ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.283
Committed: Tue Feb 20 06:05:19 2018 UTC (6 years, 3 months ago) by root
Branch: MAIN
CVS Tags: rel-4_4
Changes since 1.282: +12 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.265 IO::AIO - Asynchronous/Advanced Input/Output
4 root 1.1
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.1 =head1 DESCRIPTION
32    
33     This module implements asynchronous I/O using whatever means your
34 root 1.156 operating system supports. It is implemented as an interface to C<libeio>
35     (L<http://software.schmorp.de/pkg/libeio.html>).
36 root 1.1
37 root 1.85 Asynchronous means that operations that can normally block your program
38     (e.g. reading from disk) will be done asynchronously: the operation
39     will still block, but you can do something else in the meantime. This
40     is extremely useful for programs that need to stay interactive even
41     when doing heavy I/O (GUI programs, high performance network servers
42     etc.), but can also be used to easily do operations in parallel that are
43     normally done sequentially, e.g. stat'ing many files, which is much faster
44     on a RAID volume or over NFS when you do a number of stat operations
45     concurrently.
46    
47 root 1.108 While most of this works on all types of file descriptors (for
48     example sockets), using these functions on file descriptors that
49 root 1.156 support nonblocking operation (again, sockets, pipes etc.) is
50     very inefficient. Use an event loop for that (such as the L<EV>
51 root 1.108 module): IO::AIO will naturally fit into such an event loop itself.
52 root 1.85
53 root 1.72 In this version, a number of threads are started that execute your
54     requests and signal their completion. You don't need thread support
55     in perl, and the threads created by this module will not be visible
56     to perl. In the future, this module might make use of the native aio
57     functions available on many operating systems. However, they are often
58 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
59 root 1.72 files currently, for example), and they would only support aio_read and
60     aio_write, so the remaining functionality would have to be implemented
61     using threads anyway.
62    
63 root 1.265 In addition to asynchronous I/O, this module also exports some rather
64     arcane interfaces, such as C<madvise> or linux's C<splice> system call,
65     which is why the C<A> in C<AIO> can also mean I<advanced>.
66    
67 root 1.108 Although the module will work in the presence of other (Perl-) threads,
68     it is currently not reentrant in any way, so use appropriate locking
69     yourself, always call C<poll_cb> from within the same thread, or never
70     call C<poll_cb> (or other C<aio_> functions) recursively.
71 root 1.72
72 root 1.86 =head2 EXAMPLE
73    
74 root 1.156 This is a simple example that uses the EV module and loads
75 root 1.86 F</etc/passwd> asynchronously:
76    
77 root 1.156 use EV;
78 root 1.86 use IO::AIO;
79    
80 root 1.156 # register the IO::AIO callback with EV
81     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
82 root 1.86
83     # queue the request to open /etc/passwd
84 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
85 root 1.94 my $fh = shift
86 root 1.86 or die "error while opening: $!";
87    
88     # stat'ing filehandles is generally non-blocking
89     my $size = -s $fh;
90    
91     # queue a request to read the file
92     my $contents;
93     aio_read $fh, 0, $size, $contents, 0, sub {
94     $_[0] == $size
95     or die "short read: $!";
96    
97     close $fh;
98    
99     # file contents now in $contents
100     print $contents;
101    
102     # exit event loop and program
103 root 1.257 EV::break;
104 root 1.86 };
105     };
106    
107     # possibly queue up other requests, or open GUI windows,
108     # check for sockets etc. etc.
109    
110     # process events as long as there are some:
111 root 1.257 EV::run;
112 root 1.86
113 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
114    
115     Every C<aio_*> function creates a request. which is a C data structure not
116     directly visible to Perl.
117    
118     If called in non-void context, every request function returns a Perl
119     object representing the request. In void context, nothing is returned,
120     which saves a bit of memory.
121    
122     The perl object is a fairly standard ref-to-hash object. The hash contents
123     are not used by IO::AIO so you are free to store anything you like in it.
124    
125     During their existance, aio requests travel through the following states,
126     in order:
127    
128     =over 4
129    
130     =item ready
131    
132     Immediately after a request is created it is put into the ready state,
133     waiting for a thread to execute it.
134    
135     =item execute
136    
137     A thread has accepted the request for processing and is currently
138     executing it (e.g. blocking in read).
139    
140     =item pending
141    
142     The request has been executed and is waiting for result processing.
143    
144     While request submission and execution is fully asynchronous, result
145     processing is not and relies on the perl interpreter calling C<poll_cb>
146     (or another function with the same effect).
147    
148     =item result
149    
150     The request results are processed synchronously by C<poll_cb>.
151    
152     The C<poll_cb> function will process all outstanding aio requests by
153     calling their callbacks, freeing memory associated with them and managing
154     any groups they are contained in.
155    
156     =item done
157    
158     Request has reached the end of its lifetime and holds no resources anymore
159     (except possibly for the Perl object, but its connection to the actual
160     aio request is severed and calling its methods will either do nothing or
161     result in a runtime error).
162 root 1.1
163 root 1.88 =back
164    
165 root 1.1 =cut
166    
167     package IO::AIO;
168    
169 root 1.117 use Carp ();
170    
171 root 1.161 use common::sense;
172 root 1.23
173 root 1.1 use base 'Exporter';
174    
175     BEGIN {
176 root 1.279 our $VERSION = 4.4;
177 root 1.1
178 root 1.220 our @AIO_REQ = qw(aio_sendfile aio_seek aio_read aio_write aio_open aio_close
179 root 1.148 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
180 root 1.259 aio_scandir aio_symlink aio_readlink aio_realpath aio_fcntl aio_ioctl
181     aio_sync aio_fsync aio_syncfs aio_fdatasync aio_sync_file_range
182     aio_pathsync aio_readahead aio_fiemap aio_allocate
183 root 1.270 aio_rename aio_rename2 aio_link aio_move aio_copy aio_group
184 root 1.120 aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
185 root 1.170 aio_chmod aio_utime aio_truncate
186 root 1.182 aio_msync aio_mtouch aio_mlock aio_mlockall
187 root 1.208 aio_statvfs
188 root 1.279 aio_slurp
189 root 1.208 aio_wd);
190 root 1.120
191 root 1.123 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice));
192 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
193 root 1.188 min_parallel max_parallel max_idle idle_timeout
194 root 1.86 nreqs nready npending nthreads
195 root 1.157 max_poll_time max_poll_reqs
196 root 1.182 sendfile fadvise madvise
197     mmap munmap munlock munlockall);
198 root 1.1
199 root 1.143 push @AIO_REQ, qw(aio_busy); # not exported
200    
201 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
202    
203 root 1.1 require XSLoader;
204 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
205 root 1.1 }
206    
207 root 1.5 =head1 FUNCTIONS
208 root 1.1
209 root 1.175 =head2 QUICK OVERVIEW
210    
211 root 1.230 This section simply lists the prototypes most of the functions for
212     quick reference. See the following sections for function-by-function
213 root 1.175 documentation.
214    
215 root 1.208 aio_wd $pathname, $callback->($wd)
216 root 1.175 aio_open $pathname, $flags, $mode, $callback->($fh)
217     aio_close $fh, $callback->($status)
218 root 1.220 aio_seek $fh,$offset,$whence, $callback->($offs)
219 root 1.175 aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
220     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
221     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
222     aio_readahead $fh,$offset,$length, $callback->($retval)
223     aio_stat $fh_or_path, $callback->($status)
224     aio_lstat $fh, $callback->($status)
225     aio_statvfs $fh_or_path, $callback->($statvfs)
226     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
227     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
228 root 1.220 aio_chmod $fh_or_path, $mode, $callback->($status)
229 root 1.175 aio_truncate $fh_or_path, $offset, $callback->($status)
230 root 1.229 aio_allocate $fh, $mode, $offset, $len, $callback->($status)
231 root 1.230 aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
232 root 1.175 aio_unlink $pathname, $callback->($status)
233 root 1.209 aio_mknod $pathname, $mode, $dev, $callback->($status)
234 root 1.175 aio_link $srcpath, $dstpath, $callback->($status)
235     aio_symlink $srcpath, $dstpath, $callback->($status)
236 root 1.209 aio_readlink $pathname, $callback->($link)
237 root 1.249 aio_realpath $pathname, $callback->($path)
238 root 1.175 aio_rename $srcpath, $dstpath, $callback->($status)
239 root 1.270 aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
240 root 1.175 aio_mkdir $pathname, $mode, $callback->($status)
241     aio_rmdir $pathname, $callback->($status)
242     aio_readdir $pathname, $callback->($entries)
243     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
244     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
245     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
246 root 1.215 aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
247 root 1.209 aio_load $pathname, $data, $callback->($status)
248 root 1.175 aio_copy $srcpath, $dstpath, $callback->($status)
249     aio_move $srcpath, $dstpath, $callback->($status)
250 root 1.209 aio_rmtree $pathname, $callback->($status)
251 root 1.259 aio_fcntl $fh, $cmd, $arg, $callback->($status)
252     aio_ioctl $fh, $request, $buf, $callback->($status)
253 root 1.175 aio_sync $callback->($status)
254 root 1.206 aio_syncfs $fh, $callback->($status)
255 root 1.175 aio_fsync $fh, $callback->($status)
256     aio_fdatasync $fh, $callback->($status)
257     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
258 root 1.209 aio_pathsync $pathname, $callback->($status)
259 root 1.268 aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
260 root 1.175 aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
261 root 1.182 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
262     aio_mlockall $flags, $callback->($status)
263 root 1.175 aio_group $callback->(...)
264     aio_nop $callback->()
265    
266     $prev_pri = aioreq_pri [$pri]
267     aioreq_nice $pri_adjust
268    
269     IO::AIO::poll_wait
270     IO::AIO::poll_cb
271     IO::AIO::poll
272     IO::AIO::flush
273     IO::AIO::max_poll_reqs $nreqs
274     IO::AIO::max_poll_time $seconds
275     IO::AIO::min_parallel $nthreads
276     IO::AIO::max_parallel $nthreads
277     IO::AIO::max_idle $nthreads
278 root 1.188 IO::AIO::idle_timeout $seconds
279 root 1.175 IO::AIO::max_outstanding $maxreqs
280     IO::AIO::nreqs
281     IO::AIO::nready
282     IO::AIO::npending
283 root 1.278 $nfd = IO::AIO::get_fdlimit [EXPERIMENTAL]
284     IO::AIO::min_fdlimit $nfd [EXPERIMENTAL]
285 root 1.175
286     IO::AIO::sendfile $ofh, $ifh, $offset, $count
287     IO::AIO::fadvise $fh, $offset, $len, $advice
288 root 1.226 IO::AIO::mmap $scalar, $length, $prot, $flags[, $fh[, $offset]]
289     IO::AIO::munmap $scalar
290 root 1.184 IO::AIO::madvise $scalar, $offset, $length, $advice
291     IO::AIO::mprotect $scalar, $offset, $length, $protect
292 root 1.182 IO::AIO::munlock $scalar, $offset = 0, $length = undef
293 root 1.175 IO::AIO::munlockall
294    
295 root 1.219 =head2 API NOTES
296 root 1.1
297 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
298     with the same name (sans C<aio_>). The arguments are similar or identical,
299 root 1.14 and they all accept an additional (and optional) C<$callback> argument
300 root 1.212 which must be a code reference. This code reference will be called after
301     the syscall has been executed in an asynchronous fashion. The results
302     of the request will be passed as arguments to the callback (and, if an
303     error occured, in C<$!>) - for most requests the syscall return code (e.g.
304     most syscalls return C<-1> on error, unlike perl, which usually delivers
305     "false").
306    
307     Some requests (such as C<aio_readdir>) pass the actual results and
308     communicate failures by passing C<undef>.
309 root 1.1
310 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
311     internally until the request has finished.
312 root 1.1
313 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
314     further manipulation of those requests while they are in-flight.
315 root 1.52
316 root 1.209 The pathnames you pass to these routines I<should> be absolute. The
317     reason for this is that at the time the request is being executed, the
318 root 1.212 current working directory could have changed. Alternatively, you can
319     make sure that you never change the current working directory anywhere
320     in the program and then use relative paths. You can also take advantage
321     of IO::AIOs working directory abstraction, that lets you specify paths
322     relative to some previously-opened "working directory object" - see the
323     description of the C<IO::AIO::WD> class later in this document.
324 root 1.28
325 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
326     in filenames you got from outside (command line, readdir etc.) without
327 root 1.212 tinkering, b) are in your native filesystem encoding, c) use the Encode
328     module and encode your pathnames to the locale (or other) encoding in
329     effect in the user environment, d) use Glib::filename_from_unicode on
330     unicode filenames or e) use something else to ensure your scalar has the
331     correct contents.
332 root 1.87
333     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
334 root 1.136 handles correctly whether it is set or not.
335 root 1.1
336 root 1.219 =head2 AIO REQUEST FUNCTIONS
337    
338 root 1.5 =over 4
339 root 1.1
340 root 1.80 =item $prev_pri = aioreq_pri [$pri]
341 root 1.68
342 root 1.80 Returns the priority value that would be used for the next request and, if
343     C<$pri> is given, sets the priority for the next aio request.
344 root 1.68
345 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
346     and C<4>, respectively. Requests with higher priority will be serviced
347     first.
348    
349     The priority will be reset to C<0> after each call to one of the C<aio_*>
350 root 1.68 functions.
351    
352 root 1.69 Example: open a file with low priority, then read something from it with
353     higher priority so the read request is serviced before other low priority
354     open requests (potentially spamming the cache):
355    
356     aioreq_pri -3;
357     aio_open ..., sub {
358     return unless $_[0];
359    
360     aioreq_pri -2;
361     aio_read $_[0], ..., sub {
362     ...
363     };
364     };
365    
366 root 1.106
367 root 1.69 =item aioreq_nice $pri_adjust
368    
369     Similar to C<aioreq_pri>, but subtracts the given value from the current
370 root 1.87 priority, so the effect is cumulative.
371 root 1.69
372 root 1.106
373 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
374 root 1.1
375 root 1.2 Asynchronously open or create a file and call the callback with a newly
376 root 1.233 created filehandle for the file (or C<undef> in case of an error).
377 root 1.1
378     The pathname passed to C<aio_open> must be absolute. See API NOTES, above,
379     for an explanation.
380    
381 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
382     list. They are the same as used by C<sysopen>.
383    
384     Likewise, C<$mode> specifies the mode of the newly created file, if it
385     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
386     except that it is mandatory (i.e. use C<0> if you don't create new files,
387 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
388     by the umask in effect then the request is being executed, so better never
389     change the umask.
390 root 1.1
391     Example:
392    
393 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
394 root 1.2 if ($_[0]) {
395     print "open successful, fh is $_[0]\n";
396 root 1.1 ...
397     } else {
398     die "open failed: $!\n";
399     }
400     };
401    
402 root 1.194 In addition to all the common open modes/flags (C<O_RDONLY>, C<O_WRONLY>,
403     C<O_RDWR>, C<O_CREAT>, C<O_TRUNC>, C<O_EXCL> and C<O_APPEND>), the
404     following POSIX and non-POSIX constants are available (missing ones on
405     your system are, as usual, C<0>):
406    
407     C<O_ASYNC>, C<O_DIRECT>, C<O_NOATIME>, C<O_CLOEXEC>, C<O_NOCTTY>, C<O_NOFOLLOW>,
408     C<O_NONBLOCK>, C<O_EXEC>, C<O_SEARCH>, C<O_DIRECTORY>, C<O_DSYNC>,
409 root 1.255 C<O_RSYNC>, C<O_SYNC>, C<O_PATH>, C<O_TMPFILE>, and C<O_TTY_INIT>.
410 root 1.194
411 root 1.106
412 root 1.40 =item aio_close $fh, $callback->($status)
413 root 1.1
414 root 1.2 Asynchronously close a file and call the callback with the result
415 root 1.116 code.
416    
417 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
418 root 1.121 closing the file descriptor associated with the filehandle itself.
419 root 1.117
420 root 1.121 Therefore, C<aio_close> will not close the filehandle - instead it will
421     use dup2 to overwrite the file descriptor with the write-end of a pipe
422     (the pipe fd will be created on demand and will be cached).
423 root 1.117
424 root 1.121 Or in other words: the file descriptor will be closed, but it will not be
425     free for reuse until the perl filehandle is closed.
426 root 1.117
427     =cut
428    
429 root 1.220 =item aio_seek $fh, $offset, $whence, $callback->($offs)
430    
431 root 1.221 Seeks the filehandle to the new C<$offset>, similarly to perl's
432 root 1.220 C<sysseek>. The C<$whence> can use the traditional values (C<0> for
433     C<IO::AIO::SEEK_SET>, C<1> for C<IO::AIO::SEEK_CUR> or C<2> for
434     C<IO::AIO::SEEK_END>).
435    
436     The resulting absolute offset will be passed to the callback, or C<-1> in
437     case of an error.
438    
439     In theory, the C<$whence> constants could be different than the
440     corresponding values from L<Fcntl>, but perl guarantees they are the same,
441     so don't panic.
442    
443 root 1.225 As a GNU/Linux (and maybe Solaris) extension, also the constants
444     C<IO::AIO::SEEK_DATA> and C<IO::AIO::SEEK_HOLE> are available, if they
445     could be found. No guarantees about suitability for use in C<aio_seek> or
446     Perl's C<sysseek> can be made though, although I would naively assume they
447     "just work".
448    
449 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
450 root 1.1
451 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
452 root 1.1
453 root 1.145 Reads or writes C<$length> bytes from or to the specified C<$fh> and
454 root 1.267 C<$offset> into the scalar given by C<$data> and offset C<$dataoffset> and
455     calls the callback with the actual number of bytes transferred (or -1 on
456 root 1.145 error, just like the syscall).
457 root 1.109
458 root 1.146 C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
459     offset plus the actual number of bytes read.
460    
461 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
462     be used (and updated), otherwise the file descriptor offset will not be
463     changed by these calls.
464 root 1.109
465 root 1.145 If C<$length> is undefined in C<aio_write>, use the remaining length of
466     C<$data>.
467 root 1.109
468     If C<$dataoffset> is less than zero, it will be counted from the end of
469     C<$data>.
470 root 1.1
471 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
472 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
473     the necessary/optional hardware is installed).
474 root 1.31
475 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
476 root 1.1 offset C<0> within the scalar:
477    
478     aio_read $fh, 7, 15, $buffer, 0, sub {
479 root 1.9 $_[0] > 0 or die "read error: $!";
480     print "read $_[0] bytes: <$buffer>\n";
481 root 1.1 };
482    
483 root 1.106
484 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
485 root 1.35
486     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
487     reading at byte offset C<$in_offset>, and starts writing at the current
488     file offset of C<$out_fh>. Because of that, it is not safe to issue more
489     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
490 root 1.196 other. The same C<$in_fh> works fine though, as this function does not
491     move or use the file offset of C<$in_fh>.
492 root 1.35
493 root 1.185 Please note that C<aio_sendfile> can read more bytes from C<$in_fh> than
494 root 1.196 are written, and there is no way to find out how many more bytes have been
495     read from C<aio_sendfile> alone, as C<aio_sendfile> only provides the
496     number of bytes written to C<$out_fh>. Only if the result value equals
497     C<$length> one can assume that C<$length> bytes have been read.
498 root 1.185
499     Unlike with other C<aio_> functions, it makes a lot of sense to use
500     C<aio_sendfile> on non-blocking sockets, as long as one end (typically
501     the C<$in_fh>) is a file - the file I/O will then be asynchronous, while
502 root 1.196 the socket I/O will be non-blocking. Note, however, that you can run
503     into a trap where C<aio_sendfile> reads some data with readahead, then
504     fails to write all data, and when the socket is ready the next time, the
505     data in the cache is already lost, forcing C<aio_sendfile> to again hit
506     the disk. Explicit C<aio_read> + C<aio_write> let's you better control
507     resource usage.
508    
509     This call tries to make use of a native C<sendfile>-like syscall to
510     provide zero-copy operation. For this to work, C<$out_fh> should refer to
511     a socket, and C<$in_fh> should refer to an mmap'able file.
512 root 1.35
513 root 1.170 If a native sendfile cannot be found or it fails with C<ENOSYS>,
514 root 1.196 C<EINVAL>, C<ENOTSUP>, C<EOPNOTSUPP>, C<EAFNOSUPPORT>, C<EPROTOTYPE> or
515     C<ENOTSOCK>, it will be emulated, so you can call C<aio_sendfile> on any
516     type of filehandle regardless of the limitations of the operating system.
517    
518     As native sendfile syscalls (as practically any non-POSIX interface hacked
519     together in a hurry to improve benchmark numbers) tend to be rather buggy
520     on many systems, this implementation tries to work around some known bugs
521     in Linux and FreeBSD kernels (probably others, too), but that might fail,
522     so you really really should check the return value of C<aio_sendfile> -
523 root 1.262 fewer bytes than expected might have been transferred.
524 root 1.35
525 root 1.106
526 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
527 root 1.1
528 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
529 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
530     argument specifies the starting point from which data is to be read and
531     C<$length> specifies the number of bytes to be read. I/O is performed in
532     whole pages, so that offset is effectively rounded down to a page boundary
533     and bytes are read up to the next page boundary greater than or equal to
534 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
535 root 1.1 file. The current file offset of the file is left unchanged.
536    
537 root 1.261 If that syscall doesn't exist (likely if your kernel isn't Linux) it will
538     be emulated by simply reading the data, which would have a similar effect.
539 root 1.26
540 root 1.106
541 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
542 root 1.1
543 root 1.40 =item aio_lstat $fh, $callback->($status)
544 root 1.1
545     Works like perl's C<stat> or C<lstat> in void context. The callback will
546     be called after the stat and the results will be available using C<stat _>
547     or C<-s _> etc...
548    
549     The pathname passed to C<aio_stat> must be absolute. See API NOTES, above,
550     for an explanation.
551    
552     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
553     error when stat'ing a large file, the results will be silently truncated
554     unless perl itself is compiled with large file support.
555    
556 root 1.187 To help interpret the mode and dev/rdev stat values, IO::AIO offers the
557     following constants and functions (if not implemented, the constants will
558     be C<0> and the functions will either C<croak> or fall back on traditional
559     behaviour).
560    
561     C<S_IFMT>, C<S_IFIFO>, C<S_IFCHR>, C<S_IFBLK>, C<S_IFLNK>, C<S_IFREG>,
562     C<S_IFDIR>, C<S_IFWHT>, C<S_IFSOCK>, C<IO::AIO::major $dev_t>,
563     C<IO::AIO::minor $dev_t>, C<IO::AIO::makedev $major, $minor>.
564    
565 root 1.1 Example: Print the length of F</etc/passwd>:
566    
567     aio_stat "/etc/passwd", sub {
568     $_[0] and die "stat failed: $!";
569     print "size is ", -s _, "\n";
570     };
571    
572 root 1.106
573 root 1.175 =item aio_statvfs $fh_or_path, $callback->($statvfs)
574 root 1.172
575     Works like the POSIX C<statvfs> or C<fstatvfs> syscalls, depending on
576     whether a file handle or path was passed.
577    
578     On success, the callback is passed a hash reference with the following
579     members: C<bsize>, C<frsize>, C<blocks>, C<bfree>, C<bavail>, C<files>,
580     C<ffree>, C<favail>, C<fsid>, C<flag> and C<namemax>. On failure, C<undef>
581     is passed.
582    
583     The following POSIX IO::AIO::ST_* constants are defined: C<ST_RDONLY> and
584     C<ST_NOSUID>.
585    
586     The following non-POSIX IO::AIO::ST_* flag masks are defined to
587     their correct value when available, or to C<0> on systems that do
588     not support them: C<ST_NODEV>, C<ST_NOEXEC>, C<ST_SYNCHRONOUS>,
589     C<ST_MANDLOCK>, C<ST_WRITE>, C<ST_APPEND>, C<ST_IMMUTABLE>, C<ST_NOATIME>,
590     C<ST_NODIRATIME> and C<ST_RELATIME>.
591    
592     Example: stat C</wd> and dump out the data if successful.
593    
594     aio_statvfs "/wd", sub {
595     my $f = $_[0]
596     or die "statvfs: $!";
597    
598     use Data::Dumper;
599     say Dumper $f;
600     };
601    
602     # result:
603     {
604     bsize => 1024,
605     bfree => 4333064312,
606     blocks => 10253828096,
607     files => 2050765568,
608     flag => 4096,
609     favail => 2042092649,
610     bavail => 4333064312,
611     ffree => 2042092649,
612     namemax => 255,
613     frsize => 1024,
614     fsid => 1810
615     }
616    
617 root 1.106 =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
618    
619     Works like perl's C<utime> function (including the special case of $atime
620     and $mtime being undef). Fractional times are supported if the underlying
621     syscalls support them.
622    
623     When called with a pathname, uses utimes(2) if available, otherwise
624     utime(2). If called on a file descriptor, uses futimes(2) if available,
625     otherwise returns ENOSYS, so this is not portable.
626    
627     Examples:
628    
629 root 1.107 # set atime and mtime to current time (basically touch(1)):
630 root 1.106 aio_utime "path", undef, undef;
631     # set atime to current time and mtime to beginning of the epoch:
632     aio_utime "path", time, undef; # undef==0
633    
634    
635     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
636    
637     Works like perl's C<chown> function, except that C<undef> for either $uid
638     or $gid is being interpreted as "do not change" (but -1 can also be used).
639    
640     Examples:
641    
642     # same as "chown root path" in the shell:
643     aio_chown "path", 0, -1;
644     # same as above:
645     aio_chown "path", 0, undef;
646    
647    
648 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
649    
650     Works like truncate(2) or ftruncate(2).
651    
652    
653 root 1.229 =item aio_allocate $fh, $mode, $offset, $len, $callback->($status)
654    
655 root 1.249 Allocates or frees disk space according to the C<$mode> argument. See the
656     linux C<fallocate> documentation for details.
657 root 1.229
658 root 1.252 C<$mode> is usually C<0> or C<IO::AIO::FALLOC_FL_KEEP_SIZE> to allocate
659     space, or C<IO::AIO::FALLOC_FL_PUNCH_HOLE | IO::AIO::FALLOC_FL_KEEP_SIZE>,
660     to deallocate a file range.
661    
662     IO::AIO also supports C<FALLOC_FL_COLLAPSE_RANGE>, to remove a range
663 root 1.273 (without leaving a hole), C<FALLOC_FL_ZERO_RANGE>, to zero a range,
664     C<FALLOC_FL_INSERT_RANGE> to insert a range and C<FALLOC_FL_UNSHARE_RANGE>
665     to unshare shared blocks (see your L<fallocate(2)> manpage).
666 root 1.229
667     The file system block size used by C<fallocate> is presumably the
668 root 1.273 C<f_bsize> returned by C<statvfs>, but different filesystems and filetypes
669     can dictate other limitations.
670 root 1.229
671     If C<fallocate> isn't available or cannot be emulated (currently no
672     emulation will be attempted), passes C<-1> and sets C<$!> to C<ENOSYS>.
673    
674    
675 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
676    
677     Works like perl's C<chmod> function.
678    
679    
680 root 1.40 =item aio_unlink $pathname, $callback->($status)
681 root 1.1
682     Asynchronously unlink (delete) a file and call the callback with the
683     result code.
684    
685 root 1.106
686 root 1.209 =item aio_mknod $pathname, $mode, $dev, $callback->($status)
687 root 1.82
688 root 1.86 [EXPERIMENTAL]
689    
690 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
691    
692 root 1.86 The only (POSIX-) portable way of calling this function is:
693 root 1.83
694 root 1.209 aio_mknod $pathname, IO::AIO::S_IFIFO | $mode, 0, sub { ...
695 root 1.82
696 root 1.187 See C<aio_stat> for info about some potentially helpful extra constants
697     and functions.
698 root 1.106
699 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
700    
701     Asynchronously create a new link to the existing object at C<$srcpath> at
702     the path C<$dstpath> and call the callback with the result code.
703    
704 root 1.106
705 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
706    
707     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
708     the path C<$dstpath> and call the callback with the result code.
709    
710 root 1.106
711 root 1.209 =item aio_readlink $pathname, $callback->($link)
712 root 1.90
713     Asynchronously read the symlink specified by C<$path> and pass it to
714     the callback. If an error occurs, nothing or undef gets passed to the
715     callback.
716    
717 root 1.106
718 root 1.209 =item aio_realpath $pathname, $callback->($path)
719 root 1.201
720     Asynchronously make the path absolute and resolve any symlinks in
721 root 1.239 C<$path>. The resulting path only consists of directories (same as
722 root 1.202 L<Cwd::realpath>).
723 root 1.201
724     This request can be used to get the absolute path of the current working
725     directory by passing it a path of F<.> (a single dot).
726    
727    
728 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
729    
730     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
731     rename(2) and call the callback with the result code.
732    
733 root 1.241 On systems that support the AIO::WD working directory abstraction
734     natively, the case C<[$wd, "."]> as C<$srcpath> is specialcased - instead
735     of failing, C<rename> is called on the absolute path of C<$wd>.
736    
737 root 1.106
738 root 1.270 =item aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
739    
740     Basically a version of C<aio_rename> with an additional C<$flags>
741     argument. Calling this with C<$flags=0> is the same as calling
742     C<aio_rename>.
743    
744     Non-zero flags are currently only supported on GNU/Linux systems that
745     support renameat2. Other systems fail with C<ENOSYS> in this case.
746    
747     The following constants are available (missing ones are, as usual C<0>),
748     see renameat2(2) for details:
749    
750     C<IO::AIO::RENAME_NOREPLACE>, C<IO::AIO::RENAME_EXCHANGE>
751     and C<IO::AIO::RENAME_WHITEOUT>.
752    
753    
754 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
755    
756     Asynchronously mkdir (create) a directory and call the callback with
757     the result code. C<$mode> will be modified by the umask at the time the
758     request is executed, so do not change your umask.
759    
760 root 1.106
761 root 1.40 =item aio_rmdir $pathname, $callback->($status)
762 root 1.27
763     Asynchronously rmdir (delete) a directory and call the callback with the
764     result code.
765    
766 root 1.241 On systems that support the AIO::WD working directory abstraction
767     natively, the case C<[$wd, "."]> is specialcased - instead of failing,
768     C<rmdir> is called on the absolute path of C<$wd>.
769    
770 root 1.106
771 root 1.46 =item aio_readdir $pathname, $callback->($entries)
772 root 1.37
773     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
774     directory (i.e. opendir + readdir + closedir). The entries will not be
775     sorted, and will B<NOT> include the C<.> and C<..> entries.
776    
777 root 1.148 The callback is passed a single argument which is either C<undef> or an
778     array-ref with the filenames.
779    
780    
781     =item aio_readdirx $pathname, $flags, $callback->($entries, $flags)
782    
783 root 1.207 Quite similar to C<aio_readdir>, but the C<$flags> argument allows one to
784     tune behaviour and output format. In case of an error, C<$entries> will be
785 root 1.148 C<undef>.
786    
787     The flags are a combination of the following constants, ORed together (the
788     flags will also be passed to the callback, possibly modified):
789    
790     =over 4
791    
792 root 1.150 =item IO::AIO::READDIR_DENTS
793 root 1.148
794 root 1.190 When this flag is off, then the callback gets an arrayref consisting of
795     names only (as with C<aio_readdir>), otherwise it gets an arrayref with
796 root 1.150 C<[$name, $type, $inode]> arrayrefs, each describing a single directory
797 root 1.148 entry in more detail.
798    
799     C<$name> is the name of the entry.
800    
801 root 1.150 C<$type> is one of the C<IO::AIO::DT_xxx> constants:
802 root 1.148
803 root 1.150 C<IO::AIO::DT_UNKNOWN>, C<IO::AIO::DT_FIFO>, C<IO::AIO::DT_CHR>, C<IO::AIO::DT_DIR>,
804     C<IO::AIO::DT_BLK>, C<IO::AIO::DT_REG>, C<IO::AIO::DT_LNK>, C<IO::AIO::DT_SOCK>,
805     C<IO::AIO::DT_WHT>.
806 root 1.148
807 root 1.150 C<IO::AIO::DT_UNKNOWN> means just that: readdir does not know. If you need to
808 root 1.148 know, you have to run stat yourself. Also, for speed reasons, the C<$type>
809     scalars are read-only: you can not modify them.
810    
811 root 1.150 C<$inode> is the inode number (which might not be exact on systems with 64
812 root 1.155 bit inode numbers and 32 bit perls). This field has unspecified content on
813     systems that do not deliver the inode information.
814 root 1.150
815     =item IO::AIO::READDIR_DIRS_FIRST
816 root 1.148
817     When this flag is set, then the names will be returned in an order where
818 root 1.193 likely directories come first, in optimal stat order. This is useful when
819     you need to quickly find directories, or you want to find all directories
820     while avoiding to stat() each entry.
821 root 1.148
822 root 1.149 If the system returns type information in readdir, then this is used
823 root 1.193 to find directories directly. Otherwise, likely directories are names
824     beginning with ".", or otherwise names with no dots, of which names with
825 root 1.149 short names are tried first.
826    
827 root 1.150 =item IO::AIO::READDIR_STAT_ORDER
828 root 1.148
829     When this flag is set, then the names will be returned in an order
830     suitable for stat()'ing each one. That is, when you plan to stat()
831     all files in the given directory, then the returned order will likely
832     be fastest.
833    
834 root 1.150 If both this flag and C<IO::AIO::READDIR_DIRS_FIRST> are specified, then
835     the likely dirs come first, resulting in a less optimal stat order.
836 root 1.148
837 root 1.150 =item IO::AIO::READDIR_FOUND_UNKNOWN
838 root 1.148
839     This flag should not be set when calling C<aio_readdirx>. Instead, it
840     is being set by C<aio_readdirx>, when any of the C<$type>'s found were
841 root 1.207 C<IO::AIO::DT_UNKNOWN>. The absence of this flag therefore indicates that all
842 root 1.148 C<$type>'s are known, which can be used to speed up some algorithms.
843    
844     =back
845 root 1.37
846 root 1.106
847 root 1.279 =item aio_slurp $pathname, $offset, $length, $data, $callback->($status)
848    
849     Opens, reads and closes the given file. The data is put into C<$data>,
850     which is resized as required.
851    
852     If C<$offset> is negative, then it is counted from the end of the file.
853    
854     If C<$length> is zero, then the remaining length of the file is
855     used. Also, in this case, the same limitations to modifying C<$data> apply
856     as when IO::AIO::mmap is used, i.e. it must only be modified in-place
857     with C<substr>. If the size of the file is known, specifying a non-zero
858     C<$length> results in a performance advantage.
859    
860     This request is similar to the older C<aio_load> request, but since it is
861     a single request, it might be more efficient to use.
862    
863     Example: load F</etc/passwd> into C<$passwd>.
864    
865     my $passwd;
866     aio_slurp "/etc/passwd", 0, 0, $passwd, sub {
867     $_[0] >= 0
868     or die "/etc/passwd: $!\n";
869    
870     printf "/etc/passwd is %d bytes long, and contains:\n", length $passwd;
871     print $passwd;
872     };
873     IO::AIO::flush;
874    
875    
876 root 1.209 =item aio_load $pathname, $data, $callback->($status)
877 root 1.98
878     This is a composite request that tries to fully load the given file into
879     memory. Status is the same as with aio_read.
880    
881 root 1.279 Using C<aio_slurp> might be more efficient, as it is a single request.
882    
883 root 1.98 =cut
884    
885     sub aio_load($$;$) {
886 root 1.123 my ($path, undef, $cb) = @_;
887     my $data = \$_[1];
888 root 1.98
889 root 1.123 my $pri = aioreq_pri;
890     my $grp = aio_group $cb;
891    
892     aioreq_pri $pri;
893     add $grp aio_open $path, O_RDONLY, 0, sub {
894     my $fh = shift
895     or return $grp->result (-1);
896 root 1.98
897     aioreq_pri $pri;
898 root 1.123 add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
899     $grp->result ($_[0]);
900 root 1.98 };
901 root 1.123 };
902 root 1.98
903 root 1.123 $grp
904 root 1.98 }
905    
906 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
907    
908     Try to copy the I<file> (directories not supported as either source or
909     destination) from C<$srcpath> to C<$dstpath> and call the callback with
910 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
911 root 1.82
912 root 1.275 Existing destination files will be truncated.
913    
914 root 1.134 This is a composite request that creates the destination file with
915 root 1.82 mode 0200 and copies the contents of the source file into it using
916     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
917     uid/gid, in that order.
918    
919     If an error occurs, the partial destination file will be unlinked, if
920     possible, except when setting atime, mtime, access mode and uid/gid, where
921     errors are being ignored.
922    
923     =cut
924    
925     sub aio_copy($$;$) {
926 root 1.123 my ($src, $dst, $cb) = @_;
927 root 1.82
928 root 1.123 my $pri = aioreq_pri;
929     my $grp = aio_group $cb;
930 root 1.82
931 root 1.123 aioreq_pri $pri;
932     add $grp aio_open $src, O_RDONLY, 0, sub {
933     if (my $src_fh = $_[0]) {
934 root 1.166 my @stat = stat $src_fh; # hmm, might block over nfs?
935 root 1.95
936 root 1.123 aioreq_pri $pri;
937     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
938     if (my $dst_fh = $_[0]) {
939     aioreq_pri $pri;
940     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
941     if ($_[0] == $stat[7]) {
942     $grp->result (0);
943     close $src_fh;
944    
945 root 1.147 my $ch = sub {
946     aioreq_pri $pri;
947     add $grp aio_chmod $dst_fh, $stat[2] & 07777, sub {
948     aioreq_pri $pri;
949     add $grp aio_chown $dst_fh, $stat[4], $stat[5], sub {
950     aioreq_pri $pri;
951     add $grp aio_close $dst_fh;
952     }
953     };
954     };
955 root 1.123
956     aioreq_pri $pri;
957 root 1.147 add $grp aio_utime $dst_fh, $stat[8], $stat[9], sub {
958     if ($_[0] < 0 && $! == ENOSYS) {
959     aioreq_pri $pri;
960     add $grp aio_utime $dst, $stat[8], $stat[9], $ch;
961     } else {
962     $ch->();
963     }
964     };
965 root 1.123 } else {
966     $grp->result (-1);
967     close $src_fh;
968     close $dst_fh;
969    
970     aioreq $pri;
971     add $grp aio_unlink $dst;
972     }
973     };
974     } else {
975     $grp->result (-1);
976     }
977     },
978 root 1.82
979 root 1.123 } else {
980     $grp->result (-1);
981     }
982     };
983 root 1.82
984 root 1.123 $grp
985 root 1.82 }
986    
987     =item aio_move $srcpath, $dstpath, $callback->($status)
988    
989     Try to move the I<file> (directories not supported as either source or
990     destination) from C<$srcpath> to C<$dstpath> and call the callback with
991 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
992 root 1.82
993 root 1.137 This is a composite request that tries to rename(2) the file first; if
994     rename fails with C<EXDEV>, it copies the file with C<aio_copy> and, if
995     that is successful, unlinks the C<$srcpath>.
996 root 1.82
997     =cut
998    
999     sub aio_move($$;$) {
1000 root 1.123 my ($src, $dst, $cb) = @_;
1001 root 1.82
1002 root 1.123 my $pri = aioreq_pri;
1003     my $grp = aio_group $cb;
1004 root 1.82
1005 root 1.123 aioreq_pri $pri;
1006     add $grp aio_rename $src, $dst, sub {
1007     if ($_[0] && $! == EXDEV) {
1008     aioreq_pri $pri;
1009     add $grp aio_copy $src, $dst, sub {
1010     $grp->result ($_[0]);
1011 root 1.95
1012 root 1.196 unless ($_[0]) {
1013 root 1.123 aioreq_pri $pri;
1014     add $grp aio_unlink $src;
1015     }
1016     };
1017     } else {
1018     $grp->result ($_[0]);
1019     }
1020     };
1021 root 1.82
1022 root 1.123 $grp
1023 root 1.82 }
1024    
1025 root 1.209 =item aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
1026 root 1.40
1027 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
1028 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
1029     names, directories you can recurse into (directories), and ones you cannot
1030     recurse into (everything else, including symlinks to directories).
1031 root 1.52
1032 root 1.277 C<aio_scandir> is a composite request that generates many sub requests.
1033 root 1.61 C<$maxreq> specifies the maximum number of outstanding aio requests that
1034     this function generates. If it is C<< <= 0 >>, then a suitable default
1035 root 1.81 will be chosen (currently 4).
1036 root 1.40
1037     On error, the callback is called without arguments, otherwise it receives
1038     two array-refs with path-relative entry names.
1039    
1040     Example:
1041    
1042     aio_scandir $dir, 0, sub {
1043     my ($dirs, $nondirs) = @_;
1044     print "real directories: @$dirs\n";
1045     print "everything else: @$nondirs\n";
1046     };
1047    
1048     Implementation notes.
1049    
1050     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
1051    
1052 root 1.149 If readdir returns file type information, then this is used directly to
1053     find directories.
1054    
1055     Otherwise, after reading the directory, the modification time, size etc.
1056     of the directory before and after the readdir is checked, and if they
1057     match (and isn't the current time), the link count will be used to decide
1058     how many entries are directories (if >= 2). Otherwise, no knowledge of the
1059     number of subdirectories will be assumed.
1060    
1061     Then entries will be sorted into likely directories a non-initial dot
1062     currently) and likely non-directories (see C<aio_readdirx>). Then every
1063     entry plus an appended C</.> will be C<stat>'ed, likely directories first,
1064     in order of their inode numbers. If that succeeds, it assumes that the
1065     entry is a directory or a symlink to directory (which will be checked
1066 root 1.207 separately). This is often faster than stat'ing the entry itself because
1067 root 1.52 filesystems might detect the type of the entry without reading the inode
1068 root 1.149 data (e.g. ext2fs filetype feature), even on systems that cannot return
1069     the filetype information on readdir.
1070 root 1.52
1071     If the known number of directories (link count - 2) has been reached, the
1072     rest of the entries is assumed to be non-directories.
1073    
1074     This only works with certainty on POSIX (= UNIX) filesystems, which
1075     fortunately are the vast majority of filesystems around.
1076    
1077     It will also likely work on non-POSIX filesystems with reduced efficiency
1078     as those tend to return 0 or 1 as link counts, which disables the
1079     directory counting heuristic.
1080 root 1.40
1081     =cut
1082    
1083 root 1.100 sub aio_scandir($$;$) {
1084 root 1.123 my ($path, $maxreq, $cb) = @_;
1085    
1086     my $pri = aioreq_pri;
1087 root 1.40
1088 root 1.123 my $grp = aio_group $cb;
1089 root 1.80
1090 root 1.123 $maxreq = 4 if $maxreq <= 0;
1091 root 1.55
1092 root 1.210 # get a wd object
1093 root 1.123 aioreq_pri $pri;
1094 root 1.210 add $grp aio_wd $path, sub {
1095 root 1.212 $_[0]
1096     or return $grp->result ();
1097    
1098 root 1.210 my $wd = [shift, "."];
1099 root 1.40
1100 root 1.210 # stat once
1101 root 1.80 aioreq_pri $pri;
1102 root 1.210 add $grp aio_stat $wd, sub {
1103     return $grp->result () if $_[0];
1104     my $now = time;
1105     my $hash1 = join ":", (stat _)[0,1,3,7,9];
1106 root 1.40
1107 root 1.210 # read the directory entries
1108 root 1.80 aioreq_pri $pri;
1109 root 1.210 add $grp aio_readdirx $wd, READDIR_DIRS_FIRST, sub {
1110     my $entries = shift
1111     or return $grp->result ();
1112    
1113     # stat the dir another time
1114     aioreq_pri $pri;
1115     add $grp aio_stat $wd, sub {
1116     my $hash2 = join ":", (stat _)[0,1,3,7,9];
1117 root 1.95
1118 root 1.210 my $ndirs;
1119 root 1.95
1120 root 1.210 # take the slow route if anything looks fishy
1121     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
1122     $ndirs = -1;
1123     } else {
1124     # if nlink == 2, we are finished
1125     # for non-posix-fs's, we rely on nlink < 2
1126     $ndirs = (stat _)[3] - 2
1127     or return $grp->result ([], $entries);
1128     }
1129 root 1.123
1130 root 1.210 my (@dirs, @nondirs);
1131 root 1.40
1132 root 1.210 my $statgrp = add $grp aio_group sub {
1133     $grp->result (\@dirs, \@nondirs);
1134     };
1135 root 1.40
1136 root 1.210 limit $statgrp $maxreq;
1137     feed $statgrp sub {
1138     return unless @$entries;
1139     my $entry = shift @$entries;
1140    
1141     aioreq_pri $pri;
1142     $wd->[1] = "$entry/.";
1143     add $statgrp aio_stat $wd, sub {
1144     if ($_[0] < 0) {
1145     push @nondirs, $entry;
1146     } else {
1147     # need to check for real directory
1148     aioreq_pri $pri;
1149     $wd->[1] = $entry;
1150     add $statgrp aio_lstat $wd, sub {
1151     if (-d _) {
1152     push @dirs, $entry;
1153    
1154     unless (--$ndirs) {
1155     push @nondirs, @$entries;
1156     feed $statgrp;
1157     }
1158     } else {
1159     push @nondirs, $entry;
1160 root 1.74 }
1161 root 1.40 }
1162     }
1163 root 1.210 };
1164 root 1.74 };
1165 root 1.40 };
1166     };
1167     };
1168 root 1.123 };
1169 root 1.55
1170 root 1.123 $grp
1171 root 1.40 }
1172    
1173 root 1.209 =item aio_rmtree $pathname, $callback->($status)
1174 root 1.99
1175 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
1176 root 1.239 status of the final C<rmdir> only. This is a composite request that
1177 root 1.100 uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1178     everything else.
1179 root 1.99
1180     =cut
1181    
1182     sub aio_rmtree;
1183 root 1.100 sub aio_rmtree($;$) {
1184 root 1.123 my ($path, $cb) = @_;
1185 root 1.99
1186 root 1.123 my $pri = aioreq_pri;
1187     my $grp = aio_group $cb;
1188 root 1.99
1189 root 1.123 aioreq_pri $pri;
1190     add $grp aio_scandir $path, 0, sub {
1191     my ($dirs, $nondirs) = @_;
1192 root 1.99
1193 root 1.123 my $dirgrp = aio_group sub {
1194     add $grp aio_rmdir $path, sub {
1195     $grp->result ($_[0]);
1196 root 1.99 };
1197 root 1.123 };
1198 root 1.99
1199 root 1.123 (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
1200     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
1201 root 1.99
1202 root 1.123 add $grp $dirgrp;
1203     };
1204 root 1.99
1205 root 1.123 $grp
1206 root 1.99 }
1207    
1208 root 1.259 =item aio_fcntl $fh, $cmd, $arg, $callback->($status)
1209    
1210     =item aio_ioctl $fh, $request, $buf, $callback->($status)
1211    
1212     These work just like the C<fcntl> and C<ioctl> built-in functions, except
1213     they execute asynchronously and pass the return value to the callback.
1214    
1215     Both calls can be used for a lot of things, some of which make more sense
1216     to run asynchronously in their own thread, while some others make less
1217     sense. For example, calls that block waiting for external events, such
1218     as locking, will also lock down an I/O thread while it is waiting, which
1219     can deadlock the whole I/O system. At the same time, there might be no
1220     alternative to using a thread to wait.
1221    
1222     So in general, you should only use these calls for things that do
1223     (filesystem) I/O, not for things that wait for other events (network,
1224     other processes), although if you are careful and know what you are doing,
1225     you still can.
1226    
1227 root 1.264 The following constants are available (missing ones are, as usual C<0>):
1228    
1229 root 1.271 C<F_DUPFD_CLOEXEC>,
1230    
1231     C<F_OFD_GETLK>, C<F_OFD_SETLK>, C<F_OFD_GETLKW>,
1232    
1233 root 1.264 C<FIFREEZE>, C<FITHAW>, C<FITRIM>, C<FICLONE>, C<FICLONERANGE>, C<FIDEDUPERANGE>.
1234    
1235     C<FS_IOC_GETFLAGS>, C<FS_IOC_SETFLAGS>, C<FS_IOC_GETVERSION>, C<FS_IOC_SETVERSION>,
1236     C<FS_IOC_FIEMAP>.
1237    
1238     C<FS_IOC_FSGETXATTR>, C<FS_IOC_FSSETXATTR>, C<FS_IOC_SET_ENCRYPTION_POLICY>,
1239     C<FS_IOC_GET_ENCRYPTION_PWSALT>, C<FS_IOC_GET_ENCRYPTION_POLICY>, C<FS_KEY_DESCRIPTOR_SIZE>.
1240    
1241     C<FS_SECRM_FL>, C<FS_UNRM_FL>, C<FS_COMPR_FL>, C<FS_SYNC_FL>, C<FS_IMMUTABLE_FL>,
1242     C<FS_APPEND_FL>, C<FS_NODUMP_FL>, C<FS_NOATIME_FL>, C<FS_DIRTY_FL>,
1243     C<FS_COMPRBLK_FL>, C<FS_NOCOMP_FL>, C<FS_ENCRYPT_FL>, C<FS_BTREE_FL>,
1244     C<FS_INDEX_FL>, C<FS_JOURNAL_DATA_FL>, C<FS_NOTAIL_FL>, C<FS_DIRSYNC_FL>, C<FS_TOPDIR_FL>,
1245     C<FS_FL_USER_MODIFIABLE>.
1246    
1247     C<FS_XFLAG_REALTIME>, C<FS_XFLAG_PREALLOC>, C<FS_XFLAG_IMMUTABLE>, C<FS_XFLAG_APPEND>,
1248     C<FS_XFLAG_SYNC>, C<FS_XFLAG_NOATIME>, C<FS_XFLAG_NODUMP>, C<FS_XFLAG_RTINHERIT>,
1249     C<FS_XFLAG_PROJINHERIT>, C<FS_XFLAG_NOSYMLINKS>, C<FS_XFLAG_EXTSIZE>, C<FS_XFLAG_EXTSZINHERIT>,
1250     C<FS_XFLAG_NODEFRAG>, C<FS_XFLAG_FILESTREAM>, C<FS_XFLAG_DAX>, C<FS_XFLAG_HASATTR>,
1251    
1252 root 1.119 =item aio_sync $callback->($status)
1253    
1254     Asynchronously call sync and call the callback when finished.
1255    
1256 root 1.40 =item aio_fsync $fh, $callback->($status)
1257 root 1.1
1258     Asynchronously call fsync on the given filehandle and call the callback
1259     with the fsync result code.
1260    
1261 root 1.40 =item aio_fdatasync $fh, $callback->($status)
1262 root 1.1
1263     Asynchronously call fdatasync on the given filehandle and call the
1264 root 1.26 callback with the fdatasync result code.
1265    
1266     If this call isn't available because your OS lacks it or it couldn't be
1267     detected, it will be emulated by calling C<fsync> instead.
1268 root 1.1
1269 root 1.206 =item aio_syncfs $fh, $callback->($status)
1270    
1271     Asynchronously call the syncfs syscall to sync the filesystem associated
1272     to the given filehandle and call the callback with the syncfs result
1273     code. If syncfs is not available, calls sync(), but returns C<-1> and sets
1274     errno to C<ENOSYS> nevertheless.
1275    
1276 root 1.142 =item aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
1277    
1278     Sync the data portion of the file specified by C<$offset> and C<$length>
1279     to disk (but NOT the metadata), by calling the Linux-specific
1280     sync_file_range call. If sync_file_range is not available or it returns
1281     ENOSYS, then fdatasync or fsync is being substituted.
1282    
1283     C<$flags> can be a combination of C<IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE>,
1284     C<IO::AIO::SYNC_FILE_RANGE_WRITE> and
1285     C<IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER>: refer to the sync_file_range
1286     manpage for details.
1287    
1288 root 1.209 =item aio_pathsync $pathname, $callback->($status)
1289 root 1.120
1290     This request tries to open, fsync and close the given path. This is a
1291 root 1.135 composite request intended to sync directories after directory operations
1292 root 1.120 (E.g. rename). This might not work on all operating systems or have any
1293     specific effect, but usually it makes sure that directory changes get
1294     written to disc. It works for anything that can be opened for read-only,
1295     not just directories.
1296    
1297 root 1.162 Future versions of this function might fall back to other methods when
1298     C<fsync> on the directory fails (such as calling C<sync>).
1299    
1300 root 1.120 Passes C<0> when everything went ok, and C<-1> on error.
1301    
1302     =cut
1303    
1304     sub aio_pathsync($;$) {
1305 root 1.123 my ($path, $cb) = @_;
1306    
1307     my $pri = aioreq_pri;
1308     my $grp = aio_group $cb;
1309 root 1.120
1310 root 1.123 aioreq_pri $pri;
1311     add $grp aio_open $path, O_RDONLY, 0, sub {
1312     my ($fh) = @_;
1313     if ($fh) {
1314     aioreq_pri $pri;
1315     add $grp aio_fsync $fh, sub {
1316     $grp->result ($_[0]);
1317 root 1.120
1318     aioreq_pri $pri;
1319 root 1.123 add $grp aio_close $fh;
1320     };
1321     } else {
1322     $grp->result (-1);
1323     }
1324     };
1325 root 1.120
1326 root 1.123 $grp
1327 root 1.120 }
1328    
1329 root 1.268 =item aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
1330 root 1.170
1331     This is a rather advanced IO::AIO call, which only works on mmap(2)ed
1332 root 1.176 scalars (see the C<IO::AIO::mmap> function, although it also works on data
1333     scalars managed by the L<Sys::Mmap> or L<Mmap> modules, note that the
1334     scalar must only be modified in-place while an aio operation is pending on
1335     it).
1336 root 1.170
1337     It calls the C<msync> function of your OS, if available, with the memory
1338     area starting at C<$offset> in the string and ending C<$length> bytes
1339     later. If C<$length> is negative, counts from the end, and if C<$length>
1340     is C<undef>, then it goes till the end of the string. The flags can be
1341 root 1.268 either C<IO::AIO::MS_ASYNC> or C<IO::AIO::MS_SYNC>, plus an optional
1342     C<IO::AIO::MS_INVALIDATE>.
1343 root 1.170
1344     =item aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1345    
1346     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1347     scalars.
1348    
1349     It touches (reads or writes) all memory pages in the specified
1350 root 1.239 range inside the scalar. All caveats and parameters are the same
1351 root 1.170 as for C<aio_msync>, above, except for flags, which must be either
1352     C<0> (which reads all pages and ensures they are instantiated) or
1353 root 1.239 C<IO::AIO::MT_MODIFY>, which modifies the memory pages (by reading and
1354 root 1.170 writing an octet from it, which dirties the page).
1355    
1356 root 1.182 =item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1357    
1358     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1359     scalars.
1360    
1361     It reads in all the pages of the underlying storage into memory (if any)
1362     and locks them, so they are not getting swapped/paged out or removed.
1363    
1364     If C<$length> is undefined, then the scalar will be locked till the end.
1365    
1366     On systems that do not implement C<mlock>, this function returns C<-1>
1367     and sets errno to C<ENOSYS>.
1368    
1369     Note that the corresponding C<munlock> is synchronous and is
1370     documented under L<MISCELLANEOUS FUNCTIONS>.
1371    
1372 root 1.183 Example: open a file, mmap and mlock it - both will be undone when
1373     C<$data> gets destroyed.
1374    
1375     open my $fh, "<", $path or die "$path: $!";
1376     my $data;
1377     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1378     aio_mlock $data; # mlock in background
1379    
1380 root 1.182 =item aio_mlockall $flags, $callback->($status)
1381    
1382     Calls the C<mlockall> function with the given C<$flags> (a combination of
1383     C<IO::AIO::MCL_CURRENT> and C<IO::AIO::MCL_FUTURE>).
1384    
1385     On systems that do not implement C<mlockall>, this function returns C<-1>
1386     and sets errno to C<ENOSYS>.
1387    
1388     Note that the corresponding C<munlockall> is synchronous and is
1389     documented under L<MISCELLANEOUS FUNCTIONS>.
1390    
1391 root 1.183 Example: asynchronously lock all current and future pages into memory.
1392    
1393     aio_mlockall IO::AIO::MCL_FUTURE;
1394    
1395 root 1.223 =item aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
1396    
1397 root 1.234 Queries the extents of the given file (by calling the Linux C<FIEMAP>
1398     ioctl, see L<http://cvs.schmorp.de/IO-AIO/doc/fiemap.txt> for details). If
1399     the ioctl is not available on your OS, then this request will fail with
1400 root 1.223 C<ENOSYS>.
1401    
1402     C<$start> is the starting offset to query extents for, C<$length> is the
1403     size of the range to query - if it is C<undef>, then the whole file will
1404     be queried.
1405    
1406     C<$flags> is a combination of flags (C<IO::AIO::FIEMAP_FLAG_SYNC> or
1407     C<IO::AIO::FIEMAP_FLAG_XATTR> - C<IO::AIO::FIEMAP_FLAGS_COMPAT> is also
1408     exported), and is normally C<0> or C<IO::AIO::FIEMAP_FLAG_SYNC> to query
1409     the data portion.
1410    
1411     C<$count> is the maximum number of extent records to return. If it is
1412 root 1.232 C<undef>, then IO::AIO queries all extents of the range. As a very special
1413 root 1.223 case, if it is C<0>, then the callback receives the number of extents
1414 root 1.232 instead of the extents themselves (which is unreliable, see below).
1415 root 1.223
1416     If an error occurs, the callback receives no arguments. The special
1417     C<errno> value C<IO::AIO::EBADR> is available to test for flag errors.
1418    
1419     Otherwise, the callback receives an array reference with extent
1420     structures. Each extent structure is an array reference itself, with the
1421     following members:
1422    
1423     [$logical, $physical, $length, $flags]
1424    
1425     Flags is any combination of the following flag values (typically either C<0>
1426 root 1.231 or C<IO::AIO::FIEMAP_EXTENT_LAST> (1)):
1427 root 1.223
1428     C<IO::AIO::FIEMAP_EXTENT_LAST>, C<IO::AIO::FIEMAP_EXTENT_UNKNOWN>,
1429     C<IO::AIO::FIEMAP_EXTENT_DELALLOC>, C<IO::AIO::FIEMAP_EXTENT_ENCODED>,
1430     C<IO::AIO::FIEMAP_EXTENT_DATA_ENCRYPTED>, C<IO::AIO::FIEMAP_EXTENT_NOT_ALIGNED>,
1431     C<IO::AIO::FIEMAP_EXTENT_DATA_INLINE>, C<IO::AIO::FIEMAP_EXTENT_DATA_TAIL>,
1432     C<IO::AIO::FIEMAP_EXTENT_UNWRITTEN>, C<IO::AIO::FIEMAP_EXTENT_MERGED> or
1433     C<IO::AIO::FIEMAP_EXTENT_SHARED>.
1434    
1435 root 1.278 At the time of this writing (Linux 3.2), this request is unreliable unless
1436 root 1.232 C<$count> is C<undef>, as the kernel has all sorts of bugs preventing
1437 root 1.278 it to return all extents of a range for files with a large number of
1438     extents. The code (only) works around all these issues if C<$count> is
1439     C<undef>.
1440 root 1.232
1441 root 1.58 =item aio_group $callback->(...)
1442 root 1.54
1443 root 1.55 This is a very special aio request: Instead of doing something, it is a
1444     container for other aio requests, which is useful if you want to bundle
1445 root 1.71 many requests into a single, composite, request with a definite callback
1446     and the ability to cancel the whole request with its subrequests.
1447 root 1.55
1448     Returns an object of class L<IO::AIO::GRP>. See its documentation below
1449     for more info.
1450    
1451     Example:
1452    
1453     my $grp = aio_group sub {
1454     print "all stats done\n";
1455     };
1456    
1457     add $grp
1458     (aio_stat ...),
1459     (aio_stat ...),
1460     ...;
1461    
1462 root 1.63 =item aio_nop $callback->()
1463    
1464     This is a special request - it does nothing in itself and is only used for
1465     side effects, such as when you want to add a dummy request to a group so
1466     that finishing the requests in the group depends on executing the given
1467     code.
1468    
1469 root 1.64 While this request does nothing, it still goes through the execution
1470     phase and still requires a worker thread. Thus, the callback will not
1471     be executed immediately but only after other requests in the queue have
1472     entered their execution phase. This can be used to measure request
1473     latency.
1474    
1475 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1476 root 1.54
1477     Mainly used for debugging and benchmarking, this aio request puts one of
1478     the request workers to sleep for the given time.
1479    
1480 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1481 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1482     immense (it blocks a thread for a long time) so do not use this function
1483     except to put your application under artificial I/O pressure.
1484 root 1.56
1485 root 1.5 =back
1486    
1487 root 1.209
1488     =head2 IO::AIO::WD - multiple working directories
1489    
1490     Your process only has one current working directory, which is used by all
1491     threads. This makes it hard to use relative paths (some other component
1492     could call C<chdir> at any time, and it is hard to control when the path
1493     will be used by IO::AIO).
1494    
1495     One solution for this is to always use absolute paths. This usually works,
1496     but can be quite slow (the kernel has to walk the whole path on every
1497     access), and can also be a hassle to implement.
1498    
1499     Newer POSIX systems have a number of functions (openat, fdopendir,
1500     futimensat and so on) that make it possible to specify working directories
1501     per operation.
1502    
1503     For portability, and because the clowns who "designed", or shall I write,
1504     perpetrated this new interface were obviously half-drunk, this abstraction
1505     cannot be perfect, though.
1506    
1507     IO::AIO allows you to convert directory paths into a so-called IO::AIO::WD
1508     object. This object stores the canonicalised, absolute version of the
1509     path, and on systems that allow it, also a directory file descriptor.
1510    
1511     Everywhere where a pathname is accepted by IO::AIO (e.g. in C<aio_stat>
1512     or C<aio_unlink>), one can specify an array reference with an IO::AIO::WD
1513 root 1.214 object and a pathname instead (or the IO::AIO::WD object alone, which
1514     gets interpreted as C<[$wd, "."]>). If the pathname is absolute, the
1515 root 1.213 IO::AIO::WD object is ignored, otherwise the pathname is resolved relative
1516 root 1.209 to that IO::AIO::WD object.
1517    
1518     For example, to get a wd object for F</etc> and then stat F<passwd>
1519     inside, you would write:
1520    
1521     aio_wd "/etc", sub {
1522     my $etcdir = shift;
1523    
1524     # although $etcdir can be undef on error, there is generally no reason
1525     # to check for errors here, as aio_stat will fail with ENOENT
1526     # when $etcdir is undef.
1527    
1528     aio_stat [$etcdir, "passwd"], sub {
1529     # yay
1530     };
1531     };
1532    
1533 root 1.250 The fact that C<aio_wd> is a request and not a normal function shows that
1534     creating an IO::AIO::WD object is itself a potentially blocking operation,
1535     which is why it is done asynchronously.
1536 root 1.214
1537     To stat the directory obtained with C<aio_wd> above, one could write
1538     either of the following three request calls:
1539    
1540     aio_lstat "/etc" , sub { ... # pathname as normal string
1541     aio_lstat [$wd, "."], sub { ... # "." relative to $wd (i.e. $wd itself)
1542     aio_lstat $wd , sub { ... # shorthand for the previous
1543 root 1.209
1544     As with normal pathnames, IO::AIO keeps a copy of the working directory
1545     object and the pathname string, so you could write the following without
1546     causing any issues due to C<$path> getting reused:
1547    
1548     my $path = [$wd, undef];
1549    
1550     for my $name (qw(abc def ghi)) {
1551     $path->[1] = $name;
1552     aio_stat $path, sub {
1553     # ...
1554     };
1555     }
1556    
1557     There are some caveats: when directories get renamed (or deleted), the
1558     pathname string doesn't change, so will point to the new directory (or
1559     nowhere at all), while the directory fd, if available on the system,
1560     will still point to the original directory. Most functions accepting a
1561     pathname will use the directory fd on newer systems, and the string on
1562 root 1.277 older systems. Some functions (such as C<aio_realpath>) will always rely on
1563     the string form of the pathname.
1564 root 1.209
1565 root 1.239 So this functionality is mainly useful to get some protection against
1566 root 1.209 C<chdir>, to easily get an absolute path out of a relative path for future
1567     reference, and to speed up doing many operations in the same directory
1568     (e.g. when stat'ing all files in a directory).
1569    
1570     The following functions implement this working directory abstraction:
1571    
1572     =over 4
1573    
1574     =item aio_wd $pathname, $callback->($wd)
1575    
1576     Asynchonously canonicalise the given pathname and convert it to an
1577     IO::AIO::WD object representing it. If possible and supported on the
1578     system, also open a directory fd to speed up pathname resolution relative
1579     to this working directory.
1580    
1581     If something goes wrong, then C<undef> is passwd to the callback instead
1582     of a working directory object and C<$!> is set appropriately. Since
1583     passing C<undef> as working directory component of a pathname fails the
1584     request with C<ENOENT>, there is often no need for error checking in the
1585     C<aio_wd> callback, as future requests using the value will fail in the
1586     expected way.
1587    
1588     =item IO::AIO::CWD
1589    
1590     This is a compiletime constant (object) that represents the process
1591     current working directory.
1592    
1593 root 1.239 Specifying this object as working directory object for a pathname is as if
1594     the pathname would be specified directly, without a directory object. For
1595     example, these calls are functionally identical:
1596 root 1.209
1597     aio_stat "somefile", sub { ... };
1598     aio_stat [IO::AIO::CWD, "somefile"], sub { ... };
1599    
1600     =back
1601    
1602 root 1.239 To recover the path associated with an IO::AIO::WD object, you can use
1603     C<aio_realpath>:
1604    
1605     aio_realpath $wd, sub {
1606     warn "path is $_[0]\n";
1607     };
1608    
1609 root 1.241 Currently, C<aio_statvfs> always, and C<aio_rename> and C<aio_rmdir>
1610     sometimes, fall back to using an absolue path.
1611 root 1.209
1612 root 1.53 =head2 IO::AIO::REQ CLASS
1613 root 1.52
1614     All non-aggregate C<aio_*> functions return an object of this class when
1615     called in non-void context.
1616    
1617     =over 4
1618    
1619 root 1.65 =item cancel $req
1620 root 1.52
1621     Cancels the request, if possible. Has the effect of skipping execution
1622     when entering the B<execute> state and skipping calling the callback when
1623     entering the the B<result> state, but will leave the request otherwise
1624 root 1.151 untouched (with the exception of readdir). That means that requests that
1625     currently execute will not be stopped and resources held by the request
1626     will not be freed prematurely.
1627 root 1.52
1628 root 1.65 =item cb $req $callback->(...)
1629    
1630     Replace (or simply set) the callback registered to the request.
1631    
1632 root 1.52 =back
1633    
1634 root 1.55 =head2 IO::AIO::GRP CLASS
1635    
1636     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1637     objects of this class, too.
1638    
1639     A IO::AIO::GRP object is a special request that can contain multiple other
1640     aio requests.
1641    
1642     You create one by calling the C<aio_group> constructing function with a
1643     callback that will be called when all contained requests have entered the
1644     C<done> state:
1645    
1646     my $grp = aio_group sub {
1647     print "all requests are done\n";
1648     };
1649    
1650     You add requests by calling the C<add> method with one or more
1651     C<IO::AIO::REQ> objects:
1652    
1653     $grp->add (aio_unlink "...");
1654    
1655 root 1.58 add $grp aio_stat "...", sub {
1656     $_[0] or return $grp->result ("error");
1657    
1658     # add another request dynamically, if first succeeded
1659     add $grp aio_open "...", sub {
1660     $grp->result ("ok");
1661     };
1662     };
1663 root 1.55
1664     This makes it very easy to create composite requests (see the source of
1665     C<aio_move> for an application) that work and feel like simple requests.
1666    
1667 root 1.62 =over 4
1668    
1669     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1670 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1671    
1672 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1673 root 1.59 only the request itself, but also all requests it contains.
1674 root 1.55
1675 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1676 root 1.55
1677 root 1.62 =item * You must not add requests to a group from within the group callback (or
1678 root 1.60 any later time).
1679    
1680 root 1.62 =back
1681    
1682 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1683     will finish very quickly. If they contain only requests that are in the
1684     C<done> state, they will also finish. Otherwise they will continue to
1685     exist.
1686    
1687 root 1.133 That means after creating a group you have some time to add requests
1688     (precisely before the callback has been invoked, which is only done within
1689     the C<poll_cb>). And in the callbacks of those requests, you can add
1690     further requests to the group. And only when all those requests have
1691     finished will the the group itself finish.
1692 root 1.57
1693 root 1.55 =over 4
1694    
1695 root 1.65 =item add $grp ...
1696    
1697 root 1.55 =item $grp->add (...)
1698    
1699 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1700     be added, including other groups, as long as you do not create circular
1701     dependencies.
1702    
1703     Returns all its arguments.
1704 root 1.55
1705 root 1.74 =item $grp->cancel_subs
1706    
1707     Cancel all subrequests and clears any feeder, but not the group request
1708     itself. Useful when you queued a lot of events but got a result early.
1709    
1710 root 1.168 The group request will finish normally (you cannot add requests to the
1711     group).
1712    
1713 root 1.58 =item $grp->result (...)
1714    
1715     Set the result value(s) that will be passed to the group callback when all
1716 root 1.120 subrequests have finished and set the groups errno to the current value
1717 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1718     no argument will be passed and errno is zero.
1719    
1720     =item $grp->errno ([$errno])
1721    
1722     Sets the group errno value to C<$errno>, or the current value of errno
1723     when the argument is missing.
1724    
1725     Every aio request has an associated errno value that is restored when
1726     the callback is invoked. This method lets you change this value from its
1727     default (0).
1728    
1729     Calling C<result> will also set errno, so make sure you either set C<$!>
1730     before the call to C<result>, or call c<errno> after it.
1731 root 1.58
1732 root 1.65 =item feed $grp $callback->($grp)
1733 root 1.60
1734     Sets a feeder/generator on this group: every group can have an attached
1735     generator that generates requests if idle. The idea behind this is that,
1736     although you could just queue as many requests as you want in a group,
1737 root 1.139 this might starve other requests for a potentially long time. For example,
1738 root 1.211 C<aio_scandir> might generate hundreds of thousands of C<aio_stat>
1739     requests, delaying any later requests for a long time.
1740 root 1.60
1741     To avoid this, and allow incremental generation of requests, you can
1742     instead a group and set a feeder on it that generates those requests. The
1743 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1744 root 1.60 below) requests active in the group itself and is expected to queue more
1745     requests.
1746    
1747 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1748     not impose any limits).
1749 root 1.60
1750 root 1.65 If the feed does not queue more requests when called, it will be
1751 root 1.60 automatically removed from the group.
1752    
1753 root 1.138 If the feed limit is C<0> when this method is called, it will be set to
1754     C<2> automatically.
1755 root 1.60
1756     Example:
1757    
1758     # stat all files in @files, but only ever use four aio requests concurrently:
1759    
1760     my $grp = aio_group sub { print "finished\n" };
1761 root 1.68 limit $grp 4;
1762 root 1.65 feed $grp sub {
1763 root 1.60 my $file = pop @files
1764     or return;
1765    
1766     add $grp aio_stat $file, sub { ... };
1767 root 1.65 };
1768 root 1.60
1769 root 1.68 =item limit $grp $num
1770 root 1.60
1771     Sets the feeder limit for the group: The feeder will be called whenever
1772     the group contains less than this many requests.
1773    
1774     Setting the limit to C<0> will pause the feeding process.
1775    
1776 root 1.138 The default value for the limit is C<0>, but note that setting a feeder
1777     automatically bumps it up to C<2>.
1778    
1779 root 1.55 =back
1780    
1781 root 1.5 =head2 SUPPORT FUNCTIONS
1782    
1783 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1784    
1785 root 1.5 =over 4
1786    
1787     =item $fileno = IO::AIO::poll_fileno
1788    
1789 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1790 root 1.156 polled for reading by some mechanism outside this module (e.g. EV, Glib,
1791     select and so on, see below or the SYNOPSIS). If the pipe becomes readable
1792     you have to call C<poll_cb> to check the results.
1793 root 1.5
1794     See C<poll_cb> for an example.
1795    
1796     =item IO::AIO::poll_cb
1797    
1798 root 1.240 Process some requests that have reached the result phase (i.e. they have
1799     been executed but the results are not yet reported). You have to call
1800     this "regularly" to finish outstanding requests.
1801    
1802     Returns C<0> if all events could be processed (or there were no
1803     events to process), or C<-1> if it returned earlier for whatever
1804     reason. Returns immediately when no events are outstanding. The amount
1805     of events processed depends on the settings of C<IO::AIO::max_poll_req>,
1806     C<IO::AIO::max_poll_time> and C<IO::AIO::max_outstanding>.
1807    
1808     If not all requests were processed for whatever reason, the poll file
1809     descriptor will still be ready when C<poll_cb> returns, so normally you
1810     don't have to do anything special to have it called later.
1811 root 1.78
1812 root 1.192 Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes
1813     ready, it can be beneficial to call this function from loops which submit
1814     a lot of requests, to make sure the results get processed when they become
1815     available and not just when the loop is finished and the event loop takes
1816     over again. This function returns very fast when there are no outstanding
1817     requests.
1818    
1819 root 1.20 Example: Install an Event watcher that automatically calls
1820 root 1.156 IO::AIO::poll_cb with high priority (more examples can be found in the
1821     SYNOPSIS section, at the top of this document):
1822 root 1.5
1823     Event->io (fd => IO::AIO::poll_fileno,
1824     poll => 'r', async => 1,
1825     cb => \&IO::AIO::poll_cb);
1826    
1827 root 1.175 =item IO::AIO::poll_wait
1828    
1829 root 1.240 Wait until either at least one request is in the result phase or no
1830     requests are outstanding anymore.
1831    
1832     This is useful if you want to synchronously wait for some requests to
1833     become ready, without actually handling them.
1834 root 1.175
1835     See C<nreqs> for an example.
1836    
1837     =item IO::AIO::poll
1838    
1839     Waits until some requests have been handled.
1840    
1841     Returns the number of requests processed, but is otherwise strictly
1842     equivalent to:
1843    
1844     IO::AIO::poll_wait, IO::AIO::poll_cb
1845    
1846     =item IO::AIO::flush
1847    
1848     Wait till all outstanding AIO requests have been handled.
1849    
1850     Strictly equivalent to:
1851    
1852     IO::AIO::poll_wait, IO::AIO::poll_cb
1853     while IO::AIO::nreqs;
1854    
1855 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1856    
1857     =item IO::AIO::max_poll_time $seconds
1858    
1859     These set the maximum number of requests (default C<0>, meaning infinity)
1860     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1861     the maximum amount of time (default C<0>, meaning infinity) spent in
1862     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1863     of time C<poll_cb> is allowed to use).
1864 root 1.78
1865 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1866     syscall per request processed, which is not normally a problem unless your
1867     callbacks are really really fast or your OS is really really slow (I am
1868     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1869    
1870 root 1.86 Setting these is useful if you want to ensure some level of
1871     interactiveness when perl is not fast enough to process all requests in
1872     time.
1873 root 1.78
1874 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
1875 root 1.78
1876     Example: Install an Event watcher that automatically calls
1877 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
1878 root 1.78 program get the CPU sometimes even under high AIO load.
1879    
1880 root 1.86 # try not to spend much more than 0.1s in poll_cb
1881     IO::AIO::max_poll_time 0.1;
1882    
1883     # use a low priority so other tasks have priority
1884 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
1885     poll => 'r', nice => 1,
1886 root 1.86 cb => &IO::AIO::poll_cb);
1887 root 1.78
1888 root 1.104 =back
1889    
1890 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
1891 root 1.13
1892 root 1.105 =over
1893    
1894 root 1.5 =item IO::AIO::min_parallel $nthreads
1895    
1896 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
1897     default is C<8>, which means eight asynchronous operations can execute
1898     concurrently at any one time (the number of outstanding requests,
1899     however, is unlimited).
1900 root 1.5
1901 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
1902 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
1903     create demand for a hundred threads, even if it turns out that everything
1904     is in the cache and could have been processed faster by a single thread.
1905 root 1.34
1906 root 1.61 It is recommended to keep the number of threads relatively low, as some
1907     Linux kernel versions will scale negatively with the number of threads
1908     (higher parallelity => MUCH higher latency). With current Linux 2.6
1909     versions, 4-32 threads should be fine.
1910 root 1.5
1911 root 1.34 Under most circumstances you don't need to call this function, as the
1912     module selects a default that is suitable for low to moderate load.
1913 root 1.5
1914     =item IO::AIO::max_parallel $nthreads
1915    
1916 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
1917     specified number of threads are currently running, this function kills
1918     them. This function blocks until the limit is reached.
1919    
1920     While C<$nthreads> are zero, aio requests get queued but not executed
1921     until the number of threads has been increased again.
1922 root 1.5
1923     This module automatically runs C<max_parallel 0> at program end, to ensure
1924     that all threads are killed and that there are no outstanding requests.
1925    
1926     Under normal circumstances you don't need to call this function.
1927    
1928 root 1.86 =item IO::AIO::max_idle $nthreads
1929    
1930 root 1.188 Limit the number of threads (default: 4) that are allowed to idle
1931     (i.e., threads that did not get a request to process within the idle
1932     timeout (default: 10 seconds). That means if a thread becomes idle while
1933     C<$nthreads> other threads are also idle, it will free its resources and
1934     exit.
1935 root 1.86
1936     This is useful when you allow a large number of threads (e.g. 100 or 1000)
1937     to allow for extremely high load situations, but want to free resources
1938     under normal circumstances (1000 threads can easily consume 30MB of RAM).
1939    
1940     The default is probably ok in most situations, especially if thread
1941     creation is fast. If thread creation is very slow on your system you might
1942     want to use larger values.
1943    
1944 root 1.188 =item IO::AIO::idle_timeout $seconds
1945    
1946     Sets the minimum idle timeout (default 10) after which worker threads are
1947     allowed to exit. SEe C<IO::AIO::max_idle>.
1948    
1949 root 1.123 =item IO::AIO::max_outstanding $maxreqs
1950 root 1.5
1951 root 1.195 Sets the maximum number of outstanding requests to C<$nreqs>. If
1952     you do queue up more than this number of requests, the next call to
1953     C<IO::AIO::poll_cb> (and other functions calling C<poll_cb>, such as
1954     C<IO::AIO::flush> or C<IO::AIO::poll>) will block until the limit is no
1955     longer exceeded.
1956    
1957     In other words, this setting does not enforce a queue limit, but can be
1958     used to make poll functions block if the limit is exceeded.
1959    
1960 root 1.79 This is a very bad function to use in interactive programs because it
1961     blocks, and a bad way to reduce concurrency because it is inexact: Better
1962     use an C<aio_group> together with a feed callback.
1963    
1964 root 1.248 Its main use is in scripts without an event loop - when you want to stat
1965 root 1.274 a lot of files, you can write something like this:
1966 root 1.195
1967     IO::AIO::max_outstanding 32;
1968    
1969     for my $path (...) {
1970     aio_stat $path , ...;
1971     IO::AIO::poll_cb;
1972     }
1973    
1974     IO::AIO::flush;
1975    
1976     The call to C<poll_cb> inside the loop will normally return instantly, but
1977     as soon as more thna C<32> reqeusts are in-flight, it will block until
1978     some requests have been handled. This keeps the loop from pushing a large
1979     number of C<aio_stat> requests onto the queue.
1980    
1981     The default value for C<max_outstanding> is very large, so there is no
1982     practical limit on the number of outstanding requests.
1983 root 1.5
1984 root 1.104 =back
1985    
1986 root 1.86 =head3 STATISTICAL INFORMATION
1987    
1988 root 1.104 =over
1989    
1990 root 1.86 =item IO::AIO::nreqs
1991    
1992     Returns the number of requests currently in the ready, execute or pending
1993     states (i.e. for which their callback has not been invoked yet).
1994    
1995     Example: wait till there are no outstanding requests anymore:
1996    
1997     IO::AIO::poll_wait, IO::AIO::poll_cb
1998     while IO::AIO::nreqs;
1999    
2000     =item IO::AIO::nready
2001    
2002     Returns the number of requests currently in the ready state (not yet
2003     executed).
2004    
2005     =item IO::AIO::npending
2006    
2007     Returns the number of requests currently in the pending state (executed,
2008     but not yet processed by poll_cb).
2009    
2010 root 1.5 =back
2011    
2012 root 1.157 =head3 MISCELLANEOUS FUNCTIONS
2013    
2014 root 1.248 IO::AIO implements some functions that are useful when you want to use
2015     some "Advanced I/O" function not available to in Perl, without going the
2016     "Asynchronous I/O" route. Many of these have an asynchronous C<aio_*>
2017     counterpart.
2018 root 1.157
2019     =over 4
2020    
2021 root 1.275 =item $numfd = IO::AIO::get_fdlimit
2022    
2023 root 1.278 This function is I<EXPERIMENTAL> and subject to change.
2024    
2025 root 1.275 Tries to find the current file descriptor limit and returns it, or
2026     C<undef> and sets C<$!> in case of an error. The limit is one larger than
2027     the highest valid file descriptor number.
2028    
2029     =item IO::AIO::min_fdlimit [$numfd]
2030    
2031 root 1.278 This function is I<EXPERIMENTAL> and subject to change.
2032    
2033 root 1.275 Try to increase the current file descriptor limit(s) to at least C<$numfd>
2034     by changing the soft or hard file descriptor resource limit. If C<$numfd>
2035     is missing, it will try to set a very high limit, although this is not
2036     recommended when you know the actual minimum that you require.
2037    
2038     If the limit cannot be raised enough, the function makes a best-effort
2039     attempt to increase the limit as much as possible, using various
2040     tricks, while still failing. You can query the resulting limit using
2041     C<IO::AIO::get_fdlimit>.
2042    
2043 root 1.276 If an error occurs, returns C<undef> and sets C<$!>, otherwise returns
2044     true.
2045 root 1.275
2046 root 1.157 =item IO::AIO::sendfile $ofh, $ifh, $offset, $count
2047    
2048     Calls the C<eio_sendfile_sync> function, which is like C<aio_sendfile>,
2049     but is blocking (this makes most sense if you know the input data is
2050     likely cached already and the output filehandle is set to non-blocking
2051     operations).
2052    
2053     Returns the number of bytes copied, or C<-1> on error.
2054    
2055     =item IO::AIO::fadvise $fh, $offset, $len, $advice
2056    
2057 root 1.184 Simply calls the C<posix_fadvise> function (see its
2058 root 1.157 manpage for details). The following advice constants are
2059 root 1.207 available: C<IO::AIO::FADV_NORMAL>, C<IO::AIO::FADV_SEQUENTIAL>,
2060 root 1.157 C<IO::AIO::FADV_RANDOM>, C<IO::AIO::FADV_NOREUSE>,
2061     C<IO::AIO::FADV_WILLNEED>, C<IO::AIO::FADV_DONTNEED>.
2062    
2063     On systems that do not implement C<posix_fadvise>, this function returns
2064     ENOSYS, otherwise the return value of C<posix_fadvise>.
2065    
2066 root 1.184 =item IO::AIO::madvise $scalar, $offset, $len, $advice
2067    
2068     Simply calls the C<posix_madvise> function (see its
2069     manpage for details). The following advice constants are
2070 root 1.207 available: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
2071 root 1.272 C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>,
2072     C<IO::AIO::MADV_DONTNEED>.
2073 root 1.184
2074 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2075     the remaining length of the C<$scalar> is used. If possible, C<$length>
2076     will be reduced to fit into the C<$scalar>.
2077    
2078 root 1.184 On systems that do not implement C<posix_madvise>, this function returns
2079     ENOSYS, otherwise the return value of C<posix_madvise>.
2080    
2081     =item IO::AIO::mprotect $scalar, $offset, $len, $protect
2082    
2083     Simply calls the C<mprotect> function on the preferably AIO::mmap'ed
2084     $scalar (see its manpage for details). The following protect
2085 root 1.207 constants are available: C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_READ>,
2086 root 1.184 C<IO::AIO::PROT_WRITE>, C<IO::AIO::PROT_EXEC>.
2087    
2088 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2089     the remaining length of the C<$scalar> is used. If possible, C<$length>
2090     will be reduced to fit into the C<$scalar>.
2091    
2092 root 1.184 On systems that do not implement C<mprotect>, this function returns
2093     ENOSYS, otherwise the return value of C<mprotect>.
2094    
2095 root 1.176 =item IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
2096    
2097     Memory-maps a file (or anonymous memory range) and attaches it to the
2098 root 1.228 given C<$scalar>, which will act like a string scalar. Returns true on
2099     success, and false otherwise.
2100 root 1.176
2101 root 1.268 The scalar must exist, but its contents do not matter - this means you
2102     cannot use a nonexistant array or hash element. When in doubt, C<undef>
2103     the scalar first.
2104    
2105     The only operations allowed on the mmapped scalar are C<substr>/C<vec>,
2106     which don't change the string length, and most read-only operations such
2107     as copying it or searching it with regexes and so on.
2108 root 1.176
2109     Anything else is unsafe and will, at best, result in memory leaks.
2110    
2111     The memory map associated with the C<$scalar> is automatically removed
2112 root 1.268 when the C<$scalar> is undef'd or destroyed, or when the C<IO::AIO::mmap>
2113     or C<IO::AIO::munmap> functions are called on it.
2114 root 1.176
2115     This calls the C<mmap>(2) function internally. See your system's manual
2116     page for details on the C<$length>, C<$prot> and C<$flags> parameters.
2117    
2118     The C<$length> must be larger than zero and smaller than the actual
2119     filesize.
2120    
2121     C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
2122     C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
2123    
2124 root 1.256 C<$flags> can be a combination of
2125     C<IO::AIO::MAP_SHARED> or
2126     C<IO::AIO::MAP_PRIVATE>,
2127     or a number of system-specific flags (when not available, the are C<0>):
2128     C<IO::AIO::MAP_ANONYMOUS> (which is set to C<MAP_ANON> if your system only provides this constant),
2129     C<IO::AIO::MAP_LOCKED>,
2130     C<IO::AIO::MAP_NORESERVE>,
2131     C<IO::AIO::MAP_POPULATE>,
2132     C<IO::AIO::MAP_NONBLOCK>,
2133     C<IO::AIO::MAP_FIXED>,
2134     C<IO::AIO::MAP_GROWSDOWN>,
2135     C<IO::AIO::MAP_32BIT>,
2136     C<IO::AIO::MAP_HUGETLB> or
2137     C<IO::AIO::MAP_STACK>.
2138 root 1.176
2139     If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
2140    
2141 root 1.179 C<$offset> is the offset from the start of the file - it generally must be
2142     a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
2143    
2144 root 1.177 Example:
2145    
2146     use Digest::MD5;
2147     use IO::AIO;
2148    
2149     open my $fh, "<verybigfile"
2150     or die "$!";
2151    
2152     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
2153     or die "verybigfile: $!";
2154    
2155     my $fast_md5 = md5 $data;
2156    
2157 root 1.176 =item IO::AIO::munmap $scalar
2158    
2159     Removes a previous mmap and undefines the C<$scalar>.
2160    
2161 root 1.182 =item IO::AIO::munlock $scalar, $offset = 0, $length = undef
2162 root 1.174
2163 root 1.182 Calls the C<munlock> function, undoing the effects of a previous
2164     C<aio_mlock> call (see its description for details).
2165 root 1.174
2166     =item IO::AIO::munlockall
2167    
2168     Calls the C<munlockall> function.
2169    
2170     On systems that do not implement C<munlockall>, this function returns
2171     ENOSYS, otherwise the return value of C<munlockall>.
2172    
2173 root 1.225 =item IO::AIO::splice $r_fh, $r_off, $w_fh, $w_off, $length, $flags
2174    
2175     Calls the GNU/Linux C<splice(2)> syscall, if available. If C<$r_off> or
2176     C<$w_off> are C<undef>, then C<NULL> is passed for these, otherwise they
2177     should be the file offset.
2178    
2179 root 1.227 C<$r_fh> and C<$w_fh> should not refer to the same file, as splice might
2180     silently corrupt the data in this case.
2181    
2182 root 1.225 The following symbol flag values are available: C<IO::AIO::SPLICE_F_MOVE>,
2183     C<IO::AIO::SPLICE_F_NONBLOCK>, C<IO::AIO::SPLICE_F_MORE> and
2184     C<IO::AIO::SPLICE_F_GIFT>.
2185    
2186     See the C<splice(2)> manpage for details.
2187    
2188     =item IO::AIO::tee $r_fh, $w_fh, $length, $flags
2189    
2190 root 1.248 Calls the GNU/Linux C<tee(2)> syscall, see its manpage and the
2191 root 1.225 description for C<IO::AIO::splice> above for details.
2192    
2193 root 1.243 =item $actual_size = IO::AIO::pipesize $r_fh[, $new_size]
2194    
2195     Attempts to query or change the pipe buffer size. Obviously works only
2196     on pipes, and currently works only on GNU/Linux systems, and fails with
2197     C<-1>/C<ENOSYS> everywhere else. If anybody knows how to influence pipe buffer
2198     size on other systems, drop me a note.
2199    
2200 root 1.253 =item ($rfh, $wfh) = IO::AIO::pipe2 [$flags]
2201    
2202     This is a direct interface to the Linux L<pipe2(2)> system call. If
2203     C<$flags> is missing or C<0>, then this should be the same as a call to
2204 root 1.254 perl's built-in C<pipe> function and create a new pipe, and works on
2205     systems that lack the pipe2 syscall. On win32, this case invokes C<_pipe
2206     (..., 4096, O_BINARY)>.
2207 root 1.253
2208     If C<$flags> is non-zero, it tries to invoke the pipe2 system call with
2209     the given flags (Linux 2.6.27, glibc 2.9).
2210    
2211     On success, the read and write file handles are returned.
2212    
2213     On error, nothing will be returned. If the pipe2 syscall is missing and
2214     C<$flags> is non-zero, fails with C<ENOSYS>.
2215    
2216     Please refer to L<pipe2(2)> for more info on the C<$flags>, but at the
2217     time of this writing, C<IO::AIO::O_CLOEXEC>, C<IO::AIO::O_NONBLOCK> and
2218     C<IO::AIO::O_DIRECT> (Linux 3.4, for packet-based pipes) were supported.
2219    
2220 root 1.281 Example: create a pipe race-free w.r.t. threads and fork:
2221    
2222     my ($rfh, $wfh) = IO::AIO::pipe2 IO::AIO::O_CLOEXEC
2223     or die "pipe2: $!\n";
2224    
2225 root 1.282 =item $fh = IO::AIO::eventfd [$initval, [$flags]]
2226 root 1.281
2227     This is a direct interface to the Linux L<eventfd(2)> system call. The
2228     (unhelpful) defaults for C<$initval> and C<$flags> are C<0> for both.
2229    
2230     On success, the new eventfd filehandle is returned, otherwise returns
2231     C<undef>. If the eventfd syscall is missing, fails with C<ENOSYS>.
2232    
2233     Please refer to L<eventfd(2)> for more info on this call.
2234    
2235     The following symbol flag values are available: C<IO::AIO::EFD_CLOEXEC>,
2236     C<IO::AIO::EFD_NONBLOCK> and C<IO::AIO::EFD_SEMAPHORE> (Linux 2.6.30).
2237    
2238 root 1.282 Example: create a new eventfd filehandle:
2239    
2240     $fh = IO::AIO::eventfd 0, IO::AIO::O_CLOEXEC
2241     or die "eventfd: $!\n";
2242    
2243     =item $fh = IO::AIO::timerfd_create $clockid[, $flags]
2244    
2245     This is a direct interface to the Linux L<timerfd_create(2)> system call. The
2246     (unhelpful) default for C<$flags> is C<0>.
2247    
2248     On success, the new timerfd filehandle is returned, otherwise returns
2249     C<undef>. If the eventfd syscall is missing, fails with C<ENOSYS>.
2250    
2251     Please refer to L<timerfd_create(2)> for more info on this call.
2252    
2253     The following C<$clockid> values are
2254     available: C<IO::AIO::CLOCK_REALTIME>, C<IO::AIO::CLOCK_MONOTONIC>
2255     C<IO::AIO::CLOCK_CLOCK_BOOTTIME> (Linux 3.15)
2256     C<IO::AIO::CLOCK_CLOCK_REALTIME_ALARM> (Linux 3.11) and
2257     C<IO::AIO::CLOCK_CLOCK_BOOTTIME_ALARM> (Linux 3.11).
2258    
2259     The following C<$flags> values are available (Linux
2260     2.6.27): C<IO::AIO::TFD_NONBLOCK> and C<IO::AIO::TFD_CLOEXEC>.
2261    
2262     Example: create a new timerfd and set it to one-second repeated alarms,
2263     then wait for two alarms:
2264    
2265     my $fh = IO::AIO::timerfd_create IO::AIO::CLOCK_BOOTTIME, IO::AIO::TFD_CLOEXEC
2266     or die "timerfd_create: $!\n";
2267    
2268     defined IO::AIO::timerfd_settime $fh, 0, 1, 1
2269     or die "timerfd_settime: $!\n";
2270    
2271     for (1..2) {
2272     8 == sysread $fh, my $buf, 8
2273     or die "timerfd read failure\n";
2274    
2275     printf "number of expirations (likely 1): %d\n",
2276     unpack "Q", $buf;
2277     }
2278    
2279     =item ($cur_interval, $cur_value) = IO::AIO::timerfd_settime $fh, $flags, $new_interval, $nbw_value
2280    
2281     This is a direct interface to the Linux L<timerfd_settime(2)> system
2282     call. Please refer to its manpage for more info on this call.
2283    
2284     The new itimerspec is specified using two (possibly fractional) second
2285     values, C<$new_interval> and C<$new_value>).
2286    
2287     On success, the current interval and value are returned (as per
2288     C<timerfd_gettime>). On failure, the empty list is returned.
2289    
2290     The following C<$flags> values are
2291     available: C<IO::AIO::TFD_TIMER_ABSTIME> and
2292     C<IO::AIO::TFD_TIMER_CANCEL_ON_SET>.
2293    
2294     See C<IO::AIO::timerfd_create> for a full example.
2295    
2296     =item ($cur_interval, $cur_value) = IO::AIO::timerfd_gettime $fh
2297    
2298     This is a direct interface to the Linux L<timerfd_gettime(2)> system
2299     call. Please refer to its manpage for more info on this call.
2300    
2301     On success, returns the current values of interval and value for the given
2302     timerfd (as potentially fractional second values). On failure, the empty
2303     list is returned.
2304    
2305 root 1.157 =back
2306    
2307 root 1.1 =cut
2308    
2309 root 1.61 min_parallel 8;
2310 root 1.1
2311 root 1.95 END { flush }
2312 root 1.82
2313 root 1.1 1;
2314    
2315 root 1.175 =head1 EVENT LOOP INTEGRATION
2316    
2317     It is recommended to use L<AnyEvent::AIO> to integrate IO::AIO
2318     automatically into many event loops:
2319    
2320     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
2321     use AnyEvent::AIO;
2322    
2323     You can also integrate IO::AIO manually into many event loops, here are
2324     some examples of how to do this:
2325    
2326     # EV integration
2327     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
2328    
2329     # Event integration
2330     Event->io (fd => IO::AIO::poll_fileno,
2331     poll => 'r',
2332     cb => \&IO::AIO::poll_cb);
2333    
2334     # Glib/Gtk2 integration
2335     add_watch Glib::IO IO::AIO::poll_fileno,
2336     in => sub { IO::AIO::poll_cb; 1 };
2337    
2338     # Tk integration
2339     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
2340     readable => \&IO::AIO::poll_cb);
2341    
2342     # Danga::Socket integration
2343     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
2344     \&IO::AIO::poll_cb);
2345    
2346 root 1.27 =head2 FORK BEHAVIOUR
2347    
2348 root 1.197 Usage of pthreads in a program changes the semantics of fork
2349     considerably. Specifically, only async-safe functions can be called after
2350     fork. Perl doesn't know about this, so in general, you cannot call fork
2351 root 1.204 with defined behaviour in perl if pthreads are involved. IO::AIO uses
2352     pthreads, so this applies, but many other extensions and (for inexplicable
2353     reasons) perl itself often is linked against pthreads, so this limitation
2354     applies to quite a lot of perls.
2355    
2356     This module no longer tries to fight your OS, or POSIX. That means IO::AIO
2357     only works in the process that loaded it. Forking is fully supported, but
2358     using IO::AIO in the child is not.
2359    
2360     You might get around by not I<using> IO::AIO before (or after)
2361     forking. You could also try to call the L<IO::AIO::reinit> function in the
2362     child:
2363    
2364     =over 4
2365    
2366     =item IO::AIO::reinit
2367    
2368 root 1.207 Abandons all current requests and I/O threads and simply reinitialises all
2369     data structures. This is not an operation supported by any standards, but
2370 root 1.204 happens to work on GNU/Linux and some newer BSD systems.
2371    
2372     The only reasonable use for this function is to call it after forking, if
2373     C<IO::AIO> was used in the parent. Calling it while IO::AIO is active in
2374     the process will result in undefined behaviour. Calling it at any time
2375     will also result in any undefined (by POSIX) behaviour.
2376    
2377     =back
2378 root 1.52
2379 root 1.282 =head2 LINUX-SPECIFIC CALLS
2380    
2381     When a call is documented as "linux-specific" then this means it
2382     originated on GNU/Linux. C<IO::AIO> will usually try to autodetect the
2383     availability and compatibility of such calls regardless of the platform
2384     it is compiled on, so platforms such as FreeBSD which often implement
2385     these calls will work. When in doubt, call them and see if they fail wth
2386     C<ENOSYS>.
2387    
2388 root 1.60 =head2 MEMORY USAGE
2389    
2390 root 1.72 Per-request usage:
2391    
2392     Each aio request uses - depending on your architecture - around 100-200
2393     bytes of memory. In addition, stat requests need a stat buffer (possibly
2394     a few hundred bytes), readdir requires a result buffer and so on. Perl
2395     scalars and other data passed into aio requests will also be locked and
2396     will consume memory till the request has entered the done state.
2397 root 1.60
2398 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
2399 root 1.60 problem.
2400    
2401 root 1.72 Per-thread usage:
2402    
2403     In the execution phase, some aio requests require more memory for
2404     temporary buffers, and each thread requires a stack and other data
2405     structures (usually around 16k-128k, depending on the OS).
2406    
2407     =head1 KNOWN BUGS
2408    
2409 root 1.283 Known bugs will be fixed in the next release :)
2410    
2411     =head1 KNOWN ISSUES
2412    
2413     Calls that try to "import" foreign memory areas (such as C<IO::AIO::mmap>
2414     or C<IO::AIO::aio_slurp>) do not work with generic lvalues, such as
2415     non-created hash slots or other scalars I didn't think of. It's best to
2416     avoid such and either use scalar variables or making sure that the scalar
2417     exists (e.g. by storing C<undef>) and isn't "funny" (e.g. tied).
2418    
2419     I am not sure anything can be done about this, so this is considered a
2420     known issue, rather than a bug.
2421 root 1.60
2422 root 1.1 =head1 SEE ALSO
2423    
2424 root 1.125 L<AnyEvent::AIO> for easy integration into event loops, L<Coro::AIO> for a
2425     more natural syntax.
2426 root 1.1
2427     =head1 AUTHOR
2428    
2429     Marc Lehmann <schmorp@schmorp.de>
2430     http://home.schmorp.de/
2431    
2432     =cut
2433