ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.297
Committed: Thu Nov 29 19:53:46 2018 UTC (5 years, 6 months ago) by root
Branch: MAIN
Changes since 1.296: +6 -3 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.265 IO::AIO - Asynchronous/Advanced Input/Output
4 root 1.1
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.1 =head1 DESCRIPTION
32    
33     This module implements asynchronous I/O using whatever means your
34 root 1.156 operating system supports. It is implemented as an interface to C<libeio>
35     (L<http://software.schmorp.de/pkg/libeio.html>).
36 root 1.1
37 root 1.85 Asynchronous means that operations that can normally block your program
38     (e.g. reading from disk) will be done asynchronously: the operation
39     will still block, but you can do something else in the meantime. This
40     is extremely useful for programs that need to stay interactive even
41     when doing heavy I/O (GUI programs, high performance network servers
42     etc.), but can also be used to easily do operations in parallel that are
43     normally done sequentially, e.g. stat'ing many files, which is much faster
44     on a RAID volume or over NFS when you do a number of stat operations
45     concurrently.
46    
47 root 1.108 While most of this works on all types of file descriptors (for
48     example sockets), using these functions on file descriptors that
49 root 1.156 support nonblocking operation (again, sockets, pipes etc.) is
50     very inefficient. Use an event loop for that (such as the L<EV>
51 root 1.108 module): IO::AIO will naturally fit into such an event loop itself.
52 root 1.85
53 root 1.72 In this version, a number of threads are started that execute your
54     requests and signal their completion. You don't need thread support
55     in perl, and the threads created by this module will not be visible
56     to perl. In the future, this module might make use of the native aio
57     functions available on many operating systems. However, they are often
58 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
59 root 1.72 files currently, for example), and they would only support aio_read and
60     aio_write, so the remaining functionality would have to be implemented
61     using threads anyway.
62    
63 root 1.265 In addition to asynchronous I/O, this module also exports some rather
64     arcane interfaces, such as C<madvise> or linux's C<splice> system call,
65     which is why the C<A> in C<AIO> can also mean I<advanced>.
66    
67 root 1.108 Although the module will work in the presence of other (Perl-) threads,
68     it is currently not reentrant in any way, so use appropriate locking
69     yourself, always call C<poll_cb> from within the same thread, or never
70     call C<poll_cb> (or other C<aio_> functions) recursively.
71 root 1.72
72 root 1.86 =head2 EXAMPLE
73    
74 root 1.156 This is a simple example that uses the EV module and loads
75 root 1.86 F</etc/passwd> asynchronously:
76    
77 root 1.156 use EV;
78 root 1.86 use IO::AIO;
79    
80 root 1.156 # register the IO::AIO callback with EV
81     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
82 root 1.86
83     # queue the request to open /etc/passwd
84 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
85 root 1.94 my $fh = shift
86 root 1.86 or die "error while opening: $!";
87    
88     # stat'ing filehandles is generally non-blocking
89     my $size = -s $fh;
90    
91     # queue a request to read the file
92     my $contents;
93     aio_read $fh, 0, $size, $contents, 0, sub {
94     $_[0] == $size
95     or die "short read: $!";
96    
97     close $fh;
98    
99     # file contents now in $contents
100     print $contents;
101    
102     # exit event loop and program
103 root 1.257 EV::break;
104 root 1.86 };
105     };
106    
107     # possibly queue up other requests, or open GUI windows,
108     # check for sockets etc. etc.
109    
110     # process events as long as there are some:
111 root 1.257 EV::run;
112 root 1.86
113 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
114    
115     Every C<aio_*> function creates a request. which is a C data structure not
116     directly visible to Perl.
117    
118     If called in non-void context, every request function returns a Perl
119     object representing the request. In void context, nothing is returned,
120     which saves a bit of memory.
121    
122     The perl object is a fairly standard ref-to-hash object. The hash contents
123     are not used by IO::AIO so you are free to store anything you like in it.
124    
125     During their existance, aio requests travel through the following states,
126     in order:
127    
128     =over 4
129    
130     =item ready
131    
132     Immediately after a request is created it is put into the ready state,
133     waiting for a thread to execute it.
134    
135     =item execute
136    
137     A thread has accepted the request for processing and is currently
138     executing it (e.g. blocking in read).
139    
140     =item pending
141    
142     The request has been executed and is waiting for result processing.
143    
144     While request submission and execution is fully asynchronous, result
145     processing is not and relies on the perl interpreter calling C<poll_cb>
146     (or another function with the same effect).
147    
148     =item result
149    
150     The request results are processed synchronously by C<poll_cb>.
151    
152     The C<poll_cb> function will process all outstanding aio requests by
153     calling their callbacks, freeing memory associated with them and managing
154     any groups they are contained in.
155    
156     =item done
157    
158     Request has reached the end of its lifetime and holds no resources anymore
159     (except possibly for the Perl object, but its connection to the actual
160     aio request is severed and calling its methods will either do nothing or
161     result in a runtime error).
162 root 1.1
163 root 1.88 =back
164    
165 root 1.1 =cut
166    
167     package IO::AIO;
168    
169 root 1.117 use Carp ();
170    
171 root 1.161 use common::sense;
172 root 1.23
173 root 1.1 use base 'Exporter';
174    
175     BEGIN {
176 root 1.295 our $VERSION = 4.6;
177 root 1.1
178 root 1.220 our @AIO_REQ = qw(aio_sendfile aio_seek aio_read aio_write aio_open aio_close
179 root 1.148 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
180 root 1.259 aio_scandir aio_symlink aio_readlink aio_realpath aio_fcntl aio_ioctl
181     aio_sync aio_fsync aio_syncfs aio_fdatasync aio_sync_file_range
182     aio_pathsync aio_readahead aio_fiemap aio_allocate
183 root 1.270 aio_rename aio_rename2 aio_link aio_move aio_copy aio_group
184 root 1.120 aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
185 root 1.170 aio_chmod aio_utime aio_truncate
186 root 1.182 aio_msync aio_mtouch aio_mlock aio_mlockall
187 root 1.208 aio_statvfs
188 root 1.279 aio_slurp
189 root 1.208 aio_wd);
190 root 1.120
191 root 1.123 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice));
192 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
193 root 1.188 min_parallel max_parallel max_idle idle_timeout
194 root 1.86 nreqs nready npending nthreads
195 root 1.157 max_poll_time max_poll_reqs
196 root 1.182 sendfile fadvise madvise
197 root 1.285 mmap munmap mremap munlock munlockall);
198 root 1.1
199 root 1.143 push @AIO_REQ, qw(aio_busy); # not exported
200    
201 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
202    
203 root 1.1 require XSLoader;
204 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
205 root 1.1 }
206    
207 root 1.5 =head1 FUNCTIONS
208 root 1.1
209 root 1.175 =head2 QUICK OVERVIEW
210    
211 root 1.230 This section simply lists the prototypes most of the functions for
212     quick reference. See the following sections for function-by-function
213 root 1.175 documentation.
214    
215 root 1.208 aio_wd $pathname, $callback->($wd)
216 root 1.175 aio_open $pathname, $flags, $mode, $callback->($fh)
217     aio_close $fh, $callback->($status)
218 root 1.220 aio_seek $fh,$offset,$whence, $callback->($offs)
219 root 1.175 aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
220     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
221     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
222     aio_readahead $fh,$offset,$length, $callback->($retval)
223     aio_stat $fh_or_path, $callback->($status)
224     aio_lstat $fh, $callback->($status)
225     aio_statvfs $fh_or_path, $callback->($statvfs)
226     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
227     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
228 root 1.220 aio_chmod $fh_or_path, $mode, $callback->($status)
229 root 1.175 aio_truncate $fh_or_path, $offset, $callback->($status)
230 root 1.229 aio_allocate $fh, $mode, $offset, $len, $callback->($status)
231 root 1.230 aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
232 root 1.175 aio_unlink $pathname, $callback->($status)
233 root 1.209 aio_mknod $pathname, $mode, $dev, $callback->($status)
234 root 1.175 aio_link $srcpath, $dstpath, $callback->($status)
235     aio_symlink $srcpath, $dstpath, $callback->($status)
236 root 1.209 aio_readlink $pathname, $callback->($link)
237 root 1.249 aio_realpath $pathname, $callback->($path)
238 root 1.175 aio_rename $srcpath, $dstpath, $callback->($status)
239 root 1.270 aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
240 root 1.175 aio_mkdir $pathname, $mode, $callback->($status)
241     aio_rmdir $pathname, $callback->($status)
242     aio_readdir $pathname, $callback->($entries)
243     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
244     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
245     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
246 root 1.215 aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
247 root 1.209 aio_load $pathname, $data, $callback->($status)
248 root 1.175 aio_copy $srcpath, $dstpath, $callback->($status)
249     aio_move $srcpath, $dstpath, $callback->($status)
250 root 1.209 aio_rmtree $pathname, $callback->($status)
251 root 1.259 aio_fcntl $fh, $cmd, $arg, $callback->($status)
252     aio_ioctl $fh, $request, $buf, $callback->($status)
253 root 1.175 aio_sync $callback->($status)
254 root 1.206 aio_syncfs $fh, $callback->($status)
255 root 1.175 aio_fsync $fh, $callback->($status)
256     aio_fdatasync $fh, $callback->($status)
257     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
258 root 1.209 aio_pathsync $pathname, $callback->($status)
259 root 1.268 aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
260 root 1.175 aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
261 root 1.182 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
262     aio_mlockall $flags, $callback->($status)
263 root 1.175 aio_group $callback->(...)
264     aio_nop $callback->()
265    
266     $prev_pri = aioreq_pri [$pri]
267     aioreq_nice $pri_adjust
268    
269     IO::AIO::poll_wait
270     IO::AIO::poll_cb
271     IO::AIO::poll
272     IO::AIO::flush
273     IO::AIO::max_poll_reqs $nreqs
274     IO::AIO::max_poll_time $seconds
275     IO::AIO::min_parallel $nthreads
276     IO::AIO::max_parallel $nthreads
277     IO::AIO::max_idle $nthreads
278 root 1.188 IO::AIO::idle_timeout $seconds
279 root 1.175 IO::AIO::max_outstanding $maxreqs
280     IO::AIO::nreqs
281     IO::AIO::nready
282     IO::AIO::npending
283 root 1.278 $nfd = IO::AIO::get_fdlimit [EXPERIMENTAL]
284     IO::AIO::min_fdlimit $nfd [EXPERIMENTAL]
285 root 1.175
286     IO::AIO::sendfile $ofh, $ifh, $offset, $count
287     IO::AIO::fadvise $fh, $offset, $len, $advice
288 root 1.226 IO::AIO::mmap $scalar, $length, $prot, $flags[, $fh[, $offset]]
289     IO::AIO::munmap $scalar
290 root 1.285 IO::AIO::mremap $scalar, $new_length, $flags[, $new_address]
291 root 1.184 IO::AIO::madvise $scalar, $offset, $length, $advice
292     IO::AIO::mprotect $scalar, $offset, $length, $protect
293 root 1.182 IO::AIO::munlock $scalar, $offset = 0, $length = undef
294 root 1.175 IO::AIO::munlockall
295    
296 root 1.219 =head2 API NOTES
297 root 1.1
298 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
299     with the same name (sans C<aio_>). The arguments are similar or identical,
300 root 1.14 and they all accept an additional (and optional) C<$callback> argument
301 root 1.212 which must be a code reference. This code reference will be called after
302     the syscall has been executed in an asynchronous fashion. The results
303     of the request will be passed as arguments to the callback (and, if an
304     error occured, in C<$!>) - for most requests the syscall return code (e.g.
305     most syscalls return C<-1> on error, unlike perl, which usually delivers
306     "false").
307    
308     Some requests (such as C<aio_readdir>) pass the actual results and
309     communicate failures by passing C<undef>.
310 root 1.1
311 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
312     internally until the request has finished.
313 root 1.1
314 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
315     further manipulation of those requests while they are in-flight.
316 root 1.52
317 root 1.209 The pathnames you pass to these routines I<should> be absolute. The
318     reason for this is that at the time the request is being executed, the
319 root 1.212 current working directory could have changed. Alternatively, you can
320     make sure that you never change the current working directory anywhere
321     in the program and then use relative paths. You can also take advantage
322     of IO::AIOs working directory abstraction, that lets you specify paths
323     relative to some previously-opened "working directory object" - see the
324     description of the C<IO::AIO::WD> class later in this document.
325 root 1.28
326 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
327     in filenames you got from outside (command line, readdir etc.) without
328 root 1.212 tinkering, b) are in your native filesystem encoding, c) use the Encode
329     module and encode your pathnames to the locale (or other) encoding in
330     effect in the user environment, d) use Glib::filename_from_unicode on
331     unicode filenames or e) use something else to ensure your scalar has the
332     correct contents.
333 root 1.87
334     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
335 root 1.136 handles correctly whether it is set or not.
336 root 1.1
337 root 1.219 =head2 AIO REQUEST FUNCTIONS
338    
339 root 1.5 =over 4
340 root 1.1
341 root 1.80 =item $prev_pri = aioreq_pri [$pri]
342 root 1.68
343 root 1.80 Returns the priority value that would be used for the next request and, if
344     C<$pri> is given, sets the priority for the next aio request.
345 root 1.68
346 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
347     and C<4>, respectively. Requests with higher priority will be serviced
348     first.
349    
350     The priority will be reset to C<0> after each call to one of the C<aio_*>
351 root 1.68 functions.
352    
353 root 1.69 Example: open a file with low priority, then read something from it with
354     higher priority so the read request is serviced before other low priority
355     open requests (potentially spamming the cache):
356    
357     aioreq_pri -3;
358     aio_open ..., sub {
359     return unless $_[0];
360    
361     aioreq_pri -2;
362     aio_read $_[0], ..., sub {
363     ...
364     };
365     };
366    
367 root 1.106
368 root 1.69 =item aioreq_nice $pri_adjust
369    
370     Similar to C<aioreq_pri>, but subtracts the given value from the current
371 root 1.87 priority, so the effect is cumulative.
372 root 1.69
373 root 1.106
374 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
375 root 1.1
376 root 1.2 Asynchronously open or create a file and call the callback with a newly
377 root 1.233 created filehandle for the file (or C<undef> in case of an error).
378 root 1.1
379     The pathname passed to C<aio_open> must be absolute. See API NOTES, above,
380     for an explanation.
381    
382 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
383     list. They are the same as used by C<sysopen>.
384    
385     Likewise, C<$mode> specifies the mode of the newly created file, if it
386     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
387     except that it is mandatory (i.e. use C<0> if you don't create new files,
388 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
389     by the umask in effect then the request is being executed, so better never
390     change the umask.
391 root 1.1
392     Example:
393    
394 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
395 root 1.2 if ($_[0]) {
396     print "open successful, fh is $_[0]\n";
397 root 1.1 ...
398     } else {
399     die "open failed: $!\n";
400     }
401     };
402    
403 root 1.194 In addition to all the common open modes/flags (C<O_RDONLY>, C<O_WRONLY>,
404     C<O_RDWR>, C<O_CREAT>, C<O_TRUNC>, C<O_EXCL> and C<O_APPEND>), the
405     following POSIX and non-POSIX constants are available (missing ones on
406     your system are, as usual, C<0>):
407    
408     C<O_ASYNC>, C<O_DIRECT>, C<O_NOATIME>, C<O_CLOEXEC>, C<O_NOCTTY>, C<O_NOFOLLOW>,
409     C<O_NONBLOCK>, C<O_EXEC>, C<O_SEARCH>, C<O_DIRECTORY>, C<O_DSYNC>,
410 root 1.286 C<O_RSYNC>, C<O_SYNC>, C<O_PATH>, C<O_TMPFILE>, C<O_TTY_INIT> and C<O_ACCMODE>.
411 root 1.194
412 root 1.106
413 root 1.40 =item aio_close $fh, $callback->($status)
414 root 1.1
415 root 1.2 Asynchronously close a file and call the callback with the result
416 root 1.116 code.
417    
418 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
419 root 1.121 closing the file descriptor associated with the filehandle itself.
420 root 1.117
421 root 1.121 Therefore, C<aio_close> will not close the filehandle - instead it will
422     use dup2 to overwrite the file descriptor with the write-end of a pipe
423     (the pipe fd will be created on demand and will be cached).
424 root 1.117
425 root 1.121 Or in other words: the file descriptor will be closed, but it will not be
426     free for reuse until the perl filehandle is closed.
427 root 1.117
428     =cut
429    
430 root 1.220 =item aio_seek $fh, $offset, $whence, $callback->($offs)
431    
432 root 1.221 Seeks the filehandle to the new C<$offset>, similarly to perl's
433 root 1.220 C<sysseek>. The C<$whence> can use the traditional values (C<0> for
434     C<IO::AIO::SEEK_SET>, C<1> for C<IO::AIO::SEEK_CUR> or C<2> for
435     C<IO::AIO::SEEK_END>).
436    
437     The resulting absolute offset will be passed to the callback, or C<-1> in
438     case of an error.
439    
440     In theory, the C<$whence> constants could be different than the
441     corresponding values from L<Fcntl>, but perl guarantees they are the same,
442     so don't panic.
443    
444 root 1.225 As a GNU/Linux (and maybe Solaris) extension, also the constants
445     C<IO::AIO::SEEK_DATA> and C<IO::AIO::SEEK_HOLE> are available, if they
446     could be found. No guarantees about suitability for use in C<aio_seek> or
447     Perl's C<sysseek> can be made though, although I would naively assume they
448     "just work".
449    
450 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
451 root 1.1
452 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
453 root 1.1
454 root 1.145 Reads or writes C<$length> bytes from or to the specified C<$fh> and
455 root 1.267 C<$offset> into the scalar given by C<$data> and offset C<$dataoffset> and
456     calls the callback with the actual number of bytes transferred (or -1 on
457 root 1.145 error, just like the syscall).
458 root 1.109
459 root 1.146 C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
460     offset plus the actual number of bytes read.
461    
462 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
463     be used (and updated), otherwise the file descriptor offset will not be
464     changed by these calls.
465 root 1.109
466 root 1.145 If C<$length> is undefined in C<aio_write>, use the remaining length of
467     C<$data>.
468 root 1.109
469     If C<$dataoffset> is less than zero, it will be counted from the end of
470     C<$data>.
471 root 1.1
472 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
473 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
474     the necessary/optional hardware is installed).
475 root 1.31
476 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
477 root 1.1 offset C<0> within the scalar:
478    
479     aio_read $fh, 7, 15, $buffer, 0, sub {
480 root 1.9 $_[0] > 0 or die "read error: $!";
481     print "read $_[0] bytes: <$buffer>\n";
482 root 1.1 };
483    
484 root 1.106
485 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
486 root 1.35
487     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
488     reading at byte offset C<$in_offset>, and starts writing at the current
489     file offset of C<$out_fh>. Because of that, it is not safe to issue more
490     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
491 root 1.196 other. The same C<$in_fh> works fine though, as this function does not
492     move or use the file offset of C<$in_fh>.
493 root 1.35
494 root 1.185 Please note that C<aio_sendfile> can read more bytes from C<$in_fh> than
495 root 1.196 are written, and there is no way to find out how many more bytes have been
496     read from C<aio_sendfile> alone, as C<aio_sendfile> only provides the
497     number of bytes written to C<$out_fh>. Only if the result value equals
498     C<$length> one can assume that C<$length> bytes have been read.
499 root 1.185
500     Unlike with other C<aio_> functions, it makes a lot of sense to use
501     C<aio_sendfile> on non-blocking sockets, as long as one end (typically
502     the C<$in_fh>) is a file - the file I/O will then be asynchronous, while
503 root 1.196 the socket I/O will be non-blocking. Note, however, that you can run
504     into a trap where C<aio_sendfile> reads some data with readahead, then
505     fails to write all data, and when the socket is ready the next time, the
506     data in the cache is already lost, forcing C<aio_sendfile> to again hit
507     the disk. Explicit C<aio_read> + C<aio_write> let's you better control
508     resource usage.
509    
510     This call tries to make use of a native C<sendfile>-like syscall to
511     provide zero-copy operation. For this to work, C<$out_fh> should refer to
512     a socket, and C<$in_fh> should refer to an mmap'able file.
513 root 1.35
514 root 1.170 If a native sendfile cannot be found or it fails with C<ENOSYS>,
515 root 1.196 C<EINVAL>, C<ENOTSUP>, C<EOPNOTSUPP>, C<EAFNOSUPPORT>, C<EPROTOTYPE> or
516     C<ENOTSOCK>, it will be emulated, so you can call C<aio_sendfile> on any
517     type of filehandle regardless of the limitations of the operating system.
518    
519     As native sendfile syscalls (as practically any non-POSIX interface hacked
520     together in a hurry to improve benchmark numbers) tend to be rather buggy
521     on many systems, this implementation tries to work around some known bugs
522     in Linux and FreeBSD kernels (probably others, too), but that might fail,
523     so you really really should check the return value of C<aio_sendfile> -
524 root 1.262 fewer bytes than expected might have been transferred.
525 root 1.35
526 root 1.106
527 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
528 root 1.1
529 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
530 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
531     argument specifies the starting point from which data is to be read and
532     C<$length> specifies the number of bytes to be read. I/O is performed in
533     whole pages, so that offset is effectively rounded down to a page boundary
534     and bytes are read up to the next page boundary greater than or equal to
535 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
536 root 1.1 file. The current file offset of the file is left unchanged.
537    
538 root 1.261 If that syscall doesn't exist (likely if your kernel isn't Linux) it will
539     be emulated by simply reading the data, which would have a similar effect.
540 root 1.26
541 root 1.106
542 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
543 root 1.1
544 root 1.40 =item aio_lstat $fh, $callback->($status)
545 root 1.1
546 root 1.294 Works almost exactly like perl's C<stat> or C<lstat> in void context. The
547     callback will be called after the stat and the results will be available
548     using C<stat _> or C<-s _> and other tests (with the exception of C<-B>
549     and C<-T>).
550 root 1.1
551     The pathname passed to C<aio_stat> must be absolute. See API NOTES, above,
552     for an explanation.
553    
554     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
555     error when stat'ing a large file, the results will be silently truncated
556     unless perl itself is compiled with large file support.
557    
558 root 1.187 To help interpret the mode and dev/rdev stat values, IO::AIO offers the
559     following constants and functions (if not implemented, the constants will
560     be C<0> and the functions will either C<croak> or fall back on traditional
561     behaviour).
562    
563     C<S_IFMT>, C<S_IFIFO>, C<S_IFCHR>, C<S_IFBLK>, C<S_IFLNK>, C<S_IFREG>,
564     C<S_IFDIR>, C<S_IFWHT>, C<S_IFSOCK>, C<IO::AIO::major $dev_t>,
565     C<IO::AIO::minor $dev_t>, C<IO::AIO::makedev $major, $minor>.
566    
567 root 1.289 To access higher resolution stat timestamps, see L<SUBSECOND STAT TIME
568     ACCESS>.
569    
570 root 1.1 Example: Print the length of F</etc/passwd>:
571    
572     aio_stat "/etc/passwd", sub {
573     $_[0] and die "stat failed: $!";
574     print "size is ", -s _, "\n";
575     };
576    
577 root 1.106
578 root 1.175 =item aio_statvfs $fh_or_path, $callback->($statvfs)
579 root 1.172
580     Works like the POSIX C<statvfs> or C<fstatvfs> syscalls, depending on
581     whether a file handle or path was passed.
582    
583     On success, the callback is passed a hash reference with the following
584     members: C<bsize>, C<frsize>, C<blocks>, C<bfree>, C<bavail>, C<files>,
585     C<ffree>, C<favail>, C<fsid>, C<flag> and C<namemax>. On failure, C<undef>
586     is passed.
587    
588     The following POSIX IO::AIO::ST_* constants are defined: C<ST_RDONLY> and
589     C<ST_NOSUID>.
590    
591     The following non-POSIX IO::AIO::ST_* flag masks are defined to
592     their correct value when available, or to C<0> on systems that do
593     not support them: C<ST_NODEV>, C<ST_NOEXEC>, C<ST_SYNCHRONOUS>,
594     C<ST_MANDLOCK>, C<ST_WRITE>, C<ST_APPEND>, C<ST_IMMUTABLE>, C<ST_NOATIME>,
595     C<ST_NODIRATIME> and C<ST_RELATIME>.
596    
597     Example: stat C</wd> and dump out the data if successful.
598    
599     aio_statvfs "/wd", sub {
600     my $f = $_[0]
601     or die "statvfs: $!";
602    
603     use Data::Dumper;
604     say Dumper $f;
605     };
606    
607     # result:
608     {
609     bsize => 1024,
610     bfree => 4333064312,
611     blocks => 10253828096,
612     files => 2050765568,
613     flag => 4096,
614     favail => 2042092649,
615     bavail => 4333064312,
616     ffree => 2042092649,
617     namemax => 255,
618     frsize => 1024,
619     fsid => 1810
620     }
621    
622 root 1.106 =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
623    
624     Works like perl's C<utime> function (including the special case of $atime
625     and $mtime being undef). Fractional times are supported if the underlying
626     syscalls support them.
627    
628 root 1.294 When called with a pathname, uses utimensat(2) or utimes(2) if available,
629     otherwise utime(2). If called on a file descriptor, uses futimens(2)
630     or futimes(2) if available, otherwise returns ENOSYS, so this is not
631     portable.
632 root 1.106
633     Examples:
634    
635 root 1.107 # set atime and mtime to current time (basically touch(1)):
636 root 1.106 aio_utime "path", undef, undef;
637     # set atime to current time and mtime to beginning of the epoch:
638     aio_utime "path", time, undef; # undef==0
639    
640    
641     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
642    
643     Works like perl's C<chown> function, except that C<undef> for either $uid
644     or $gid is being interpreted as "do not change" (but -1 can also be used).
645    
646     Examples:
647    
648     # same as "chown root path" in the shell:
649     aio_chown "path", 0, -1;
650     # same as above:
651     aio_chown "path", 0, undef;
652    
653    
654 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
655    
656     Works like truncate(2) or ftruncate(2).
657    
658    
659 root 1.229 =item aio_allocate $fh, $mode, $offset, $len, $callback->($status)
660    
661 root 1.249 Allocates or frees disk space according to the C<$mode> argument. See the
662     linux C<fallocate> documentation for details.
663 root 1.229
664 root 1.252 C<$mode> is usually C<0> or C<IO::AIO::FALLOC_FL_KEEP_SIZE> to allocate
665     space, or C<IO::AIO::FALLOC_FL_PUNCH_HOLE | IO::AIO::FALLOC_FL_KEEP_SIZE>,
666     to deallocate a file range.
667    
668     IO::AIO also supports C<FALLOC_FL_COLLAPSE_RANGE>, to remove a range
669 root 1.273 (without leaving a hole), C<FALLOC_FL_ZERO_RANGE>, to zero a range,
670     C<FALLOC_FL_INSERT_RANGE> to insert a range and C<FALLOC_FL_UNSHARE_RANGE>
671     to unshare shared blocks (see your L<fallocate(2)> manpage).
672 root 1.229
673     The file system block size used by C<fallocate> is presumably the
674 root 1.273 C<f_bsize> returned by C<statvfs>, but different filesystems and filetypes
675     can dictate other limitations.
676 root 1.229
677     If C<fallocate> isn't available or cannot be emulated (currently no
678     emulation will be attempted), passes C<-1> and sets C<$!> to C<ENOSYS>.
679    
680    
681 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
682    
683     Works like perl's C<chmod> function.
684    
685    
686 root 1.40 =item aio_unlink $pathname, $callback->($status)
687 root 1.1
688     Asynchronously unlink (delete) a file and call the callback with the
689     result code.
690    
691 root 1.106
692 root 1.209 =item aio_mknod $pathname, $mode, $dev, $callback->($status)
693 root 1.82
694 root 1.86 [EXPERIMENTAL]
695    
696 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
697    
698 root 1.86 The only (POSIX-) portable way of calling this function is:
699 root 1.83
700 root 1.209 aio_mknod $pathname, IO::AIO::S_IFIFO | $mode, 0, sub { ...
701 root 1.82
702 root 1.187 See C<aio_stat> for info about some potentially helpful extra constants
703     and functions.
704 root 1.106
705 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
706    
707     Asynchronously create a new link to the existing object at C<$srcpath> at
708     the path C<$dstpath> and call the callback with the result code.
709    
710 root 1.106
711 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
712    
713     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
714     the path C<$dstpath> and call the callback with the result code.
715    
716 root 1.106
717 root 1.209 =item aio_readlink $pathname, $callback->($link)
718 root 1.90
719     Asynchronously read the symlink specified by C<$path> and pass it to
720     the callback. If an error occurs, nothing or undef gets passed to the
721     callback.
722    
723 root 1.106
724 root 1.209 =item aio_realpath $pathname, $callback->($path)
725 root 1.201
726     Asynchronously make the path absolute and resolve any symlinks in
727 root 1.239 C<$path>. The resulting path only consists of directories (same as
728 root 1.202 L<Cwd::realpath>).
729 root 1.201
730     This request can be used to get the absolute path of the current working
731     directory by passing it a path of F<.> (a single dot).
732    
733    
734 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
735    
736     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
737     rename(2) and call the callback with the result code.
738    
739 root 1.241 On systems that support the AIO::WD working directory abstraction
740     natively, the case C<[$wd, "."]> as C<$srcpath> is specialcased - instead
741     of failing, C<rename> is called on the absolute path of C<$wd>.
742    
743 root 1.106
744 root 1.270 =item aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
745    
746     Basically a version of C<aio_rename> with an additional C<$flags>
747     argument. Calling this with C<$flags=0> is the same as calling
748     C<aio_rename>.
749    
750     Non-zero flags are currently only supported on GNU/Linux systems that
751     support renameat2. Other systems fail with C<ENOSYS> in this case.
752    
753     The following constants are available (missing ones are, as usual C<0>),
754     see renameat2(2) for details:
755    
756     C<IO::AIO::RENAME_NOREPLACE>, C<IO::AIO::RENAME_EXCHANGE>
757     and C<IO::AIO::RENAME_WHITEOUT>.
758    
759    
760 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
761    
762     Asynchronously mkdir (create) a directory and call the callback with
763     the result code. C<$mode> will be modified by the umask at the time the
764     request is executed, so do not change your umask.
765    
766 root 1.106
767 root 1.40 =item aio_rmdir $pathname, $callback->($status)
768 root 1.27
769     Asynchronously rmdir (delete) a directory and call the callback with the
770     result code.
771    
772 root 1.241 On systems that support the AIO::WD working directory abstraction
773     natively, the case C<[$wd, "."]> is specialcased - instead of failing,
774     C<rmdir> is called on the absolute path of C<$wd>.
775    
776 root 1.106
777 root 1.46 =item aio_readdir $pathname, $callback->($entries)
778 root 1.37
779     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
780     directory (i.e. opendir + readdir + closedir). The entries will not be
781     sorted, and will B<NOT> include the C<.> and C<..> entries.
782    
783 root 1.148 The callback is passed a single argument which is either C<undef> or an
784     array-ref with the filenames.
785    
786    
787     =item aio_readdirx $pathname, $flags, $callback->($entries, $flags)
788    
789 root 1.207 Quite similar to C<aio_readdir>, but the C<$flags> argument allows one to
790     tune behaviour and output format. In case of an error, C<$entries> will be
791 root 1.148 C<undef>.
792    
793     The flags are a combination of the following constants, ORed together (the
794     flags will also be passed to the callback, possibly modified):
795    
796     =over 4
797    
798 root 1.150 =item IO::AIO::READDIR_DENTS
799 root 1.148
800 root 1.284 Normally the callback gets an arrayref consisting of names only (as
801     with C<aio_readdir>). If this flag is set, then the callback gets an
802     arrayref with C<[$name, $type, $inode]> arrayrefs, each describing a
803     single directory entry in more detail:
804 root 1.148
805     C<$name> is the name of the entry.
806    
807 root 1.150 C<$type> is one of the C<IO::AIO::DT_xxx> constants:
808 root 1.148
809 root 1.150 C<IO::AIO::DT_UNKNOWN>, C<IO::AIO::DT_FIFO>, C<IO::AIO::DT_CHR>, C<IO::AIO::DT_DIR>,
810     C<IO::AIO::DT_BLK>, C<IO::AIO::DT_REG>, C<IO::AIO::DT_LNK>, C<IO::AIO::DT_SOCK>,
811     C<IO::AIO::DT_WHT>.
812 root 1.148
813 root 1.284 C<IO::AIO::DT_UNKNOWN> means just that: readdir does not know. If you need
814     to know, you have to run stat yourself. Also, for speed/memory reasons,
815     the C<$type> scalars are read-only: you must not modify them.
816 root 1.148
817 root 1.150 C<$inode> is the inode number (which might not be exact on systems with 64
818 root 1.155 bit inode numbers and 32 bit perls). This field has unspecified content on
819     systems that do not deliver the inode information.
820 root 1.150
821     =item IO::AIO::READDIR_DIRS_FIRST
822 root 1.148
823     When this flag is set, then the names will be returned in an order where
824 root 1.193 likely directories come first, in optimal stat order. This is useful when
825     you need to quickly find directories, or you want to find all directories
826     while avoiding to stat() each entry.
827 root 1.148
828 root 1.149 If the system returns type information in readdir, then this is used
829 root 1.193 to find directories directly. Otherwise, likely directories are names
830     beginning with ".", or otherwise names with no dots, of which names with
831 root 1.149 short names are tried first.
832    
833 root 1.150 =item IO::AIO::READDIR_STAT_ORDER
834 root 1.148
835     When this flag is set, then the names will be returned in an order
836 root 1.284 suitable for stat()'ing each one. That is, when you plan to stat() most or
837     all files in the given directory, then the returned order will likely be
838     faster.
839    
840     If both this flag and C<IO::AIO::READDIR_DIRS_FIRST> are specified,
841     then the likely dirs come first, resulting in a less optimal stat order
842     for stat'ing all entries, but likely a more optimal order for finding
843     subdirectories.
844 root 1.148
845 root 1.150 =item IO::AIO::READDIR_FOUND_UNKNOWN
846 root 1.148
847     This flag should not be set when calling C<aio_readdirx>. Instead, it
848     is being set by C<aio_readdirx>, when any of the C<$type>'s found were
849 root 1.207 C<IO::AIO::DT_UNKNOWN>. The absence of this flag therefore indicates that all
850 root 1.148 C<$type>'s are known, which can be used to speed up some algorithms.
851    
852     =back
853 root 1.37
854 root 1.106
855 root 1.279 =item aio_slurp $pathname, $offset, $length, $data, $callback->($status)
856    
857     Opens, reads and closes the given file. The data is put into C<$data>,
858     which is resized as required.
859    
860     If C<$offset> is negative, then it is counted from the end of the file.
861    
862     If C<$length> is zero, then the remaining length of the file is
863     used. Also, in this case, the same limitations to modifying C<$data> apply
864     as when IO::AIO::mmap is used, i.e. it must only be modified in-place
865     with C<substr>. If the size of the file is known, specifying a non-zero
866     C<$length> results in a performance advantage.
867    
868     This request is similar to the older C<aio_load> request, but since it is
869     a single request, it might be more efficient to use.
870    
871     Example: load F</etc/passwd> into C<$passwd>.
872    
873     my $passwd;
874     aio_slurp "/etc/passwd", 0, 0, $passwd, sub {
875     $_[0] >= 0
876     or die "/etc/passwd: $!\n";
877    
878     printf "/etc/passwd is %d bytes long, and contains:\n", length $passwd;
879     print $passwd;
880     };
881     IO::AIO::flush;
882    
883    
884 root 1.209 =item aio_load $pathname, $data, $callback->($status)
885 root 1.98
886     This is a composite request that tries to fully load the given file into
887     memory. Status is the same as with aio_read.
888    
889 root 1.279 Using C<aio_slurp> might be more efficient, as it is a single request.
890    
891 root 1.98 =cut
892    
893     sub aio_load($$;$) {
894 root 1.123 my ($path, undef, $cb) = @_;
895     my $data = \$_[1];
896 root 1.98
897 root 1.123 my $pri = aioreq_pri;
898     my $grp = aio_group $cb;
899    
900     aioreq_pri $pri;
901     add $grp aio_open $path, O_RDONLY, 0, sub {
902     my $fh = shift
903     or return $grp->result (-1);
904 root 1.98
905     aioreq_pri $pri;
906 root 1.123 add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
907     $grp->result ($_[0]);
908 root 1.98 };
909 root 1.123 };
910 root 1.98
911 root 1.123 $grp
912 root 1.98 }
913    
914 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
915    
916     Try to copy the I<file> (directories not supported as either source or
917     destination) from C<$srcpath> to C<$dstpath> and call the callback with
918 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
919 root 1.82
920 root 1.275 Existing destination files will be truncated.
921    
922 root 1.134 This is a composite request that creates the destination file with
923 root 1.82 mode 0200 and copies the contents of the source file into it using
924     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
925     uid/gid, in that order.
926    
927     If an error occurs, the partial destination file will be unlinked, if
928     possible, except when setting atime, mtime, access mode and uid/gid, where
929     errors are being ignored.
930    
931     =cut
932    
933     sub aio_copy($$;$) {
934 root 1.123 my ($src, $dst, $cb) = @_;
935 root 1.82
936 root 1.123 my $pri = aioreq_pri;
937     my $grp = aio_group $cb;
938 root 1.82
939 root 1.123 aioreq_pri $pri;
940     add $grp aio_open $src, O_RDONLY, 0, sub {
941     if (my $src_fh = $_[0]) {
942 root 1.166 my @stat = stat $src_fh; # hmm, might block over nfs?
943 root 1.95
944 root 1.123 aioreq_pri $pri;
945     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
946     if (my $dst_fh = $_[0]) {
947     aioreq_pri $pri;
948     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
949     if ($_[0] == $stat[7]) {
950     $grp->result (0);
951     close $src_fh;
952    
953 root 1.147 my $ch = sub {
954     aioreq_pri $pri;
955     add $grp aio_chmod $dst_fh, $stat[2] & 07777, sub {
956     aioreq_pri $pri;
957     add $grp aio_chown $dst_fh, $stat[4], $stat[5], sub {
958     aioreq_pri $pri;
959     add $grp aio_close $dst_fh;
960     }
961     };
962     };
963 root 1.123
964     aioreq_pri $pri;
965 root 1.147 add $grp aio_utime $dst_fh, $stat[8], $stat[9], sub {
966     if ($_[0] < 0 && $! == ENOSYS) {
967     aioreq_pri $pri;
968     add $grp aio_utime $dst, $stat[8], $stat[9], $ch;
969     } else {
970     $ch->();
971     }
972     };
973 root 1.123 } else {
974     $grp->result (-1);
975     close $src_fh;
976     close $dst_fh;
977    
978     aioreq $pri;
979     add $grp aio_unlink $dst;
980     }
981     };
982     } else {
983     $grp->result (-1);
984     }
985     },
986 root 1.82
987 root 1.123 } else {
988     $grp->result (-1);
989     }
990     };
991 root 1.82
992 root 1.123 $grp
993 root 1.82 }
994    
995     =item aio_move $srcpath, $dstpath, $callback->($status)
996    
997     Try to move the I<file> (directories not supported as either source or
998     destination) from C<$srcpath> to C<$dstpath> and call the callback with
999 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
1000 root 1.82
1001 root 1.137 This is a composite request that tries to rename(2) the file first; if
1002     rename fails with C<EXDEV>, it copies the file with C<aio_copy> and, if
1003     that is successful, unlinks the C<$srcpath>.
1004 root 1.82
1005     =cut
1006    
1007     sub aio_move($$;$) {
1008 root 1.123 my ($src, $dst, $cb) = @_;
1009 root 1.82
1010 root 1.123 my $pri = aioreq_pri;
1011     my $grp = aio_group $cb;
1012 root 1.82
1013 root 1.123 aioreq_pri $pri;
1014     add $grp aio_rename $src, $dst, sub {
1015     if ($_[0] && $! == EXDEV) {
1016     aioreq_pri $pri;
1017     add $grp aio_copy $src, $dst, sub {
1018     $grp->result ($_[0]);
1019 root 1.95
1020 root 1.196 unless ($_[0]) {
1021 root 1.123 aioreq_pri $pri;
1022     add $grp aio_unlink $src;
1023     }
1024     };
1025     } else {
1026     $grp->result ($_[0]);
1027     }
1028     };
1029 root 1.82
1030 root 1.123 $grp
1031 root 1.82 }
1032    
1033 root 1.209 =item aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
1034 root 1.40
1035 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
1036 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
1037     names, directories you can recurse into (directories), and ones you cannot
1038     recurse into (everything else, including symlinks to directories).
1039 root 1.52
1040 root 1.277 C<aio_scandir> is a composite request that generates many sub requests.
1041 root 1.61 C<$maxreq> specifies the maximum number of outstanding aio requests that
1042     this function generates. If it is C<< <= 0 >>, then a suitable default
1043 root 1.81 will be chosen (currently 4).
1044 root 1.40
1045     On error, the callback is called without arguments, otherwise it receives
1046     two array-refs with path-relative entry names.
1047    
1048     Example:
1049    
1050     aio_scandir $dir, 0, sub {
1051     my ($dirs, $nondirs) = @_;
1052     print "real directories: @$dirs\n";
1053     print "everything else: @$nondirs\n";
1054     };
1055    
1056     Implementation notes.
1057    
1058     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
1059    
1060 root 1.149 If readdir returns file type information, then this is used directly to
1061     find directories.
1062    
1063     Otherwise, after reading the directory, the modification time, size etc.
1064     of the directory before and after the readdir is checked, and if they
1065     match (and isn't the current time), the link count will be used to decide
1066     how many entries are directories (if >= 2). Otherwise, no knowledge of the
1067     number of subdirectories will be assumed.
1068    
1069     Then entries will be sorted into likely directories a non-initial dot
1070     currently) and likely non-directories (see C<aio_readdirx>). Then every
1071     entry plus an appended C</.> will be C<stat>'ed, likely directories first,
1072     in order of their inode numbers. If that succeeds, it assumes that the
1073     entry is a directory or a symlink to directory (which will be checked
1074 root 1.207 separately). This is often faster than stat'ing the entry itself because
1075 root 1.52 filesystems might detect the type of the entry without reading the inode
1076 root 1.149 data (e.g. ext2fs filetype feature), even on systems that cannot return
1077     the filetype information on readdir.
1078 root 1.52
1079     If the known number of directories (link count - 2) has been reached, the
1080     rest of the entries is assumed to be non-directories.
1081    
1082     This only works with certainty on POSIX (= UNIX) filesystems, which
1083     fortunately are the vast majority of filesystems around.
1084    
1085     It will also likely work on non-POSIX filesystems with reduced efficiency
1086     as those tend to return 0 or 1 as link counts, which disables the
1087     directory counting heuristic.
1088 root 1.40
1089     =cut
1090    
1091 root 1.100 sub aio_scandir($$;$) {
1092 root 1.123 my ($path, $maxreq, $cb) = @_;
1093    
1094     my $pri = aioreq_pri;
1095 root 1.40
1096 root 1.123 my $grp = aio_group $cb;
1097 root 1.80
1098 root 1.123 $maxreq = 4 if $maxreq <= 0;
1099 root 1.55
1100 root 1.210 # get a wd object
1101 root 1.123 aioreq_pri $pri;
1102 root 1.210 add $grp aio_wd $path, sub {
1103 root 1.212 $_[0]
1104     or return $grp->result ();
1105    
1106 root 1.210 my $wd = [shift, "."];
1107 root 1.40
1108 root 1.210 # stat once
1109 root 1.80 aioreq_pri $pri;
1110 root 1.210 add $grp aio_stat $wd, sub {
1111     return $grp->result () if $_[0];
1112     my $now = time;
1113     my $hash1 = join ":", (stat _)[0,1,3,7,9];
1114 root 1.40
1115 root 1.210 # read the directory entries
1116 root 1.80 aioreq_pri $pri;
1117 root 1.210 add $grp aio_readdirx $wd, READDIR_DIRS_FIRST, sub {
1118     my $entries = shift
1119     or return $grp->result ();
1120    
1121     # stat the dir another time
1122     aioreq_pri $pri;
1123     add $grp aio_stat $wd, sub {
1124     my $hash2 = join ":", (stat _)[0,1,3,7,9];
1125 root 1.95
1126 root 1.210 my $ndirs;
1127 root 1.95
1128 root 1.210 # take the slow route if anything looks fishy
1129     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
1130     $ndirs = -1;
1131     } else {
1132     # if nlink == 2, we are finished
1133     # for non-posix-fs's, we rely on nlink < 2
1134     $ndirs = (stat _)[3] - 2
1135     or return $grp->result ([], $entries);
1136     }
1137 root 1.123
1138 root 1.210 my (@dirs, @nondirs);
1139 root 1.40
1140 root 1.210 my $statgrp = add $grp aio_group sub {
1141     $grp->result (\@dirs, \@nondirs);
1142     };
1143 root 1.40
1144 root 1.210 limit $statgrp $maxreq;
1145     feed $statgrp sub {
1146     return unless @$entries;
1147     my $entry = shift @$entries;
1148    
1149     aioreq_pri $pri;
1150     $wd->[1] = "$entry/.";
1151     add $statgrp aio_stat $wd, sub {
1152     if ($_[0] < 0) {
1153     push @nondirs, $entry;
1154     } else {
1155     # need to check for real directory
1156     aioreq_pri $pri;
1157     $wd->[1] = $entry;
1158     add $statgrp aio_lstat $wd, sub {
1159     if (-d _) {
1160     push @dirs, $entry;
1161    
1162     unless (--$ndirs) {
1163     push @nondirs, @$entries;
1164     feed $statgrp;
1165     }
1166     } else {
1167     push @nondirs, $entry;
1168 root 1.74 }
1169 root 1.40 }
1170     }
1171 root 1.210 };
1172 root 1.74 };
1173 root 1.40 };
1174     };
1175     };
1176 root 1.123 };
1177 root 1.55
1178 root 1.123 $grp
1179 root 1.40 }
1180    
1181 root 1.209 =item aio_rmtree $pathname, $callback->($status)
1182 root 1.99
1183 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
1184 root 1.239 status of the final C<rmdir> only. This is a composite request that
1185 root 1.100 uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1186     everything else.
1187 root 1.99
1188     =cut
1189    
1190     sub aio_rmtree;
1191 root 1.100 sub aio_rmtree($;$) {
1192 root 1.123 my ($path, $cb) = @_;
1193 root 1.99
1194 root 1.123 my $pri = aioreq_pri;
1195     my $grp = aio_group $cb;
1196 root 1.99
1197 root 1.123 aioreq_pri $pri;
1198     add $grp aio_scandir $path, 0, sub {
1199     my ($dirs, $nondirs) = @_;
1200 root 1.99
1201 root 1.123 my $dirgrp = aio_group sub {
1202     add $grp aio_rmdir $path, sub {
1203     $grp->result ($_[0]);
1204 root 1.99 };
1205 root 1.123 };
1206 root 1.99
1207 root 1.123 (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
1208     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
1209 root 1.99
1210 root 1.123 add $grp $dirgrp;
1211     };
1212 root 1.99
1213 root 1.123 $grp
1214 root 1.99 }
1215    
1216 root 1.259 =item aio_fcntl $fh, $cmd, $arg, $callback->($status)
1217    
1218     =item aio_ioctl $fh, $request, $buf, $callback->($status)
1219    
1220     These work just like the C<fcntl> and C<ioctl> built-in functions, except
1221     they execute asynchronously and pass the return value to the callback.
1222    
1223     Both calls can be used for a lot of things, some of which make more sense
1224     to run asynchronously in their own thread, while some others make less
1225     sense. For example, calls that block waiting for external events, such
1226     as locking, will also lock down an I/O thread while it is waiting, which
1227     can deadlock the whole I/O system. At the same time, there might be no
1228     alternative to using a thread to wait.
1229    
1230     So in general, you should only use these calls for things that do
1231     (filesystem) I/O, not for things that wait for other events (network,
1232     other processes), although if you are careful and know what you are doing,
1233     you still can.
1234    
1235 root 1.264 The following constants are available (missing ones are, as usual C<0>):
1236    
1237 root 1.271 C<F_DUPFD_CLOEXEC>,
1238    
1239     C<F_OFD_GETLK>, C<F_OFD_SETLK>, C<F_OFD_GETLKW>,
1240    
1241 root 1.264 C<FIFREEZE>, C<FITHAW>, C<FITRIM>, C<FICLONE>, C<FICLONERANGE>, C<FIDEDUPERANGE>.
1242    
1243     C<FS_IOC_GETFLAGS>, C<FS_IOC_SETFLAGS>, C<FS_IOC_GETVERSION>, C<FS_IOC_SETVERSION>,
1244     C<FS_IOC_FIEMAP>.
1245    
1246     C<FS_IOC_FSGETXATTR>, C<FS_IOC_FSSETXATTR>, C<FS_IOC_SET_ENCRYPTION_POLICY>,
1247     C<FS_IOC_GET_ENCRYPTION_PWSALT>, C<FS_IOC_GET_ENCRYPTION_POLICY>, C<FS_KEY_DESCRIPTOR_SIZE>.
1248    
1249     C<FS_SECRM_FL>, C<FS_UNRM_FL>, C<FS_COMPR_FL>, C<FS_SYNC_FL>, C<FS_IMMUTABLE_FL>,
1250     C<FS_APPEND_FL>, C<FS_NODUMP_FL>, C<FS_NOATIME_FL>, C<FS_DIRTY_FL>,
1251     C<FS_COMPRBLK_FL>, C<FS_NOCOMP_FL>, C<FS_ENCRYPT_FL>, C<FS_BTREE_FL>,
1252     C<FS_INDEX_FL>, C<FS_JOURNAL_DATA_FL>, C<FS_NOTAIL_FL>, C<FS_DIRSYNC_FL>, C<FS_TOPDIR_FL>,
1253     C<FS_FL_USER_MODIFIABLE>.
1254    
1255     C<FS_XFLAG_REALTIME>, C<FS_XFLAG_PREALLOC>, C<FS_XFLAG_IMMUTABLE>, C<FS_XFLAG_APPEND>,
1256     C<FS_XFLAG_SYNC>, C<FS_XFLAG_NOATIME>, C<FS_XFLAG_NODUMP>, C<FS_XFLAG_RTINHERIT>,
1257     C<FS_XFLAG_PROJINHERIT>, C<FS_XFLAG_NOSYMLINKS>, C<FS_XFLAG_EXTSIZE>, C<FS_XFLAG_EXTSZINHERIT>,
1258     C<FS_XFLAG_NODEFRAG>, C<FS_XFLAG_FILESTREAM>, C<FS_XFLAG_DAX>, C<FS_XFLAG_HASATTR>,
1259    
1260 root 1.119 =item aio_sync $callback->($status)
1261    
1262     Asynchronously call sync and call the callback when finished.
1263    
1264 root 1.40 =item aio_fsync $fh, $callback->($status)
1265 root 1.1
1266     Asynchronously call fsync on the given filehandle and call the callback
1267     with the fsync result code.
1268    
1269 root 1.40 =item aio_fdatasync $fh, $callback->($status)
1270 root 1.1
1271     Asynchronously call fdatasync on the given filehandle and call the
1272 root 1.26 callback with the fdatasync result code.
1273    
1274     If this call isn't available because your OS lacks it or it couldn't be
1275     detected, it will be emulated by calling C<fsync> instead.
1276 root 1.1
1277 root 1.206 =item aio_syncfs $fh, $callback->($status)
1278    
1279     Asynchronously call the syncfs syscall to sync the filesystem associated
1280     to the given filehandle and call the callback with the syncfs result
1281     code. If syncfs is not available, calls sync(), but returns C<-1> and sets
1282     errno to C<ENOSYS> nevertheless.
1283    
1284 root 1.142 =item aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
1285    
1286     Sync the data portion of the file specified by C<$offset> and C<$length>
1287     to disk (but NOT the metadata), by calling the Linux-specific
1288     sync_file_range call. If sync_file_range is not available or it returns
1289     ENOSYS, then fdatasync or fsync is being substituted.
1290    
1291     C<$flags> can be a combination of C<IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE>,
1292     C<IO::AIO::SYNC_FILE_RANGE_WRITE> and
1293     C<IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER>: refer to the sync_file_range
1294     manpage for details.
1295    
1296 root 1.209 =item aio_pathsync $pathname, $callback->($status)
1297 root 1.120
1298     This request tries to open, fsync and close the given path. This is a
1299 root 1.135 composite request intended to sync directories after directory operations
1300 root 1.120 (E.g. rename). This might not work on all operating systems or have any
1301     specific effect, but usually it makes sure that directory changes get
1302     written to disc. It works for anything that can be opened for read-only,
1303     not just directories.
1304    
1305 root 1.162 Future versions of this function might fall back to other methods when
1306     C<fsync> on the directory fails (such as calling C<sync>).
1307    
1308 root 1.120 Passes C<0> when everything went ok, and C<-1> on error.
1309    
1310     =cut
1311    
1312     sub aio_pathsync($;$) {
1313 root 1.123 my ($path, $cb) = @_;
1314    
1315     my $pri = aioreq_pri;
1316     my $grp = aio_group $cb;
1317 root 1.120
1318 root 1.123 aioreq_pri $pri;
1319     add $grp aio_open $path, O_RDONLY, 0, sub {
1320     my ($fh) = @_;
1321     if ($fh) {
1322     aioreq_pri $pri;
1323     add $grp aio_fsync $fh, sub {
1324     $grp->result ($_[0]);
1325 root 1.120
1326     aioreq_pri $pri;
1327 root 1.123 add $grp aio_close $fh;
1328     };
1329     } else {
1330     $grp->result (-1);
1331     }
1332     };
1333 root 1.120
1334 root 1.123 $grp
1335 root 1.120 }
1336    
1337 root 1.268 =item aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
1338 root 1.170
1339     This is a rather advanced IO::AIO call, which only works on mmap(2)ed
1340 root 1.176 scalars (see the C<IO::AIO::mmap> function, although it also works on data
1341     scalars managed by the L<Sys::Mmap> or L<Mmap> modules, note that the
1342     scalar must only be modified in-place while an aio operation is pending on
1343     it).
1344 root 1.170
1345     It calls the C<msync> function of your OS, if available, with the memory
1346     area starting at C<$offset> in the string and ending C<$length> bytes
1347     later. If C<$length> is negative, counts from the end, and if C<$length>
1348     is C<undef>, then it goes till the end of the string. The flags can be
1349 root 1.268 either C<IO::AIO::MS_ASYNC> or C<IO::AIO::MS_SYNC>, plus an optional
1350     C<IO::AIO::MS_INVALIDATE>.
1351 root 1.170
1352     =item aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1353    
1354     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1355     scalars.
1356    
1357     It touches (reads or writes) all memory pages in the specified
1358 root 1.239 range inside the scalar. All caveats and parameters are the same
1359 root 1.170 as for C<aio_msync>, above, except for flags, which must be either
1360     C<0> (which reads all pages and ensures they are instantiated) or
1361 root 1.239 C<IO::AIO::MT_MODIFY>, which modifies the memory pages (by reading and
1362 root 1.170 writing an octet from it, which dirties the page).
1363    
1364 root 1.182 =item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1365    
1366     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1367     scalars.
1368    
1369     It reads in all the pages of the underlying storage into memory (if any)
1370     and locks them, so they are not getting swapped/paged out or removed.
1371    
1372     If C<$length> is undefined, then the scalar will be locked till the end.
1373    
1374     On systems that do not implement C<mlock>, this function returns C<-1>
1375     and sets errno to C<ENOSYS>.
1376    
1377     Note that the corresponding C<munlock> is synchronous and is
1378     documented under L<MISCELLANEOUS FUNCTIONS>.
1379    
1380 root 1.183 Example: open a file, mmap and mlock it - both will be undone when
1381     C<$data> gets destroyed.
1382    
1383     open my $fh, "<", $path or die "$path: $!";
1384     my $data;
1385     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1386     aio_mlock $data; # mlock in background
1387    
1388 root 1.182 =item aio_mlockall $flags, $callback->($status)
1389    
1390 root 1.297 Calls the C<mlockall> function with the given C<$flags> (a
1391     combination of C<IO::AIO::MCL_CURRENT>, C<IO::AIO::MCL_FUTURE> and
1392     C<IO::AIO::MCL_ONFAULT>).
1393 root 1.182
1394     On systems that do not implement C<mlockall>, this function returns C<-1>
1395 root 1.297 and sets errno to C<ENOSYS>. Similarly, flag combinations not supported
1396     by the system result in a return value of C<-1> with errno being set to
1397     C<EINVAL>.
1398 root 1.182
1399     Note that the corresponding C<munlockall> is synchronous and is
1400     documented under L<MISCELLANEOUS FUNCTIONS>.
1401    
1402 root 1.183 Example: asynchronously lock all current and future pages into memory.
1403    
1404     aio_mlockall IO::AIO::MCL_FUTURE;
1405    
1406 root 1.223 =item aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
1407    
1408 root 1.234 Queries the extents of the given file (by calling the Linux C<FIEMAP>
1409     ioctl, see L<http://cvs.schmorp.de/IO-AIO/doc/fiemap.txt> for details). If
1410     the ioctl is not available on your OS, then this request will fail with
1411 root 1.223 C<ENOSYS>.
1412    
1413     C<$start> is the starting offset to query extents for, C<$length> is the
1414     size of the range to query - if it is C<undef>, then the whole file will
1415     be queried.
1416    
1417     C<$flags> is a combination of flags (C<IO::AIO::FIEMAP_FLAG_SYNC> or
1418     C<IO::AIO::FIEMAP_FLAG_XATTR> - C<IO::AIO::FIEMAP_FLAGS_COMPAT> is also
1419     exported), and is normally C<0> or C<IO::AIO::FIEMAP_FLAG_SYNC> to query
1420     the data portion.
1421    
1422     C<$count> is the maximum number of extent records to return. If it is
1423 root 1.232 C<undef>, then IO::AIO queries all extents of the range. As a very special
1424 root 1.223 case, if it is C<0>, then the callback receives the number of extents
1425 root 1.232 instead of the extents themselves (which is unreliable, see below).
1426 root 1.223
1427     If an error occurs, the callback receives no arguments. The special
1428     C<errno> value C<IO::AIO::EBADR> is available to test for flag errors.
1429    
1430     Otherwise, the callback receives an array reference with extent
1431     structures. Each extent structure is an array reference itself, with the
1432     following members:
1433    
1434     [$logical, $physical, $length, $flags]
1435    
1436     Flags is any combination of the following flag values (typically either C<0>
1437 root 1.231 or C<IO::AIO::FIEMAP_EXTENT_LAST> (1)):
1438 root 1.223
1439     C<IO::AIO::FIEMAP_EXTENT_LAST>, C<IO::AIO::FIEMAP_EXTENT_UNKNOWN>,
1440     C<IO::AIO::FIEMAP_EXTENT_DELALLOC>, C<IO::AIO::FIEMAP_EXTENT_ENCODED>,
1441     C<IO::AIO::FIEMAP_EXTENT_DATA_ENCRYPTED>, C<IO::AIO::FIEMAP_EXTENT_NOT_ALIGNED>,
1442     C<IO::AIO::FIEMAP_EXTENT_DATA_INLINE>, C<IO::AIO::FIEMAP_EXTENT_DATA_TAIL>,
1443     C<IO::AIO::FIEMAP_EXTENT_UNWRITTEN>, C<IO::AIO::FIEMAP_EXTENT_MERGED> or
1444     C<IO::AIO::FIEMAP_EXTENT_SHARED>.
1445    
1446 root 1.278 At the time of this writing (Linux 3.2), this request is unreliable unless
1447 root 1.232 C<$count> is C<undef>, as the kernel has all sorts of bugs preventing
1448 root 1.278 it to return all extents of a range for files with a large number of
1449     extents. The code (only) works around all these issues if C<$count> is
1450     C<undef>.
1451 root 1.232
1452 root 1.58 =item aio_group $callback->(...)
1453 root 1.54
1454 root 1.55 This is a very special aio request: Instead of doing something, it is a
1455     container for other aio requests, which is useful if you want to bundle
1456 root 1.71 many requests into a single, composite, request with a definite callback
1457     and the ability to cancel the whole request with its subrequests.
1458 root 1.55
1459     Returns an object of class L<IO::AIO::GRP>. See its documentation below
1460     for more info.
1461    
1462     Example:
1463    
1464     my $grp = aio_group sub {
1465     print "all stats done\n";
1466     };
1467    
1468     add $grp
1469     (aio_stat ...),
1470     (aio_stat ...),
1471     ...;
1472    
1473 root 1.63 =item aio_nop $callback->()
1474    
1475     This is a special request - it does nothing in itself and is only used for
1476     side effects, such as when you want to add a dummy request to a group so
1477     that finishing the requests in the group depends on executing the given
1478     code.
1479    
1480 root 1.64 While this request does nothing, it still goes through the execution
1481     phase and still requires a worker thread. Thus, the callback will not
1482     be executed immediately but only after other requests in the queue have
1483     entered their execution phase. This can be used to measure request
1484     latency.
1485    
1486 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1487 root 1.54
1488     Mainly used for debugging and benchmarking, this aio request puts one of
1489     the request workers to sleep for the given time.
1490    
1491 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1492 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1493     immense (it blocks a thread for a long time) so do not use this function
1494     except to put your application under artificial I/O pressure.
1495 root 1.56
1496 root 1.5 =back
1497    
1498 root 1.209
1499     =head2 IO::AIO::WD - multiple working directories
1500    
1501     Your process only has one current working directory, which is used by all
1502     threads. This makes it hard to use relative paths (some other component
1503     could call C<chdir> at any time, and it is hard to control when the path
1504     will be used by IO::AIO).
1505    
1506     One solution for this is to always use absolute paths. This usually works,
1507     but can be quite slow (the kernel has to walk the whole path on every
1508     access), and can also be a hassle to implement.
1509    
1510     Newer POSIX systems have a number of functions (openat, fdopendir,
1511     futimensat and so on) that make it possible to specify working directories
1512     per operation.
1513    
1514     For portability, and because the clowns who "designed", or shall I write,
1515     perpetrated this new interface were obviously half-drunk, this abstraction
1516     cannot be perfect, though.
1517    
1518     IO::AIO allows you to convert directory paths into a so-called IO::AIO::WD
1519     object. This object stores the canonicalised, absolute version of the
1520     path, and on systems that allow it, also a directory file descriptor.
1521    
1522     Everywhere where a pathname is accepted by IO::AIO (e.g. in C<aio_stat>
1523     or C<aio_unlink>), one can specify an array reference with an IO::AIO::WD
1524 root 1.214 object and a pathname instead (or the IO::AIO::WD object alone, which
1525     gets interpreted as C<[$wd, "."]>). If the pathname is absolute, the
1526 root 1.213 IO::AIO::WD object is ignored, otherwise the pathname is resolved relative
1527 root 1.209 to that IO::AIO::WD object.
1528    
1529     For example, to get a wd object for F</etc> and then stat F<passwd>
1530     inside, you would write:
1531    
1532     aio_wd "/etc", sub {
1533     my $etcdir = shift;
1534    
1535     # although $etcdir can be undef on error, there is generally no reason
1536     # to check for errors here, as aio_stat will fail with ENOENT
1537     # when $etcdir is undef.
1538    
1539     aio_stat [$etcdir, "passwd"], sub {
1540     # yay
1541     };
1542     };
1543    
1544 root 1.250 The fact that C<aio_wd> is a request and not a normal function shows that
1545     creating an IO::AIO::WD object is itself a potentially blocking operation,
1546     which is why it is done asynchronously.
1547 root 1.214
1548     To stat the directory obtained with C<aio_wd> above, one could write
1549     either of the following three request calls:
1550    
1551     aio_lstat "/etc" , sub { ... # pathname as normal string
1552     aio_lstat [$wd, "."], sub { ... # "." relative to $wd (i.e. $wd itself)
1553     aio_lstat $wd , sub { ... # shorthand for the previous
1554 root 1.209
1555     As with normal pathnames, IO::AIO keeps a copy of the working directory
1556     object and the pathname string, so you could write the following without
1557     causing any issues due to C<$path> getting reused:
1558    
1559     my $path = [$wd, undef];
1560    
1561     for my $name (qw(abc def ghi)) {
1562     $path->[1] = $name;
1563     aio_stat $path, sub {
1564     # ...
1565     };
1566     }
1567    
1568     There are some caveats: when directories get renamed (or deleted), the
1569     pathname string doesn't change, so will point to the new directory (or
1570     nowhere at all), while the directory fd, if available on the system,
1571     will still point to the original directory. Most functions accepting a
1572     pathname will use the directory fd on newer systems, and the string on
1573 root 1.277 older systems. Some functions (such as C<aio_realpath>) will always rely on
1574     the string form of the pathname.
1575 root 1.209
1576 root 1.239 So this functionality is mainly useful to get some protection against
1577 root 1.209 C<chdir>, to easily get an absolute path out of a relative path for future
1578     reference, and to speed up doing many operations in the same directory
1579     (e.g. when stat'ing all files in a directory).
1580    
1581     The following functions implement this working directory abstraction:
1582    
1583     =over 4
1584    
1585     =item aio_wd $pathname, $callback->($wd)
1586    
1587     Asynchonously canonicalise the given pathname and convert it to an
1588     IO::AIO::WD object representing it. If possible and supported on the
1589     system, also open a directory fd to speed up pathname resolution relative
1590     to this working directory.
1591    
1592     If something goes wrong, then C<undef> is passwd to the callback instead
1593     of a working directory object and C<$!> is set appropriately. Since
1594     passing C<undef> as working directory component of a pathname fails the
1595     request with C<ENOENT>, there is often no need for error checking in the
1596     C<aio_wd> callback, as future requests using the value will fail in the
1597     expected way.
1598    
1599     =item IO::AIO::CWD
1600    
1601     This is a compiletime constant (object) that represents the process
1602     current working directory.
1603    
1604 root 1.239 Specifying this object as working directory object for a pathname is as if
1605     the pathname would be specified directly, without a directory object. For
1606     example, these calls are functionally identical:
1607 root 1.209
1608     aio_stat "somefile", sub { ... };
1609     aio_stat [IO::AIO::CWD, "somefile"], sub { ... };
1610    
1611     =back
1612    
1613 root 1.239 To recover the path associated with an IO::AIO::WD object, you can use
1614     C<aio_realpath>:
1615    
1616     aio_realpath $wd, sub {
1617     warn "path is $_[0]\n";
1618     };
1619    
1620 root 1.241 Currently, C<aio_statvfs> always, and C<aio_rename> and C<aio_rmdir>
1621     sometimes, fall back to using an absolue path.
1622 root 1.209
1623 root 1.53 =head2 IO::AIO::REQ CLASS
1624 root 1.52
1625     All non-aggregate C<aio_*> functions return an object of this class when
1626     called in non-void context.
1627    
1628     =over 4
1629    
1630 root 1.65 =item cancel $req
1631 root 1.52
1632     Cancels the request, if possible. Has the effect of skipping execution
1633     when entering the B<execute> state and skipping calling the callback when
1634     entering the the B<result> state, but will leave the request otherwise
1635 root 1.151 untouched (with the exception of readdir). That means that requests that
1636     currently execute will not be stopped and resources held by the request
1637     will not be freed prematurely.
1638 root 1.52
1639 root 1.65 =item cb $req $callback->(...)
1640    
1641     Replace (or simply set) the callback registered to the request.
1642    
1643 root 1.52 =back
1644    
1645 root 1.55 =head2 IO::AIO::GRP CLASS
1646    
1647     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1648     objects of this class, too.
1649    
1650     A IO::AIO::GRP object is a special request that can contain multiple other
1651     aio requests.
1652    
1653     You create one by calling the C<aio_group> constructing function with a
1654     callback that will be called when all contained requests have entered the
1655     C<done> state:
1656    
1657     my $grp = aio_group sub {
1658     print "all requests are done\n";
1659     };
1660    
1661     You add requests by calling the C<add> method with one or more
1662     C<IO::AIO::REQ> objects:
1663    
1664     $grp->add (aio_unlink "...");
1665    
1666 root 1.58 add $grp aio_stat "...", sub {
1667     $_[0] or return $grp->result ("error");
1668    
1669     # add another request dynamically, if first succeeded
1670     add $grp aio_open "...", sub {
1671     $grp->result ("ok");
1672     };
1673     };
1674 root 1.55
1675     This makes it very easy to create composite requests (see the source of
1676     C<aio_move> for an application) that work and feel like simple requests.
1677    
1678 root 1.62 =over 4
1679    
1680     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1681 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1682    
1683 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1684 root 1.59 only the request itself, but also all requests it contains.
1685 root 1.55
1686 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1687 root 1.55
1688 root 1.62 =item * You must not add requests to a group from within the group callback (or
1689 root 1.60 any later time).
1690    
1691 root 1.62 =back
1692    
1693 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1694     will finish very quickly. If they contain only requests that are in the
1695     C<done> state, they will also finish. Otherwise they will continue to
1696     exist.
1697    
1698 root 1.133 That means after creating a group you have some time to add requests
1699     (precisely before the callback has been invoked, which is only done within
1700     the C<poll_cb>). And in the callbacks of those requests, you can add
1701     further requests to the group. And only when all those requests have
1702     finished will the the group itself finish.
1703 root 1.57
1704 root 1.55 =over 4
1705    
1706 root 1.65 =item add $grp ...
1707    
1708 root 1.55 =item $grp->add (...)
1709    
1710 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1711     be added, including other groups, as long as you do not create circular
1712     dependencies.
1713    
1714     Returns all its arguments.
1715 root 1.55
1716 root 1.74 =item $grp->cancel_subs
1717    
1718     Cancel all subrequests and clears any feeder, but not the group request
1719     itself. Useful when you queued a lot of events but got a result early.
1720    
1721 root 1.168 The group request will finish normally (you cannot add requests to the
1722     group).
1723    
1724 root 1.58 =item $grp->result (...)
1725    
1726     Set the result value(s) that will be passed to the group callback when all
1727 root 1.120 subrequests have finished and set the groups errno to the current value
1728 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1729     no argument will be passed and errno is zero.
1730    
1731     =item $grp->errno ([$errno])
1732    
1733     Sets the group errno value to C<$errno>, or the current value of errno
1734     when the argument is missing.
1735    
1736     Every aio request has an associated errno value that is restored when
1737     the callback is invoked. This method lets you change this value from its
1738     default (0).
1739    
1740     Calling C<result> will also set errno, so make sure you either set C<$!>
1741     before the call to C<result>, or call c<errno> after it.
1742 root 1.58
1743 root 1.65 =item feed $grp $callback->($grp)
1744 root 1.60
1745     Sets a feeder/generator on this group: every group can have an attached
1746     generator that generates requests if idle. The idea behind this is that,
1747     although you could just queue as many requests as you want in a group,
1748 root 1.139 this might starve other requests for a potentially long time. For example,
1749 root 1.211 C<aio_scandir> might generate hundreds of thousands of C<aio_stat>
1750     requests, delaying any later requests for a long time.
1751 root 1.60
1752     To avoid this, and allow incremental generation of requests, you can
1753     instead a group and set a feeder on it that generates those requests. The
1754 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1755 root 1.60 below) requests active in the group itself and is expected to queue more
1756     requests.
1757    
1758 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1759     not impose any limits).
1760 root 1.60
1761 root 1.65 If the feed does not queue more requests when called, it will be
1762 root 1.60 automatically removed from the group.
1763    
1764 root 1.138 If the feed limit is C<0> when this method is called, it will be set to
1765     C<2> automatically.
1766 root 1.60
1767     Example:
1768    
1769     # stat all files in @files, but only ever use four aio requests concurrently:
1770    
1771     my $grp = aio_group sub { print "finished\n" };
1772 root 1.68 limit $grp 4;
1773 root 1.65 feed $grp sub {
1774 root 1.60 my $file = pop @files
1775     or return;
1776    
1777     add $grp aio_stat $file, sub { ... };
1778 root 1.65 };
1779 root 1.60
1780 root 1.68 =item limit $grp $num
1781 root 1.60
1782     Sets the feeder limit for the group: The feeder will be called whenever
1783     the group contains less than this many requests.
1784    
1785     Setting the limit to C<0> will pause the feeding process.
1786    
1787 root 1.138 The default value for the limit is C<0>, but note that setting a feeder
1788     automatically bumps it up to C<2>.
1789    
1790 root 1.55 =back
1791    
1792 root 1.294
1793 root 1.5 =head2 SUPPORT FUNCTIONS
1794    
1795 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1796    
1797 root 1.5 =over 4
1798    
1799     =item $fileno = IO::AIO::poll_fileno
1800    
1801 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1802 root 1.156 polled for reading by some mechanism outside this module (e.g. EV, Glib,
1803     select and so on, see below or the SYNOPSIS). If the pipe becomes readable
1804     you have to call C<poll_cb> to check the results.
1805 root 1.5
1806     See C<poll_cb> for an example.
1807    
1808     =item IO::AIO::poll_cb
1809    
1810 root 1.240 Process some requests that have reached the result phase (i.e. they have
1811     been executed but the results are not yet reported). You have to call
1812     this "regularly" to finish outstanding requests.
1813    
1814     Returns C<0> if all events could be processed (or there were no
1815     events to process), or C<-1> if it returned earlier for whatever
1816     reason. Returns immediately when no events are outstanding. The amount
1817     of events processed depends on the settings of C<IO::AIO::max_poll_req>,
1818     C<IO::AIO::max_poll_time> and C<IO::AIO::max_outstanding>.
1819    
1820     If not all requests were processed for whatever reason, the poll file
1821     descriptor will still be ready when C<poll_cb> returns, so normally you
1822     don't have to do anything special to have it called later.
1823 root 1.78
1824 root 1.192 Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes
1825     ready, it can be beneficial to call this function from loops which submit
1826     a lot of requests, to make sure the results get processed when they become
1827     available and not just when the loop is finished and the event loop takes
1828     over again. This function returns very fast when there are no outstanding
1829     requests.
1830    
1831 root 1.20 Example: Install an Event watcher that automatically calls
1832 root 1.156 IO::AIO::poll_cb with high priority (more examples can be found in the
1833     SYNOPSIS section, at the top of this document):
1834 root 1.5
1835     Event->io (fd => IO::AIO::poll_fileno,
1836     poll => 'r', async => 1,
1837     cb => \&IO::AIO::poll_cb);
1838    
1839 root 1.175 =item IO::AIO::poll_wait
1840    
1841 root 1.240 Wait until either at least one request is in the result phase or no
1842     requests are outstanding anymore.
1843    
1844     This is useful if you want to synchronously wait for some requests to
1845     become ready, without actually handling them.
1846 root 1.175
1847     See C<nreqs> for an example.
1848    
1849     =item IO::AIO::poll
1850    
1851     Waits until some requests have been handled.
1852    
1853     Returns the number of requests processed, but is otherwise strictly
1854     equivalent to:
1855    
1856     IO::AIO::poll_wait, IO::AIO::poll_cb
1857    
1858     =item IO::AIO::flush
1859    
1860     Wait till all outstanding AIO requests have been handled.
1861    
1862     Strictly equivalent to:
1863    
1864     IO::AIO::poll_wait, IO::AIO::poll_cb
1865     while IO::AIO::nreqs;
1866    
1867 root 1.294 This function can be useful at program aborts, to make sure outstanding
1868     I/O has been done (C<IO::AIO> uses an C<END> block which already calls
1869     this function on normal exits), or when you are merely using C<IO::AIO>
1870     for its more advanced functions, rather than for async I/O, e.g.:
1871    
1872     my ($dirs, $nondirs);
1873     IO::AIO::aio_scandir "/tmp", 0, sub { ($dirs, $nondirs) = @_ };
1874     IO::AIO::flush;
1875     # $dirs, $nondirs are now set
1876    
1877 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1878    
1879     =item IO::AIO::max_poll_time $seconds
1880    
1881     These set the maximum number of requests (default C<0>, meaning infinity)
1882     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1883     the maximum amount of time (default C<0>, meaning infinity) spent in
1884     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1885     of time C<poll_cb> is allowed to use).
1886 root 1.78
1887 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1888     syscall per request processed, which is not normally a problem unless your
1889     callbacks are really really fast or your OS is really really slow (I am
1890     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1891    
1892 root 1.86 Setting these is useful if you want to ensure some level of
1893     interactiveness when perl is not fast enough to process all requests in
1894     time.
1895 root 1.78
1896 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
1897 root 1.78
1898     Example: Install an Event watcher that automatically calls
1899 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
1900 root 1.78 program get the CPU sometimes even under high AIO load.
1901    
1902 root 1.86 # try not to spend much more than 0.1s in poll_cb
1903     IO::AIO::max_poll_time 0.1;
1904    
1905     # use a low priority so other tasks have priority
1906 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
1907     poll => 'r', nice => 1,
1908 root 1.86 cb => &IO::AIO::poll_cb);
1909 root 1.78
1910 root 1.104 =back
1911    
1912 root 1.294
1913 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
1914 root 1.13
1915 root 1.105 =over
1916    
1917 root 1.5 =item IO::AIO::min_parallel $nthreads
1918    
1919 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
1920     default is C<8>, which means eight asynchronous operations can execute
1921     concurrently at any one time (the number of outstanding requests,
1922     however, is unlimited).
1923 root 1.5
1924 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
1925 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
1926     create demand for a hundred threads, even if it turns out that everything
1927     is in the cache and could have been processed faster by a single thread.
1928 root 1.34
1929 root 1.61 It is recommended to keep the number of threads relatively low, as some
1930     Linux kernel versions will scale negatively with the number of threads
1931     (higher parallelity => MUCH higher latency). With current Linux 2.6
1932     versions, 4-32 threads should be fine.
1933 root 1.5
1934 root 1.34 Under most circumstances you don't need to call this function, as the
1935     module selects a default that is suitable for low to moderate load.
1936 root 1.5
1937     =item IO::AIO::max_parallel $nthreads
1938    
1939 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
1940     specified number of threads are currently running, this function kills
1941     them. This function blocks until the limit is reached.
1942    
1943     While C<$nthreads> are zero, aio requests get queued but not executed
1944     until the number of threads has been increased again.
1945 root 1.5
1946     This module automatically runs C<max_parallel 0> at program end, to ensure
1947     that all threads are killed and that there are no outstanding requests.
1948    
1949     Under normal circumstances you don't need to call this function.
1950    
1951 root 1.86 =item IO::AIO::max_idle $nthreads
1952    
1953 root 1.188 Limit the number of threads (default: 4) that are allowed to idle
1954     (i.e., threads that did not get a request to process within the idle
1955     timeout (default: 10 seconds). That means if a thread becomes idle while
1956     C<$nthreads> other threads are also idle, it will free its resources and
1957     exit.
1958 root 1.86
1959     This is useful when you allow a large number of threads (e.g. 100 or 1000)
1960     to allow for extremely high load situations, but want to free resources
1961     under normal circumstances (1000 threads can easily consume 30MB of RAM).
1962    
1963     The default is probably ok in most situations, especially if thread
1964     creation is fast. If thread creation is very slow on your system you might
1965     want to use larger values.
1966    
1967 root 1.188 =item IO::AIO::idle_timeout $seconds
1968    
1969     Sets the minimum idle timeout (default 10) after which worker threads are
1970     allowed to exit. SEe C<IO::AIO::max_idle>.
1971    
1972 root 1.123 =item IO::AIO::max_outstanding $maxreqs
1973 root 1.5
1974 root 1.195 Sets the maximum number of outstanding requests to C<$nreqs>. If
1975     you do queue up more than this number of requests, the next call to
1976     C<IO::AIO::poll_cb> (and other functions calling C<poll_cb>, such as
1977     C<IO::AIO::flush> or C<IO::AIO::poll>) will block until the limit is no
1978     longer exceeded.
1979    
1980     In other words, this setting does not enforce a queue limit, but can be
1981     used to make poll functions block if the limit is exceeded.
1982    
1983 root 1.79 This is a very bad function to use in interactive programs because it
1984     blocks, and a bad way to reduce concurrency because it is inexact: Better
1985     use an C<aio_group> together with a feed callback.
1986    
1987 root 1.248 Its main use is in scripts without an event loop - when you want to stat
1988 root 1.274 a lot of files, you can write something like this:
1989 root 1.195
1990     IO::AIO::max_outstanding 32;
1991    
1992     for my $path (...) {
1993     aio_stat $path , ...;
1994     IO::AIO::poll_cb;
1995     }
1996    
1997     IO::AIO::flush;
1998    
1999     The call to C<poll_cb> inside the loop will normally return instantly, but
2000     as soon as more thna C<32> reqeusts are in-flight, it will block until
2001     some requests have been handled. This keeps the loop from pushing a large
2002     number of C<aio_stat> requests onto the queue.
2003    
2004     The default value for C<max_outstanding> is very large, so there is no
2005     practical limit on the number of outstanding requests.
2006 root 1.5
2007 root 1.104 =back
2008    
2009 root 1.294
2010 root 1.86 =head3 STATISTICAL INFORMATION
2011    
2012 root 1.104 =over
2013    
2014 root 1.86 =item IO::AIO::nreqs
2015    
2016     Returns the number of requests currently in the ready, execute or pending
2017     states (i.e. for which their callback has not been invoked yet).
2018    
2019     Example: wait till there are no outstanding requests anymore:
2020    
2021     IO::AIO::poll_wait, IO::AIO::poll_cb
2022     while IO::AIO::nreqs;
2023    
2024     =item IO::AIO::nready
2025    
2026     Returns the number of requests currently in the ready state (not yet
2027     executed).
2028    
2029     =item IO::AIO::npending
2030    
2031     Returns the number of requests currently in the pending state (executed,
2032     but not yet processed by poll_cb).
2033    
2034 root 1.5 =back
2035    
2036 root 1.294
2037 root 1.289 =head3 SUBSECOND STAT TIME ACCESS
2038    
2039     Both C<aio_stat>/C<aio_lstat> and perl's C<stat>/C<lstat> functions can
2040     generally find access/modification and change times with subsecond time
2041     accuracy of the system supports it, but perl's built-in functions only
2042     return the integer part.
2043    
2044     The following functions return the timestamps of the most recent
2045     stat with subsecond precision on most systems and work both after
2046     C<aio_stat>/C<aio_lstat> and perl's C<stat>/C<lstat> calls. Their return
2047     value is only meaningful after a successful C<stat>/C<lstat> call, or
2048     during/after a successful C<aio_stat>/C<aio_lstat> callback.
2049    
2050     This is similar to the L<Time::HiRes> C<stat> functions, but can return
2051     full resolution without rounding and work with standard perl C<stat>,
2052     alleviating the need to call the special C<Time::HiRes> functions, which
2053     do not act like their perl counterparts.
2054    
2055     On operating systems or file systems where subsecond time resolution is
2056     not supported or could not be detected, a fractional part of C<0> is
2057     returned, so it is always safe to call these functions.
2058    
2059     =over 4
2060    
2061 root 1.294 =item $seconds = IO::AIO::st_atime, IO::AIO::st_mtime, IO::AIO::st_ctime, IO::AIO::st_btime
2062 root 1.289
2063 root 1.294 Return the access, modication, change or birth time, respectively,
2064     including fractional part. Due to the limited precision of floating point,
2065     the accuracy on most platforms is only a bit better than milliseconds
2066     for times around now - see the I<nsec> function family, below, for full
2067 root 1.289 accuracy.
2068    
2069 root 1.294 File birth time is only available when the OS and perl support it (on
2070     FreeBSD and NetBSD at the time of this writing, although support is
2071     adaptive, so if your OS/perl gains support, IO::AIO can take avdantage of
2072     it). On systems where it isn't available, C<0> is currently returned, but
2073     this might change to C<undef> in a future version.
2074 root 1.289
2075 root 1.294 =item ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtime
2076 root 1.289
2077 root 1.294 Returns access, modification, change and birth time all in one go, and
2078     maybe more times in the future version.
2079 root 1.289
2080 root 1.294 =item $nanoseconds = IO::AIO::st_atimensec, IO::AIO::st_mtimensec, IO::AIO::st_ctimensec, IO::AIO::st_btimensec
2081    
2082     Return the fractional access, modifcation, change or birth time, in nanoseconds,
2083 root 1.289 as an integer in the range C<0> to C<999999999>.
2084    
2085 root 1.294 Note that no accessors are provided for access, modification and
2086     change times - you need to get those from C<stat _> if required (C<int
2087     IO::AIO::st_atime> and so on will I<not> generally give you the correct
2088     value).
2089    
2090     =item $seconds = IO::AIO::st_btimesec
2091    
2092     The (integral) seconds part of the file birth time, if available.
2093    
2094     =item ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtimensec
2095 root 1.290
2096 root 1.294 Like the functions above, but returns all four times in one go (and maybe
2097 root 1.290 more in future versions).
2098    
2099 root 1.294 =item $counter = IO::AIO::st_gen
2100    
2101 root 1.296 Returns the generation counter (in practice this is just a random number)
2102     of the file. This is only available on platforms which have this member in
2103     their C<struct stat> (most BSDs at the time of this writing) and generally
2104     only to the root usert. If unsupported, C<0> is returned, but this might
2105     change to C<undef> in a future version.
2106 root 1.294
2107 root 1.289 =back
2108    
2109     Example: print the high resolution modification time of F</etc>, using
2110     C<stat>, and C<IO::AIO::aio_stat>.
2111    
2112     if (stat "/etc") {
2113 root 1.290 printf "stat(/etc) mtime: %f\n", IO::AIO::st_mtime;
2114 root 1.289 }
2115    
2116     IO::AIO::aio_stat "/etc", sub {
2117     $_[0]
2118     and return;
2119    
2120 root 1.290 printf "aio_stat(/etc) mtime: %d.%09d\n", (stat _)[9], IO::AIO::st_mtimensec;
2121 root 1.289 };
2122    
2123     IO::AIO::flush;
2124    
2125     Output of the awbove on my system, showing reduced and full accuracy:
2126    
2127     stat(/etc) mtime: 1534043702.020808
2128     aio_stat(/etc) mtime: 1534043702.020807792
2129    
2130 root 1.294
2131 root 1.157 =head3 MISCELLANEOUS FUNCTIONS
2132    
2133 root 1.248 IO::AIO implements some functions that are useful when you want to use
2134     some "Advanced I/O" function not available to in Perl, without going the
2135     "Asynchronous I/O" route. Many of these have an asynchronous C<aio_*>
2136     counterpart.
2137 root 1.157
2138     =over 4
2139    
2140 root 1.275 =item $numfd = IO::AIO::get_fdlimit
2141    
2142 root 1.278 This function is I<EXPERIMENTAL> and subject to change.
2143    
2144 root 1.275 Tries to find the current file descriptor limit and returns it, or
2145     C<undef> and sets C<$!> in case of an error. The limit is one larger than
2146     the highest valid file descriptor number.
2147    
2148     =item IO::AIO::min_fdlimit [$numfd]
2149    
2150 root 1.278 This function is I<EXPERIMENTAL> and subject to change.
2151    
2152 root 1.275 Try to increase the current file descriptor limit(s) to at least C<$numfd>
2153     by changing the soft or hard file descriptor resource limit. If C<$numfd>
2154     is missing, it will try to set a very high limit, although this is not
2155     recommended when you know the actual minimum that you require.
2156    
2157     If the limit cannot be raised enough, the function makes a best-effort
2158     attempt to increase the limit as much as possible, using various
2159     tricks, while still failing. You can query the resulting limit using
2160     C<IO::AIO::get_fdlimit>.
2161    
2162 root 1.276 If an error occurs, returns C<undef> and sets C<$!>, otherwise returns
2163     true.
2164 root 1.275
2165 root 1.157 =item IO::AIO::sendfile $ofh, $ifh, $offset, $count
2166    
2167     Calls the C<eio_sendfile_sync> function, which is like C<aio_sendfile>,
2168     but is blocking (this makes most sense if you know the input data is
2169     likely cached already and the output filehandle is set to non-blocking
2170     operations).
2171    
2172     Returns the number of bytes copied, or C<-1> on error.
2173    
2174     =item IO::AIO::fadvise $fh, $offset, $len, $advice
2175    
2176 root 1.184 Simply calls the C<posix_fadvise> function (see its
2177 root 1.157 manpage for details). The following advice constants are
2178 root 1.207 available: C<IO::AIO::FADV_NORMAL>, C<IO::AIO::FADV_SEQUENTIAL>,
2179 root 1.157 C<IO::AIO::FADV_RANDOM>, C<IO::AIO::FADV_NOREUSE>,
2180     C<IO::AIO::FADV_WILLNEED>, C<IO::AIO::FADV_DONTNEED>.
2181    
2182     On systems that do not implement C<posix_fadvise>, this function returns
2183     ENOSYS, otherwise the return value of C<posix_fadvise>.
2184    
2185 root 1.184 =item IO::AIO::madvise $scalar, $offset, $len, $advice
2186    
2187     Simply calls the C<posix_madvise> function (see its
2188     manpage for details). The following advice constants are
2189 root 1.207 available: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
2190 root 1.272 C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>,
2191     C<IO::AIO::MADV_DONTNEED>.
2192 root 1.184
2193 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2194     the remaining length of the C<$scalar> is used. If possible, C<$length>
2195     will be reduced to fit into the C<$scalar>.
2196    
2197 root 1.184 On systems that do not implement C<posix_madvise>, this function returns
2198     ENOSYS, otherwise the return value of C<posix_madvise>.
2199    
2200     =item IO::AIO::mprotect $scalar, $offset, $len, $protect
2201    
2202     Simply calls the C<mprotect> function on the preferably AIO::mmap'ed
2203     $scalar (see its manpage for details). The following protect
2204 root 1.207 constants are available: C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_READ>,
2205 root 1.184 C<IO::AIO::PROT_WRITE>, C<IO::AIO::PROT_EXEC>.
2206    
2207 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2208     the remaining length of the C<$scalar> is used. If possible, C<$length>
2209     will be reduced to fit into the C<$scalar>.
2210    
2211 root 1.184 On systems that do not implement C<mprotect>, this function returns
2212     ENOSYS, otherwise the return value of C<mprotect>.
2213    
2214 root 1.176 =item IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
2215    
2216     Memory-maps a file (or anonymous memory range) and attaches it to the
2217 root 1.228 given C<$scalar>, which will act like a string scalar. Returns true on
2218     success, and false otherwise.
2219 root 1.176
2220 root 1.268 The scalar must exist, but its contents do not matter - this means you
2221     cannot use a nonexistant array or hash element. When in doubt, C<undef>
2222     the scalar first.
2223    
2224     The only operations allowed on the mmapped scalar are C<substr>/C<vec>,
2225     which don't change the string length, and most read-only operations such
2226     as copying it or searching it with regexes and so on.
2227 root 1.176
2228     Anything else is unsafe and will, at best, result in memory leaks.
2229    
2230     The memory map associated with the C<$scalar> is automatically removed
2231 root 1.268 when the C<$scalar> is undef'd or destroyed, or when the C<IO::AIO::mmap>
2232     or C<IO::AIO::munmap> functions are called on it.
2233 root 1.176
2234     This calls the C<mmap>(2) function internally. See your system's manual
2235     page for details on the C<$length>, C<$prot> and C<$flags> parameters.
2236    
2237     The C<$length> must be larger than zero and smaller than the actual
2238     filesize.
2239    
2240     C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
2241     C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
2242    
2243 root 1.256 C<$flags> can be a combination of
2244     C<IO::AIO::MAP_SHARED> or
2245     C<IO::AIO::MAP_PRIVATE>,
2246     or a number of system-specific flags (when not available, the are C<0>):
2247     C<IO::AIO::MAP_ANONYMOUS> (which is set to C<MAP_ANON> if your system only provides this constant),
2248     C<IO::AIO::MAP_LOCKED>,
2249     C<IO::AIO::MAP_NORESERVE>,
2250     C<IO::AIO::MAP_POPULATE>,
2251     C<IO::AIO::MAP_NONBLOCK>,
2252     C<IO::AIO::MAP_FIXED>,
2253     C<IO::AIO::MAP_GROWSDOWN>,
2254     C<IO::AIO::MAP_32BIT>,
2255     C<IO::AIO::MAP_HUGETLB> or
2256     C<IO::AIO::MAP_STACK>.
2257 root 1.176
2258     If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
2259    
2260 root 1.179 C<$offset> is the offset from the start of the file - it generally must be
2261     a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
2262    
2263 root 1.177 Example:
2264    
2265     use Digest::MD5;
2266     use IO::AIO;
2267    
2268     open my $fh, "<verybigfile"
2269     or die "$!";
2270    
2271     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
2272     or die "verybigfile: $!";
2273    
2274     my $fast_md5 = md5 $data;
2275    
2276 root 1.176 =item IO::AIO::munmap $scalar
2277    
2278     Removes a previous mmap and undefines the C<$scalar>.
2279    
2280 root 1.287 =item IO::AIO::mremap $scalar, $new_length, $flags = MREMAP_MAYMOVE[, $new_address = 0]
2281 root 1.285
2282     Calls the Linux-specific mremap(2) system call. The C<$scalar> must have
2283     been mapped by C<IO::AIO::mmap>, and C<$flags> must currently either be
2284     C<0> or C<IO::AIO::MREMAP_MAYMOVE>.
2285    
2286     Returns true if successful, and false otherwise. If the underlying mmapped
2287     region has changed address, then the true value has the numerical value
2288     C<1>, otherwise it has the numerical value C<0>:
2289    
2290     my $success = IO::AIO::mremap $mmapped, 8192, IO::AIO::MREMAP_MAYMOVE
2291     or die "mremap: $!";
2292    
2293     if ($success*1) {
2294     warn "scalar has chanegd address in memory\n";
2295     }
2296    
2297     C<IO::AIO::MREMAP_FIXED> and the C<$new_address> argument are currently
2298     implemented, but not supported and might go away in a future version.
2299    
2300     On systems where this call is not supported or is not emulated, this call
2301     returns falls and sets C<$!> to C<ENOSYS>.
2302    
2303 root 1.182 =item IO::AIO::munlock $scalar, $offset = 0, $length = undef
2304 root 1.174
2305 root 1.182 Calls the C<munlock> function, undoing the effects of a previous
2306     C<aio_mlock> call (see its description for details).
2307 root 1.174
2308     =item IO::AIO::munlockall
2309    
2310     Calls the C<munlockall> function.
2311    
2312     On systems that do not implement C<munlockall>, this function returns
2313     ENOSYS, otherwise the return value of C<munlockall>.
2314    
2315 root 1.225 =item IO::AIO::splice $r_fh, $r_off, $w_fh, $w_off, $length, $flags
2316    
2317     Calls the GNU/Linux C<splice(2)> syscall, if available. If C<$r_off> or
2318     C<$w_off> are C<undef>, then C<NULL> is passed for these, otherwise they
2319     should be the file offset.
2320    
2321 root 1.227 C<$r_fh> and C<$w_fh> should not refer to the same file, as splice might
2322     silently corrupt the data in this case.
2323    
2324 root 1.225 The following symbol flag values are available: C<IO::AIO::SPLICE_F_MOVE>,
2325     C<IO::AIO::SPLICE_F_NONBLOCK>, C<IO::AIO::SPLICE_F_MORE> and
2326     C<IO::AIO::SPLICE_F_GIFT>.
2327    
2328     See the C<splice(2)> manpage for details.
2329    
2330     =item IO::AIO::tee $r_fh, $w_fh, $length, $flags
2331    
2332 root 1.248 Calls the GNU/Linux C<tee(2)> syscall, see its manpage and the
2333 root 1.225 description for C<IO::AIO::splice> above for details.
2334    
2335 root 1.243 =item $actual_size = IO::AIO::pipesize $r_fh[, $new_size]
2336    
2337     Attempts to query or change the pipe buffer size. Obviously works only
2338     on pipes, and currently works only on GNU/Linux systems, and fails with
2339     C<-1>/C<ENOSYS> everywhere else. If anybody knows how to influence pipe buffer
2340     size on other systems, drop me a note.
2341    
2342 root 1.253 =item ($rfh, $wfh) = IO::AIO::pipe2 [$flags]
2343    
2344     This is a direct interface to the Linux L<pipe2(2)> system call. If
2345     C<$flags> is missing or C<0>, then this should be the same as a call to
2346 root 1.254 perl's built-in C<pipe> function and create a new pipe, and works on
2347     systems that lack the pipe2 syscall. On win32, this case invokes C<_pipe
2348     (..., 4096, O_BINARY)>.
2349 root 1.253
2350     If C<$flags> is non-zero, it tries to invoke the pipe2 system call with
2351     the given flags (Linux 2.6.27, glibc 2.9).
2352    
2353     On success, the read and write file handles are returned.
2354    
2355     On error, nothing will be returned. If the pipe2 syscall is missing and
2356     C<$flags> is non-zero, fails with C<ENOSYS>.
2357    
2358     Please refer to L<pipe2(2)> for more info on the C<$flags>, but at the
2359     time of this writing, C<IO::AIO::O_CLOEXEC>, C<IO::AIO::O_NONBLOCK> and
2360     C<IO::AIO::O_DIRECT> (Linux 3.4, for packet-based pipes) were supported.
2361    
2362 root 1.281 Example: create a pipe race-free w.r.t. threads and fork:
2363    
2364     my ($rfh, $wfh) = IO::AIO::pipe2 IO::AIO::O_CLOEXEC
2365     or die "pipe2: $!\n";
2366    
2367 root 1.282 =item $fh = IO::AIO::eventfd [$initval, [$flags]]
2368 root 1.281
2369     This is a direct interface to the Linux L<eventfd(2)> system call. The
2370     (unhelpful) defaults for C<$initval> and C<$flags> are C<0> for both.
2371    
2372     On success, the new eventfd filehandle is returned, otherwise returns
2373     C<undef>. If the eventfd syscall is missing, fails with C<ENOSYS>.
2374    
2375     Please refer to L<eventfd(2)> for more info on this call.
2376    
2377     The following symbol flag values are available: C<IO::AIO::EFD_CLOEXEC>,
2378     C<IO::AIO::EFD_NONBLOCK> and C<IO::AIO::EFD_SEMAPHORE> (Linux 2.6.30).
2379    
2380 root 1.282 Example: create a new eventfd filehandle:
2381    
2382     $fh = IO::AIO::eventfd 0, IO::AIO::O_CLOEXEC
2383     or die "eventfd: $!\n";
2384    
2385     =item $fh = IO::AIO::timerfd_create $clockid[, $flags]
2386    
2387     This is a direct interface to the Linux L<timerfd_create(2)> system call. The
2388     (unhelpful) default for C<$flags> is C<0>.
2389    
2390     On success, the new timerfd filehandle is returned, otherwise returns
2391     C<undef>. If the eventfd syscall is missing, fails with C<ENOSYS>.
2392    
2393     Please refer to L<timerfd_create(2)> for more info on this call.
2394    
2395     The following C<$clockid> values are
2396     available: C<IO::AIO::CLOCK_REALTIME>, C<IO::AIO::CLOCK_MONOTONIC>
2397     C<IO::AIO::CLOCK_CLOCK_BOOTTIME> (Linux 3.15)
2398     C<IO::AIO::CLOCK_CLOCK_REALTIME_ALARM> (Linux 3.11) and
2399     C<IO::AIO::CLOCK_CLOCK_BOOTTIME_ALARM> (Linux 3.11).
2400    
2401     The following C<$flags> values are available (Linux
2402     2.6.27): C<IO::AIO::TFD_NONBLOCK> and C<IO::AIO::TFD_CLOEXEC>.
2403    
2404     Example: create a new timerfd and set it to one-second repeated alarms,
2405     then wait for two alarms:
2406    
2407     my $fh = IO::AIO::timerfd_create IO::AIO::CLOCK_BOOTTIME, IO::AIO::TFD_CLOEXEC
2408     or die "timerfd_create: $!\n";
2409    
2410     defined IO::AIO::timerfd_settime $fh, 0, 1, 1
2411     or die "timerfd_settime: $!\n";
2412    
2413     for (1..2) {
2414     8 == sysread $fh, my $buf, 8
2415     or die "timerfd read failure\n";
2416    
2417     printf "number of expirations (likely 1): %d\n",
2418     unpack "Q", $buf;
2419     }
2420    
2421     =item ($cur_interval, $cur_value) = IO::AIO::timerfd_settime $fh, $flags, $new_interval, $nbw_value
2422    
2423     This is a direct interface to the Linux L<timerfd_settime(2)> system
2424     call. Please refer to its manpage for more info on this call.
2425    
2426     The new itimerspec is specified using two (possibly fractional) second
2427     values, C<$new_interval> and C<$new_value>).
2428    
2429     On success, the current interval and value are returned (as per
2430     C<timerfd_gettime>). On failure, the empty list is returned.
2431    
2432     The following C<$flags> values are
2433     available: C<IO::AIO::TFD_TIMER_ABSTIME> and
2434     C<IO::AIO::TFD_TIMER_CANCEL_ON_SET>.
2435    
2436     See C<IO::AIO::timerfd_create> for a full example.
2437    
2438     =item ($cur_interval, $cur_value) = IO::AIO::timerfd_gettime $fh
2439    
2440     This is a direct interface to the Linux L<timerfd_gettime(2)> system
2441     call. Please refer to its manpage for more info on this call.
2442    
2443     On success, returns the current values of interval and value for the given
2444     timerfd (as potentially fractional second values). On failure, the empty
2445     list is returned.
2446    
2447 root 1.157 =back
2448    
2449 root 1.1 =cut
2450    
2451 root 1.61 min_parallel 8;
2452 root 1.1
2453 root 1.95 END { flush }
2454 root 1.82
2455 root 1.1 1;
2456    
2457 root 1.175 =head1 EVENT LOOP INTEGRATION
2458    
2459     It is recommended to use L<AnyEvent::AIO> to integrate IO::AIO
2460     automatically into many event loops:
2461    
2462     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
2463     use AnyEvent::AIO;
2464    
2465     You can also integrate IO::AIO manually into many event loops, here are
2466     some examples of how to do this:
2467    
2468     # EV integration
2469     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
2470    
2471     # Event integration
2472     Event->io (fd => IO::AIO::poll_fileno,
2473     poll => 'r',
2474     cb => \&IO::AIO::poll_cb);
2475    
2476     # Glib/Gtk2 integration
2477     add_watch Glib::IO IO::AIO::poll_fileno,
2478     in => sub { IO::AIO::poll_cb; 1 };
2479    
2480     # Tk integration
2481     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
2482     readable => \&IO::AIO::poll_cb);
2483    
2484     # Danga::Socket integration
2485     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
2486     \&IO::AIO::poll_cb);
2487    
2488 root 1.27 =head2 FORK BEHAVIOUR
2489    
2490 root 1.197 Usage of pthreads in a program changes the semantics of fork
2491     considerably. Specifically, only async-safe functions can be called after
2492     fork. Perl doesn't know about this, so in general, you cannot call fork
2493 root 1.204 with defined behaviour in perl if pthreads are involved. IO::AIO uses
2494     pthreads, so this applies, but many other extensions and (for inexplicable
2495     reasons) perl itself often is linked against pthreads, so this limitation
2496     applies to quite a lot of perls.
2497    
2498     This module no longer tries to fight your OS, or POSIX. That means IO::AIO
2499     only works in the process that loaded it. Forking is fully supported, but
2500     using IO::AIO in the child is not.
2501    
2502     You might get around by not I<using> IO::AIO before (or after)
2503     forking. You could also try to call the L<IO::AIO::reinit> function in the
2504     child:
2505    
2506     =over 4
2507    
2508     =item IO::AIO::reinit
2509    
2510 root 1.207 Abandons all current requests and I/O threads and simply reinitialises all
2511     data structures. This is not an operation supported by any standards, but
2512 root 1.204 happens to work on GNU/Linux and some newer BSD systems.
2513    
2514     The only reasonable use for this function is to call it after forking, if
2515     C<IO::AIO> was used in the parent. Calling it while IO::AIO is active in
2516     the process will result in undefined behaviour. Calling it at any time
2517     will also result in any undefined (by POSIX) behaviour.
2518    
2519     =back
2520 root 1.52
2521 root 1.282 =head2 LINUX-SPECIFIC CALLS
2522    
2523     When a call is documented as "linux-specific" then this means it
2524     originated on GNU/Linux. C<IO::AIO> will usually try to autodetect the
2525     availability and compatibility of such calls regardless of the platform
2526     it is compiled on, so platforms such as FreeBSD which often implement
2527     these calls will work. When in doubt, call them and see if they fail wth
2528     C<ENOSYS>.
2529    
2530 root 1.60 =head2 MEMORY USAGE
2531    
2532 root 1.72 Per-request usage:
2533    
2534     Each aio request uses - depending on your architecture - around 100-200
2535     bytes of memory. In addition, stat requests need a stat buffer (possibly
2536     a few hundred bytes), readdir requires a result buffer and so on. Perl
2537     scalars and other data passed into aio requests will also be locked and
2538     will consume memory till the request has entered the done state.
2539 root 1.60
2540 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
2541 root 1.60 problem.
2542    
2543 root 1.72 Per-thread usage:
2544    
2545     In the execution phase, some aio requests require more memory for
2546     temporary buffers, and each thread requires a stack and other data
2547     structures (usually around 16k-128k, depending on the OS).
2548    
2549     =head1 KNOWN BUGS
2550    
2551 root 1.283 Known bugs will be fixed in the next release :)
2552    
2553     =head1 KNOWN ISSUES
2554    
2555     Calls that try to "import" foreign memory areas (such as C<IO::AIO::mmap>
2556     or C<IO::AIO::aio_slurp>) do not work with generic lvalues, such as
2557     non-created hash slots or other scalars I didn't think of. It's best to
2558     avoid such and either use scalar variables or making sure that the scalar
2559     exists (e.g. by storing C<undef>) and isn't "funny" (e.g. tied).
2560    
2561     I am not sure anything can be done about this, so this is considered a
2562     known issue, rather than a bug.
2563 root 1.60
2564 root 1.1 =head1 SEE ALSO
2565    
2566 root 1.125 L<AnyEvent::AIO> for easy integration into event loops, L<Coro::AIO> for a
2567     more natural syntax.
2568 root 1.1
2569     =head1 AUTHOR
2570    
2571     Marc Lehmann <schmorp@schmorp.de>
2572     http://home.schmorp.de/
2573    
2574     =cut
2575