the current file descriptor limit and returns it, or
2111     C<undef> and sets C<$!> in case of an error. The limit is one larger than
2112     the highest valid file descriptor number.
2113    
2114     =item IO::AIO::min_fdlimit [$numfd]
2115    
2116 root 1.278 This function is I<EXPERIMENTAL> and subject to change.
2117    
2118 root 1.275 Try to increase the current file descriptor limit(s) to at least C<$numfd>
2119     by changing the soft or hard file descriptor resource limit. If C<$numfd>
2120     is missing, it will try to set a very high limit, although this is not
2121     recommended when you know the actual minimum that you require.
2122    
2123     If the limit cannot be raised enough, the function makes a best-effort
2124     attempt to increase the limit as much as possible, using various
2125     tricks, while still failing. You can query the resulting limit using
2126     C<IO::AIO::get_fdlimit>.
2127    
2128 root 1.276 If an error occurs, returns C<undef> and sets C<$!>, otherwise returns
2129     true.
2130 root 1.275
2131 root 1.157 =item IO::AIO::sendfile $ofh, $ifh, $offset, $count
2132    
2133     Calls the C<eio_sendfile_sync> function, which is like C<aio_sendfile>,
2134     but is blocking (this makes most sense if you know the input data is
2135     likely cached already and the output filehandle is set to non-blocking
2136     operations).
2137    
2138     Returns the number of bytes copied, or C<-1> on error.
2139    
2140     =item IO::AIO::fadvise $fh, $offset, $len, $advice
2141    
2142 root 1.184 Simply calls the C<posix_fadvise> function (see its
2143 root 1.157 manpage for details). The following advice constants are
2144 root 1.207 available: C<IO::AIO::FADV_NORMAL>, C<IO::AIO::FADV_SEQUENTIAL>,
2145 root 1.157 C<IO::AIO::FADV_RANDOM>, C<IO::AIO::FADV_NOREUSE>,
2146     C<IO::AIO::FADV_WILLNEED>, C<IO::AIO::FADV_DONTNEED>.
2147    
2148     On systems that do not implement C<posix_fadvise>, this function returns
2149     ENOSYS, otherwise the return value of C<posix_fadvise>.
2150    
2151 root 1.184 =item IO::AIO::madvise $scalar, $offset, $len, $advice
2152    
2153     Simply calls the C<posix_madvise> function (see its
2154     manpage for details). The following advice constants are
2155 root 1.207 available: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
2156 root 1.272 C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>,
2157     C<IO::AIO::MADV_DONTNEED>.
2158 root 1.184
2159 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2160     the remaining length of the C<$scalar> is used. If possible, C<$length>
2161     will be reduced to fit into the C<$scalar>.
2162    
2163 root 1.184 On systems that do not implement C<posix_madvise>, this function returns
2164     ENOSYS, otherwise the return value of C<posix_madvise>.
2165    
2166     =item IO::AIO::mprotect $scalar, $offset, $len, $protect
2167    
2168     Simply calls the C<mprotect> function on the preferably AIO::mmap'ed
2169     $scalar (see its manpage for details). The following protect
2170 root 1.207 constants are available: C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_READ>,
2171 root 1.184 C<IO::AIO::PROT_WRITE>, C<IO::AIO::PROT_EXEC>.
2172    
2173 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2174     the remaining length of the C<$scalar> is used. If possible, C<$length>
2175     will be reduced to fit into the C<$scalar>.
2176    
2177 root 1.184 On systems that do not implement C<mprotect>, this function returns
2178     ENOSYS, otherwise the return value of C<mprotect>.
2179    
2180 root 1.176 =item IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
2181    
2182     Memory-maps a file (or anonymous memory range) and attaches it to the
2183 root 1.228 given C<$scalar>, which will act like a string scalar. Returns true on
2184     success, and false otherwise.
2185 root 1.176
2186 root 1.268 The scalar must exist, but its contents do not matter - this means you
2187     cannot use a nonexistant array or hash element. When in doubt, C<undef>
2188     the scalar first.
2189    
2190     The only operations allowed on the mmapped scalar are C<substr>/C<vec>,
2191     which don't change the string length, and most read-only operations such
2192     as copying it or searching it with regexes and so on.
2193 root 1.176
2194     Anything else is unsafe and will, at best, result in memory leaks.
2195    
2196     The memory map associated with the C<$scalar> is automatically removed
2197 root 1.268 when the C<$scalar> is undef'd or destroyed, or when the C<IO::AIO::mmap>
2198     or C<IO::AIO::munmap> functions are called on it.
2199 root 1.176
2200     This calls the C<mmap>(2) function internally. See your system's manual
2201     page for details on the C<$length>, C<$prot> and C<$flags> parameters.
2202    
2203     The C<$length> must be larger than zero and smaller than the actual
2204     filesize.
2205    
2206     C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
2207     C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
2208    
2209 root 1.256 C<$flags> can be a combination of
2210     C<IO::AIO::MAP_SHARED> or
2211     C<IO::AIO::MAP_PRIVATE>,
2212     or a number of system-specific flags (when not available, the are C<0>):
2213     C<IO::AIO::MAP_ANONYMOUS> (which is set to C<MAP_ANON> if your system only provides this constant),
2214     C<IO::AIO::MAP_LOCKED>,
2215     C<IO::AIO::MAP_NORESERVE>,
2216     C<IO::AIO::MAP_POPULATE>,
2217     C<IO::AIO::MAP_NONBLOCK>,
2218     C<IO::AIO::MAP_FIXED>,
2219     C<IO::AIO::MAP_GROWSDOWN>,
2220     C<IO::AIO::MAP_32BIT>,
2221     C<IO::AIO::MAP_HUGETLB> or
2222     C<IO::AIO::MAP_STACK>.
2223 root 1.176
2224     If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
2225    
2226 root 1.179 C<$offset> is the offset from the start of the file - it generally must be
2227     a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
2228    
2229 root 1.177 Example:
2230    
2231     use Digest::MD5;
2232     use IO::AIO;
2233    
2234     open my $fh, "<verybigfile"
2235     or die "$!";
2236    
2237     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
2238     or die "verybigfile: $!";
2239    
2240     my $fast_md5 = md5 $data;
2241    
2242 root 1.176 =item IO::AIO::munmap $scalar
2243    
2244     Removes a previous mmap and undefines the C<$scalar>.
2245    
2246 root 1.182 =item IO::AIO::munlock $scalar, $offset = 0, $length = undef
2247 root 1.174
2248 root 1.182 Calls the C<munlock> function, undoing the effects of a previous
2249     C<aio_mlock> call (see its description for details).
2250 root 1.174
2251     =item IO::AIO::munlockall
2252    
2253     Calls the C<munlockall> function.
2254    
2255     On systems that do not implement C<munlockall>, this function returns
2256     ENOSYS, otherwise the return value of C<munlockall>.
2257    
2258 root 1.225 =item IO::AIO::splice $r_fh, $r_off, $w_fh, $w_off, $length, $flags
2259    
2260     Calls the GNU/Linux C<splice(2)> syscall, if available. If C<$r_off> or
2261     C<$w_off> are C<undef>, then C<NULL> is passed for these, otherwise they
2262     should be the file offset.
2263    
2264 root 1.227 C<$r_fh> and C<$w_fh> should not refer to the same file, as splice might
2265     silently corrupt the data in this case.
2266    
2267 root 1.225 The following symbol flag values are available: C<IO::AIO::SPLICE_F_MOVE>,
2268     C<IO::AIO::SPLICE_F_NONBLOCK>, C<IO::AIO::SPLICE_F_MORE> and
2269     C<IO::AIO::SPLICE_F_GIFT>.
2270    
2271     See the C<splice(2)> manpage for details.
2272    
2273     =item IO::AIO::tee $r_fh, $w_fh, $length, $flags
2274    
2275 root 1.248 Calls the GNU/Linux C<tee(2)> syscall, see its manpage and the
2276 root 1.225 description for C<IO::AIO::splice> above for details.
2277    
2278 root 1.243 =item $actual_size = IO::AIO::pipesize $r_fh[, $new_size]
2279    
2280     Attempts to query or change the pipe buffer size. Obviously works only
2281     on pipes, and currently works only on GNU/Linux systems, and fails with
2282     C<-1>/C<ENOSYS> everywhere else. If anybody knows how to influence pipe buffer
2283     size on other systems, drop me a note.
2284    
2285 root 1.253 =item ($rfh, $wfh) = IO::AIO::pipe2 [$flags]
2286    
2287     This is a direct interface to the Linux L<pipe2(2)> system call. If
2288     C<$flags> is missing or C<0>, then this should be the same as a call to
2289 root 1.254 perl's built-in C<pipe> function and create a new pipe, and works on
2290     systems that lack the pipe2 syscall. On win32, this case invokes C<_pipe
2291     (..., 4096, O_BINARY)>.
2292 root 1.253
2293     If C<$flags> is non-zero, it tries to invoke the pipe2 system call with
2294     the given flags (Linux 2.6.27, glibc 2.9).
2295    
2296     On success, the read and write file handles are returned.
2297    
2298     On error, nothing will be returned. If the pipe2 syscall is missing and
2299     C<$flags> is non-zero, fails with C<ENOSYS>.
2300    
2301     Please refer to L<pipe2(2)> for more info on the C<$flags>, but at the
2302     time of this writing, C<IO::AIO::O_CLOEXEC>, C<IO::AIO::O_NONBLOCK> and
2303     C<IO::AIO::O_DIRECT> (Linux 3.4, for packet-based pipes) were supported.
2304    
2305 root 1.157 =back
2306    
2307 root 1.1 =cut
2308    
2309 root 1.61 min_parallel 8;
2310 root 1.1
2311 root 1.95 END { flush }
2312 root 1.82
2313 root 1.1 1;
2314    
2315 root 1.175 =head1 EVENT LOOP INTEGRATION
2316    
2317     It is recommended to use L<AnyEvent::AIO> to integrate IO::AIO
2318     automatically into many event loops:
2319    
2320     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
2321     use AnyEvent::AIO;
2322    
2323     You can also integrate IO::AIO manually into many event loops, here are
2324     some examples of how to do this:
2325    
2326     # EV integration
2327     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
2328    
2329     # Event integration
2330     Event->io (fd => IO::AIO::poll_fileno,
2331     poll => 'r',
2332     cb => \&IO::AIO::poll_cb);
2333    
2334     # Glib/Gtk2 integration
2335     add_watch Glib::IO IO::AIO::poll_fileno,
2336     in => sub { IO::AIO::poll_cb; 1 };
2337    
2338     # Tk integration
2339     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
2340     readable => \&IO::AIO::poll_cb);
2341    
2342     # Danga::Socket integration
2343     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
2344     \&IO::AIO::poll_cb);
2345    
2346 root 1.27 =head2 FORK BEHAVIOUR
2347    
2348 root 1.197 Usage of pthreads in a program changes the semantics of fork
2349     considerably. Specifically, only async-safe functions can be called after
2350     fork. Perl doesn't know about this, so in general, you cannot call fork
2351 root 1.204 with defined behaviour in perl if pthreads are involved. IO::AIO uses
2352     pthreads, so this applies, but many other extensions and (for inexplicable
2353     reasons) perl itself often is linked against pthreads, so this limitation
2354     applies to quite a lot of perls.
2355    
2356     This module no longer tries to fight your OS, or POSIX. That means IO::AIO
2357     only works in the process that loaded it. Forking is fully supported, but
2358     using IO::AIO in the child is not.
2359    
2360     You might get around by not I<using> IO::AIO before (or after)
2361     forking. You could also try to call the L<IO::AIO::reinit> function in the
2362     child:
2363    
2364     =over 4
2365    
2366     =item IO::AIO::reinit
2367    
2368 root 1.207 Abandons all current requests and I/O threads and simply reinitialises all
2369     data structures. This is not an operation supported by any standards, but
2370 root 1.204 happens to work on GNU/Linux and some newer BSD systems.
2371    
2372     The only reasonable use for this function is to call it after forking, if
2373     C<IO::AIO> was used in the parent. Calling it while IO::AIO is active in
2374     the process will result in undefined behaviour. Calling it at any time
2375     will also result in any undefined (by POSIX) behaviour.
2376    
2377     =back
2378 root 1.52
2379 root 1.60 =head2 MEMORY USAGE
2380    
2381 root 1.72 Per-request usage:
2382    
2383     Each aio request uses - depending on your architecture - around 100-200
2384     bytes of memory. In addition, stat requests need a stat buffer (possibly
2385     a few hundred bytes), readdir requires a result buffer and so on. Perl
2386     scalars and other data passed into aio requests will also be locked and
2387     will consume memory till the request has entered the done state.
2388 root 1.60
2389 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
2390 root 1.60 problem.
2391    
2392 root 1.72 Per-thread usage:
2393    
2394     In the execution phase, some aio requests require more memory for
2395     temporary buffers, and each thread requires a stack and other data
2396     structures (usually around 16k-128k, depending on the OS).
2397    
2398     =head1 KNOWN BUGS
2399    
2400 root 1.73 Known bugs will be fixed in the next release.
2401 root 1.60
2402 root 1.1 =head1 SEE ALSO
2403    
2404 root 1.125 L<AnyEvent::AIO> for easy integration into event loops, L<Coro::AIO> for a
2405     more natural syntax.
2406 root 1.1
2407     =head1 AUTHOR
2408    
2409     Marc Lehmann <schmorp@schmorp.de>
2410     http://home.schmorp.de/
2411    
2412     =cut
2413