ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.284
Committed: Fri Mar 23 01:14:08 2018 UTC (6 years, 2 months ago) by root
Branch: MAIN
Changes since 1.283: +15 -13 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.265 IO::AIO - Asynchronous/Advanced Input/Output
4 root 1.1
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.1 =head1 DESCRIPTION
32    
33     This module implements asynchronous I/O using whatever means your
34 root 1.156 operating system supports. It is implemented as an interface to C<libeio>
35     (L<http://software.schmorp.de/pkg/libeio.html>).
36 root 1.1
37 root 1.85 Asynchronous means that operations that can normally block your program
38     (e.g. reading from disk) will be done asynchronously: the operation
39     will still block, but you can do something else in the meantime. This
40     is extremely useful for programs that need to stay interactive even
41     when doing heavy I/O (GUI programs, high performance network servers
42     etc.), but can also be used to easily do operations in parallel that are
43     normally done sequentially, e.g. stat'ing many files, which is much faster
44     on a RAID volume or over NFS when you do a number of stat operations
45     concurrently.
46    
47 root 1.108 While most of this works on all types of file descriptors (for
48     example sockets), using these functions on file descriptors that
49 root 1.156 support nonblocking operation (again, sockets, pipes etc.) is
50     very inefficient. Use an event loop for that (such as the L<EV>
51 root 1.108 module): IO::AIO will naturally fit into such an event loop itself.
52 root 1.85
53 root 1.72 In this version, a number of threads are started that execute your
54     requests and signal their completion. You don't need thread support
55     in perl, and the threads created by this module will not be visible
56     to perl. In the future, this module might make use of the native aio
57     functions available on many operating systems. However, they are often
58 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
59 root 1.72 files currently, for example), and they would only support aio_read and
60     aio_write, so the remaining functionality would have to be implemented
61     using threads anyway.
62    
63 root 1.265 In addition to asynchronous I/O, this module also exports some rather
64     arcane interfaces, such as C<madvise> or linux's C<splice> system call,
65     which is why the C<A> in C<AIO> can also mean I<advanced>.
66    
67 root 1.108 Although the module will work in the presence of other (Perl-) threads,
68     it is currently not reentrant in any way, so use appropriate locking
69     yourself, always call C<poll_cb> from within the same thread, or never
70     call C<poll_cb> (or other C<aio_> functions) recursively.
71 root 1.72
72 root 1.86 =head2 EXAMPLE
73    
74 root 1.156 This is a simple example that uses the EV module and loads
75 root 1.86 F</etc/passwd> asynchronously:
76    
77 root 1.156 use EV;
78 root 1.86 use IO::AIO;
79    
80 root 1.156 # register the IO::AIO callback with EV
81     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
82 root 1.86
83     # queue the request to open /etc/passwd
84 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
85 root 1.94 my $fh = shift
86 root 1.86 or die "error while opening: $!";
87    
88     # stat'ing filehandles is generally non-blocking
89     my $size = -s $fh;
90    
91     # queue a request to read the file
92     my $contents;
93     aio_read $fh, 0, $size, $contents, 0, sub {
94     $_[0] == $size
95     or die "short read: $!";
96    
97     close $fh;
98    
99     # file contents now in $contents
100     print $contents;
101    
102     # exit event loop and program
103 root 1.257 EV::break;
104 root 1.86 };
105     };
106    
107     # possibly queue up other requests, or open GUI windows,
108     # check for sockets etc. etc.
109    
110     # process events as long as there are some:
111 root 1.257 EV::run;
112 root 1.86
113 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
114    
115     Every C<aio_*> function creates a request. which is a C data structure not
116     directly visible to Perl.
117    
118     If called in non-void context, every request function returns a Perl
119     object representing the request. In void context, nothing is returned,
120     which saves a bit of memory.
121    
122     The perl object is a fairly standard ref-to-hash object. The hash contents
123     are not used by IO::AIO so you are free to store anything you like in it.
124    
125     During their existance, aio requests travel through the following states,
126     in order:
127    
128     =over 4
129    
130     =item ready
131    
132     Immediately after a request is created it is put into the ready state,
133     waiting for a thread to execute it.
134    
135     =item execute
136    
137     A thread has accepted the request for processing and is currently
138     executing it (e.g. blocking in read).
139    
140     =item pending
141    
142     The request has been executed and is waiting for result processing.
143    
144     While request submission and execution is fully asynchronous, result
145     processing is not and relies on the perl interpreter calling C<poll_cb>
146     (or another function with the same effect).
147    
148     =item result
149    
150     The request results are processed synchronously by C<poll_cb>.
151    
152     The C<poll_cb> function will process all outstanding aio requests by
153     calling their callbacks, freeing memory associated with them and managing
154     any groups they are contained in.
155    
156     =item done
157    
158     Request has reached the end of its lifetime and holds no resources anymore
159     (except possibly for the Perl object, but its connection to the actual
160     aio request is severed and calling its methods will either do nothing or
161     result in a runtime error).
162 root 1.1
163 root 1.88 =back
164    
165 root 1.1 =cut
166    
167     package IO::AIO;
168    
169 root 1.117 use Carp ();
170    
171 root 1.161 use common::sense;
172 root 1.23
173 root 1.1 use base 'Exporter';
174    
175     BEGIN {
176 root 1.279 our $VERSION = 4.4;
177 root 1.1
178 root 1.220 our @AIO_REQ = qw(aio_sendfile aio_seek aio_read aio_write aio_open aio_close
179 root 1.148 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
180 root 1.259 aio_scandir aio_symlink aio_readlink aio_realpath aio_fcntl aio_ioctl
181     aio_sync aio_fsync aio_syncfs aio_fdatasync aio_sync_file_range
182     aio_pathsync aio_readahead aio_fiemap aio_allocate
183 root 1.270 aio_rename aio_rename2 aio_link aio_move aio_copy aio_group
184 root 1.120 aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
185 root 1.170 aio_chmod aio_utime aio_truncate
186 root 1.182 aio_msync aio_mtouch aio_mlock aio_mlockall
187 root 1.208 aio_statvfs
188 root 1.279 aio_slurp
189 root 1.208 aio_wd);
190 root 1.120
191 root 1.123 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice));
192 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
193 root 1.188 min_parallel max_parallel max_idle idle_timeout
194 root 1.86 nreqs nready npending nthreads
195 root 1.157 max_poll_time max_poll_reqs
196 root 1.182 sendfile fadvise madvise
197     mmap munmap munlock munlockall);
198 root 1.1
199 root 1.143 push @AIO_REQ, qw(aio_busy); # not exported
200    
201 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
202    
203 root 1.1 require XSLoader;
204 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
205 root 1.1 }
206    
207 root 1.5 =head1 FUNCTIONS
208 root 1.1
209 root 1.175 =head2 QUICK OVERVIEW
210    
211 root 1.230 This section simply lists the prototypes most of the functions for
212     quick reference. See the following sections for function-by-function
213 root 1.175 documentation.
214    
215 root 1.208 aio_wd $pathname, $callback->($wd)
216 root 1.175 aio_open $pathname, $flags, $mode, $callback->($fh)
217     aio_close $fh, $callback->($status)
218 root 1.220 aio_seek $fh,$offset,$whence, $callback->($offs)
219 root 1.175 aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
220     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
221     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
222     aio_readahead $fh,$offset,$length, $callback->($retval)
223     aio_stat $fh_or_path, $callback->($status)
224     aio_lstat $fh, $callback->($status)
225     aio_statvfs $fh_or_path, $callback->($statvfs)
226     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
227     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
228 root 1.220 aio_chmod $fh_or_path, $mode, $callback->($status)
229 root 1.175 aio_truncate $fh_or_path, $offset, $callback->($status)
230 root 1.229 aio_allocate $fh, $mode, $offset, $len, $callback->($status)
231 root 1.230 aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
232 root 1.175 aio_unlink $pathname, $callback->($status)
233 root 1.209 aio_mknod $pathname, $mode, $dev, $callback->($status)
234 root 1.175 aio_link $srcpath, $dstpath, $callback->($status)
235     aio_symlink $srcpath, $dstpath, $callback->($status)
236 root 1.209 aio_readlink $pathname, $callback->($link)
237 root 1.249 aio_realpath $pathname, $callback->($path)
238 root 1.175 aio_rename $srcpath, $dstpath, $callback->($status)
239 root 1.270 aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
240 root 1.175 aio_mkdir $pathname, $mode, $callback->($status)
241     aio_rmdir $pathname, $callback->($status)
242     aio_readdir $pathname, $callback->($entries)
243     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
244     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
245     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
246 root 1.215 aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
247 root 1.209 aio_load $pathname, $data, $callback->($status)
248 root 1.175 aio_copy $srcpath, $dstpath, $callback->($status)
249     aio_move $srcpath, $dstpath, $callback->($status)
250 root 1.209 aio_rmtree $pathname, $callback->($status)
251 root 1.259 aio_fcntl $fh, $cmd, $arg, $callback->($status)
252     aio_ioctl $fh, $request, $buf, $callback->($status)
253 root 1.175 aio_sync $callback->($status)
254 root 1.206 aio_syncfs $fh, $callback->($status)
255 root 1.175 aio_fsync $fh, $callback->($status)
256     aio_fdatasync $fh, $callback->($status)
257     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
258 root 1.209 aio_pathsync $pathname, $callback->($status)
259 root 1.268 aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
260 root 1.175 aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
261 root 1.182 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
262     aio_mlockall $flags, $callback->($status)
263 root 1.175 aio_group $callback->(...)
264     aio_nop $callback->()
265    
266     $prev_pri = aioreq_pri [$pri]
267     aioreq_nice $pri_adjust
268    
269     IO::AIO::poll_wait
270     IO::AIO::poll_cb
271     IO::AIO::poll
272     IO::AIO::flush
273     IO::AIO::max_poll_reqs $nreqs
274     IO::AIO::max_poll_time $seconds
275     IO::AIO::min_parallel $nthreads
276     IO::AIO::max_parallel $nthreads
277     IO::AIO::max_idle $nthreads
278 root 1.188 IO::AIO::idle_timeout $seconds
279 root 1.175 IO::AIO::max_outstanding $maxreqs
280     IO::AIO::nreqs
281     IO::AIO::nready
282     IO::AIO::npending
283 root 1.278 $nfd = IO::AIO::get_fdlimit [EXPERIMENTAL]
284     IO::AIO::min_fdlimit $nfd [EXPERIMENTAL]
285 root 1.175
286     IO::AIO::sendfile $ofh, $ifh, $offset, $count
287     IO::AIO::fadvise $fh, $offset, $len, $advice
288 root 1.226 IO::AIO::mmap $scalar, $length, $prot, $flags[, $fh[, $offset]]
289     IO::AIO::munmap $scalar
290 root 1.184 IO::AIO::madvise $scalar, $offset, $length, $advice
291     IO::AIO::mprotect $scalar, $offset, $length, $protect
292 root 1.182 IO::AIO::munlock $scalar, $offset = 0, $length = undef
293 root 1.175 IO::AIO::munlockall
294    
295 root 1.219 =head2 API NOTES
296 root 1.1
297 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
298     with the same name (sans C<aio_>). The arguments are similar or identical,
299 root 1.14 and they all accept an additional (and optional) C<$callback> argument
300 root 1.212 which must be a code reference. This code reference will be called after
301     the syscall has been executed in an asynchronous fashion. The results
302     of the request will be passed as arguments to the callback (and, if an
303     error occured, in C<$!>) - for most requests the syscall return code (e.g.
304     most syscalls return C<-1> on error, unlike perl, which usually delivers
305     "false").
306    
307     Some requests (such as C<aio_readdir>) pass the actual results and
308     communicate failures by passing C<undef>.
309 root 1.1
310 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
311     internally until the request has finished.
312 root 1.1
313 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
314     further manipulation of those requests while they are in-flight.
315 root 1.52
316 root 1.209 The pathnames you pass to these routines I<should> be absolute. The
317     reason for this is that at the time the request is being executed, the
318 root 1.212 current working directory could have changed. Alternatively, you can
319     make sure that you never change the current working directory anywhere
320     in the program and then use relative paths. You can also take advantage
321     of IO::AIOs working directory abstraction, that lets you specify paths
322     relative to some previously-opened "working directory object" - see the
323     description of the C<IO::AIO::WD> class later in this document.
324 root 1.28
325 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
326     in filenames you got from outside (command line, readdir etc.) without
327 root 1.212 tinkering, b) are in your native filesystem encoding, c) use the Encode
328     module and encode your pathnames to the locale (or other) encoding in
329     effect in the user environment, d) use Glib::filename_from_unicode on
330     unicode filenames or e) use something else to ensure your scalar has the
331     correct contents.
332 root 1.87
333     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
334 root 1.136 handles correctly whether it is set or not.
335 root 1.1
336 root 1.219 =head2 AIO REQUEST FUNCTIONS
337    
338 root 1.5 =over 4
339 root 1.1
340 root 1.80 =item $prev_pri = aioreq_pri [$pri]
341 root 1.68
342 root 1.80 Returns the priority value that would be used for the next request and, if
343     C<$pri> is given, sets the priority for the next aio request.
344 root 1.68
345 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
346     and C<4>, respectively. Requests with higher priority will be serviced
347     first.
348    
349     The priority will be reset to C<0> after each call to one of the C<aio_*>
350 root 1.68 functions.
351    
352 root 1.69 Example: open a file with low priority, then read something from it with
353     higher priority so the read request is serviced before other low priority
354     open requests (potentially spamming the cache):
355    
356     aioreq_pri -3;
357     aio_open ..., sub {
358     return unless $_[0];
359    
360     aioreq_pri -2;
361     aio_read $_[0], ..., sub {
362     ...
363     };
364     };
365    
366 root 1.106
367 root 1.69 =item aioreq_nice $pri_adjust
368    
369     Similar to C<aioreq_pri>, but subtracts the given value from the current
370 root 1.87 priority, so the effect is cumulative.
371 root 1.69
372 root 1.106
373 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
374 root 1.1
375 root 1.2 Asynchronously open or create a file and call the callback with a newly
376 root 1.233 created filehandle for the file (or C<undef> in case of an error).
377 root 1.1
378     The pathname passed to C<aio_open> must be absolute. See API NOTES, above,
379     for an explanation.
380    
381 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
382     list. They are the same as used by C<sysopen>.
383    
384     Likewise, C<$mode> specifies the mode of the newly created file, if it
385     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
386     except that it is mandatory (i.e. use C<0> if you don't create new files,
387 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
388     by the umask in effect then the request is being executed, so better never
389     change the umask.
390 root 1.1
391     Example:
392    
393 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
394 root 1.2 if ($_[0]) {
395     print "open successful, fh is $_[0]\n";
396 root 1.1 ...
397     } else {
398     die "open failed: $!\n";
399     }
400     };
401    
402 root 1.194 In addition to all the common open modes/flags (C<O_RDONLY>, C<O_WRONLY>,
403     C<O_RDWR>, C<O_CREAT>, C<O_TRUNC>, C<O_EXCL> and C<O_APPEND>), the
404     following POSIX and non-POSIX constants are available (missing ones on
405     your system are, as usual, C<0>):
406    
407     C<O_ASYNC>, C<O_DIRECT>, C<O_NOATIME>, C<O_CLOEXEC>, C<O_NOCTTY>, C<O_NOFOLLOW>,
408     C<O_NONBLOCK>, C<O_EXEC>, C<O_SEARCH>, C<O_DIRECTORY>, C<O_DSYNC>,
409 root 1.255 C<O_RSYNC>, C<O_SYNC>, C<O_PATH>, C<O_TMPFILE>, and C<O_TTY_INIT>.
410 root 1.194
411 root 1.106
412 root 1.40 =item aio_close $fh, $callback->($status)
413 root 1.1
414 root 1.2 Asynchronously close a file and call the callback with the result
415 root 1.116 code.
416    
417 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
418 root 1.121 closing the file descriptor associated with the filehandle itself.
419 root 1.117
420 root 1.121 Therefore, C<aio_close> will not close the filehandle - instead it will
421     use dup2 to overwrite the file descriptor with the write-end of a pipe
422     (the pipe fd will be created on demand and will be cached).
423 root 1.117
424 root 1.121 Or in other words: the file descriptor will be closed, but it will not be
425     free for reuse until the perl filehandle is closed.
426 root 1.117
427     =cut
428    
429 root 1.220 =item aio_seek $fh, $offset, $whence, $callback->($offs)
430    
431 root 1.221 Seeks the filehandle to the new C<$offset>, similarly to perl's
432 root 1.220 C<sysseek>. The C<$whence> can use the traditional values (C<0> for
433     C<IO::AIO::SEEK_SET>, C<1> for C<IO::AIO::SEEK_CUR> or C<2> for
434     C<IO::AIO::SEEK_END>).
435    
436     The resulting absolute offset will be passed to the callback, or C<-1> in
437     case of an error.
438    
439     In theory, the C<$whence> constants could be different than the
440     corresponding values from L<Fcntl>, but perl guarantees they are the same,
441     so don't panic.
442    
443 root 1.225 As a GNU/Linux (and maybe Solaris) extension, also the constants
444     C<IO::AIO::SEEK_DATA> and C<IO::AIO::SEEK_HOLE> are available, if they
445     could be found. No guarantees about suitability for use in C<aio_seek> or
446     Perl's C<sysseek> can be made though, although I would naively assume they
447     "just work".
448    
449 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
450 root 1.1
451 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
452 root 1.1
453 root 1.145 Reads or writes C<$length> bytes from or to the specified C<$fh> and
454 root 1.267 C<$offset> into the scalar given by C<$data> and offset C<$dataoffset> and
455     calls the callback with the actual number of bytes transferred (or -1 on
456 root 1.145 error, just like the syscall).
457 root 1.109
458 root 1.146 C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
459     offset plus the actual number of bytes read.
460    
461 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
462     be used (and updated), otherwise the file descriptor offset will not be
463     changed by these calls.
464 root 1.109
465 root 1.145 If C<$length> is undefined in C<aio_write>, use the remaining length of
466     C<$data>.
467 root 1.109
468     If C<$dataoffset> is less than zero, it will be counted from the end of
469     C<$data>.
470 root 1.1
471 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
472 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
473     the necessary/optional hardware is installed).
474 root 1.31
475 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
476 root 1.1 offset C<0> within the scalar:
477    
478     aio_read $fh, 7, 15, $buffer, 0, sub {
479 root 1.9 $_[0] > 0 or die "read error: $!";
480     print "read $_[0] bytes: <$buffer>\n";
481 root 1.1 };
482    
483 root 1.106
484 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
485 root 1.35
486     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
487     reading at byte offset C<$in_offset>, and starts writing at the current
488     file offset of C<$out_fh>. Because of that, it is not safe to issue more
489     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
490 root 1.196 other. The same C<$in_fh> works fine though, as this function does not
491     move or use the file offset of C<$in_fh>.
492 root 1.35
493 root 1.185 Please note that C<aio_sendfile> can read more bytes from C<$in_fh> than
494 root 1.196 are written, and there is no way to find out how many more bytes have been
495     read from C<aio_sendfile> alone, as C<aio_sendfile> only provides the
496     number of bytes written to C<$out_fh>. Only if the result value equals
497     C<$length> one can assume that C<$length> bytes have been read.
498 root 1.185
499     Unlike with other C<aio_> functions, it makes a lot of sense to use
500     C<aio_sendfile> on non-blocking sockets, as long as one end (typically
501     the C<$in_fh>) is a file - the file I/O will then be asynchronous, while
502 root 1.196 the socket I/O will be non-blocking. Note, however, that you can run
503     into a trap where C<aio_sendfile> reads some data with readahead, then
504     fails to write all data, and when the socket is ready the next time, the
505     data in the cache is already lost, forcing C<aio_sendfile> to again hit
506     the disk. Explicit C<aio_read> + C<aio_write> let's you better control
507     resource usage.
508    
509     This call tries to make use of a native C<sendfile>-like syscall to
510     provide zero-copy operation. For this to work, C<$out_fh> should refer to
511     a socket, and C<$in_fh> should refer to an mmap'able file.
512 root 1.35
513 root 1.170 If a native sendfile cannot be found or it fails with C<ENOSYS>,
514 root 1.196 C<EINVAL>, C<ENOTSUP>, C<EOPNOTSUPP>, C<EAFNOSUPPORT>, C<EPROTOTYPE> or
515     C<ENOTSOCK>, it will be emulated, so you can call C<aio_sendfile> on any
516     type of filehandle regardless of the limitations of the operating system.
517    
518     As native sendfile syscalls (as practically any non-POSIX interface hacked
519     together in a hurry to improve benchmark numbers) tend to be rather buggy
520     on many systems, this implementation tries to work around some known bugs
521     in Linux and FreeBSD kernels (probably others, too), but that might fail,
522     so you really really should check the return value of C<aio_sendfile> -
523 root 1.262 fewer bytes than expected might have been transferred.
524 root 1.35
525 root 1.106
526 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
527 root 1.1
528 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
529 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
530     argument specifies the starting point from which data is to be read and
531     C<$length> specifies the number of bytes to be read. I/O is performed in
532     whole pages, so that offset is effectively rounded down to a page boundary
533     and bytes are read up to the next page boundary greater than or equal to
534 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
535 root 1.1 file. The current file offset of the file is left unchanged.
536    
537 root 1.261 If that syscall doesn't exist (likely if your kernel isn't Linux) it will
538     be emulated by simply reading the data, which would have a similar effect.
539 root 1.26
540 root 1.106
541 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
542 root 1.1
543 root 1.40 =item aio_lstat $fh, $callback->($status)
544 root 1.1
545     Works like perl's C<stat> or C<lstat> in void context. The callback will
546     be called after the stat and the results will be available using C<stat _>
547     or C<-s _> etc...
548    
549     The pathname passed to C<aio_stat> must be absolute. See API NOTES, above,
550     for an explanation.
551    
552     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
553     error when stat'ing a large file, the results will be silently truncated
554     unless perl itself is compiled with large file support.
555    
556 root 1.187 To help interpret the mode and dev/rdev stat values, IO::AIO offers the
557     following constants and functions (if not implemented, the constants will
558     be C<0> and the functions will either C<croak> or fall back on traditional
559     behaviour).
560    
561     C<S_IFMT>, C<S_IFIFO>, C<S_IFCHR>, C<S_IFBLK>, C<S_IFLNK>, C<S_IFREG>,
562     C<S_IFDIR>, C<S_IFWHT>, C<S_IFSOCK>, C<IO::AIO::major $dev_t>,
563     C<IO::AIO::minor $dev_t>, C<IO::AIO::makedev $major, $minor>.
564    
565 root 1.1 Example: Print the length of F</etc/passwd>:
566    
567     aio_stat "/etc/passwd", sub {
568     $_[0] and die "stat failed: $!";
569     print "size is ", -s _, "\n";
570     };
571    
572 root 1.106
573 root 1.175 =item aio_statvfs $fh_or_path, $callback->($statvfs)
574 root 1.172
575     Works like the POSIX C<statvfs> or C<fstatvfs> syscalls, depending on
576     whether a file handle or path was passed.
577    
578     On success, the callback is passed a hash reference with the following
579     members: C<bsize>, C<frsize>, C<blocks>, C<bfree>, C<bavail>, C<files>,
580     C<ffree>, C<favail>, C<fsid>, C<flag> and C<namemax>. On failure, C<undef>
581     is passed.
582    
583     The following POSIX IO::AIO::ST_* constants are defined: C<ST_RDONLY> and
584     C<ST_NOSUID>.
585    
586     The following non-POSIX IO::AIO::ST_* flag masks are defined to
587     their correct value when available, or to C<0> on systems that do
588     not support them: C<ST_NODEV>, C<ST_NOEXEC>, C<ST_SYNCHRONOUS>,
589     C<ST_MANDLOCK>, C<ST_WRITE>, C<ST_APPEND>, C<ST_IMMUTABLE>, C<ST_NOATIME>,
590     C<ST_NODIRATIME> and C<ST_RELATIME>.
591    
592     Example: stat C</wd> and dump out the data if successful.
593    
594     aio_statvfs "/wd", sub {
595     my $f = $_[0]
596     or die "statvfs: $!";
597    
598     use Data::Dumper;
599     say Dumper $f;
600     };
601    
602     # result:
603     {
604     bsize => 1024,
605     bfree => 4333064312,
606     blocks => 10253828096,
607     files => 2050765568,
608     flag => 4096,
609     favail => 2042092649,
610     bavail => 4333064312,
611     ffree => 2042092649,
612     namemax => 255,
613     frsize => 1024,
614     fsid => 1810
615     }
616    
617 root 1.106 =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
618    
619     Works like perl's C<utime> function (including the special case of $atime
620     and $mtime being undef). Fractional times are supported if the underlying
621     syscalls support them.
622    
623     When called with a pathname, uses utimes(2) if available, otherwise
624     utime(2). If called on a file descriptor, uses futimes(2) if available,
625     otherwise returns ENOSYS, so this is not portable.
626    
627     Examples:
628    
629 root 1.107 # set atime and mtime to current time (basically touch(1)):
630 root 1.106 aio_utime "path", undef, undef;
631     # set atime to current time and mtime to beginning of the epoch:
632     aio_utime "path", time, undef; # undef==0
633    
634    
635     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
636    
637     Works like perl's C<chown> function, except that C<undef> for either $uid
638     or $gid is being interpreted as "do not change" (but -1 can also be used).
639    
640     Examples:
641    
642     # same as "chown root path" in the shell:
643     aio_chown "path", 0, -1;
644     # same as above:
645     aio_chown "path", 0, undef;
646    
647    
648 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
649    
650     Works like truncate(2) or ftruncate(2).
651    
652    
653 root 1.229 =item aio_allocate $fh, $mode, $offset, $len, $callback->($status)
654    
655 root 1.249 Allocates or frees disk space according to the C<$mode> argument. See the
656     linux C<fallocate> documentation for details.
657 root 1.229
658 root 1.252 C<$mode> is usually C<0> or C<IO::AIO::FALLOC_FL_KEEP_SIZE> to allocate
659     space, or C<IO::AIO::FALLOC_FL_PUNCH_HOLE | IO::AIO::FALLOC_FL_KEEP_SIZE>,
660     to deallocate a file range.
661    
662     IO::AIO also supports C<FALLOC_FL_COLLAPSE_RANGE>, to remove a range
663 root 1.273 (without leaving a hole), C<FALLOC_FL_ZERO_RANGE>, to zero a range,
664     C<FALLOC_FL_INSERT_RANGE> to insert a range and C<FALLOC_FL_UNSHARE_RANGE>
665     to unshare shared blocks (see your L<fallocate(2)> manpage).
666 root 1.229
667     The file system block size used by C<fallocate> is presumably the
668 root 1.273 C<f_bsize> returned by C<statvfs>, but different filesystems and filetypes
669     can dictate other limitations.
670 root 1.229
671     If C<fallocate> isn't available or cannot be emulated (currently no
672     emulation will be attempted), passes C<-1> and sets C<$!> to C<ENOSYS>.
673    
674    
675 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
676    
677     Works like perl's C<chmod> function.
678    
679    
680 root 1.40 =item aio_unlink $pathname, $callback->($status)
681 root 1.1
682     Asynchronously unlink (delete) a file and call the callback with the
683     result code.
684    
685 root 1.106
686 root 1.209 =item aio_mknod $pathname, $mode, $dev, $callback->($status)
687 root 1.82
688 root 1.86 [EXPERIMENTAL]
689    
690 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
691    
692 root 1.86 The only (POSIX-) portable way of calling this function is:
693 root 1.83
694 root 1.209 aio_mknod $pathname, IO::AIO::S_IFIFO | $mode, 0, sub { ...
695 root 1.82
696 root 1.187 See C<aio_stat> for info about some potentially helpful extra constants
697     and functions.
698 root 1.106
699 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
700    
701     Asynchronously create a new link to the existing object at C<$srcpath> at
702     the path C<$dstpath> and call the callback with the result code.
703    
704 root 1.106
705 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
706    
707     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
708     the path C<$dstpath> and call the callback with the result code.
709    
710 root 1.106
711 root 1.209 =item aio_readlink $pathname, $callback->($link)
712 root 1.90
713     Asynchronously read the symlink specified by C<$path> and pass it to
714     the callback. If an error occurs, nothing or undef gets passed to the
715     callback.
716    
717 root 1.106
718 root 1.209 =item aio_realpath $pathname, $callback->($path)
719 root 1.201
720     Asynchronously make the path absolute and resolve any symlinks in
721 root 1.239 C<$path>. The resulting path only consists of directories (same as
722 root 1.202 L<Cwd::realpath>).
723 root 1.201
724     This request can be used to get the absolute path of the current working
725     directory by passing it a path of F<.> (a single dot).
726    
727    
728 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
729    
730     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
731     rename(2) and call the callback with the result code.
732    
733 root 1.241 On systems that support the AIO::WD working directory abstraction
734     natively, the case C<[$wd, "."]> as C<$srcpath> is specialcased - instead
735     of failing, C<rename> is called on the absolute path of C<$wd>.
736    
737 root 1.106
738 root 1.270 =item aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
739    
740     Basically a version of C<aio_rename> with an additional C<$flags>
741     argument. Calling this with C<$flags=0> is the same as calling
742     C<aio_rename>.
743    
744     Non-zero flags are currently only supported on GNU/Linux systems that
745     support renameat2. Other systems fail with C<ENOSYS> in this case.
746    
747     The following constants are available (missing ones are, as usual C<0>),
748     see renameat2(2) for details:
749    
750     C<IO::AIO::RENAME_NOREPLACE>, C<IO::AIO::RENAME_EXCHANGE>
751     and C<IO::AIO::RENAME_WHITEOUT>.
752    
753    
754 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
755    
756     Asynchronously mkdir (create) a directory and call the callback with
757     the result code. C<$mode> will be modified by the umask at the time the
758     request is executed, so do not change your umask.
759    
760 root 1.106
761 root 1.40 =item aio_rmdir $pathname, $callback->($status)
762 root 1.27
763     Asynchronously rmdir (delete) a directory and call the callback with the
764     result code.
765    
766 root 1.241 On systems that support the AIO::WD working directory abstraction
767     natively, the case C<[$wd, "."]> is specialcased - instead of failing,
768     C<rmdir> is called on the absolute path of C<$wd>.
769    
770 root 1.106
771 root 1.46 =item aio_readdir $pathname, $callback->($entries)
772 root 1.37
773     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
774     directory (i.e. opendir + readdir + closedir). The entries will not be
775     sorted, and will B<NOT> include the C<.> and C<..> entries.
776    
777 root 1.148 The callback is passed a single argument which is either C<undef> or an
778     array-ref with the filenames.
779    
780    
781     =item aio_readdirx $pathname, $flags, $callback->($entries, $flags)
782    
783 root 1.207 Quite similar to C<aio_readdir>, but the C<$flags> argument allows one to
784     tune behaviour and output format. In case of an error, C<$entries> will be
785 root 1.148 C<undef>.
786    
787     The flags are a combination of the following constants, ORed together (the
788     flags will also be passed to the callback, possibly modified):
789    
790     =over 4
791    
792 root 1.150 =item IO::AIO::READDIR_DENTS
793 root 1.148
794 root 1.284 Normally the callback gets an arrayref consisting of names only (as
795     with C<aio_readdir>). If this flag is set, then the callback gets an
796     arrayref with C<[$name, $type, $inode]> arrayrefs, each describing a
797     single directory entry in more detail:
798 root 1.148
799     C<$name> is the name of the entry.
800    
801 root 1.150 C<$type> is one of the C<IO::AIO::DT_xxx> constants:
802 root 1.148
803 root 1.150 C<IO::AIO::DT_UNKNOWN>, C<IO::AIO::DT_FIFO>, C<IO::AIO::DT_CHR>, C<IO::AIO::DT_DIR>,
804     C<IO::AIO::DT_BLK>, C<IO::AIO::DT_REG>, C<IO::AIO::DT_LNK>, C<IO::AIO::DT_SOCK>,
805     C<IO::AIO::DT_WHT>.
806 root 1.148
807 root 1.284 C<IO::AIO::DT_UNKNOWN> means just that: readdir does not know. If you need
808     to know, you have to run stat yourself. Also, for speed/memory reasons,
809     the C<$type> scalars are read-only: you must not modify them.
810 root 1.148
811 root 1.150 C<$inode> is the inode number (which might not be exact on systems with 64
812 root 1.155 bit inode numbers and 32 bit perls). This field has unspecified content on
813     systems that do not deliver the inode information.
814 root 1.150
815     =item IO::AIO::READDIR_DIRS_FIRST
816 root 1.148
817     When this flag is set, then the names will be returned in an order where
818 root 1.193 likely directories come first, in optimal stat order. This is useful when
819     you need to quickly find directories, or you want to find all directories
820     while avoiding to stat() each entry.
821 root 1.148
822 root 1.149 If the system returns type information in readdir, then this is used
823 root 1.193 to find directories directly. Otherwise, likely directories are names
824     beginning with ".", or otherwise names with no dots, of which names with
825 root 1.149 short names are tried first.
826    
827 root 1.150 =item IO::AIO::READDIR_STAT_ORDER
828 root 1.148
829     When this flag is set, then the names will be returned in an order
830 root 1.284 suitable for stat()'ing each one. That is, when you plan to stat() most or
831     all files in the given directory, then the returned order will likely be
832     faster.
833    
834     If both this flag and C<IO::AIO::READDIR_DIRS_FIRST> are specified,
835     then the likely dirs come first, resulting in a less optimal stat order
836     for stat'ing all entries, but likely a more optimal order for finding
837     subdirectories.
838 root 1.148
839 root 1.150 =item IO::AIO::READDIR_FOUND_UNKNOWN
840 root 1.148
841     This flag should not be set when calling C<aio_readdirx>. Instead, it
842     is being set by C<aio_readdirx>, when any of the C<$type>'s found were
843 root 1.207 C<IO::AIO::DT_UNKNOWN>. The absence of this flag therefore indicates that all
844 root 1.148 C<$type>'s are known, which can be used to speed up some algorithms.
845    
846     =back
847 root 1.37
848 root 1.106
849 root 1.279 =item aio_slurp $pathname, $offset, $length, $data, $callback->($status)
850    
851     Opens, reads and closes the given file. The data is put into C<$data>,
852     which is resized as required.
853    
854     If C<$offset> is negative, then it is counted from the end of the file.
855    
856     If C<$length> is zero, then the remaining length of the file is
857     used. Also, in this case, the same limitations to modifying C<$data> apply
858     as when IO::AIO::mmap is used, i.e. it must only be modified in-place
859     with C<substr>. If the size of the file is known, specifying a non-zero
860     C<$length> results in a performance advantage.
861    
862     This request is similar to the older C<aio_load> request, but since it is
863     a single request, it might be more efficient to use.
864    
865     Example: load F</etc/passwd> into C<$passwd>.
866    
867     my $passwd;
868     aio_slurp "/etc/passwd", 0, 0, $passwd, sub {
869     $_[0] >= 0
870     or die "/etc/passwd: $!\n";
871    
872     printf "/etc/passwd is %d bytes long, and contains:\n", length $passwd;
873     print $passwd;
874     };
875     IO::AIO::flush;
876    
877    
878 root 1.209 =item aio_load $pathname, $data, $callback->($status)
879 root 1.98
880     This is a composite request that tries to fully load the given file into
881     memory. Status is the same as with aio_read.
882    
883 root 1.279 Using C<aio_slurp> might be more efficient, as it is a single request.
884    
885 root 1.98 =cut
886    
887     sub aio_load($$;$) {
888 root 1.123 my ($path, undef, $cb) = @_;
889     my $data = \$_[1];
890 root 1.98
891 root 1.123 my $pri = aioreq_pri;
892     my $grp = aio_group $cb;
893    
894     aioreq_pri $pri;
895     add $grp aio_open $path, O_RDONLY, 0, sub {
896     my $fh = shift
897     or return $grp->result (-1);
898 root 1.98
899     aioreq_pri $pri;
900 root 1.123 add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
901     $grp->result ($_[0]);
902 root 1.98 };
903 root 1.123 };
904 root 1.98
905 root 1.123 $grp
906 root 1.98 }
907    
908 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
909    
910     Try to copy the I<file> (directories not supported as either source or
911     destination) from C<$srcpath> to C<$dstpath> and call the callback with
912 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
913 root 1.82
914 root 1.275 Existing destination files will be truncated.
915    
916 root 1.134 This is a composite request that creates the destination file with
917 root 1.82 mode 0200 and copies the contents of the source file into it using
918     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
919     uid/gid, in that order.
920    
921     If an error occurs, the partial destination file will be unlinked, if
922     possible, except when setting atime, mtime, access mode and uid/gid, where
923     errors are being ignored.
924    
925     =cut
926    
927     sub aio_copy($$;$) {
928 root 1.123 my ($src, $dst, $cb) = @_;
929 root 1.82
930 root 1.123 my $pri = aioreq_pri;
931     my $grp = aio_group $cb;
932 root 1.82
933 root 1.123 aioreq_pri $pri;
934     add $grp aio_open $src, O_RDONLY, 0, sub {
935     if (my $src_fh = $_[0]) {
936 root 1.166 my @stat = stat $src_fh; # hmm, might block over nfs?
937 root 1.95
938 root 1.123 aioreq_pri $pri;
939     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
940     if (my $dst_fh = $_[0]) {
941     aioreq_pri $pri;
942     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
943     if ($_[0] == $stat[7]) {
944     $grp->result (0);
945     close $src_fh;
946    
947 root 1.147 my $ch = sub {
948     aioreq_pri $pri;
949     add $grp aio_chmod $dst_fh, $stat[2] & 07777, sub {
950     aioreq_pri $pri;
951     add $grp aio_chown $dst_fh, $stat[4], $stat[5], sub {
952     aioreq_pri $pri;
953     add $grp aio_close $dst_fh;
954     }
955     };
956     };
957 root 1.123
958     aioreq_pri $pri;
959 root 1.147 add $grp aio_utime $dst_fh, $stat[8], $stat[9], sub {
960     if ($_[0] < 0 && $! == ENOSYS) {
961     aioreq_pri $pri;
962     add $grp aio_utime $dst, $stat[8], $stat[9], $ch;
963     } else {
964     $ch->();
965     }
966     };
967 root 1.123 } else {
968     $grp->result (-1);
969     close $src_fh;
970     close $dst_fh;
971    
972     aioreq $pri;
973     add $grp aio_unlink $dst;
974     }
975     };
976     } else {
977     $grp->result (-1);
978     }
979     },
980 root 1.82
981 root 1.123 } else {
982     $grp->result (-1);
983     }
984     };
985 root 1.82
986 root 1.123 $grp
987 root 1.82 }
988    
989     =item aio_move $srcpath, $dstpath, $callback->($status)
990    
991     Try to move the I<file> (directories not supported as either source or
992     destination) from C<$srcpath> to C<$dstpath> and call the callback with
993 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
994 root 1.82
995 root 1.137 This is a composite request that tries to rename(2) the file first; if
996     rename fails with C<EXDEV>, it copies the file with C<aio_copy> and, if
997     that is successful, unlinks the C<$srcpath>.
998 root 1.82
999     =cut
1000    
1001     sub aio_move($$;$) {
1002 root 1.123 my ($src, $dst, $cb) = @_;
1003 root 1.82
1004 root 1.123 my $pri = aioreq_pri;
1005     my $grp = aio_group $cb;
1006 root 1.82
1007 root 1.123 aioreq_pri $pri;
1008     add $grp aio_rename $src, $dst, sub {
1009     if ($_[0] && $! == EXDEV) {
1010     aioreq_pri $pri;
1011     add $grp aio_copy $src, $dst, sub {
1012     $grp->result ($_[0]);
1013 root 1.95
1014 root 1.196 unless ($_[0]) {
1015 root 1.123 aioreq_pri $pri;
1016     add $grp aio_unlink $src;
1017     }
1018     };
1019     } else {
1020     $grp->result ($_[0]);
1021     }
1022     };
1023 root 1.82
1024 root 1.123 $grp
1025 root 1.82 }
1026    
1027 root 1.209 =item aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
1028 root 1.40
1029 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
1030 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
1031     names, directories you can recurse into (directories), and ones you cannot
1032     recurse into (everything else, including symlinks to directories).
1033 root 1.52
1034 root 1.277 C<aio_scandir> is a composite request that generates many sub requests.
1035 root 1.61 C<$maxreq> specifies the maximum number of outstanding aio requests that
1036     this function generates. If it is C<< <= 0 >>, then a suitable default
1037 root 1.81 will be chosen (currently 4).
1038 root 1.40
1039     On error, the callback is called without arguments, otherwise it receives
1040     two array-refs with path-relative entry names.
1041    
1042     Example:
1043    
1044     aio_scandir $dir, 0, sub {
1045     my ($dirs, $nondirs) = @_;
1046     print "real directories: @$dirs\n";
1047     print "everything else: @$nondirs\n";
1048     };
1049    
1050     Implementation notes.
1051    
1052     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
1053    
1054 root 1.149 If readdir returns file type information, then this is used directly to
1055     find directories.
1056    
1057     Otherwise, after reading the directory, the modification time, size etc.
1058     of the directory before and after the readdir is checked, and if they
1059     match (and isn't the current time), the link count will be used to decide
1060     how many entries are directories (if >= 2). Otherwise, no knowledge of the
1061     number of subdirectories will be assumed.
1062    
1063     Then entries will be sorted into likely directories a non-initial dot
1064     currently) and likely non-directories (see C<aio_readdirx>). Then every
1065     entry plus an appended C</.> will be C<stat>'ed, likely directories first,
1066     in order of their inode numbers. If that succeeds, it assumes that the
1067     entry is a directory or a symlink to directory (which will be checked
1068 root 1.207 separately). This is often faster than stat'ing the entry itself because
1069 root 1.52 filesystems might detect the type of the entry without reading the inode
1070 root 1.149 data (e.g. ext2fs filetype feature), even on systems that cannot return
1071     the filetype information on readdir.
1072 root 1.52
1073     If the known number of directories (link count - 2) has been reached, the
1074     rest of the entries is assumed to be non-directories.
1075    
1076     This only works with certainty on POSIX (= UNIX) filesystems, which
1077     fortunately are the vast majority of filesystems around.
1078    
1079     It will also likely work on non-POSIX filesystems with reduced efficiency
1080     as those tend to return 0 or 1 as link counts, which disables the
1081     directory counting heuristic.
1082 root 1.40
1083     =cut
1084    
1085 root 1.100 sub aio_scandir($$;$) {
1086 root 1.123 my ($path, $maxreq, $cb) = @_;
1087    
1088     my $pri = aioreq_pri;
1089 root 1.40
1090 root 1.123 my $grp = aio_group $cb;
1091 root 1.80
1092 root 1.123 $maxreq = 4 if $maxreq <= 0;
1093 root 1.55
1094 root 1.210 # get a wd object
1095 root 1.123 aioreq_pri $pri;
1096 root 1.210 add $grp aio_wd $path, sub {
1097 root 1.212 $_[0]
1098     or return $grp->result ();
1099    
1100 root 1.210 my $wd = [shift, "."];
1101 root 1.40
1102 root 1.210 # stat once
1103 root 1.80 aioreq_pri $pri;
1104 root 1.210 add $grp aio_stat $wd, sub {
1105     return $grp->result () if $_[0];
1106     my $now = time;
1107     my $hash1 = join ":", (stat _)[0,1,3,7,9];
1108 root 1.40
1109 root 1.210 # read the directory entries
1110 root 1.80 aioreq_pri $pri;
1111 root 1.210 add $grp aio_readdirx $wd, READDIR_DIRS_FIRST, sub {
1112     my $entries = shift
1113     or return $grp->result ();
1114    
1115     # stat the dir another time
1116     aioreq_pri $pri;
1117     add $grp aio_stat $wd, sub {
1118     my $hash2 = join ":", (stat _)[0,1,3,7,9];
1119 root 1.95
1120 root 1.210 my $ndirs;
1121 root 1.95
1122 root 1.210 # take the slow route if anything looks fishy
1123     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
1124     $ndirs = -1;
1125     } else {
1126     # if nlink == 2, we are finished
1127     # for non-posix-fs's, we rely on nlink < 2
1128     $ndirs = (stat _)[3] - 2
1129     or return $grp->result ([], $entries);
1130     }
1131 root 1.123
1132 root 1.210 my (@dirs, @nondirs);
1133 root 1.40
1134 root 1.210 my $statgrp = add $grp aio_group sub {
1135     $grp->result (\@dirs, \@nondirs);
1136     };
1137 root 1.40
1138 root 1.210 limit $statgrp $maxreq;
1139     feed $statgrp sub {
1140     return unless @$entries;
1141     my $entry = shift @$entries;
1142    
1143     aioreq_pri $pri;
1144     $wd->[1] = "$entry/.";
1145     add $statgrp aio_stat $wd, sub {
1146     if ($_[0] < 0) {
1147     push @nondirs, $entry;
1148     } else {
1149     # need to check for real directory
1150     aioreq_pri $pri;
1151     $wd->[1] = $entry;
1152     add $statgrp aio_lstat $wd, sub {
1153     if (-d _) {
1154     push @dirs, $entry;
1155    
1156     unless (--$ndirs) {
1157     push @nondirs, @$entries;
1158     feed $statgrp;
1159     }
1160     } else {
1161     push @nondirs, $entry;
1162 root 1.74 }
1163 root 1.40 }
1164     }
1165 root 1.210 };
1166 root 1.74 };
1167 root 1.40 };
1168     };
1169     };
1170 root 1.123 };
1171 root 1.55
1172 root 1.123 $grp
1173 root 1.40 }
1174    
1175 root 1.209 =item aio_rmtree $pathname, $callback->($status)
1176 root 1.99
1177 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
1178 root 1.239 status of the final C<rmdir> only. This is a composite request that
1179 root 1.100 uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1180     everything else.
1181 root 1.99
1182     =cut
1183    
1184     sub aio_rmtree;
1185 root 1.100 sub aio_rmtree($;$) {
1186 root 1.123 my ($path, $cb) = @_;
1187 root 1.99
1188 root 1.123 my $pri = aioreq_pri;
1189     my $grp = aio_group $cb;
1190 root 1.99
1191 root 1.123 aioreq_pri $pri;
1192     add $grp aio_scandir $path, 0, sub {
1193     my ($dirs, $nondirs) = @_;
1194 root 1.99
1195 root 1.123 my $dirgrp = aio_group sub {
1196     add $grp aio_rmdir $path, sub {
1197     $grp->result ($_[0]);
1198 root 1.99 };
1199 root 1.123 };
1200 root 1.99
1201 root 1.123 (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
1202     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
1203 root 1.99
1204 root 1.123 add $grp $dirgrp;
1205     };
1206 root 1.99
1207 root 1.123 $grp
1208 root 1.99 }
1209    
1210 root 1.259 =item aio_fcntl $fh, $cmd, $arg, $callback->($status)
1211    
1212     =item aio_ioctl $fh, $request, $buf, $callback->($status)
1213    
1214     These work just like the C<fcntl> and C<ioctl> built-in functions, except
1215     they execute asynchronously and pass the return value to the callback.
1216    
1217     Both calls can be used for a lot of things, some of which make more sense
1218     to run asynchronously in their own thread, while some others make less
1219     sense. For example, calls that block waiting for external events, such
1220     as locking, will also lock down an I/O thread while it is waiting, which
1221     can deadlock the whole I/O system. At the same time, there might be no
1222     alternative to using a thread to wait.
1223    
1224     So in general, you should only use these calls for things that do
1225     (filesystem) I/O, not for things that wait for other events (network,
1226     other processes), although if you are careful and know what you are doing,
1227     you still can.
1228    
1229 root 1.264 The following constants are available (missing ones are, as usual C<0>):
1230    
1231 root 1.271 C<F_DUPFD_CLOEXEC>,
1232    
1233     C<F_OFD_GETLK>, C<F_OFD_SETLK>, C<F_OFD_GETLKW>,
1234    
1235 root 1.264 C<FIFREEZE>, C<FITHAW>, C<FITRIM>, C<FICLONE>, C<FICLONERANGE>, C<FIDEDUPERANGE>.
1236    
1237     C<FS_IOC_GETFLAGS>, C<FS_IOC_SETFLAGS>, C<FS_IOC_GETVERSION>, C<FS_IOC_SETVERSION>,
1238     C<FS_IOC_FIEMAP>.
1239    
1240     C<FS_IOC_FSGETXATTR>, C<FS_IOC_FSSETXATTR>, C<FS_IOC_SET_ENCRYPTION_POLICY>,
1241     C<FS_IOC_GET_ENCRYPTION_PWSALT>, C<FS_IOC_GET_ENCRYPTION_POLICY>, C<FS_KEY_DESCRIPTOR_SIZE>.
1242    
1243     C<FS_SECRM_FL>, C<FS_UNRM_FL>, C<FS_COMPR_FL>, C<FS_SYNC_FL>, C<FS_IMMUTABLE_FL>,
1244     C<FS_APPEND_FL>, C<FS_NODUMP_FL>, C<FS_NOATIME_FL>, C<FS_DIRTY_FL>,
1245     C<FS_COMPRBLK_FL>, C<FS_NOCOMP_FL>, C<FS_ENCRYPT_FL>, C<FS_BTREE_FL>,
1246     C<FS_INDEX_FL>, C<FS_JOURNAL_DATA_FL>, C<FS_NOTAIL_FL>, C<FS_DIRSYNC_FL>, C<FS_TOPDIR_FL>,
1247     C<FS_FL_USER_MODIFIABLE>.
1248    
1249     C<FS_XFLAG_REALTIME>, C<FS_XFLAG_PREALLOC>, C<FS_XFLAG_IMMUTABLE>, C<FS_XFLAG_APPEND>,
1250     C<FS_XFLAG_SYNC>, C<FS_XFLAG_NOATIME>, C<FS_XFLAG_NODUMP>, C<FS_XFLAG_RTINHERIT>,
1251     C<FS_XFLAG_PROJINHERIT>, C<FS_XFLAG_NOSYMLINKS>, C<FS_XFLAG_EXTSIZE>, C<FS_XFLAG_EXTSZINHERIT>,
1252     C<FS_XFLAG_NODEFRAG>, C<FS_XFLAG_FILESTREAM>, C<FS_XFLAG_DAX>, C<FS_XFLAG_HASATTR>,
1253    
1254 root 1.119 =item aio_sync $callback->($status)
1255    
1256     Asynchronously call sync and call the callback when finished.
1257    
1258 root 1.40 =item aio_fsync $fh, $callback->($status)
1259 root 1.1
1260     Asynchronously call fsync on the given filehandle and call the callback
1261     with the fsync result code.
1262    
1263 root 1.40 =item aio_fdatasync $fh, $callback->($status)
1264 root 1.1
1265     Asynchronously call fdatasync on the given filehandle and call the
1266 root 1.26 callback with the fdatasync result code.
1267    
1268     If this call isn't available because your OS lacks it or it couldn't be
1269     detected, it will be emulated by calling C<fsync> instead.
1270 root 1.1
1271 root 1.206 =item aio_syncfs $fh, $callback->($status)
1272    
1273     Asynchronously call the syncfs syscall to sync the filesystem associated
1274     to the given filehandle and call the callback with the syncfs result
1275     code. If syncfs is not available, calls sync(), but returns C<-1> and sets
1276     errno to C<ENOSYS> nevertheless.
1277    
1278 root 1.142 =item aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
1279    
1280     Sync the data portion of the file specified by C<$offset> and C<$length>
1281     to disk (but NOT the metadata), by calling the Linux-specific
1282     sync_file_range call. If sync_file_range is not available or it returns
1283     ENOSYS, then fdatasync or fsync is being substituted.
1284    
1285     C<$flags> can be a combination of C<IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE>,
1286     C<IO::AIO::SYNC_FILE_RANGE_WRITE> and
1287     C<IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER>: refer to the sync_file_range
1288     manpage for details.
1289    
1290 root 1.209 =item aio_pathsync $pathname, $callback->($status)
1291 root 1.120
1292     This request tries to open, fsync and close the given path. This is a
1293 root 1.135 composite request intended to sync directories after directory operations
1294 root 1.120 (E.g. rename). This might not work on all operating systems or have any
1295     specific effect, but usually it makes sure that directory changes get
1296     written to disc. It works for anything that can be opened for read-only,
1297     not just directories.
1298    
1299 root 1.162 Future versions of this function might fall back to other methods when
1300     C<fsync> on the directory fails (such as calling C<sync>).
1301    
1302 root 1.120 Passes C<0> when everything went ok, and C<-1> on error.
1303    
1304     =cut
1305    
1306     sub aio_pathsync($;$) {
1307 root 1.123 my ($path, $cb) = @_;
1308    
1309     my $pri = aioreq_pri;
1310     my $grp = aio_group $cb;
1311 root 1.120
1312 root 1.123 aioreq_pri $pri;
1313     add $grp aio_open $path, O_RDONLY, 0, sub {
1314     my ($fh) = @_;
1315     if ($fh) {
1316     aioreq_pri $pri;
1317     add $grp aio_fsync $fh, sub {
1318     $grp->result ($_[0]);
1319 root 1.120
1320     aioreq_pri $pri;
1321 root 1.123 add $grp aio_close $fh;
1322     };
1323     } else {
1324     $grp->result (-1);
1325     }
1326     };
1327 root 1.120
1328 root 1.123 $grp
1329 root 1.120 }
1330    
1331 root 1.268 =item aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
1332 root 1.170
1333     This is a rather advanced IO::AIO call, which only works on mmap(2)ed
1334 root 1.176 scalars (see the C<IO::AIO::mmap> function, although it also works on data
1335     scalars managed by the L<Sys::Mmap> or L<Mmap> modules, note that the
1336     scalar must only be modified in-place while an aio operation is pending on
1337     it).
1338 root 1.170
1339     It calls the C<msync> function of your OS, if available, with the memory
1340     area starting at C<$offset> in the string and ending C<$length> bytes
1341     later. If C<$length> is negative, counts from the end, and if C<$length>
1342     is C<undef>, then it goes till the end of the string. The flags can be
1343 root 1.268 either C<IO::AIO::MS_ASYNC> or C<IO::AIO::MS_SYNC>, plus an optional
1344     C<IO::AIO::MS_INVALIDATE>.
1345 root 1.170
1346     =item aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1347    
1348     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1349     scalars.
1350    
1351     It touches (reads or writes) all memory pages in the specified
1352 root 1.239 range inside the scalar. All caveats and parameters are the same
1353 root 1.170 as for C<aio_msync>, above, except for flags, which must be either
1354     C<0> (which reads all pages and ensures they are instantiated) or
1355 root 1.239 C<IO::AIO::MT_MODIFY>, which modifies the memory pages (by reading and
1356 root 1.170 writing an octet from it, which dirties the page).
1357    
1358 root 1.182 =item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1359    
1360     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1361     scalars.
1362    
1363     It reads in all the pages of the underlying storage into memory (if any)
1364     and locks them, so they are not getting swapped/paged out or removed.
1365    
1366     If C<$length> is undefined, then the scalar will be locked till the end.
1367    
1368     On systems that do not implement C<mlock>, this function returns C<-1>
1369     and sets errno to C<ENOSYS>.
1370    
1371     Note that the corresponding C<munlock> is synchronous and is
1372     documented under L<MISCELLANEOUS FUNCTIONS>.
1373    
1374 root 1.183 Example: open a file, mmap and mlock it - both will be undone when
1375     C<$data> gets destroyed.
1376    
1377     open my $fh, "<", $path or die "$path: $!";
1378     my $data;
1379     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1380     aio_mlock $data; # mlock in background
1381    
1382 root 1.182 =item aio_mlockall $flags, $callback->($status)
1383    
1384     Calls the C<mlockall> function with the given C<$flags> (a combination of
1385     C<IO::AIO::MCL_CURRENT> and C<IO::AIO::MCL_FUTURE>).
1386    
1387     On systems that do not implement C<mlockall>, this function returns C<-1>
1388     and sets errno to C<ENOSYS>.
1389    
1390     Note that the corresponding C<munlockall> is synchronous and is
1391     documented under L<MISCELLANEOUS FUNCTIONS>.
1392    
1393 root 1.183 Example: asynchronously lock all current and future pages into memory.
1394    
1395     aio_mlockall IO::AIO::MCL_FUTURE;
1396    
1397 root 1.223 =item aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
1398    
1399 root 1.234 Queries the extents of the given file (by calling the Linux C<FIEMAP>
1400     ioctl, see L<http://cvs.schmorp.de/IO-AIO/doc/fiemap.txt> for details). If
1401     the ioctl is not available on your OS, then this request will fail with
1402 root 1.223 C<ENOSYS>.
1403    
1404     C<$start> is the starting offset to query extents for, C<$length> is the
1405     size of the range to query - if it is C<undef>, then the whole file will
1406     be queried.
1407    
1408     C<$flags> is a combination of flags (C<IO::AIO::FIEMAP_FLAG_SYNC> or
1409     C<IO::AIO::FIEMAP_FLAG_XATTR> - C<IO::AIO::FIEMAP_FLAGS_COMPAT> is also
1410     exported), and is normally C<0> or C<IO::AIO::FIEMAP_FLAG_SYNC> to query
1411     the data portion.
1412    
1413     C<$count> is the maximum number of extent records to return. If it is
1414 root 1.232 C<undef>, then IO::AIO queries all extents of the range. As a very special
1415 root 1.223 case, if it is C<0>, then the callback receives the number of extents
1416 root 1.232 instead of the extents themselves (which is unreliable, see below).
1417 root 1.223
1418     If an error occurs, the callback receives no arguments. The special
1419     C<errno> value C<IO::AIO::EBADR> is available to test for flag errors.
1420    
1421     Otherwise, the callback receives an array reference with extent
1422     structures. Each extent structure is an array reference itself, with the
1423     following members:
1424    
1425     [$logical, $physical, $length, $flags]
1426    
1427     Flags is any combination of the following flag values (typically either C<0>
1428 root 1.231 or C<IO::AIO::FIEMAP_EXTENT_LAST> (1)):
1429 root 1.223
1430     C<IO::AIO::FIEMAP_EXTENT_LAST>, C<IO::AIO::FIEMAP_EXTENT_UNKNOWN>,
1431     C<IO::AIO::FIEMAP_EXTENT_DELALLOC>, C<IO::AIO::FIEMAP_EXTENT_ENCODED>,
1432     C<IO::AIO::FIEMAP_EXTENT_DATA_ENCRYPTED>, C<IO::AIO::FIEMAP_EXTENT_NOT_ALIGNED>,
1433     C<IO::AIO::FIEMAP_EXTENT_DATA_INLINE>, C<IO::AIO::FIEMAP_EXTENT_DATA_TAIL>,
1434     C<IO::AIO::FIEMAP_EXTENT_UNWRITTEN>, C<IO::AIO::FIEMAP_EXTENT_MERGED> or
1435     C<IO::AIO::FIEMAP_EXTENT_SHARED>.
1436    
1437 root 1.278 At the time of this writing (Linux 3.2), this request is unreliable unless
1438 root 1.232 C<$count> is C<undef>, as the kernel has all sorts of bugs preventing
1439 root 1.278 it to return all extents of a range for files with a large number of
1440     extents. The code (only) works around all these issues if C<$count> is
1441     C<undef>.
1442 root 1.232
1443 root 1.58 =item aio_group $callback->(...)
1444 root 1.54
1445 root 1.55 This is a very special aio request: Instead of doing something, it is a
1446     container for other aio requests, which is useful if you want to bundle
1447 root 1.71 many requests into a single, composite, request with a definite callback
1448     and the ability to cancel the whole request with its subrequests.
1449 root 1.55
1450     Returns an object of class L<IO::AIO::GRP>. See its documentation below
1451     for more info.
1452    
1453     Example:
1454    
1455     my $grp = aio_group sub {
1456     print "all stats done\n";
1457     };
1458    
1459     add $grp
1460     (aio_stat ...),
1461     (aio_stat ...),
1462     ...;
1463    
1464 root 1.63 =item aio_nop $callback->()
1465    
1466     This is a special request - it does nothing in itself and is only used for
1467     side effects, such as when you want to add a dummy request to a group so
1468     that finishing the requests in the group depends on executing the given
1469     code.
1470    
1471 root 1.64 While this request does nothing, it still goes through the execution
1472     phase and still requires a worker thread. Thus, the callback will not
1473     be executed immediately but only after other requests in the queue have
1474     entered their execution phase. This can be used to measure request
1475     latency.
1476    
1477 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1478 root 1.54
1479     Mainly used for debugging and benchmarking, this aio request puts one of
1480     the request workers to sleep for the given time.
1481    
1482 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1483 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1484     immense (it blocks a thread for a long time) so do not use this function
1485     except to put your application under artificial I/O pressure.
1486 root 1.56
1487 root 1.5 =back
1488    
1489 root 1.209
1490     =head2 IO::AIO::WD - multiple working directories
1491    
1492     Your process only has one current working directory, which is used by all
1493     threads. This makes it hard to use relative paths (some other component
1494     could call C<chdir> at any time, and it is hard to control when the path
1495     will be used by IO::AIO).
1496    
1497     One solution for this is to always use absolute paths. This usually works,
1498     but can be quite slow (the kernel has to walk the whole path on every
1499     access), and can also be a hassle to implement.
1500    
1501     Newer POSIX systems have a number of functions (openat, fdopendir,
1502     futimensat and so on) that make it possible to specify working directories
1503     per operation.
1504    
1505     For portability, and because the clowns who "designed", or shall I write,
1506     perpetrated this new interface were obviously half-drunk, this abstraction
1507     cannot be perfect, though.
1508    
1509     IO::AIO allows you to convert directory paths into a so-called IO::AIO::WD
1510     object. This object stores the canonicalised, absolute version of the
1511     path, and on systems that allow it, also a directory file descriptor.
1512    
1513     Everywhere where a pathname is accepted by IO::AIO (e.g. in C<aio_stat>
1514     or C<aio_unlink>), one can specify an array reference with an IO::AIO::WD
1515 root 1.214 object and a pathname instead (or the IO::AIO::WD object alone, which
1516     gets interpreted as C<[$wd, "."]>). If the pathname is absolute, the
1517 root 1.213 IO::AIO::WD object is ignored, otherwise the pathname is resolved relative
1518 root 1.209 to that IO::AIO::WD object.
1519    
1520     For example, to get a wd object for F</etc> and then stat F<passwd>
1521     inside, you would write:
1522    
1523     aio_wd "/etc", sub {
1524     my $etcdir = shift;
1525    
1526     # although $etcdir can be undef on error, there is generally no reason
1527     # to check for errors here, as aio_stat will fail with ENOENT
1528     # when $etcdir is undef.
1529    
1530     aio_stat [$etcdir, "passwd"], sub {
1531     # yay
1532     };
1533     };
1534    
1535 root 1.250 The fact that C<aio_wd> is a request and not a normal function shows that
1536     creating an IO::AIO::WD object is itself a potentially blocking operation,
1537     which is why it is done asynchronously.
1538 root 1.214
1539     To stat the directory obtained with C<aio_wd> above, one could write
1540     either of the following three request calls:
1541    
1542     aio_lstat "/etc" , sub { ... # pathname as normal string
1543     aio_lstat [$wd, "."], sub { ... # "." relative to $wd (i.e. $wd itself)
1544     aio_lstat $wd , sub { ... # shorthand for the previous
1545 root 1.209
1546     As with normal pathnames, IO::AIO keeps a copy of the working directory
1547     object and the pathname string, so you could write the following without
1548     causing any issues due to C<$path> getting reused:
1549    
1550     my $path = [$wd, undef];
1551    
1552     for my $name (qw(abc def ghi)) {
1553     $path->[1] = $name;
1554     aio_stat $path, sub {
1555     # ...
1556     };
1557     }
1558    
1559     There are some caveats: when directories get renamed (or deleted), the
1560     pathname string doesn't change, so will point to the new directory (or
1561     nowhere at all), while the directory fd, if available on the system,
1562     will still point to the original directory. Most functions accepting a
1563     pathname will use the directory fd on newer systems, and the string on
1564 root 1.277 older systems. Some functions (such as C<aio_realpath>) will always rely on
1565     the string form of the pathname.
1566 root 1.209
1567 root 1.239 So this functionality is mainly useful to get some protection against
1568 root 1.209 C<chdir>, to easily get an absolute path out of a relative path for future
1569     reference, and to speed up doing many operations in the same directory
1570     (e.g. when stat'ing all files in a directory).
1571    
1572     The following functions implement this working directory abstraction:
1573    
1574     =over 4
1575    
1576     =item aio_wd $pathname, $callback->($wd)
1577    
1578     Asynchonously canonicalise the given pathname and convert it to an
1579     IO::AIO::WD object representing it. If possible and supported on the
1580     system, also open a directory fd to speed up pathname resolution relative
1581     to this working directory.
1582    
1583     If something goes wrong, then C<undef> is passwd to the callback instead
1584     of a working directory object and C<$!> is set appropriately. Since
1585     passing C<undef> as working directory component of a pathname fails the
1586     request with C<ENOENT>, there is often no need for error checking in the
1587     C<aio_wd> callback, as future requests using the value will fail in the
1588     expected way.
1589    
1590     =item IO::AIO::CWD
1591    
1592     This is a compiletime constant (object) that represents the process
1593     current working directory.
1594    
1595 root 1.239 Specifying this object as working directory object for a pathname is as if
1596     the pathname would be specified directly, without a directory object. For
1597     example, these calls are functionally identical:
1598 root 1.209
1599     aio_stat "somefile", sub { ... };
1600     aio_stat [IO::AIO::CWD, "somefile"], sub { ... };
1601    
1602     =back
1603    
1604 root 1.239 To recover the path associated with an IO::AIO::WD object, you can use
1605     C<aio_realpath>:
1606    
1607     aio_realpath $wd, sub {
1608     warn "path is $_[0]\n";
1609     };
1610    
1611 root 1.241 Currently, C<aio_statvfs> always, and C<aio_rename> and C<aio_rmdir>
1612     sometimes, fall back to using an absolue path.
1613 root 1.209
1614 root 1.53 =head2 IO::AIO::REQ CLASS
1615 root 1.52
1616     All non-aggregate C<aio_*> functions return an object of this class when
1617     called in non-void context.
1618    
1619     =over 4
1620    
1621 root 1.65 =item cancel $req
1622 root 1.52
1623     Cancels the request, if possible. Has the effect of skipping execution
1624     when entering the B<execute> state and skipping calling the callback when
1625     entering the the B<result> state, but will leave the request otherwise
1626 root 1.151 untouched (with the exception of readdir). That means that requests that
1627     currently execute will not be stopped and resources held by the request
1628     will not be freed prematurely.
1629 root 1.52
1630 root 1.65 =item cb $req $callback->(...)
1631    
1632     Replace (or simply set) the callback registered to the request.
1633    
1634 root 1.52 =back
1635    
1636 root 1.55 =head2 IO::AIO::GRP CLASS
1637    
1638     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1639     objects of this class, too.
1640    
1641     A IO::AIO::GRP object is a special request that can contain multiple other
1642     aio requests.
1643    
1644     You create one by calling the C<aio_group> constructing function with a
1645     callback that will be called when all contained requests have entered the
1646     C<done> state:
1647    
1648     my $grp = aio_group sub {
1649     print "all requests are done\n";
1650     };
1651    
1652     You add requests by calling the C<add> method with one or more
1653     C<IO::AIO::REQ> objects:
1654    
1655     $grp->add (aio_unlink "...");
1656    
1657 root 1.58 add $grp aio_stat "...", sub {
1658     $_[0] or return $grp->result ("error");
1659    
1660     # add another request dynamically, if first succeeded
1661     add $grp aio_open "...", sub {
1662     $grp->result ("ok");
1663     };
1664     };
1665 root 1.55
1666     This makes it very easy to create composite requests (see the source of
1667     C<aio_move> for an application) that work and feel like simple requests.
1668    
1669 root 1.62 =over 4
1670    
1671     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1672 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1673    
1674 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1675 root 1.59 only the request itself, but also all requests it contains.
1676 root 1.55
1677 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1678 root 1.55
1679 root 1.62 =item * You must not add requests to a group from within the group callback (or
1680 root 1.60 any later time).
1681    
1682 root 1.62 =back
1683    
1684 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1685     will finish very quickly. If they contain only requests that are in the
1686     C<done> state, they will also finish. Otherwise they will continue to
1687     exist.
1688    
1689 root 1.133 That means after creating a group you have some time to add requests
1690     (precisely before the callback has been invoked, which is only done within
1691     the C<poll_cb>). And in the callbacks of those requests, you can add
1692     further requests to the group. And only when all those requests have
1693     finished will the the group itself finish.
1694 root 1.57
1695 root 1.55 =over 4
1696    
1697 root 1.65 =item add $grp ...
1698    
1699 root 1.55 =item $grp->add (...)
1700    
1701 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1702     be added, including other groups, as long as you do not create circular
1703     dependencies.
1704    
1705     Returns all its arguments.
1706 root 1.55
1707 root 1.74 =item $grp->cancel_subs
1708    
1709     Cancel all subrequests and clears any feeder, but not the group request
1710     itself. Useful when you queued a lot of events but got a result early.
1711    
1712 root 1.168 The group request will finish normally (you cannot add requests to the
1713     group).
1714    
1715 root 1.58 =item $grp->result (...)
1716    
1717     Set the result value(s) that will be passed to the group callback when all
1718 root 1.120 subrequests have finished and set the groups errno to the current value
1719 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1720     no argument will be passed and errno is zero.
1721    
1722     =item $grp->errno ([$errno])
1723    
1724     Sets the group errno value to C<$errno>, or the current value of errno
1725     when the argument is missing.
1726    
1727     Every aio request has an associated errno value that is restored when
1728     the callback is invoked. This method lets you change this value from its
1729     default (0).
1730    
1731     Calling C<result> will also set errno, so make sure you either set C<$!>
1732     before the call to C<result>, or call c<errno> after it.
1733 root 1.58
1734 root 1.65 =item feed $grp $callback->($grp)
1735 root 1.60
1736     Sets a feeder/generator on this group: every group can have an attached
1737     generator that generates requests if idle. The idea behind this is that,
1738     although you could just queue as many requests as you want in a group,
1739 root 1.139 this might starve other requests for a potentially long time. For example,
1740 root 1.211 C<aio_scandir> might generate hundreds of thousands of C<aio_stat>
1741     requests, delaying any later requests for a long time.
1742 root 1.60
1743     To avoid this, and allow incremental generation of requests, you can
1744     instead a group and set a feeder on it that generates those requests. The
1745 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1746 root 1.60 below) requests active in the group itself and is expected to queue more
1747     requests.
1748    
1749 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1750     not impose any limits).
1751 root 1.60
1752 root 1.65 If the feed does not queue more requests when called, it will be
1753 root 1.60 automatically removed from the group.
1754    
1755 root 1.138 If the feed limit is C<0> when this method is called, it will be set to
1756     C<2> automatically.
1757 root 1.60
1758     Example:
1759    
1760     # stat all files in @files, but only ever use four aio requests concurrently:
1761    
1762     my $grp = aio_group sub { print "finished\n" };
1763 root 1.68 limit $grp 4;
1764 root 1.65 feed $grp sub {
1765 root 1.60 my $file = pop @files
1766     or return;
1767    
1768     add $grp aio_stat $file, sub { ... };
1769 root 1.65 };
1770 root 1.60
1771 root 1.68 =item limit $grp $num
1772 root 1.60
1773     Sets the feeder limit for the group: The feeder will be called whenever
1774     the group contains less than this many requests.
1775    
1776     Setting the limit to C<0> will pause the feeding process.
1777    
1778 root 1.138 The default value for the limit is C<0>, but note that setting a feeder
1779     automatically bumps it up to C<2>.
1780    
1781 root 1.55 =back
1782    
1783 root 1.5 =head2 SUPPORT FUNCTIONS
1784    
1785 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1786    
1787 root 1.5 =over 4
1788    
1789     =item $fileno = IO::AIO::poll_fileno
1790    
1791 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1792 root 1.156 polled for reading by some mechanism outside this module (e.g. EV, Glib,
1793     select and so on, see below or the SYNOPSIS). If the pipe becomes readable
1794     you have to call C<poll_cb> to check the results.
1795 root 1.5
1796     See C<poll_cb> for an example.
1797    
1798     =item IO::AIO::poll_cb
1799    
1800 root 1.240 Process some requests that have reached the result phase (i.e. they have
1801     been executed but the results are not yet reported). You have to call
1802     this "regularly" to finish outstanding requests.
1803    
1804     Returns C<0> if all events could be processed (or there were no
1805     events to process), or C<-1> if it returned earlier for whatever
1806     reason. Returns immediately when no events are outstanding. The amount
1807     of events processed depends on the settings of C<IO::AIO::max_poll_req>,
1808     C<IO::AIO::max_poll_time> and C<IO::AIO::max_outstanding>.
1809    
1810     If not all requests were processed for whatever reason, the poll file
1811     descriptor will still be ready when C<poll_cb> returns, so normally you
1812     don't have to do anything special to have it called later.
1813 root 1.78
1814 root 1.192 Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes
1815     ready, it can be beneficial to call this function from loops which submit
1816     a lot of requests, to make sure the results get processed when they become
1817     available and not just when the loop is finished and the event loop takes
1818     over again. This function returns very fast when there are no outstanding
1819     requests.
1820    
1821 root 1.20 Example: Install an Event watcher that automatically calls
1822 root 1.156 IO::AIO::poll_cb with high priority (more examples can be found in the
1823     SYNOPSIS section, at the top of this document):
1824 root 1.5
1825     Event->io (fd => IO::AIO::poll_fileno,
1826     poll => 'r', async => 1,
1827     cb => \&IO::AIO::poll_cb);
1828    
1829 root 1.175 =item IO::AIO::poll_wait
1830    
1831 root 1.240 Wait until either at least one request is in the result phase or no
1832     requests are outstanding anymore.
1833    
1834     This is useful if you want to synchronously wait for some requests to
1835     become ready, without actually handling them.
1836 root 1.175
1837     See C<nreqs> for an example.
1838    
1839     =item IO::AIO::poll
1840    
1841     Waits until some requests have been handled.
1842    
1843     Returns the number of requests processed, but is otherwise strictly
1844     equivalent to:
1845    
1846     IO::AIO::poll_wait, IO::AIO::poll_cb
1847    
1848     =item IO::AIO::flush
1849    
1850     Wait till all outstanding AIO requests have been handled.
1851    
1852     Strictly equivalent to:
1853    
1854     IO::AIO::poll_wait, IO::AIO::poll_cb
1855     while IO::AIO::nreqs;
1856    
1857 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1858    
1859     =item IO::AIO::max_poll_time $seconds
1860    
1861     These set the maximum number of requests (default C<0>, meaning infinity)
1862     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1863     the maximum amount of time (default C<0>, meaning infinity) spent in
1864     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1865     of time C<poll_cb> is allowed to use).
1866 root 1.78
1867 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1868     syscall per request processed, which is not normally a problem unless your
1869     callbacks are really really fast or your OS is really really slow (I am
1870     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1871    
1872 root 1.86 Setting these is useful if you want to ensure some level of
1873     interactiveness when perl is not fast enough to process all requests in
1874     time.
1875 root 1.78
1876 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
1877 root 1.78
1878     Example: Install an Event watcher that automatically calls
1879 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
1880 root 1.78 program get the CPU sometimes even under high AIO load.
1881    
1882 root 1.86 # try not to spend much more than 0.1s in poll_cb
1883     IO::AIO::max_poll_time 0.1;
1884    
1885     # use a low priority so other tasks have priority
1886 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
1887     poll => 'r', nice => 1,
1888 root 1.86 cb => &IO::AIO::poll_cb);
1889 root 1.78
1890 root 1.104 =back
1891    
1892 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
1893 root 1.13
1894 root 1.105 =over
1895    
1896 root 1.5 =item IO::AIO::min_parallel $nthreads
1897    
1898 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
1899     default is C<8>, which means eight asynchronous operations can execute
1900     concurrently at any one time (the number of outstanding requests,
1901     however, is unlimited).
1902 root 1.5
1903 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
1904 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
1905     create demand for a hundred threads, even if it turns out that everything
1906     is in the cache and could have been processed faster by a single thread.
1907 root 1.34
1908 root 1.61 It is recommended to keep the number of threads relatively low, as some
1909     Linux kernel versions will scale negatively with the number of threads
1910     (higher parallelity => MUCH higher latency). With current Linux 2.6
1911     versions, 4-32 threads should be fine.
1912 root 1.5
1913 root 1.34 Under most circumstances you don't need to call this function, as the
1914     module selects a default that is suitable for low to moderate load.
1915 root 1.5
1916     =item IO::AIO::max_parallel $nthreads
1917    
1918 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
1919     specified number of threads are currently running, this function kills
1920     them. This function blocks until the limit is reached.
1921    
1922     While C<$nthreads> are zero, aio requests get queued but not executed
1923     until the number of threads has been increased again.
1924 root 1.5
1925     This module automatically runs C<max_parallel 0> at program end, to ensure
1926     that all threads are killed and that there are no outstanding requests.
1927    
1928     Under normal circumstances you don't need to call this function.
1929    
1930 root 1.86 =item IO::AIO::max_idle $nthreads
1931    
1932 root 1.188 Limit the number of threads (default: 4) that are allowed to idle
1933     (i.e., threads that did not get a request to process within the idle
1934     timeout (default: 10 seconds). That means if a thread becomes idle while
1935     C<$nthreads> other threads are also idle, it will free its resources and
1936     exit.
1937 root 1.86
1938     This is useful when you allow a large number of threads (e.g. 100 or 1000)
1939     to allow for extremely high load situations, but want to free resources
1940     under normal circumstances (1000 threads can easily consume 30MB of RAM).
1941    
1942     The default is probably ok in most situations, especially if thread
1943     creation is fast. If thread creation is very slow on your system you might
1944     want to use larger values.
1945    
1946 root 1.188 =item IO::AIO::idle_timeout $seconds
1947    
1948     Sets the minimum idle timeout (default 10) after which worker threads are
1949     allowed to exit. SEe C<IO::AIO::max_idle>.
1950    
1951 root 1.123 =item IO::AIO::max_outstanding $maxreqs
1952 root 1.5
1953 root 1.195 Sets the maximum number of outstanding requests to C<$nreqs>. If
1954     you do queue up more than this number of requests, the next call to
1955     C<IO::AIO::poll_cb> (and other functions calling C<poll_cb>, such as
1956     C<IO::AIO::flush> or C<IO::AIO::poll>) will block until the limit is no
1957     longer exceeded.
1958    
1959     In other words, this setting does not enforce a queue limit, but can be
1960     used to make poll functions block if the limit is exceeded.
1961    
1962 root 1.79 This is a very bad function to use in interactive programs because it
1963     blocks, and a bad way to reduce concurrency because it is inexact: Better
1964     use an C<aio_group> together with a feed callback.
1965    
1966 root 1.248 Its main use is in scripts without an event loop - when you want to stat
1967 root 1.274 a lot of files, you can write something like this:
1968 root 1.195
1969     IO::AIO::max_outstanding 32;
1970    
1971     for my $path (...) {
1972     aio_stat $path , ...;
1973     IO::AIO::poll_cb;
1974     }
1975    
1976     IO::AIO::flush;
1977    
1978     The call to C<poll_cb> inside the loop will normally return instantly, but
1979     as soon as more thna C<32> reqeusts are in-flight, it will block until
1980     some requests have been handled. This keeps the loop from pushing a large
1981     number of C<aio_stat> requests onto the queue.
1982    
1983     The default value for C<max_outstanding> is very large, so there is no
1984     practical limit on the number of outstanding requests.
1985 root 1.5
1986 root 1.104 =back
1987    
1988 root 1.86 =head3 STATISTICAL INFORMATION
1989    
1990 root 1.104 =over
1991    
1992 root 1.86 =item IO::AIO::nreqs
1993    
1994     Returns the number of requests currently in the ready, execute or pending
1995     states (i.e. for which their callback has not been invoked yet).
1996    
1997     Example: wait till there are no outstanding requests anymore:
1998    
1999     IO::AIO::poll_wait, IO::AIO::poll_cb
2000     while IO::AIO::nreqs;
2001    
2002     =item IO::AIO::nready
2003    
2004     Returns the number of requests currently in the ready state (not yet
2005     executed).
2006    
2007     =item IO::AIO::npending
2008    
2009     Returns the number of requests currently in the pending state (executed,
2010     but not yet processed by poll_cb).
2011    
2012 root 1.5 =back
2013    
2014 root 1.157 =head3 MISCELLANEOUS FUNCTIONS
2015    
2016 root 1.248 IO::AIO implements some functions that are useful when you want to use
2017     some "Advanced I/O" function not available to in Perl, without going the
2018     "Asynchronous I/O" route. Many of these have an asynchronous C<aio_*>
2019     counterpart.
2020 root 1.157
2021     =over 4
2022    
2023 root 1.275 =item $numfd = IO::AIO::get_fdlimit
2024    
2025 root 1.278 This function is I<EXPERIMENTAL> and subject to change.
2026    
2027 root 1.275 Tries to find the current file descriptor limit and returns it, or
2028     C<undef> and sets C<$!> in case of an error. The limit is one larger than
2029     the highest valid file descriptor number.
2030    
2031     =item IO::AIO::min_fdlimit [$numfd]
2032    
2033 root 1.278 This function is I<EXPERIMENTAL> and subject to change.
2034    
2035 root 1.275 Try to increase the current file descriptor limit(s) to at least C<$numfd>
2036     by changing the soft or hard file descriptor resource limit. If C<$numfd>
2037     is missing, it will try to set a very high limit, although this is not
2038     recommended when you know the actual minimum that you require.
2039    
2040     If the limit cannot be raised enough, the function makes a best-effort
2041     attempt to increase the limit as much as possible, using various
2042     tricks, while still failing. You can query the resulting limit using
2043     C<IO::AIO::get_fdlimit>.
2044    
2045 root 1.276 If an error occurs, returns C<undef> and sets C<$!>, otherwise returns
2046     true.
2047 root 1.275
2048 root 1.157 =item IO::AIO::sendfile $ofh, $ifh, $offset, $count
2049    
2050     Calls the C<eio_sendfile_sync> function, which is like C<aio_sendfile>,
2051     but is blocking (this makes most sense if you know the input data is
2052     likely cached already and the output filehandle is set to non-blocking
2053     operations).
2054    
2055     Returns the number of bytes copied, or C<-1> on error.
2056    
2057     =item IO::AIO::fadvise $fh, $offset, $len, $advice
2058    
2059 root 1.184 Simply calls the C<posix_fadvise> function (see its
2060 root 1.157 manpage for details). The following advice constants are
2061 root 1.207 available: C<IO::AIO::FADV_NORMAL>, C<IO::AIO::FADV_SEQUENTIAL>,
2062 root 1.157 C<IO::AIO::FADV_RANDOM>, C<IO::AIO::FADV_NOREUSE>,
2063     C<IO::AIO::FADV_WILLNEED>, C<IO::AIO::FADV_DONTNEED>.
2064    
2065     On systems that do not implement C<posix_fadvise>, this function returns
2066     ENOSYS, otherwise the return value of C<posix_fadvise>.
2067    
2068 root 1.184 =item IO::AIO::madvise $scalar, $offset, $len, $advice
2069    
2070     Simply calls the C<posix_madvise> function (see its
2071     manpage for details). The following advice constants are
2072 root 1.207 available: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
2073 root 1.272 C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>,
2074     C<IO::AIO::MADV_DONTNEED>.
2075 root 1.184
2076 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2077     the remaining length of the C<$scalar> is used. If possible, C<$length>
2078     will be reduced to fit into the C<$scalar>.
2079    
2080 root 1.184 On systems that do not implement C<posix_madvise>, this function returns
2081     ENOSYS, otherwise the return value of C<posix_madvise>.
2082    
2083     =item IO::AIO::mprotect $scalar, $offset, $len, $protect
2084    
2085     Simply calls the C<mprotect> function on the preferably AIO::mmap'ed
2086     $scalar (see its manpage for details). The following protect
2087 root 1.207 constants are available: C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_READ>,
2088 root 1.184 C<IO::AIO::PROT_WRITE>, C<IO::AIO::PROT_EXEC>.
2089    
2090 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2091     the remaining length of the C<$scalar> is used. If possible, C<$length>
2092     will be reduced to fit into the C<$scalar>.
2093    
2094 root 1.184 On systems that do not implement C<mprotect>, this function returns
2095     ENOSYS, otherwise the return value of C<mprotect>.
2096    
2097 root 1.176 =item IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
2098    
2099     Memory-maps a file (or anonymous memory range) and attaches it to the
2100 root 1.228 given C<$scalar>, which will act like a string scalar. Returns true on
2101     success, and false otherwise.
2102 root 1.176
2103 root 1.268 The scalar must exist, but its contents do not matter - this means you
2104     cannot use a nonexistant array or hash element. When in doubt, C<undef>
2105     the scalar first.
2106    
2107     The only operations allowed on the mmapped scalar are C<substr>/C<vec>,
2108     which don't change the string length, and most read-only operations such
2109     as copying it or searching it with regexes and so on.
2110 root 1.176
2111     Anything else is unsafe and will, at best, result in memory leaks.
2112    
2113     The memory map associated with the C<$scalar> is automatically removed
2114 root 1.268 when the C<$scalar> is undef'd or destroyed, or when the C<IO::AIO::mmap>
2115     or C<IO::AIO::munmap> functions are called on it.
2116 root 1.176
2117     This calls the C<mmap>(2) function internally. See your system's manual
2118     page for details on the C<$length>, C<$prot> and C<$flags> parameters.
2119    
2120     The C<$length> must be larger than zero and smaller than the actual
2121     filesize.
2122    
2123     C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
2124     C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
2125    
2126 root 1.256 C<$flags> can be a combination of
2127     C<IO::AIO::MAP_SHARED> or
2128     C<IO::AIO::MAP_PRIVATE>,
2129     or a number of system-specific flags (when not available, the are C<0>):
2130     C<IO::AIO::MAP_ANONYMOUS> (which is set to C<MAP_ANON> if your system only provides this constant),
2131     C<IO::AIO::MAP_LOCKED>,
2132     C<IO::AIO::MAP_NORESERVE>,
2133     C<IO::AIO::MAP_POPULATE>,
2134     C<IO::AIO::MAP_NONBLOCK>,
2135     C<IO::AIO::MAP_FIXED>,
2136     C<IO::AIO::MAP_GROWSDOWN>,
2137     C<IO::AIO::MAP_32BIT>,
2138     C<IO::AIO::MAP_HUGETLB> or
2139     C<IO::AIO::MAP_STACK>.
2140 root 1.176
2141     If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
2142    
2143 root 1.179 C<$offset> is the offset from the start of the file - it generally must be
2144     a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
2145    
2146 root 1.177 Example:
2147    
2148     use Digest::MD5;
2149     use IO::AIO;
2150    
2151     open my $fh, "<verybigfile"
2152     or die "$!";
2153    
2154     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
2155     or die "verybigfile: $!";
2156    
2157     my $fast_md5 = md5 $data;
2158    
2159 root 1.176 =item IO::AIO::munmap $scalar
2160    
2161     Removes a previous mmap and undefines the C<$scalar>.
2162    
2163 root 1.182 =item IO::AIO::munlock $scalar, $offset = 0, $length = undef
2164 root 1.174
2165 root 1.182 Calls the C<munlock> function, undoing the effects of a previous
2166     C<aio_mlock> call (see its description for details).
2167 root 1.174
2168     =item IO::AIO::munlockall
2169    
2170     Calls the C<munlockall> function.
2171    
2172     On systems that do not implement C<munlockall>, this function returns
2173     ENOSYS, otherwise the return value of C<munlockall>.
2174    
2175 root 1.225 =item IO::AIO::splice $r_fh, $r_off, $w_fh, $w_off, $length, $flags
2176    
2177     Calls the GNU/Linux C<splice(2)> syscall, if available. If C<$r_off> or
2178     C<$w_off> are C<undef>, then C<NULL> is passed for these, otherwise they
2179     should be the file offset.
2180    
2181 root 1.227 C<$r_fh> and C<$w_fh> should not refer to the same file, as splice might
2182     silently corrupt the data in this case.
2183    
2184 root 1.225 The following symbol flag values are available: C<IO::AIO::SPLICE_F_MOVE>,
2185     C<IO::AIO::SPLICE_F_NONBLOCK>, C<IO::AIO::SPLICE_F_MORE> and
2186     C<IO::AIO::SPLICE_F_GIFT>.
2187    
2188     See the C<splice(2)> manpage for details.
2189    
2190     =item IO::AIO::tee $r_fh, $w_fh, $length, $flags
2191    
2192 root 1.248 Calls the GNU/Linux C<tee(2)> syscall, see its manpage and the
2193 root 1.225 description for C<IO::AIO::splice> above for details.
2194    
2195 root 1.243 =item $actual_size = IO::AIO::pipesize $r_fh[, $new_size]
2196    
2197     Attempts to query or change the pipe buffer size. Obviously works only
2198     on pipes, and currently works only on GNU/Linux systems, and fails with
2199     C<-1>/C<ENOSYS> everywhere else. If anybody knows how to influence pipe buffer
2200     size on other systems, drop me a note.
2201    
2202 root 1.253 =item ($rfh, $wfh) = IO::AIO::pipe2 [$flags]
2203    
2204     This is a direct interface to the Linux L<pipe2(2)> system call. If
2205     C<$flags> is missing or C<0>, then this should be the same as a call to
2206 root 1.254 perl's built-in C<pipe> function and create a new pipe, and works on
2207     systems that lack the pipe2 syscall. On win32, this case invokes C<_pipe
2208     (..., 4096, O_BINARY)>.
2209 root 1.253
2210     If C<$flags> is non-zero, it tries to invoke the pipe2 system call with
2211     the given flags (Linux 2.6.27, glibc 2.9).
2212    
2213     On success, the read and write file handles are returned.
2214    
2215     On error, nothing will be returned. If the pipe2 syscall is missing and
2216     C<$flags> is non-zero, fails with C<ENOSYS>.
2217    
2218     Please refer to L<pipe2(2)> for more info on the C<$flags>, but at the
2219     time of this writing, C<IO::AIO::O_CLOEXEC>, C<IO::AIO::O_NONBLOCK> and
2220     C<IO::AIO::O_DIRECT> (Linux 3.4, for packet-based pipes) were supported.
2221    
2222 root 1.281 Example: create a pipe race-free w.r.t. threads and fork:
2223    
2224     my ($rfh, $wfh) = IO::AIO::pipe2 IO::AIO::O_CLOEXEC
2225     or die "pipe2: $!\n";
2226    
2227 root 1.282 =item $fh = IO::AIO::eventfd [$initval, [$flags]]
2228 root 1.281
2229     This is a direct interface to the Linux L<eventfd(2)> system call. The
2230     (unhelpful) defaults for C<$initval> and C<$flags> are C<0> for both.
2231    
2232     On success, the new eventfd filehandle is returned, otherwise returns
2233     C<undef>. If the eventfd syscall is missing, fails with C<ENOSYS>.
2234    
2235     Please refer to L<eventfd(2)> for more info on this call.
2236    
2237     The following symbol flag values are available: C<IO::AIO::EFD_CLOEXEC>,
2238     C<IO::AIO::EFD_NONBLOCK> and C<IO::AIO::EFD_SEMAPHORE> (Linux 2.6.30).
2239    
2240 root 1.282 Example: create a new eventfd filehandle:
2241    
2242     $fh = IO::AIO::eventfd 0, IO::AIO::O_CLOEXEC
2243     or die "eventfd: $!\n";
2244    
2245     =item $fh = IO::AIO::timerfd_create $clockid[, $flags]
2246    
2247     This is a direct interface to the Linux L<timerfd_create(2)> system call. The
2248     (unhelpful) default for C<$flags> is C<0>.
2249    
2250     On success, the new timerfd filehandle is returned, otherwise returns
2251     C<undef>. If the eventfd syscall is missing, fails with C<ENOSYS>.
2252    
2253     Please refer to L<timerfd_create(2)> for more info on this call.
2254    
2255     The following C<$clockid> values are
2256     available: C<IO::AIO::CLOCK_REALTIME>, C<IO::AIO::CLOCK_MONOTONIC>
2257     C<IO::AIO::CLOCK_CLOCK_BOOTTIME> (Linux 3.15)
2258     C<IO::AIO::CLOCK_CLOCK_REALTIME_ALARM> (Linux 3.11) and
2259     C<IO::AIO::CLOCK_CLOCK_BOOTTIME_ALARM> (Linux 3.11).
2260    
2261     The following C<$flags> values are available (Linux
2262     2.6.27): C<IO::AIO::TFD_NONBLOCK> and C<IO::AIO::TFD_CLOEXEC>.
2263    
2264     Example: create a new timerfd and set it to one-second repeated alarms,
2265     then wait for two alarms:
2266    
2267     my $fh = IO::AIO::timerfd_create IO::AIO::CLOCK_BOOTTIME, IO::AIO::TFD_CLOEXEC
2268     or die "timerfd_create: $!\n";
2269    
2270     defined IO::AIO::timerfd_settime $fh, 0, 1, 1
2271     or die "timerfd_settime: $!\n";
2272    
2273     for (1..2) {
2274     8 == sysread $fh, my $buf, 8
2275     or die "timerfd read failure\n";
2276    
2277     printf "number of expirations (likely 1): %d\n",
2278     unpack "Q", $buf;
2279     }
2280    
2281     =item ($cur_interval, $cur_value) = IO::AIO::timerfd_settime $fh, $flags, $new_interval, $nbw_value
2282    
2283     This is a direct interface to the Linux L<timerfd_settime(2)> system
2284     call. Please refer to its manpage for more info on this call.
2285    
2286     The new itimerspec is specified using two (possibly fractional) second
2287     values, C<$new_interval> and C<$new_value>).
2288    
2289     On success, the current interval and value are returned (as per
2290     C<timerfd_gettime>). On failure, the empty list is returned.
2291    
2292     The following C<$flags> values are
2293     available: C<IO::AIO::TFD_TIMER_ABSTIME> and
2294     C<IO::AIO::TFD_TIMER_CANCEL_ON_SET>.
2295    
2296     See C<IO::AIO::timerfd_create> for a full example.
2297    
2298     =item ($cur_interval, $cur_value) = IO::AIO::timerfd_gettime $fh
2299    
2300     This is a direct interface to the Linux L<timerfd_gettime(2)> system
2301     call. Please refer to its manpage for more info on this call.
2302    
2303     On success, returns the current values of interval and value for the given
2304     timerfd (as potentially fractional second values). On failure, the empty
2305     list is returned.
2306    
2307 root 1.157 =back
2308    
2309 root 1.1 =cut
2310    
2311 root 1.61 min_parallel 8;
2312 root 1.1
2313 root 1.95 END { flush }
2314 root 1.82
2315 root 1.1 1;
2316    
2317 root 1.175 =head1 EVENT LOOP INTEGRATION
2318    
2319     It is recommended to use L<AnyEvent::AIO> to integrate IO::AIO
2320     automatically into many event loops:
2321    
2322     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
2323     use AnyEvent::AIO;
2324    
2325     You can also integrate IO::AIO manually into many event loops, here are
2326     some examples of how to do this:
2327    
2328     # EV integration
2329     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
2330    
2331     # Event integration
2332     Event->io (fd => IO::AIO::poll_fileno,
2333     poll => 'r',
2334     cb => \&IO::AIO::poll_cb);
2335    
2336     # Glib/Gtk2 integration
2337     add_watch Glib::IO IO::AIO::poll_fileno,
2338     in => sub { IO::AIO::poll_cb; 1 };
2339    
2340     # Tk integration
2341     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
2342     readable => \&IO::AIO::poll_cb);
2343    
2344     # Danga::Socket integration
2345     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
2346     \&IO::AIO::poll_cb);
2347    
2348 root 1.27 =head2 FORK BEHAVIOUR
2349    
2350 root 1.197 Usage of pthreads in a program changes the semantics of fork
2351     considerably. Specifically, only async-safe functions can be called after
2352     fork. Perl doesn't know about this, so in general, you cannot call fork
2353 root 1.204 with defined behaviour in perl if pthreads are involved. IO::AIO uses
2354     pthreads, so this applies, but many other extensions and (for inexplicable
2355     reasons) perl itself often is linked against pthreads, so this limitation
2356     applies to quite a lot of perls.
2357    
2358     This module no longer tries to fight your OS, or POSIX. That means IO::AIO
2359     only works in the process that loaded it. Forking is fully supported, but
2360     using IO::AIO in the child is not.
2361    
2362     You might get around by not I<using> IO::AIO before (or after)
2363     forking. You could also try to call the L<IO::AIO::reinit> function in the
2364     child:
2365    
2366     =over 4
2367    
2368     =item IO::AIO::reinit
2369    
2370 root 1.207 Abandons all current requests and I/O threads and simply reinitialises all
2371     data structures. This is not an operation supported by any standards, but
2372 root 1.204 happens to work on GNU/Linux and some newer BSD systems.
2373    
2374     The only reasonable use for this function is to call it after forking, if
2375     C<IO::AIO> was used in the parent. Calling it while IO::AIO is active in
2376     the process will result in undefined behaviour. Calling it at any time
2377     will also result in any undefined (by POSIX) behaviour.
2378    
2379     =back
2380 root 1.52
2381 root 1.282 =head2 LINUX-SPECIFIC CALLS
2382    
2383     When a call is documented as "linux-specific" then this means it
2384     originated on GNU/Linux. C<IO::AIO> will usually try to autodetect the
2385     availability and compatibility of such calls regardless of the platform
2386     it is compiled on, so platforms such as FreeBSD which often implement
2387     these calls will work. When in doubt, call them and see if they fail wth
2388     C<ENOSYS>.
2389    
2390 root 1.60 =head2 MEMORY USAGE
2391    
2392 root 1.72 Per-request usage:
2393    
2394     Each aio request uses - depending on your architecture - around 100-200
2395     bytes of memory. In addition, stat requests need a stat buffer (possibly
2396     a few hundred bytes), readdir requires a result buffer and so on. Perl
2397     scalars and other data passed into aio requests will also be locked and
2398     will consume memory till the request has entered the done state.
2399 root 1.60
2400 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
2401 root 1.60 problem.
2402    
2403 root 1.72 Per-thread usage:
2404    
2405     In the execution phase, some aio requests require more memory for
2406     temporary buffers, and each thread requires a stack and other data
2407     structures (usually around 16k-128k, depending on the OS).
2408    
2409     =head1 KNOWN BUGS
2410    
2411 root 1.283 Known bugs will be fixed in the next release :)
2412    
2413     =head1 KNOWN ISSUES
2414    
2415     Calls that try to "import" foreign memory areas (such as C<IO::AIO::mmap>
2416     or C<IO::AIO::aio_slurp>) do not work with generic lvalues, such as
2417     non-created hash slots or other scalars I didn't think of. It's best to
2418     avoid such and either use scalar variables or making sure that the scalar
2419     exists (e.g. by storing C<undef>) and isn't "funny" (e.g. tied).
2420    
2421     I am not sure anything can be done about this, so this is considered a
2422     known issue, rather than a bug.
2423 root 1.60
2424 root 1.1 =head1 SEE ALSO
2425    
2426 root 1.125 L<AnyEvent::AIO> for easy integration into event loops, L<Coro::AIO> for a
2427     more natural syntax.
2428 root 1.1
2429     =head1 AUTHOR
2430    
2431     Marc Lehmann <schmorp@schmorp.de>
2432     http://home.schmorp.de/
2433    
2434     =cut
2435