ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.300
Committed: Sun Mar 10 12:11:46 2019 UTC (5 years, 2 months ago) by root
Branch: MAIN
CVS Tags: rel-4_71
Changes since 1.299: +1 -1 lines
Log Message:
4.71

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.265 IO::AIO - Asynchronous/Advanced Input/Output
4 root 1.1
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.1 =head1 DESCRIPTION
32    
33     This module implements asynchronous I/O using whatever means your
34 root 1.156 operating system supports. It is implemented as an interface to C<libeio>
35     (L<http://software.schmorp.de/pkg/libeio.html>).
36 root 1.1
37 root 1.85 Asynchronous means that operations that can normally block your program
38     (e.g. reading from disk) will be done asynchronously: the operation
39     will still block, but you can do something else in the meantime. This
40     is extremely useful for programs that need to stay interactive even
41     when doing heavy I/O (GUI programs, high performance network servers
42     etc.), but can also be used to easily do operations in parallel that are
43     normally done sequentially, e.g. stat'ing many files, which is much faster
44     on a RAID volume or over NFS when you do a number of stat operations
45     concurrently.
46    
47 root 1.108 While most of this works on all types of file descriptors (for
48     example sockets), using these functions on file descriptors that
49 root 1.156 support nonblocking operation (again, sockets, pipes etc.) is
50     very inefficient. Use an event loop for that (such as the L<EV>
51 root 1.108 module): IO::AIO will naturally fit into such an event loop itself.
52 root 1.85
53 root 1.72 In this version, a number of threads are started that execute your
54     requests and signal their completion. You don't need thread support
55     in perl, and the threads created by this module will not be visible
56     to perl. In the future, this module might make use of the native aio
57     functions available on many operating systems. However, they are often
58 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
59 root 1.72 files currently, for example), and they would only support aio_read and
60     aio_write, so the remaining functionality would have to be implemented
61     using threads anyway.
62    
63 root 1.265 In addition to asynchronous I/O, this module also exports some rather
64     arcane interfaces, such as C<madvise> or linux's C<splice> system call,
65     which is why the C<A> in C<AIO> can also mean I<advanced>.
66    
67 root 1.108 Although the module will work in the presence of other (Perl-) threads,
68     it is currently not reentrant in any way, so use appropriate locking
69     yourself, always call C<poll_cb> from within the same thread, or never
70     call C<poll_cb> (or other C<aio_> functions) recursively.
71 root 1.72
72 root 1.86 =head2 EXAMPLE
73    
74 root 1.156 This is a simple example that uses the EV module and loads
75 root 1.86 F</etc/passwd> asynchronously:
76    
77 root 1.156 use EV;
78 root 1.86 use IO::AIO;
79    
80 root 1.156 # register the IO::AIO callback with EV
81     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
82 root 1.86
83     # queue the request to open /etc/passwd
84 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
85 root 1.94 my $fh = shift
86 root 1.86 or die "error while opening: $!";
87    
88     # stat'ing filehandles is generally non-blocking
89     my $size = -s $fh;
90    
91     # queue a request to read the file
92     my $contents;
93     aio_read $fh, 0, $size, $contents, 0, sub {
94     $_[0] == $size
95     or die "short read: $!";
96    
97     close $fh;
98    
99     # file contents now in $contents
100     print $contents;
101    
102     # exit event loop and program
103 root 1.257 EV::break;
104 root 1.86 };
105     };
106    
107     # possibly queue up other requests, or open GUI windows,
108     # check for sockets etc. etc.
109    
110     # process events as long as there are some:
111 root 1.257 EV::run;
112 root 1.86
113 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
114    
115     Every C<aio_*> function creates a request. which is a C data structure not
116     directly visible to Perl.
117    
118     If called in non-void context, every request function returns a Perl
119     object representing the request. In void context, nothing is returned,
120     which saves a bit of memory.
121    
122     The perl object is a fairly standard ref-to-hash object. The hash contents
123     are not used by IO::AIO so you are free to store anything you like in it.
124    
125     During their existance, aio requests travel through the following states,
126     in order:
127    
128     =over 4
129    
130     =item ready
131    
132     Immediately after a request is created it is put into the ready state,
133     waiting for a thread to execute it.
134    
135     =item execute
136    
137     A thread has accepted the request for processing and is currently
138     executing it (e.g. blocking in read).
139    
140     =item pending
141    
142     The request has been executed and is waiting for result processing.
143    
144     While request submission and execution is fully asynchronous, result
145     processing is not and relies on the perl interpreter calling C<poll_cb>
146     (or another function with the same effect).
147    
148     =item result
149    
150     The request results are processed synchronously by C<poll_cb>.
151    
152     The C<poll_cb> function will process all outstanding aio requests by
153     calling their callbacks, freeing memory associated with them and managing
154     any groups they are contained in.
155    
156     =item done
157    
158     Request has reached the end of its lifetime and holds no resources anymore
159     (except possibly for the Perl object, but its connection to the actual
160     aio request is severed and calling its methods will either do nothing or
161     result in a runtime error).
162 root 1.1
163 root 1.88 =back
164    
165 root 1.1 =cut
166    
167     package IO::AIO;
168    
169 root 1.117 use Carp ();
170    
171 root 1.161 use common::sense;
172 root 1.23
173 root 1.1 use base 'Exporter';
174    
175     BEGIN {
176 root 1.300 our $VERSION = 4.71;
177 root 1.1
178 root 1.220 our @AIO_REQ = qw(aio_sendfile aio_seek aio_read aio_write aio_open aio_close
179 root 1.148 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
180 root 1.259 aio_scandir aio_symlink aio_readlink aio_realpath aio_fcntl aio_ioctl
181     aio_sync aio_fsync aio_syncfs aio_fdatasync aio_sync_file_range
182     aio_pathsync aio_readahead aio_fiemap aio_allocate
183 root 1.270 aio_rename aio_rename2 aio_link aio_move aio_copy aio_group
184 root 1.120 aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
185 root 1.170 aio_chmod aio_utime aio_truncate
186 root 1.182 aio_msync aio_mtouch aio_mlock aio_mlockall
187 root 1.208 aio_statvfs
188 root 1.279 aio_slurp
189 root 1.208 aio_wd);
190 root 1.120
191 root 1.123 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice));
192 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
193 root 1.188 min_parallel max_parallel max_idle idle_timeout
194 root 1.86 nreqs nready npending nthreads
195 root 1.157 max_poll_time max_poll_reqs
196 root 1.182 sendfile fadvise madvise
197 root 1.285 mmap munmap mremap munlock munlockall);
198 root 1.1
199 root 1.143 push @AIO_REQ, qw(aio_busy); # not exported
200    
201 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
202    
203 root 1.1 require XSLoader;
204 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
205 root 1.1 }
206    
207 root 1.5 =head1 FUNCTIONS
208 root 1.1
209 root 1.175 =head2 QUICK OVERVIEW
210    
211 root 1.230 This section simply lists the prototypes most of the functions for
212     quick reference. See the following sections for function-by-function
213 root 1.175 documentation.
214    
215 root 1.208 aio_wd $pathname, $callback->($wd)
216 root 1.175 aio_open $pathname, $flags, $mode, $callback->($fh)
217     aio_close $fh, $callback->($status)
218 root 1.220 aio_seek $fh,$offset,$whence, $callback->($offs)
219 root 1.175 aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
220     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
221     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
222     aio_readahead $fh,$offset,$length, $callback->($retval)
223     aio_stat $fh_or_path, $callback->($status)
224     aio_lstat $fh, $callback->($status)
225     aio_statvfs $fh_or_path, $callback->($statvfs)
226     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
227     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
228 root 1.220 aio_chmod $fh_or_path, $mode, $callback->($status)
229 root 1.175 aio_truncate $fh_or_path, $offset, $callback->($status)
230 root 1.229 aio_allocate $fh, $mode, $offset, $len, $callback->($status)
231 root 1.230 aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
232 root 1.175 aio_unlink $pathname, $callback->($status)
233 root 1.209 aio_mknod $pathname, $mode, $dev, $callback->($status)
234 root 1.175 aio_link $srcpath, $dstpath, $callback->($status)
235     aio_symlink $srcpath, $dstpath, $callback->($status)
236 root 1.209 aio_readlink $pathname, $callback->($link)
237 root 1.249 aio_realpath $pathname, $callback->($path)
238 root 1.175 aio_rename $srcpath, $dstpath, $callback->($status)
239 root 1.270 aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
240 root 1.175 aio_mkdir $pathname, $mode, $callback->($status)
241     aio_rmdir $pathname, $callback->($status)
242     aio_readdir $pathname, $callback->($entries)
243     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
244     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
245     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
246 root 1.215 aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
247 root 1.209 aio_load $pathname, $data, $callback->($status)
248 root 1.175 aio_copy $srcpath, $dstpath, $callback->($status)
249     aio_move $srcpath, $dstpath, $callback->($status)
250 root 1.209 aio_rmtree $pathname, $callback->($status)
251 root 1.259 aio_fcntl $fh, $cmd, $arg, $callback->($status)
252     aio_ioctl $fh, $request, $buf, $callback->($status)
253 root 1.175 aio_sync $callback->($status)
254 root 1.206 aio_syncfs $fh, $callback->($status)
255 root 1.175 aio_fsync $fh, $callback->($status)
256     aio_fdatasync $fh, $callback->($status)
257     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
258 root 1.209 aio_pathsync $pathname, $callback->($status)
259 root 1.268 aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
260 root 1.175 aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
261 root 1.182 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
262     aio_mlockall $flags, $callback->($status)
263 root 1.175 aio_group $callback->(...)
264     aio_nop $callback->()
265    
266     $prev_pri = aioreq_pri [$pri]
267     aioreq_nice $pri_adjust
268    
269     IO::AIO::poll_wait
270     IO::AIO::poll_cb
271     IO::AIO::poll
272     IO::AIO::flush
273     IO::AIO::max_poll_reqs $nreqs
274     IO::AIO::max_poll_time $seconds
275     IO::AIO::min_parallel $nthreads
276     IO::AIO::max_parallel $nthreads
277     IO::AIO::max_idle $nthreads
278 root 1.188 IO::AIO::idle_timeout $seconds
279 root 1.175 IO::AIO::max_outstanding $maxreqs
280     IO::AIO::nreqs
281     IO::AIO::nready
282     IO::AIO::npending
283 root 1.278 $nfd = IO::AIO::get_fdlimit [EXPERIMENTAL]
284     IO::AIO::min_fdlimit $nfd [EXPERIMENTAL]
285 root 1.175
286     IO::AIO::sendfile $ofh, $ifh, $offset, $count
287     IO::AIO::fadvise $fh, $offset, $len, $advice
288 root 1.226 IO::AIO::mmap $scalar, $length, $prot, $flags[, $fh[, $offset]]
289     IO::AIO::munmap $scalar
290 root 1.285 IO::AIO::mremap $scalar, $new_length, $flags[, $new_address]
291 root 1.184 IO::AIO::madvise $scalar, $offset, $length, $advice
292     IO::AIO::mprotect $scalar, $offset, $length, $protect
293 root 1.182 IO::AIO::munlock $scalar, $offset = 0, $length = undef
294 root 1.175 IO::AIO::munlockall
295    
296 root 1.219 =head2 API NOTES
297 root 1.1
298 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
299     with the same name (sans C<aio_>). The arguments are similar or identical,
300 root 1.14 and they all accept an additional (and optional) C<$callback> argument
301 root 1.212 which must be a code reference. This code reference will be called after
302     the syscall has been executed in an asynchronous fashion. The results
303     of the request will be passed as arguments to the callback (and, if an
304     error occured, in C<$!>) - for most requests the syscall return code (e.g.
305     most syscalls return C<-1> on error, unlike perl, which usually delivers
306     "false").
307    
308     Some requests (such as C<aio_readdir>) pass the actual results and
309     communicate failures by passing C<undef>.
310 root 1.1
311 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
312     internally until the request has finished.
313 root 1.1
314 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
315     further manipulation of those requests while they are in-flight.
316 root 1.52
317 root 1.209 The pathnames you pass to these routines I<should> be absolute. The
318     reason for this is that at the time the request is being executed, the
319 root 1.212 current working directory could have changed. Alternatively, you can
320     make sure that you never change the current working directory anywhere
321     in the program and then use relative paths. You can also take advantage
322     of IO::AIOs working directory abstraction, that lets you specify paths
323     relative to some previously-opened "working directory object" - see the
324     description of the C<IO::AIO::WD> class later in this document.
325 root 1.28
326 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
327     in filenames you got from outside (command line, readdir etc.) without
328 root 1.212 tinkering, b) are in your native filesystem encoding, c) use the Encode
329     module and encode your pathnames to the locale (or other) encoding in
330     effect in the user environment, d) use Glib::filename_from_unicode on
331     unicode filenames or e) use something else to ensure your scalar has the
332     correct contents.
333 root 1.87
334     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
335 root 1.136 handles correctly whether it is set or not.
336 root 1.1
337 root 1.219 =head2 AIO REQUEST FUNCTIONS
338    
339 root 1.5 =over 4
340 root 1.1
341 root 1.80 =item $prev_pri = aioreq_pri [$pri]
342 root 1.68
343 root 1.80 Returns the priority value that would be used for the next request and, if
344     C<$pri> is given, sets the priority for the next aio request.
345 root 1.68
346 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
347     and C<4>, respectively. Requests with higher priority will be serviced
348     first.
349    
350     The priority will be reset to C<0> after each call to one of the C<aio_*>
351 root 1.68 functions.
352    
353 root 1.69 Example: open a file with low priority, then read something from it with
354     higher priority so the read request is serviced before other low priority
355     open requests (potentially spamming the cache):
356    
357     aioreq_pri -3;
358     aio_open ..., sub {
359     return unless $_[0];
360    
361     aioreq_pri -2;
362     aio_read $_[0], ..., sub {
363     ...
364     };
365     };
366    
367 root 1.106
368 root 1.69 =item aioreq_nice $pri_adjust
369    
370     Similar to C<aioreq_pri>, but subtracts the given value from the current
371 root 1.87 priority, so the effect is cumulative.
372 root 1.69
373 root 1.106
374 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
375 root 1.1
376 root 1.2 Asynchronously open or create a file and call the callback with a newly
377 root 1.233 created filehandle for the file (or C<undef> in case of an error).
378 root 1.1
379     The pathname passed to C<aio_open> must be absolute. See API NOTES, above,
380     for an explanation.
381    
382 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
383     list. They are the same as used by C<sysopen>.
384    
385     Likewise, C<$mode> specifies the mode of the newly created file, if it
386     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
387     except that it is mandatory (i.e. use C<0> if you don't create new files,
388 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
389     by the umask in effect then the request is being executed, so better never
390     change the umask.
391 root 1.1
392     Example:
393    
394 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
395 root 1.2 if ($_[0]) {
396     print "open successful, fh is $_[0]\n";
397 root 1.1 ...
398     } else {
399     die "open failed: $!\n";
400     }
401     };
402    
403 root 1.194 In addition to all the common open modes/flags (C<O_RDONLY>, C<O_WRONLY>,
404     C<O_RDWR>, C<O_CREAT>, C<O_TRUNC>, C<O_EXCL> and C<O_APPEND>), the
405     following POSIX and non-POSIX constants are available (missing ones on
406     your system are, as usual, C<0>):
407    
408     C<O_ASYNC>, C<O_DIRECT>, C<O_NOATIME>, C<O_CLOEXEC>, C<O_NOCTTY>, C<O_NOFOLLOW>,
409     C<O_NONBLOCK>, C<O_EXEC>, C<O_SEARCH>, C<O_DIRECTORY>, C<O_DSYNC>,
410 root 1.286 C<O_RSYNC>, C<O_SYNC>, C<O_PATH>, C<O_TMPFILE>, C<O_TTY_INIT> and C<O_ACCMODE>.
411 root 1.194
412 root 1.106
413 root 1.40 =item aio_close $fh, $callback->($status)
414 root 1.1
415 root 1.2 Asynchronously close a file and call the callback with the result
416 root 1.116 code.
417    
418 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
419 root 1.121 closing the file descriptor associated with the filehandle itself.
420 root 1.117
421 root 1.121 Therefore, C<aio_close> will not close the filehandle - instead it will
422     use dup2 to overwrite the file descriptor with the write-end of a pipe
423     (the pipe fd will be created on demand and will be cached).
424 root 1.117
425 root 1.121 Or in other words: the file descriptor will be closed, but it will not be
426     free for reuse until the perl filehandle is closed.
427 root 1.117
428     =cut
429    
430 root 1.220 =item aio_seek $fh, $offset, $whence, $callback->($offs)
431    
432 root 1.221 Seeks the filehandle to the new C<$offset>, similarly to perl's
433 root 1.220 C<sysseek>. The C<$whence> can use the traditional values (C<0> for
434     C<IO::AIO::SEEK_SET>, C<1> for C<IO::AIO::SEEK_CUR> or C<2> for
435     C<IO::AIO::SEEK_END>).
436    
437     The resulting absolute offset will be passed to the callback, or C<-1> in
438     case of an error.
439    
440     In theory, the C<$whence> constants could be different than the
441     corresponding values from L<Fcntl>, but perl guarantees they are the same,
442     so don't panic.
443    
444 root 1.225 As a GNU/Linux (and maybe Solaris) extension, also the constants
445     C<IO::AIO::SEEK_DATA> and C<IO::AIO::SEEK_HOLE> are available, if they
446     could be found. No guarantees about suitability for use in C<aio_seek> or
447     Perl's C<sysseek> can be made though, although I would naively assume they
448     "just work".
449    
450 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
451 root 1.1
452 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
453 root 1.1
454 root 1.145 Reads or writes C<$length> bytes from or to the specified C<$fh> and
455 root 1.267 C<$offset> into the scalar given by C<$data> and offset C<$dataoffset> and
456     calls the callback with the actual number of bytes transferred (or -1 on
457 root 1.145 error, just like the syscall).
458 root 1.109
459 root 1.146 C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
460     offset plus the actual number of bytes read.
461    
462 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
463     be used (and updated), otherwise the file descriptor offset will not be
464     changed by these calls.
465 root 1.109
466 root 1.145 If C<$length> is undefined in C<aio_write>, use the remaining length of
467     C<$data>.
468 root 1.109
469     If C<$dataoffset> is less than zero, it will be counted from the end of
470     C<$data>.
471 root 1.1
472 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
473 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
474     the necessary/optional hardware is installed).
475 root 1.31
476 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
477 root 1.1 offset C<0> within the scalar:
478    
479     aio_read $fh, 7, 15, $buffer, 0, sub {
480 root 1.9 $_[0] > 0 or die "read error: $!";
481     print "read $_[0] bytes: <$buffer>\n";
482 root 1.1 };
483    
484 root 1.106
485 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
486 root 1.35
487     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
488     reading at byte offset C<$in_offset>, and starts writing at the current
489     file offset of C<$out_fh>. Because of that, it is not safe to issue more
490     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
491 root 1.196 other. The same C<$in_fh> works fine though, as this function does not
492     move or use the file offset of C<$in_fh>.
493 root 1.35
494 root 1.185 Please note that C<aio_sendfile> can read more bytes from C<$in_fh> than
495 root 1.196 are written, and there is no way to find out how many more bytes have been
496     read from C<aio_sendfile> alone, as C<aio_sendfile> only provides the
497     number of bytes written to C<$out_fh>. Only if the result value equals
498     C<$length> one can assume that C<$length> bytes have been read.
499 root 1.185
500     Unlike with other C<aio_> functions, it makes a lot of sense to use
501     C<aio_sendfile> on non-blocking sockets, as long as one end (typically
502     the C<$in_fh>) is a file - the file I/O will then be asynchronous, while
503 root 1.196 the socket I/O will be non-blocking. Note, however, that you can run
504     into a trap where C<aio_sendfile> reads some data with readahead, then
505     fails to write all data, and when the socket is ready the next time, the
506     data in the cache is already lost, forcing C<aio_sendfile> to again hit
507     the disk. Explicit C<aio_read> + C<aio_write> let's you better control
508     resource usage.
509    
510     This call tries to make use of a native C<sendfile>-like syscall to
511     provide zero-copy operation. For this to work, C<$out_fh> should refer to
512     a socket, and C<$in_fh> should refer to an mmap'able file.
513 root 1.35
514 root 1.170 If a native sendfile cannot be found or it fails with C<ENOSYS>,
515 root 1.196 C<EINVAL>, C<ENOTSUP>, C<EOPNOTSUPP>, C<EAFNOSUPPORT>, C<EPROTOTYPE> or
516     C<ENOTSOCK>, it will be emulated, so you can call C<aio_sendfile> on any
517     type of filehandle regardless of the limitations of the operating system.
518    
519     As native sendfile syscalls (as practically any non-POSIX interface hacked
520     together in a hurry to improve benchmark numbers) tend to be rather buggy
521     on many systems, this implementation tries to work around some known bugs
522     in Linux and FreeBSD kernels (probably others, too), but that might fail,
523     so you really really should check the return value of C<aio_sendfile> -
524 root 1.262 fewer bytes than expected might have been transferred.
525 root 1.35
526 root 1.106
527 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
528 root 1.1
529 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
530 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
531     argument specifies the starting point from which data is to be read and
532     C<$length> specifies the number of bytes to be read. I/O is performed in
533     whole pages, so that offset is effectively rounded down to a page boundary
534     and bytes are read up to the next page boundary greater than or equal to
535 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
536 root 1.1 file. The current file offset of the file is left unchanged.
537    
538 root 1.261 If that syscall doesn't exist (likely if your kernel isn't Linux) it will
539     be emulated by simply reading the data, which would have a similar effect.
540 root 1.26
541 root 1.106
542 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
543 root 1.1
544 root 1.40 =item aio_lstat $fh, $callback->($status)
545 root 1.1
546 root 1.294 Works almost exactly like perl's C<stat> or C<lstat> in void context. The
547     callback will be called after the stat and the results will be available
548     using C<stat _> or C<-s _> and other tests (with the exception of C<-B>
549     and C<-T>).
550 root 1.1
551     The pathname passed to C<aio_stat> must be absolute. See API NOTES, above,
552     for an explanation.
553    
554     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
555     error when stat'ing a large file, the results will be silently truncated
556     unless perl itself is compiled with large file support.
557    
558 root 1.187 To help interpret the mode and dev/rdev stat values, IO::AIO offers the
559     following constants and functions (if not implemented, the constants will
560     be C<0> and the functions will either C<croak> or fall back on traditional
561     behaviour).
562    
563     C<S_IFMT>, C<S_IFIFO>, C<S_IFCHR>, C<S_IFBLK>, C<S_IFLNK>, C<S_IFREG>,
564     C<S_IFDIR>, C<S_IFWHT>, C<S_IFSOCK>, C<IO::AIO::major $dev_t>,
565     C<IO::AIO::minor $dev_t>, C<IO::AIO::makedev $major, $minor>.
566    
567 root 1.289 To access higher resolution stat timestamps, see L<SUBSECOND STAT TIME
568     ACCESS>.
569    
570 root 1.1 Example: Print the length of F</etc/passwd>:
571    
572     aio_stat "/etc/passwd", sub {
573     $_[0] and die "stat failed: $!";
574     print "size is ", -s _, "\n";
575     };
576    
577 root 1.106
578 root 1.175 =item aio_statvfs $fh_or_path, $callback->($statvfs)
579 root 1.172
580     Works like the POSIX C<statvfs> or C<fstatvfs> syscalls, depending on
581     whether a file handle or path was passed.
582    
583     On success, the callback is passed a hash reference with the following
584     members: C<bsize>, C<frsize>, C<blocks>, C<bfree>, C<bavail>, C<files>,
585     C<ffree>, C<favail>, C<fsid>, C<flag> and C<namemax>. On failure, C<undef>
586     is passed.
587    
588     The following POSIX IO::AIO::ST_* constants are defined: C<ST_RDONLY> and
589     C<ST_NOSUID>.
590    
591     The following non-POSIX IO::AIO::ST_* flag masks are defined to
592     their correct value when available, or to C<0> on systems that do
593     not support them: C<ST_NODEV>, C<ST_NOEXEC>, C<ST_SYNCHRONOUS>,
594     C<ST_MANDLOCK>, C<ST_WRITE>, C<ST_APPEND>, C<ST_IMMUTABLE>, C<ST_NOATIME>,
595     C<ST_NODIRATIME> and C<ST_RELATIME>.
596    
597     Example: stat C</wd> and dump out the data if successful.
598    
599     aio_statvfs "/wd", sub {
600     my $f = $_[0]
601     or die "statvfs: $!";
602    
603     use Data::Dumper;
604     say Dumper $f;
605     };
606    
607     # result:
608     {
609     bsize => 1024,
610     bfree => 4333064312,
611     blocks => 10253828096,
612     files => 2050765568,
613     flag => 4096,
614     favail => 2042092649,
615     bavail => 4333064312,
616     ffree => 2042092649,
617     namemax => 255,
618     frsize => 1024,
619     fsid => 1810
620     }
621    
622 root 1.106 =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
623    
624     Works like perl's C<utime> function (including the special case of $atime
625     and $mtime being undef). Fractional times are supported if the underlying
626     syscalls support them.
627    
628 root 1.294 When called with a pathname, uses utimensat(2) or utimes(2) if available,
629     otherwise utime(2). If called on a file descriptor, uses futimens(2)
630     or futimes(2) if available, otherwise returns ENOSYS, so this is not
631     portable.
632 root 1.106
633     Examples:
634    
635 root 1.107 # set atime and mtime to current time (basically touch(1)):
636 root 1.106 aio_utime "path", undef, undef;
637     # set atime to current time and mtime to beginning of the epoch:
638     aio_utime "path", time, undef; # undef==0
639    
640    
641     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
642    
643     Works like perl's C<chown> function, except that C<undef> for either $uid
644     or $gid is being interpreted as "do not change" (but -1 can also be used).
645    
646     Examples:
647    
648     # same as "chown root path" in the shell:
649     aio_chown "path", 0, -1;
650     # same as above:
651     aio_chown "path", 0, undef;
652    
653    
654 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
655    
656     Works like truncate(2) or ftruncate(2).
657    
658    
659 root 1.229 =item aio_allocate $fh, $mode, $offset, $len, $callback->($status)
660    
661 root 1.249 Allocates or frees disk space according to the C<$mode> argument. See the
662     linux C<fallocate> documentation for details.
663 root 1.229
664 root 1.252 C<$mode> is usually C<0> or C<IO::AIO::FALLOC_FL_KEEP_SIZE> to allocate
665     space, or C<IO::AIO::FALLOC_FL_PUNCH_HOLE | IO::AIO::FALLOC_FL_KEEP_SIZE>,
666     to deallocate a file range.
667    
668     IO::AIO also supports C<FALLOC_FL_COLLAPSE_RANGE>, to remove a range
669 root 1.273 (without leaving a hole), C<FALLOC_FL_ZERO_RANGE>, to zero a range,
670     C<FALLOC_FL_INSERT_RANGE> to insert a range and C<FALLOC_FL_UNSHARE_RANGE>
671     to unshare shared blocks (see your L<fallocate(2)> manpage).
672 root 1.229
673     The file system block size used by C<fallocate> is presumably the
674 root 1.273 C<f_bsize> returned by C<statvfs>, but different filesystems and filetypes
675     can dictate other limitations.
676 root 1.229
677     If C<fallocate> isn't available or cannot be emulated (currently no
678     emulation will be attempted), passes C<-1> and sets C<$!> to C<ENOSYS>.
679    
680    
681 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
682    
683     Works like perl's C<chmod> function.
684    
685    
686 root 1.40 =item aio_unlink $pathname, $callback->($status)
687 root 1.1
688     Asynchronously unlink (delete) a file and call the callback with the
689     result code.
690    
691 root 1.106
692 root 1.209 =item aio_mknod $pathname, $mode, $dev, $callback->($status)
693 root 1.82
694 root 1.86 [EXPERIMENTAL]
695    
696 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
697    
698 root 1.86 The only (POSIX-) portable way of calling this function is:
699 root 1.83
700 root 1.209 aio_mknod $pathname, IO::AIO::S_IFIFO | $mode, 0, sub { ...
701 root 1.82
702 root 1.187 See C<aio_stat> for info about some potentially helpful extra constants
703     and functions.
704 root 1.106
705 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
706    
707     Asynchronously create a new link to the existing object at C<$srcpath> at
708     the path C<$dstpath> and call the callback with the result code.
709    
710 root 1.106
711 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
712    
713     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
714     the path C<$dstpath> and call the callback with the result code.
715    
716 root 1.106
717 root 1.209 =item aio_readlink $pathname, $callback->($link)
718 root 1.90
719     Asynchronously read the symlink specified by C<$path> and pass it to
720     the callback. If an error occurs, nothing or undef gets passed to the
721     callback.
722    
723 root 1.106
724 root 1.209 =item aio_realpath $pathname, $callback->($path)
725 root 1.201
726     Asynchronously make the path absolute and resolve any symlinks in
727 root 1.239 C<$path>. The resulting path only consists of directories (same as
728 root 1.202 L<Cwd::realpath>).
729 root 1.201
730     This request can be used to get the absolute path of the current working
731     directory by passing it a path of F<.> (a single dot).
732    
733    
734 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
735    
736     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
737     rename(2) and call the callback with the result code.
738    
739 root 1.241 On systems that support the AIO::WD working directory abstraction
740     natively, the case C<[$wd, "."]> as C<$srcpath> is specialcased - instead
741     of failing, C<rename> is called on the absolute path of C<$wd>.
742    
743 root 1.106
744 root 1.270 =item aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
745    
746     Basically a version of C<aio_rename> with an additional C<$flags>
747     argument. Calling this with C<$flags=0> is the same as calling
748     C<aio_rename>.
749    
750     Non-zero flags are currently only supported on GNU/Linux systems that
751     support renameat2. Other systems fail with C<ENOSYS> in this case.
752    
753     The following constants are available (missing ones are, as usual C<0>),
754     see renameat2(2) for details:
755    
756     C<IO::AIO::RENAME_NOREPLACE>, C<IO::AIO::RENAME_EXCHANGE>
757     and C<IO::AIO::RENAME_WHITEOUT>.
758    
759    
760 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
761    
762     Asynchronously mkdir (create) a directory and call the callback with
763     the result code. C<$mode> will be modified by the umask at the time the
764     request is executed, so do not change your umask.
765    
766 root 1.106
767 root 1.40 =item aio_rmdir $pathname, $callback->($status)
768 root 1.27
769     Asynchronously rmdir (delete) a directory and call the callback with the
770     result code.
771    
772 root 1.241 On systems that support the AIO::WD working directory abstraction
773     natively, the case C<[$wd, "."]> is specialcased - instead of failing,
774     C<rmdir> is called on the absolute path of C<$wd>.
775    
776 root 1.106
777 root 1.46 =item aio_readdir $pathname, $callback->($entries)
778 root 1.37
779     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
780     directory (i.e. opendir + readdir + closedir). The entries will not be
781     sorted, and will B<NOT> include the C<.> and C<..> entries.
782    
783 root 1.148 The callback is passed a single argument which is either C<undef> or an
784     array-ref with the filenames.
785    
786    
787     =item aio_readdirx $pathname, $flags, $callback->($entries, $flags)
788    
789 root 1.207 Quite similar to C<aio_readdir>, but the C<$flags> argument allows one to
790     tune behaviour and output format. In case of an error, C<$entries> will be
791 root 1.148 C<undef>.
792    
793     The flags are a combination of the following constants, ORed together (the
794     flags will also be passed to the callback, possibly modified):
795    
796     =over 4
797    
798 root 1.150 =item IO::AIO::READDIR_DENTS
799 root 1.148
800 root 1.284 Normally the callback gets an arrayref consisting of names only (as
801     with C<aio_readdir>). If this flag is set, then the callback gets an
802     arrayref with C<[$name, $type, $inode]> arrayrefs, each describing a
803     single directory entry in more detail:
804 root 1.148
805     C<$name> is the name of the entry.
806    
807 root 1.150 C<$type> is one of the C<IO::AIO::DT_xxx> constants:
808 root 1.148
809 root 1.150 C<IO::AIO::DT_UNKNOWN>, C<IO::AIO::DT_FIFO>, C<IO::AIO::DT_CHR>, C<IO::AIO::DT_DIR>,
810     C<IO::AIO::DT_BLK>, C<IO::AIO::DT_REG>, C<IO::AIO::DT_LNK>, C<IO::AIO::DT_SOCK>,
811     C<IO::AIO::DT_WHT>.
812 root 1.148
813 root 1.284 C<IO::AIO::DT_UNKNOWN> means just that: readdir does not know. If you need
814     to know, you have to run stat yourself. Also, for speed/memory reasons,
815     the C<$type> scalars are read-only: you must not modify them.
816 root 1.148
817 root 1.150 C<$inode> is the inode number (which might not be exact on systems with 64
818 root 1.155 bit inode numbers and 32 bit perls). This field has unspecified content on
819     systems that do not deliver the inode information.
820 root 1.150
821     =item IO::AIO::READDIR_DIRS_FIRST
822 root 1.148
823     When this flag is set, then the names will be returned in an order where
824 root 1.193 likely directories come first, in optimal stat order. This is useful when
825     you need to quickly find directories, or you want to find all directories
826     while avoiding to stat() each entry.
827 root 1.148
828 root 1.149 If the system returns type information in readdir, then this is used
829 root 1.193 to find directories directly. Otherwise, likely directories are names
830     beginning with ".", or otherwise names with no dots, of which names with
831 root 1.149 short names are tried first.
832    
833 root 1.150 =item IO::AIO::READDIR_STAT_ORDER
834 root 1.148
835     When this flag is set, then the names will be returned in an order
836 root 1.284 suitable for stat()'ing each one. That is, when you plan to stat() most or
837     all files in the given directory, then the returned order will likely be
838     faster.
839    
840     If both this flag and C<IO::AIO::READDIR_DIRS_FIRST> are specified,
841     then the likely dirs come first, resulting in a less optimal stat order
842     for stat'ing all entries, but likely a more optimal order for finding
843     subdirectories.
844 root 1.148
845 root 1.150 =item IO::AIO::READDIR_FOUND_UNKNOWN
846 root 1.148
847     This flag should not be set when calling C<aio_readdirx>. Instead, it
848     is being set by C<aio_readdirx>, when any of the C<$type>'s found were
849 root 1.207 C<IO::AIO::DT_UNKNOWN>. The absence of this flag therefore indicates that all
850 root 1.148 C<$type>'s are known, which can be used to speed up some algorithms.
851    
852     =back
853 root 1.37
854 root 1.106
855 root 1.279 =item aio_slurp $pathname, $offset, $length, $data, $callback->($status)
856    
857     Opens, reads and closes the given file. The data is put into C<$data>,
858     which is resized as required.
859    
860     If C<$offset> is negative, then it is counted from the end of the file.
861    
862     If C<$length> is zero, then the remaining length of the file is
863     used. Also, in this case, the same limitations to modifying C<$data> apply
864     as when IO::AIO::mmap is used, i.e. it must only be modified in-place
865     with C<substr>. If the size of the file is known, specifying a non-zero
866     C<$length> results in a performance advantage.
867    
868     This request is similar to the older C<aio_load> request, but since it is
869     a single request, it might be more efficient to use.
870    
871     Example: load F</etc/passwd> into C<$passwd>.
872    
873     my $passwd;
874     aio_slurp "/etc/passwd", 0, 0, $passwd, sub {
875     $_[0] >= 0
876     or die "/etc/passwd: $!\n";
877    
878     printf "/etc/passwd is %d bytes long, and contains:\n", length $passwd;
879     print $passwd;
880     };
881     IO::AIO::flush;
882    
883    
884 root 1.209 =item aio_load $pathname, $data, $callback->($status)
885 root 1.98
886     This is a composite request that tries to fully load the given file into
887     memory. Status is the same as with aio_read.
888    
889 root 1.279 Using C<aio_slurp> might be more efficient, as it is a single request.
890    
891 root 1.98 =cut
892    
893     sub aio_load($$;$) {
894 root 1.123 my ($path, undef, $cb) = @_;
895     my $data = \$_[1];
896 root 1.98
897 root 1.123 my $pri = aioreq_pri;
898     my $grp = aio_group $cb;
899    
900     aioreq_pri $pri;
901     add $grp aio_open $path, O_RDONLY, 0, sub {
902     my $fh = shift
903     or return $grp->result (-1);
904 root 1.98
905     aioreq_pri $pri;
906 root 1.123 add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
907     $grp->result ($_[0]);
908 root 1.98 };
909 root 1.123 };
910 root 1.98
911 root 1.123 $grp
912 root 1.98 }
913    
914 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
915    
916     Try to copy the I<file> (directories not supported as either source or
917     destination) from C<$srcpath> to C<$dstpath> and call the callback with
918 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
919 root 1.82
920 root 1.275 Existing destination files will be truncated.
921    
922 root 1.134 This is a composite request that creates the destination file with
923 root 1.82 mode 0200 and copies the contents of the source file into it using
924     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
925     uid/gid, in that order.
926    
927     If an error occurs, the partial destination file will be unlinked, if
928     possible, except when setting atime, mtime, access mode and uid/gid, where
929     errors are being ignored.
930    
931     =cut
932    
933     sub aio_copy($$;$) {
934 root 1.123 my ($src, $dst, $cb) = @_;
935 root 1.82
936 root 1.123 my $pri = aioreq_pri;
937     my $grp = aio_group $cb;
938 root 1.82
939 root 1.123 aioreq_pri $pri;
940     add $grp aio_open $src, O_RDONLY, 0, sub {
941     if (my $src_fh = $_[0]) {
942 root 1.166 my @stat = stat $src_fh; # hmm, might block over nfs?
943 root 1.95
944 root 1.123 aioreq_pri $pri;
945     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
946     if (my $dst_fh = $_[0]) {
947     aioreq_pri $pri;
948     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
949     if ($_[0] == $stat[7]) {
950     $grp->result (0);
951     close $src_fh;
952    
953 root 1.147 my $ch = sub {
954     aioreq_pri $pri;
955     add $grp aio_chmod $dst_fh, $stat[2] & 07777, sub {
956     aioreq_pri $pri;
957     add $grp aio_chown $dst_fh, $stat[4], $stat[5], sub {
958     aioreq_pri $pri;
959     add $grp aio_close $dst_fh;
960     }
961     };
962     };
963 root 1.123
964     aioreq_pri $pri;
965 root 1.147 add $grp aio_utime $dst_fh, $stat[8], $stat[9], sub {
966     if ($_[0] < 0 && $! == ENOSYS) {
967     aioreq_pri $pri;
968     add $grp aio_utime $dst, $stat[8], $stat[9], $ch;
969     } else {
970     $ch->();
971     }
972     };
973 root 1.123 } else {
974     $grp->result (-1);
975     close $src_fh;
976     close $dst_fh;
977    
978     aioreq $pri;
979     add $grp aio_unlink $dst;
980     }
981     };
982     } else {
983     $grp->result (-1);
984     }
985     },
986 root 1.82
987 root 1.123 } else {
988     $grp->result (-1);
989     }
990     };
991 root 1.82
992 root 1.123 $grp
993 root 1.82 }
994    
995     =item aio_move $srcpath, $dstpath, $callback->($status)
996    
997     Try to move the I<file> (directories not supported as either source or
998     destination) from C<$srcpath> to C<$dstpath> and call the callback with
999 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
1000 root 1.82
1001 root 1.137 This is a composite request that tries to rename(2) the file first; if
1002     rename fails with C<EXDEV>, it copies the file with C<aio_copy> and, if
1003     that is successful, unlinks the C<$srcpath>.
1004 root 1.82
1005     =cut
1006    
1007     sub aio_move($$;$) {
1008 root 1.123 my ($src, $dst, $cb) = @_;
1009 root 1.82
1010 root 1.123 my $pri = aioreq_pri;
1011     my $grp = aio_group $cb;
1012 root 1.82
1013 root 1.123 aioreq_pri $pri;
1014     add $grp aio_rename $src, $dst, sub {
1015     if ($_[0] && $! == EXDEV) {
1016     aioreq_pri $pri;
1017     add $grp aio_copy $src, $dst, sub {
1018     $grp->result ($_[0]);
1019 root 1.95
1020 root 1.196 unless ($_[0]) {
1021 root 1.123 aioreq_pri $pri;
1022     add $grp aio_unlink $src;
1023     }
1024     };
1025     } else {
1026     $grp->result ($_[0]);
1027     }
1028     };
1029 root 1.82
1030 root 1.123 $grp
1031 root 1.82 }
1032    
1033 root 1.209 =item aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
1034 root 1.40
1035 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
1036 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
1037     names, directories you can recurse into (directories), and ones you cannot
1038     recurse into (everything else, including symlinks to directories).
1039 root 1.52
1040 root 1.277 C<aio_scandir> is a composite request that generates many sub requests.
1041 root 1.61 C<$maxreq> specifies the maximum number of outstanding aio requests that
1042     this function generates. If it is C<< <= 0 >>, then a suitable default
1043 root 1.81 will be chosen (currently 4).
1044 root 1.40
1045     On error, the callback is called without arguments, otherwise it receives
1046     two array-refs with path-relative entry names.
1047    
1048     Example:
1049    
1050     aio_scandir $dir, 0, sub {
1051     my ($dirs, $nondirs) = @_;
1052     print "real directories: @$dirs\n";
1053     print "everything else: @$nondirs\n";
1054     };
1055    
1056     Implementation notes.
1057    
1058     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
1059    
1060 root 1.149 If readdir returns file type information, then this is used directly to
1061     find directories.
1062    
1063     Otherwise, after reading the directory, the modification time, size etc.
1064     of the directory before and after the readdir is checked, and if they
1065     match (and isn't the current time), the link count will be used to decide
1066     how many entries are directories (if >= 2). Otherwise, no knowledge of the
1067     number of subdirectories will be assumed.
1068    
1069     Then entries will be sorted into likely directories a non-initial dot
1070     currently) and likely non-directories (see C<aio_readdirx>). Then every
1071     entry plus an appended C</.> will be C<stat>'ed, likely directories first,
1072     in order of their inode numbers. If that succeeds, it assumes that the
1073     entry is a directory or a symlink to directory (which will be checked
1074 root 1.207 separately). This is often faster than stat'ing the entry itself because
1075 root 1.52 filesystems might detect the type of the entry without reading the inode
1076 root 1.149 data (e.g. ext2fs filetype feature), even on systems that cannot return
1077     the filetype information on readdir.
1078 root 1.52
1079     If the known number of directories (link count - 2) has been reached, the
1080     rest of the entries is assumed to be non-directories.
1081    
1082     This only works with certainty on POSIX (= UNIX) filesystems, which
1083     fortunately are the vast majority of filesystems around.
1084    
1085     It will also likely work on non-POSIX filesystems with reduced efficiency
1086     as those tend to return 0 or 1 as link counts, which disables the
1087     directory counting heuristic.
1088 root 1.40
1089     =cut
1090    
1091 root 1.100 sub aio_scandir($$;$) {
1092 root 1.123 my ($path, $maxreq, $cb) = @_;
1093    
1094     my $pri = aioreq_pri;
1095 root 1.40
1096 root 1.123 my $grp = aio_group $cb;
1097 root 1.80
1098 root 1.123 $maxreq = 4 if $maxreq <= 0;
1099 root 1.55
1100 root 1.210 # get a wd object
1101 root 1.123 aioreq_pri $pri;
1102 root 1.210 add $grp aio_wd $path, sub {
1103 root 1.212 $_[0]
1104     or return $grp->result ();
1105    
1106 root 1.210 my $wd = [shift, "."];
1107 root 1.40
1108 root 1.210 # stat once
1109 root 1.80 aioreq_pri $pri;
1110 root 1.210 add $grp aio_stat $wd, sub {
1111     return $grp->result () if $_[0];
1112     my $now = time;
1113     my $hash1 = join ":", (stat _)[0,1,3,7,9];
1114 root 1.299 my $rdxflags = READDIR_DIRS_FIRST;
1115    
1116     if ((stat _)[3] < 2) {
1117     # at least one non-POSIX filesystem exists
1118     # that returns useful DT_type values: btrfs,
1119     # so optimise for this here by requesting dents
1120     $rdxflags |= READDIR_DENTS;
1121     }
1122 root 1.40
1123 root 1.210 # read the directory entries
1124 root 1.80 aioreq_pri $pri;
1125 root 1.299 add $grp aio_readdirx $wd, $rdxflags, sub {
1126     my ($entries, $flags) = @_
1127 root 1.210 or return $grp->result ();
1128    
1129 root 1.299 if ($rdxflags & READDIR_DENTS) {
1130     # if we requested type values, see if we can use them directly.
1131    
1132     # if there were any DT_UNKNOWN entries then we assume we
1133     # don't know. alternatively, we could assume that if we get
1134     # one DT_DIR, then all directories are indeed marked with
1135     # DT_DIR, but this seems not required for btrfs, and this
1136     # is basically the "btrfs can't get it's act together" code
1137     # branch.
1138     unless ($flags & READDIR_FOUND_UNKNOWN) {
1139     # now we have valid DT_ information for all entries,
1140     # so use it as an optimisation without further stat's.
1141     # they must also all be at the beginning of @$entries
1142     # by now.
1143    
1144     my $dirs;
1145    
1146     if (@$entries) {
1147     for (0 .. $#$entries) {
1148     if ($entries->[$_][1] != DT_DIR) {
1149     # splice out directories
1150     $dirs = [splice @$entries, 0, $_];
1151     last;
1152     }
1153     }
1154    
1155     # if we didn't find any non-dir, then all entries are dirs
1156     unless ($dirs) {
1157     ($dirs, $entries) = ($entries, []);
1158     }
1159     } else {
1160     # directory is empty, so there are no sbdirs
1161     $dirs = [];
1162     }
1163    
1164     # either splice'd the directories out or the dir was empty.
1165     # convert dents to filenames
1166     $_ = $_->[0] for @$dirs;
1167     $_ = $_->[0] for @$entries;
1168    
1169     return $grp->result ($dirs, $entries);
1170     }
1171    
1172     # cannot use, so return to our old ways
1173     # by pretending we only scanned for names.
1174     $_ = $_->[0] for @$entries;
1175     }
1176    
1177 root 1.210 # stat the dir another time
1178     aioreq_pri $pri;
1179     add $grp aio_stat $wd, sub {
1180     my $hash2 = join ":", (stat _)[0,1,3,7,9];
1181 root 1.95
1182 root 1.210 my $ndirs;
1183 root 1.95
1184 root 1.210 # take the slow route if anything looks fishy
1185     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
1186     $ndirs = -1;
1187     } else {
1188     # if nlink == 2, we are finished
1189     # for non-posix-fs's, we rely on nlink < 2
1190     $ndirs = (stat _)[3] - 2
1191     or return $grp->result ([], $entries);
1192     }
1193 root 1.123
1194 root 1.210 my (@dirs, @nondirs);
1195 root 1.40
1196 root 1.210 my $statgrp = add $grp aio_group sub {
1197     $grp->result (\@dirs, \@nondirs);
1198     };
1199 root 1.40
1200 root 1.210 limit $statgrp $maxreq;
1201     feed $statgrp sub {
1202     return unless @$entries;
1203     my $entry = shift @$entries;
1204    
1205     aioreq_pri $pri;
1206     $wd->[1] = "$entry/.";
1207     add $statgrp aio_stat $wd, sub {
1208     if ($_[0] < 0) {
1209     push @nondirs, $entry;
1210     } else {
1211     # need to check for real directory
1212     aioreq_pri $pri;
1213     $wd->[1] = $entry;
1214     add $statgrp aio_lstat $wd, sub {
1215     if (-d _) {
1216     push @dirs, $entry;
1217    
1218     unless (--$ndirs) {
1219     push @nondirs, @$entries;
1220     feed $statgrp;
1221     }
1222     } else {
1223     push @nondirs, $entry;
1224 root 1.74 }
1225 root 1.40 }
1226     }
1227 root 1.210 };
1228 root 1.74 };
1229 root 1.40 };
1230     };
1231     };
1232 root 1.123 };
1233 root 1.55
1234 root 1.123 $grp
1235 root 1.40 }
1236    
1237 root 1.209 =item aio_rmtree $pathname, $callback->($status)
1238 root 1.99
1239 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
1240 root 1.239 status of the final C<rmdir> only. This is a composite request that
1241 root 1.100 uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1242     everything else.
1243 root 1.99
1244     =cut
1245    
1246     sub aio_rmtree;
1247 root 1.100 sub aio_rmtree($;$) {
1248 root 1.123 my ($path, $cb) = @_;
1249 root 1.99
1250 root 1.123 my $pri = aioreq_pri;
1251     my $grp = aio_group $cb;
1252 root 1.99
1253 root 1.123 aioreq_pri $pri;
1254     add $grp aio_scandir $path, 0, sub {
1255     my ($dirs, $nondirs) = @_;
1256 root 1.99
1257 root 1.123 my $dirgrp = aio_group sub {
1258     add $grp aio_rmdir $path, sub {
1259     $grp->result ($_[0]);
1260 root 1.99 };
1261 root 1.123 };
1262 root 1.99
1263 root 1.123 (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
1264     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
1265 root 1.99
1266 root 1.123 add $grp $dirgrp;
1267     };
1268 root 1.99
1269 root 1.123 $grp
1270 root 1.99 }
1271    
1272 root 1.259 =item aio_fcntl $fh, $cmd, $arg, $callback->($status)
1273    
1274     =item aio_ioctl $fh, $request, $buf, $callback->($status)
1275    
1276     These work just like the C<fcntl> and C<ioctl> built-in functions, except
1277     they execute asynchronously and pass the return value to the callback.
1278    
1279     Both calls can be used for a lot of things, some of which make more sense
1280     to run asynchronously in their own thread, while some others make less
1281     sense. For example, calls that block waiting for external events, such
1282     as locking, will also lock down an I/O thread while it is waiting, which
1283     can deadlock the whole I/O system. At the same time, there might be no
1284     alternative to using a thread to wait.
1285    
1286     So in general, you should only use these calls for things that do
1287     (filesystem) I/O, not for things that wait for other events (network,
1288     other processes), although if you are careful and know what you are doing,
1289     you still can.
1290    
1291 root 1.264 The following constants are available (missing ones are, as usual C<0>):
1292    
1293 root 1.271 C<F_DUPFD_CLOEXEC>,
1294    
1295     C<F_OFD_GETLK>, C<F_OFD_SETLK>, C<F_OFD_GETLKW>,
1296    
1297 root 1.264 C<FIFREEZE>, C<FITHAW>, C<FITRIM>, C<FICLONE>, C<FICLONERANGE>, C<FIDEDUPERANGE>.
1298    
1299     C<FS_IOC_GETFLAGS>, C<FS_IOC_SETFLAGS>, C<FS_IOC_GETVERSION>, C<FS_IOC_SETVERSION>,
1300     C<FS_IOC_FIEMAP>.
1301    
1302     C<FS_IOC_FSGETXATTR>, C<FS_IOC_FSSETXATTR>, C<FS_IOC_SET_ENCRYPTION_POLICY>,
1303     C<FS_IOC_GET_ENCRYPTION_PWSALT>, C<FS_IOC_GET_ENCRYPTION_POLICY>, C<FS_KEY_DESCRIPTOR_SIZE>.
1304    
1305     C<FS_SECRM_FL>, C<FS_UNRM_FL>, C<FS_COMPR_FL>, C<FS_SYNC_FL>, C<FS_IMMUTABLE_FL>,
1306     C<FS_APPEND_FL>, C<FS_NODUMP_FL>, C<FS_NOATIME_FL>, C<FS_DIRTY_FL>,
1307     C<FS_COMPRBLK_FL>, C<FS_NOCOMP_FL>, C<FS_ENCRYPT_FL>, C<FS_BTREE_FL>,
1308     C<FS_INDEX_FL>, C<FS_JOURNAL_DATA_FL>, C<FS_NOTAIL_FL>, C<FS_DIRSYNC_FL>, C<FS_TOPDIR_FL>,
1309     C<FS_FL_USER_MODIFIABLE>.
1310    
1311     C<FS_XFLAG_REALTIME>, C<FS_XFLAG_PREALLOC>, C<FS_XFLAG_IMMUTABLE>, C<FS_XFLAG_APPEND>,
1312     C<FS_XFLAG_SYNC>, C<FS_XFLAG_NOATIME>, C<FS_XFLAG_NODUMP>, C<FS_XFLAG_RTINHERIT>,
1313     C<FS_XFLAG_PROJINHERIT>, C<FS_XFLAG_NOSYMLINKS>, C<FS_XFLAG_EXTSIZE>, C<FS_XFLAG_EXTSZINHERIT>,
1314     C<FS_XFLAG_NODEFRAG>, C<FS_XFLAG_FILESTREAM>, C<FS_XFLAG_DAX>, C<FS_XFLAG_HASATTR>,
1315    
1316 root 1.119 =item aio_sync $callback->($status)
1317    
1318     Asynchronously call sync and call the callback when finished.
1319    
1320 root 1.40 =item aio_fsync $fh, $callback->($status)
1321 root 1.1
1322     Asynchronously call fsync on the given filehandle and call the callback
1323     with the fsync result code.
1324    
1325 root 1.40 =item aio_fdatasync $fh, $callback->($status)
1326 root 1.1
1327     Asynchronously call fdatasync on the given filehandle and call the
1328 root 1.26 callback with the fdatasync result code.
1329    
1330     If this call isn't available because your OS lacks it or it couldn't be
1331     detected, it will be emulated by calling C<fsync> instead.
1332 root 1.1
1333 root 1.206 =item aio_syncfs $fh, $callback->($status)
1334    
1335     Asynchronously call the syncfs syscall to sync the filesystem associated
1336     to the given filehandle and call the callback with the syncfs result
1337     code. If syncfs is not available, calls sync(), but returns C<-1> and sets
1338     errno to C<ENOSYS> nevertheless.
1339    
1340 root 1.142 =item aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
1341    
1342     Sync the data portion of the file specified by C<$offset> and C<$length>
1343     to disk (but NOT the metadata), by calling the Linux-specific
1344     sync_file_range call. If sync_file_range is not available or it returns
1345     ENOSYS, then fdatasync or fsync is being substituted.
1346    
1347     C<$flags> can be a combination of C<IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE>,
1348     C<IO::AIO::SYNC_FILE_RANGE_WRITE> and
1349     C<IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER>: refer to the sync_file_range
1350     manpage for details.
1351    
1352 root 1.209 =item aio_pathsync $pathname, $callback->($status)
1353 root 1.120
1354     This request tries to open, fsync and close the given path. This is a
1355 root 1.135 composite request intended to sync directories after directory operations
1356 root 1.120 (E.g. rename). This might not work on all operating systems or have any
1357     specific effect, but usually it makes sure that directory changes get
1358     written to disc. It works for anything that can be opened for read-only,
1359     not just directories.
1360    
1361 root 1.162 Future versions of this function might fall back to other methods when
1362     C<fsync> on the directory fails (such as calling C<sync>).
1363    
1364 root 1.120 Passes C<0> when everything went ok, and C<-1> on error.
1365    
1366     =cut
1367    
1368     sub aio_pathsync($;$) {
1369 root 1.123 my ($path, $cb) = @_;
1370    
1371     my $pri = aioreq_pri;
1372     my $grp = aio_group $cb;
1373 root 1.120
1374 root 1.123 aioreq_pri $pri;
1375     add $grp aio_open $path, O_RDONLY, 0, sub {
1376     my ($fh) = @_;
1377     if ($fh) {
1378     aioreq_pri $pri;
1379     add $grp aio_fsync $fh, sub {
1380     $grp->result ($_[0]);
1381 root 1.120
1382     aioreq_pri $pri;
1383 root 1.123 add $grp aio_close $fh;
1384     };
1385     } else {
1386     $grp->result (-1);
1387     }
1388     };
1389 root 1.120
1390 root 1.123 $grp
1391 root 1.120 }
1392    
1393 root 1.268 =item aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
1394 root 1.170
1395     This is a rather advanced IO::AIO call, which only works on mmap(2)ed
1396 root 1.176 scalars (see the C<IO::AIO::mmap> function, although it also works on data
1397     scalars managed by the L<Sys::Mmap> or L<Mmap> modules, note that the
1398     scalar must only be modified in-place while an aio operation is pending on
1399     it).
1400 root 1.170
1401     It calls the C<msync> function of your OS, if available, with the memory
1402     area starting at C<$offset> in the string and ending C<$length> bytes
1403     later. If C<$length> is negative, counts from the end, and if C<$length>
1404     is C<undef>, then it goes till the end of the string. The flags can be
1405 root 1.268 either C<IO::AIO::MS_ASYNC> or C<IO::AIO::MS_SYNC>, plus an optional
1406     C<IO::AIO::MS_INVALIDATE>.
1407 root 1.170
1408     =item aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1409    
1410     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1411     scalars.
1412    
1413     It touches (reads or writes) all memory pages in the specified
1414 root 1.239 range inside the scalar. All caveats and parameters are the same
1415 root 1.170 as for C<aio_msync>, above, except for flags, which must be either
1416     C<0> (which reads all pages and ensures they are instantiated) or
1417 root 1.239 C<IO::AIO::MT_MODIFY>, which modifies the memory pages (by reading and
1418 root 1.170 writing an octet from it, which dirties the page).
1419    
1420 root 1.182 =item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1421    
1422     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1423     scalars.
1424    
1425     It reads in all the pages of the underlying storage into memory (if any)
1426     and locks them, so they are not getting swapped/paged out or removed.
1427    
1428     If C<$length> is undefined, then the scalar will be locked till the end.
1429    
1430     On systems that do not implement C<mlock>, this function returns C<-1>
1431     and sets errno to C<ENOSYS>.
1432    
1433     Note that the corresponding C<munlock> is synchronous and is
1434     documented under L<MISCELLANEOUS FUNCTIONS>.
1435    
1436 root 1.183 Example: open a file, mmap and mlock it - both will be undone when
1437     C<$data> gets destroyed.
1438    
1439     open my $fh, "<", $path or die "$path: $!";
1440     my $data;
1441     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1442     aio_mlock $data; # mlock in background
1443    
1444 root 1.182 =item aio_mlockall $flags, $callback->($status)
1445    
1446 root 1.297 Calls the C<mlockall> function with the given C<$flags> (a
1447     combination of C<IO::AIO::MCL_CURRENT>, C<IO::AIO::MCL_FUTURE> and
1448     C<IO::AIO::MCL_ONFAULT>).
1449 root 1.182
1450     On systems that do not implement C<mlockall>, this function returns C<-1>
1451 root 1.297 and sets errno to C<ENOSYS>. Similarly, flag combinations not supported
1452     by the system result in a return value of C<-1> with errno being set to
1453     C<EINVAL>.
1454 root 1.182
1455     Note that the corresponding C<munlockall> is synchronous and is
1456     documented under L<MISCELLANEOUS FUNCTIONS>.
1457    
1458 root 1.183 Example: asynchronously lock all current and future pages into memory.
1459    
1460     aio_mlockall IO::AIO::MCL_FUTURE;
1461    
1462 root 1.223 =item aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
1463    
1464 root 1.234 Queries the extents of the given file (by calling the Linux C<FIEMAP>
1465     ioctl, see L<http://cvs.schmorp.de/IO-AIO/doc/fiemap.txt> for details). If
1466     the ioctl is not available on your OS, then this request will fail with
1467 root 1.223 C<ENOSYS>.
1468    
1469     C<$start> is the starting offset to query extents for, C<$length> is the
1470     size of the range to query - if it is C<undef>, then the whole file will
1471     be queried.
1472    
1473     C<$flags> is a combination of flags (C<IO::AIO::FIEMAP_FLAG_SYNC> or
1474     C<IO::AIO::FIEMAP_FLAG_XATTR> - C<IO::AIO::FIEMAP_FLAGS_COMPAT> is also
1475     exported), and is normally C<0> or C<IO::AIO::FIEMAP_FLAG_SYNC> to query
1476     the data portion.
1477    
1478     C<$count> is the maximum number of extent records to return. If it is
1479 root 1.232 C<undef>, then IO::AIO queries all extents of the range. As a very special
1480 root 1.223 case, if it is C<0>, then the callback receives the number of extents
1481 root 1.232 instead of the extents themselves (which is unreliable, see below).
1482 root 1.223
1483     If an error occurs, the callback receives no arguments. The special
1484     C<errno> value C<IO::AIO::EBADR> is available to test for flag errors.
1485    
1486     Otherwise, the callback receives an array reference with extent
1487     structures. Each extent structure is an array reference itself, with the
1488     following members:
1489    
1490     [$logical, $physical, $length, $flags]
1491    
1492     Flags is any combination of the following flag values (typically either C<0>
1493 root 1.231 or C<IO::AIO::FIEMAP_EXTENT_LAST> (1)):
1494 root 1.223
1495     C<IO::AIO::FIEMAP_EXTENT_LAST>, C<IO::AIO::FIEMAP_EXTENT_UNKNOWN>,
1496     C<IO::AIO::FIEMAP_EXTENT_DELALLOC>, C<IO::AIO::FIEMAP_EXTENT_ENCODED>,
1497     C<IO::AIO::FIEMAP_EXTENT_DATA_ENCRYPTED>, C<IO::AIO::FIEMAP_EXTENT_NOT_ALIGNED>,
1498     C<IO::AIO::FIEMAP_EXTENT_DATA_INLINE>, C<IO::AIO::FIEMAP_EXTENT_DATA_TAIL>,
1499     C<IO::AIO::FIEMAP_EXTENT_UNWRITTEN>, C<IO::AIO::FIEMAP_EXTENT_MERGED> or
1500     C<IO::AIO::FIEMAP_EXTENT_SHARED>.
1501    
1502 root 1.278 At the time of this writing (Linux 3.2), this request is unreliable unless
1503 root 1.232 C<$count> is C<undef>, as the kernel has all sorts of bugs preventing
1504 root 1.278 it to return all extents of a range for files with a large number of
1505     extents. The code (only) works around all these issues if C<$count> is
1506     C<undef>.
1507 root 1.232
1508 root 1.58 =item aio_group $callback->(...)
1509 root 1.54
1510 root 1.55 This is a very special aio request: Instead of doing something, it is a
1511     container for other aio requests, which is useful if you want to bundle
1512 root 1.71 many requests into a single, composite, request with a definite callback
1513     and the ability to cancel the whole request with its subrequests.
1514 root 1.55
1515     Returns an object of class L<IO::AIO::GRP>. See its documentation below
1516     for more info.
1517    
1518     Example:
1519    
1520     my $grp = aio_group sub {
1521     print "all stats done\n";
1522     };
1523    
1524     add $grp
1525     (aio_stat ...),
1526     (aio_stat ...),
1527     ...;
1528    
1529 root 1.63 =item aio_nop $callback->()
1530    
1531     This is a special request - it does nothing in itself and is only used for
1532     side effects, such as when you want to add a dummy request to a group so
1533     that finishing the requests in the group depends on executing the given
1534     code.
1535    
1536 root 1.64 While this request does nothing, it still goes through the execution
1537     phase and still requires a worker thread. Thus, the callback will not
1538     be executed immediately but only after other requests in the queue have
1539     entered their execution phase. This can be used to measure request
1540     latency.
1541    
1542 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1543 root 1.54
1544     Mainly used for debugging and benchmarking, this aio request puts one of
1545     the request workers to sleep for the given time.
1546    
1547 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1548 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1549     immense (it blocks a thread for a long time) so do not use this function
1550     except to put your application under artificial I/O pressure.
1551 root 1.56
1552 root 1.5 =back
1553    
1554 root 1.209
1555     =head2 IO::AIO::WD - multiple working directories
1556    
1557     Your process only has one current working directory, which is used by all
1558     threads. This makes it hard to use relative paths (some other component
1559     could call C<chdir> at any time, and it is hard to control when the path
1560     will be used by IO::AIO).
1561    
1562     One solution for this is to always use absolute paths. This usually works,
1563     but can be quite slow (the kernel has to walk the whole path on every
1564     access), and can also be a hassle to implement.
1565    
1566     Newer POSIX systems have a number of functions (openat, fdopendir,
1567     futimensat and so on) that make it possible to specify working directories
1568     per operation.
1569    
1570     For portability, and because the clowns who "designed", or shall I write,
1571     perpetrated this new interface were obviously half-drunk, this abstraction
1572     cannot be perfect, though.
1573    
1574     IO::AIO allows you to convert directory paths into a so-called IO::AIO::WD
1575     object. This object stores the canonicalised, absolute version of the
1576     path, and on systems that allow it, also a directory file descriptor.
1577    
1578     Everywhere where a pathname is accepted by IO::AIO (e.g. in C<aio_stat>
1579     or C<aio_unlink>), one can specify an array reference with an IO::AIO::WD
1580 root 1.214 object and a pathname instead (or the IO::AIO::WD object alone, which
1581     gets interpreted as C<[$wd, "."]>). If the pathname is absolute, the
1582 root 1.213 IO::AIO::WD object is ignored, otherwise the pathname is resolved relative
1583 root 1.209 to that IO::AIO::WD object.
1584    
1585     For example, to get a wd object for F</etc> and then stat F<passwd>
1586     inside, you would write:
1587    
1588     aio_wd "/etc", sub {
1589     my $etcdir = shift;
1590    
1591     # although $etcdir can be undef on error, there is generally no reason
1592     # to check for errors here, as aio_stat will fail with ENOENT
1593     # when $etcdir is undef.
1594    
1595     aio_stat [$etcdir, "passwd"], sub {
1596     # yay
1597     };
1598     };
1599    
1600 root 1.250 The fact that C<aio_wd> is a request and not a normal function shows that
1601     creating an IO::AIO::WD object is itself a potentially blocking operation,
1602     which is why it is done asynchronously.
1603 root 1.214
1604     To stat the directory obtained with C<aio_wd> above, one could write
1605     either of the following three request calls:
1606    
1607     aio_lstat "/etc" , sub { ... # pathname as normal string
1608     aio_lstat [$wd, "."], sub { ... # "." relative to $wd (i.e. $wd itself)
1609     aio_lstat $wd , sub { ... # shorthand for the previous
1610 root 1.209
1611     As with normal pathnames, IO::AIO keeps a copy of the working directory
1612     object and the pathname string, so you could write the following without
1613     causing any issues due to C<$path> getting reused:
1614    
1615     my $path = [$wd, undef];
1616    
1617     for my $name (qw(abc def ghi)) {
1618     $path->[1] = $name;
1619     aio_stat $path, sub {
1620     # ...
1621     };
1622     }
1623    
1624     There are some caveats: when directories get renamed (or deleted), the
1625     pathname string doesn't change, so will point to the new directory (or
1626     nowhere at all), while the directory fd, if available on the system,
1627     will still point to the original directory. Most functions accepting a
1628     pathname will use the directory fd on newer systems, and the string on
1629 root 1.277 older systems. Some functions (such as C<aio_realpath>) will always rely on
1630     the string form of the pathname.
1631 root 1.209
1632 root 1.239 So this functionality is mainly useful to get some protection against
1633 root 1.209 C<chdir>, to easily get an absolute path out of a relative path for future
1634     reference, and to speed up doing many operations in the same directory
1635     (e.g. when stat'ing all files in a directory).
1636    
1637     The following functions implement this working directory abstraction:
1638    
1639     =over 4
1640    
1641     =item aio_wd $pathname, $callback->($wd)
1642    
1643     Asynchonously canonicalise the given pathname and convert it to an
1644     IO::AIO::WD object representing it. If possible and supported on the
1645     system, also open a directory fd to speed up pathname resolution relative
1646     to this working directory.
1647    
1648     If something goes wrong, then C<undef> is passwd to the callback instead
1649     of a working directory object and C<$!> is set appropriately. Since
1650     passing C<undef> as working directory component of a pathname fails the
1651     request with C<ENOENT>, there is often no need for error checking in the
1652     C<aio_wd> callback, as future requests using the value will fail in the
1653     expected way.
1654    
1655     =item IO::AIO::CWD
1656    
1657     This is a compiletime constant (object) that represents the process
1658     current working directory.
1659    
1660 root 1.239 Specifying this object as working directory object for a pathname is as if
1661     the pathname would be specified directly, without a directory object. For
1662     example, these calls are functionally identical:
1663 root 1.209
1664     aio_stat "somefile", sub { ... };
1665     aio_stat [IO::AIO::CWD, "somefile"], sub { ... };
1666    
1667     =back
1668    
1669 root 1.239 To recover the path associated with an IO::AIO::WD object, you can use
1670     C<aio_realpath>:
1671    
1672     aio_realpath $wd, sub {
1673     warn "path is $_[0]\n";
1674     };
1675    
1676 root 1.241 Currently, C<aio_statvfs> always, and C<aio_rename> and C<aio_rmdir>
1677     sometimes, fall back to using an absolue path.
1678 root 1.209
1679 root 1.53 =head2 IO::AIO::REQ CLASS
1680 root 1.52
1681     All non-aggregate C<aio_*> functions return an object of this class when
1682     called in non-void context.
1683    
1684     =over 4
1685    
1686 root 1.65 =item cancel $req
1687 root 1.52
1688     Cancels the request, if possible. Has the effect of skipping execution
1689     when entering the B<execute> state and skipping calling the callback when
1690     entering the the B<result> state, but will leave the request otherwise
1691 root 1.151 untouched (with the exception of readdir). That means that requests that
1692     currently execute will not be stopped and resources held by the request
1693     will not be freed prematurely.
1694 root 1.52
1695 root 1.65 =item cb $req $callback->(...)
1696    
1697     Replace (or simply set) the callback registered to the request.
1698    
1699 root 1.52 =back
1700    
1701 root 1.55 =head2 IO::AIO::GRP CLASS
1702    
1703     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1704     objects of this class, too.
1705    
1706     A IO::AIO::GRP object is a special request that can contain multiple other
1707     aio requests.
1708    
1709     You create one by calling the C<aio_group> constructing function with a
1710     callback that will be called when all contained requests have entered the
1711     C<done> state:
1712    
1713     my $grp = aio_group sub {
1714     print "all requests are done\n";
1715     };
1716    
1717     You add requests by calling the C<add> method with one or more
1718     C<IO::AIO::REQ> objects:
1719    
1720     $grp->add (aio_unlink "...");
1721    
1722 root 1.58 add $grp aio_stat "...", sub {
1723     $_[0] or return $grp->result ("error");
1724    
1725     # add another request dynamically, if first succeeded
1726     add $grp aio_open "...", sub {
1727     $grp->result ("ok");
1728     };
1729     };
1730 root 1.55
1731     This makes it very easy to create composite requests (see the source of
1732     C<aio_move> for an application) that work and feel like simple requests.
1733    
1734 root 1.62 =over 4
1735    
1736     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1737 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1738    
1739 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1740 root 1.59 only the request itself, but also all requests it contains.
1741 root 1.55
1742 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1743 root 1.55
1744 root 1.62 =item * You must not add requests to a group from within the group callback (or
1745 root 1.60 any later time).
1746    
1747 root 1.62 =back
1748    
1749 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1750     will finish very quickly. If they contain only requests that are in the
1751     C<done> state, they will also finish. Otherwise they will continue to
1752     exist.
1753    
1754 root 1.133 That means after creating a group you have some time to add requests
1755     (precisely before the callback has been invoked, which is only done within
1756     the C<poll_cb>). And in the callbacks of those requests, you can add
1757     further requests to the group. And only when all those requests have
1758     finished will the the group itself finish.
1759 root 1.57
1760 root 1.55 =over 4
1761    
1762 root 1.65 =item add $grp ...
1763    
1764 root 1.55 =item $grp->add (...)
1765    
1766 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1767     be added, including other groups, as long as you do not create circular
1768     dependencies.
1769    
1770     Returns all its arguments.
1771 root 1.55
1772 root 1.74 =item $grp->cancel_subs
1773    
1774     Cancel all subrequests and clears any feeder, but not the group request
1775     itself. Useful when you queued a lot of events but got a result early.
1776    
1777 root 1.168 The group request will finish normally (you cannot add requests to the
1778     group).
1779    
1780 root 1.58 =item $grp->result (...)
1781    
1782     Set the result value(s) that will be passed to the group callback when all
1783 root 1.120 subrequests have finished and set the groups errno to the current value
1784 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1785     no argument will be passed and errno is zero.
1786    
1787     =item $grp->errno ([$errno])
1788    
1789     Sets the group errno value to C<$errno>, or the current value of errno
1790     when the argument is missing.
1791    
1792     Every aio request has an associated errno value that is restored when
1793     the callback is invoked. This method lets you change this value from its
1794     default (0).
1795    
1796     Calling C<result> will also set errno, so make sure you either set C<$!>
1797     before the call to C<result>, or call c<errno> after it.
1798 root 1.58
1799 root 1.65 =item feed $grp $callback->($grp)
1800 root 1.60
1801     Sets a feeder/generator on this group: every group can have an attached
1802     generator that generates requests if idle. The idea behind this is that,
1803     although you could just queue as many requests as you want in a group,
1804 root 1.139 this might starve other requests for a potentially long time. For example,
1805 root 1.211 C<aio_scandir> might generate hundreds of thousands of C<aio_stat>
1806     requests, delaying any later requests for a long time.
1807 root 1.60
1808     To avoid this, and allow incremental generation of requests, you can
1809     instead a group and set a feeder on it that generates those requests. The
1810 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1811 root 1.60 below) requests active in the group itself and is expected to queue more
1812     requests.
1813    
1814 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1815     not impose any limits).
1816 root 1.60
1817 root 1.65 If the feed does not queue more requests when called, it will be
1818 root 1.60 automatically removed from the group.
1819    
1820 root 1.138 If the feed limit is C<0> when this method is called, it will be set to
1821     C<2> automatically.
1822 root 1.60
1823     Example:
1824    
1825     # stat all files in @files, but only ever use four aio requests concurrently:
1826    
1827     my $grp = aio_group sub { print "finished\n" };
1828 root 1.68 limit $grp 4;
1829 root 1.65 feed $grp sub {
1830 root 1.60 my $file = pop @files
1831     or return;
1832    
1833     add $grp aio_stat $file, sub { ... };
1834 root 1.65 };
1835 root 1.60
1836 root 1.68 =item limit $grp $num
1837 root 1.60
1838     Sets the feeder limit for the group: The feeder will be called whenever
1839     the group contains less than this many requests.
1840    
1841     Setting the limit to C<0> will pause the feeding process.
1842    
1843 root 1.138 The default value for the limit is C<0>, but note that setting a feeder
1844     automatically bumps it up to C<2>.
1845    
1846 root 1.55 =back
1847    
1848 root 1.294
1849 root 1.5 =head2 SUPPORT FUNCTIONS
1850    
1851 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1852    
1853 root 1.5 =over 4
1854    
1855     =item $fileno = IO::AIO::poll_fileno
1856    
1857 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1858 root 1.156 polled for reading by some mechanism outside this module (e.g. EV, Glib,
1859     select and so on, see below or the SYNOPSIS). If the pipe becomes readable
1860     you have to call C<poll_cb> to check the results.
1861 root 1.5
1862     See C<poll_cb> for an example.
1863    
1864     =item IO::AIO::poll_cb
1865    
1866 root 1.240 Process some requests that have reached the result phase (i.e. they have
1867     been executed but the results are not yet reported). You have to call
1868     this "regularly" to finish outstanding requests.
1869    
1870     Returns C<0> if all events could be processed (or there were no
1871     events to process), or C<-1> if it returned earlier for whatever
1872     reason. Returns immediately when no events are outstanding. The amount
1873     of events processed depends on the settings of C<IO::AIO::max_poll_req>,
1874     C<IO::AIO::max_poll_time> and C<IO::AIO::max_outstanding>.
1875    
1876     If not all requests were processed for whatever reason, the poll file
1877     descriptor will still be ready when C<poll_cb> returns, so normally you
1878     don't have to do anything special to have it called later.
1879 root 1.78
1880 root 1.192 Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes
1881     ready, it can be beneficial to call this function from loops which submit
1882     a lot of requests, to make sure the results get processed when they become
1883     available and not just when the loop is finished and the event loop takes
1884     over again. This function returns very fast when there are no outstanding
1885     requests.
1886    
1887 root 1.20 Example: Install an Event watcher that automatically calls
1888 root 1.156 IO::AIO::poll_cb with high priority (more examples can be found in the
1889     SYNOPSIS section, at the top of this document):
1890 root 1.5
1891     Event->io (fd => IO::AIO::poll_fileno,
1892     poll => 'r', async => 1,
1893     cb => \&IO::AIO::poll_cb);
1894    
1895 root 1.175 =item IO::AIO::poll_wait
1896    
1897 root 1.240 Wait until either at least one request is in the result phase or no
1898     requests are outstanding anymore.
1899    
1900     This is useful if you want to synchronously wait for some requests to
1901     become ready, without actually handling them.
1902 root 1.175
1903     See C<nreqs> for an example.
1904    
1905     =item IO::AIO::poll
1906    
1907     Waits until some requests have been handled.
1908    
1909     Returns the number of requests processed, but is otherwise strictly
1910     equivalent to:
1911    
1912     IO::AIO::poll_wait, IO::AIO::poll_cb
1913    
1914     =item IO::AIO::flush
1915    
1916     Wait till all outstanding AIO requests have been handled.
1917    
1918     Strictly equivalent to:
1919    
1920     IO::AIO::poll_wait, IO::AIO::poll_cb
1921     while IO::AIO::nreqs;
1922    
1923 root 1.294 This function can be useful at program aborts, to make sure outstanding
1924     I/O has been done (C<IO::AIO> uses an C<END> block which already calls
1925     this function on normal exits), or when you are merely using C<IO::AIO>
1926     for its more advanced functions, rather than for async I/O, e.g.:
1927    
1928     my ($dirs, $nondirs);
1929     IO::AIO::aio_scandir "/tmp", 0, sub { ($dirs, $nondirs) = @_ };
1930     IO::AIO::flush;
1931     # $dirs, $nondirs are now set
1932    
1933 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1934    
1935     =item IO::AIO::max_poll_time $seconds
1936    
1937     These set the maximum number of requests (default C<0>, meaning infinity)
1938     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1939     the maximum amount of time (default C<0>, meaning infinity) spent in
1940     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1941     of time C<poll_cb> is allowed to use).
1942 root 1.78
1943 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1944     syscall per request processed, which is not normally a problem unless your
1945     callbacks are really really fast or your OS is really really slow (I am
1946     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1947    
1948 root 1.86 Setting these is useful if you want to ensure some level of
1949     interactiveness when perl is not fast enough to process all requests in
1950     time.
1951 root 1.78
1952 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
1953 root 1.78
1954     Example: Install an Event watcher that automatically calls
1955 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
1956 root 1.78 program get the CPU sometimes even under high AIO load.
1957    
1958 root 1.86 # try not to spend much more than 0.1s in poll_cb
1959     IO::AIO::max_poll_time 0.1;
1960    
1961     # use a low priority so other tasks have priority
1962 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
1963     poll => 'r', nice => 1,
1964 root 1.86 cb => &IO::AIO::poll_cb);
1965 root 1.78
1966 root 1.104 =back
1967    
1968 root 1.294
1969 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
1970 root 1.13
1971 root 1.105 =over
1972    
1973 root 1.5 =item IO::AIO::min_parallel $nthreads
1974    
1975 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
1976     default is C<8>, which means eight asynchronous operations can execute
1977     concurrently at any one time (the number of outstanding requests,
1978     however, is unlimited).
1979 root 1.5
1980 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
1981 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
1982     create demand for a hundred threads, even if it turns out that everything
1983     is in the cache and could have been processed faster by a single thread.
1984 root 1.34
1985 root 1.61 It is recommended to keep the number of threads relatively low, as some
1986     Linux kernel versions will scale negatively with the number of threads
1987     (higher parallelity => MUCH higher latency). With current Linux 2.6
1988     versions, 4-32 threads should be fine.
1989 root 1.5
1990 root 1.34 Under most circumstances you don't need to call this function, as the
1991     module selects a default that is suitable for low to moderate load.
1992 root 1.5
1993     =item IO::AIO::max_parallel $nthreads
1994    
1995 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
1996     specified number of threads are currently running, this function kills
1997     them. This function blocks until the limit is reached.
1998    
1999     While C<$nthreads> are zero, aio requests get queued but not executed
2000     until the number of threads has been increased again.
2001 root 1.5
2002     This module automatically runs C<max_parallel 0> at program end, to ensure
2003     that all threads are killed and that there are no outstanding requests.
2004    
2005     Under normal circumstances you don't need to call this function.
2006    
2007 root 1.86 =item IO::AIO::max_idle $nthreads
2008    
2009 root 1.188 Limit the number of threads (default: 4) that are allowed to idle
2010     (i.e., threads that did not get a request to process within the idle
2011     timeout (default: 10 seconds). That means if a thread becomes idle while
2012     C<$nthreads> other threads are also idle, it will free its resources and
2013     exit.
2014 root 1.86
2015     This is useful when you allow a large number of threads (e.g. 100 or 1000)
2016     to allow for extremely high load situations, but want to free resources
2017     under normal circumstances (1000 threads can easily consume 30MB of RAM).
2018    
2019     The default is probably ok in most situations, especially if thread
2020     creation is fast. If thread creation is very slow on your system you might
2021     want to use larger values.
2022    
2023 root 1.188 =item IO::AIO::idle_timeout $seconds
2024    
2025     Sets the minimum idle timeout (default 10) after which worker threads are
2026     allowed to exit. SEe C<IO::AIO::max_idle>.
2027    
2028 root 1.123 =item IO::AIO::max_outstanding $maxreqs
2029 root 1.5
2030 root 1.195 Sets the maximum number of outstanding requests to C<$nreqs>. If
2031     you do queue up more than this number of requests, the next call to
2032     C<IO::AIO::poll_cb> (and other functions calling C<poll_cb>, such as
2033     C<IO::AIO::flush> or C<IO::AIO::poll>) will block until the limit is no
2034     longer exceeded.
2035    
2036     In other words, this setting does not enforce a queue limit, but can be
2037     used to make poll functions block if the limit is exceeded.
2038    
2039 root 1.79 This is a very bad function to use in interactive programs because it
2040     blocks, and a bad way to reduce concurrency because it is inexact: Better
2041     use an C<aio_group> together with a feed callback.
2042    
2043 root 1.248 Its main use is in scripts without an event loop - when you want to stat
2044 root 1.274 a lot of files, you can write something like this:
2045 root 1.195
2046     IO::AIO::max_outstanding 32;
2047    
2048     for my $path (...) {
2049     aio_stat $path , ...;
2050     IO::AIO::poll_cb;
2051     }
2052    
2053     IO::AIO::flush;
2054    
2055     The call to C<poll_cb> inside the loop will normally return instantly, but
2056     as soon as more thna C<32> reqeusts are in-flight, it will block until
2057     some requests have been handled. This keeps the loop from pushing a large
2058     number of C<aio_stat> requests onto the queue.
2059    
2060     The default value for C<max_outstanding> is very large, so there is no
2061     practical limit on the number of outstanding requests.
2062 root 1.5
2063 root 1.104 =back
2064    
2065 root 1.294
2066 root 1.86 =head3 STATISTICAL INFORMATION
2067    
2068 root 1.104 =over
2069    
2070 root 1.86 =item IO::AIO::nreqs
2071    
2072     Returns the number of requests currently in the ready, execute or pending
2073     states (i.e. for which their callback has not been invoked yet).
2074    
2075     Example: wait till there are no outstanding requests anymore:
2076    
2077     IO::AIO::poll_wait, IO::AIO::poll_cb
2078     while IO::AIO::nreqs;
2079    
2080     =item IO::AIO::nready
2081    
2082     Returns the number of requests currently in the ready state (not yet
2083     executed).
2084    
2085     =item IO::AIO::npending
2086    
2087     Returns the number of requests currently in the pending state (executed,
2088     but not yet processed by poll_cb).
2089    
2090 root 1.5 =back
2091    
2092 root 1.294
2093 root 1.289 =head3 SUBSECOND STAT TIME ACCESS
2094    
2095     Both C<aio_stat>/C<aio_lstat> and perl's C<stat>/C<lstat> functions can
2096     generally find access/modification and change times with subsecond time
2097     accuracy of the system supports it, but perl's built-in functions only
2098     return the integer part.
2099    
2100     The following functions return the timestamps of the most recent
2101     stat with subsecond precision on most systems and work both after
2102     C<aio_stat>/C<aio_lstat> and perl's C<stat>/C<lstat> calls. Their return
2103     value is only meaningful after a successful C<stat>/C<lstat> call, or
2104     during/after a successful C<aio_stat>/C<aio_lstat> callback.
2105    
2106     This is similar to the L<Time::HiRes> C<stat> functions, but can return
2107     full resolution without rounding and work with standard perl C<stat>,
2108     alleviating the need to call the special C<Time::HiRes> functions, which
2109     do not act like their perl counterparts.
2110    
2111     On operating systems or file systems where subsecond time resolution is
2112     not supported or could not be detected, a fractional part of C<0> is
2113     returned, so it is always safe to call these functions.
2114    
2115     =over 4
2116    
2117 root 1.294 =item $seconds = IO::AIO::st_atime, IO::AIO::st_mtime, IO::AIO::st_ctime, IO::AIO::st_btime
2118 root 1.289
2119 root 1.294 Return the access, modication, change or birth time, respectively,
2120     including fractional part. Due to the limited precision of floating point,
2121     the accuracy on most platforms is only a bit better than milliseconds
2122     for times around now - see the I<nsec> function family, below, for full
2123 root 1.289 accuracy.
2124    
2125 root 1.294 File birth time is only available when the OS and perl support it (on
2126     FreeBSD and NetBSD at the time of this writing, although support is
2127     adaptive, so if your OS/perl gains support, IO::AIO can take avdantage of
2128     it). On systems where it isn't available, C<0> is currently returned, but
2129     this might change to C<undef> in a future version.
2130 root 1.289
2131 root 1.294 =item ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtime
2132 root 1.289
2133 root 1.294 Returns access, modification, change and birth time all in one go, and
2134     maybe more times in the future version.
2135 root 1.289
2136 root 1.294 =item $nanoseconds = IO::AIO::st_atimensec, IO::AIO::st_mtimensec, IO::AIO::st_ctimensec, IO::AIO::st_btimensec
2137    
2138     Return the fractional access, modifcation, change or birth time, in nanoseconds,
2139 root 1.289 as an integer in the range C<0> to C<999999999>.
2140    
2141 root 1.294 Note that no accessors are provided for access, modification and
2142     change times - you need to get those from C<stat _> if required (C<int
2143     IO::AIO::st_atime> and so on will I<not> generally give you the correct
2144     value).
2145    
2146     =item $seconds = IO::AIO::st_btimesec
2147    
2148     The (integral) seconds part of the file birth time, if available.
2149    
2150     =item ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtimensec
2151 root 1.290
2152 root 1.294 Like the functions above, but returns all four times in one go (and maybe
2153 root 1.290 more in future versions).
2154    
2155 root 1.294 =item $counter = IO::AIO::st_gen
2156    
2157 root 1.296 Returns the generation counter (in practice this is just a random number)
2158     of the file. This is only available on platforms which have this member in
2159     their C<struct stat> (most BSDs at the time of this writing) and generally
2160     only to the root usert. If unsupported, C<0> is returned, but this might
2161     change to C<undef> in a future version.
2162 root 1.294
2163 root 1.289 =back
2164    
2165     Example: print the high resolution modification time of F</etc>, using
2166     C<stat>, and C<IO::AIO::aio_stat>.
2167    
2168     if (stat "/etc") {
2169 root 1.290 printf "stat(/etc) mtime: %f\n", IO::AIO::st_mtime;
2170 root 1.289 }
2171    
2172     IO::AIO::aio_stat "/etc", sub {
2173     $_[0]
2174     and return;
2175    
2176 root 1.290 printf "aio_stat(/etc) mtime: %d.%09d\n", (stat _)[9], IO::AIO::st_mtimensec;
2177 root 1.289 };
2178    
2179     IO::AIO::flush;
2180    
2181     Output of the awbove on my system, showing reduced and full accuracy:
2182    
2183     stat(/etc) mtime: 1534043702.020808
2184     aio_stat(/etc) mtime: 1534043702.020807792
2185    
2186 root 1.294
2187 root 1.157 =head3 MISCELLANEOUS FUNCTIONS
2188    
2189 root 1.248 IO::AIO implements some functions that are useful when you want to use
2190     some "Advanced I/O" function not available to in Perl, without going the
2191     "Asynchronous I/O" route. Many of these have an asynchronous C<aio_*>
2192     counterpart.
2193 root 1.157
2194     =over 4
2195    
2196 root 1.275 =item $numfd = IO::AIO::get_fdlimit
2197    
2198 root 1.278 This function is I<EXPERIMENTAL> and subject to change.
2199    
2200 root 1.275 Tries to find the current file descriptor limit and returns it, or
2201     C<undef> and sets C<$!> in case of an error. The limit is one larger than
2202     the highest valid file descriptor number.
2203    
2204     =item IO::AIO::min_fdlimit [$numfd]
2205    
2206 root 1.278 This function is I<EXPERIMENTAL> and subject to change.
2207    
2208 root 1.275 Try to increase the current file descriptor limit(s) to at least C<$numfd>
2209     by changing the soft or hard file descriptor resource limit. If C<$numfd>
2210     is missing, it will try to set a very high limit, although this is not
2211     recommended when you know the actual minimum that you require.
2212    
2213     If the limit cannot be raised enough, the function makes a best-effort
2214     attempt to increase the limit as much as possible, using various
2215     tricks, while still failing. You can query the resulting limit using
2216     C<IO::AIO::get_fdlimit>.
2217    
2218 root 1.276 If an error occurs, returns C<undef> and sets C<$!>, otherwise returns
2219     true.
2220 root 1.275
2221 root 1.157 =item IO::AIO::sendfile $ofh, $ifh, $offset, $count
2222    
2223     Calls the C<eio_sendfile_sync> function, which is like C<aio_sendfile>,
2224     but is blocking (this makes most sense if you know the input data is
2225     likely cached already and the output filehandle is set to non-blocking
2226     operations).
2227    
2228     Returns the number of bytes copied, or C<-1> on error.
2229    
2230     =item IO::AIO::fadvise $fh, $offset, $len, $advice
2231    
2232 root 1.184 Simply calls the C<posix_fadvise> function (see its
2233 root 1.157 manpage for details). The following advice constants are
2234 root 1.207 available: C<IO::AIO::FADV_NORMAL>, C<IO::AIO::FADV_SEQUENTIAL>,
2235 root 1.157 C<IO::AIO::FADV_RANDOM>, C<IO::AIO::FADV_NOREUSE>,
2236     C<IO::AIO::FADV_WILLNEED>, C<IO::AIO::FADV_DONTNEED>.
2237    
2238     On systems that do not implement C<posix_fadvise>, this function returns
2239     ENOSYS, otherwise the return value of C<posix_fadvise>.
2240    
2241 root 1.184 =item IO::AIO::madvise $scalar, $offset, $len, $advice
2242    
2243     Simply calls the C<posix_madvise> function (see its
2244     manpage for details). The following advice constants are
2245 root 1.207 available: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
2246 root 1.272 C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>,
2247     C<IO::AIO::MADV_DONTNEED>.
2248 root 1.184
2249 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2250     the remaining length of the C<$scalar> is used. If possible, C<$length>
2251     will be reduced to fit into the C<$scalar>.
2252    
2253 root 1.184 On systems that do not implement C<posix_madvise>, this function returns
2254     ENOSYS, otherwise the return value of C<posix_madvise>.
2255    
2256     =item IO::AIO::mprotect $scalar, $offset, $len, $protect
2257    
2258     Simply calls the C<mprotect> function on the preferably AIO::mmap'ed
2259     $scalar (see its manpage for details). The following protect
2260 root 1.207 constants are available: C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_READ>,
2261 root 1.184 C<IO::AIO::PROT_WRITE>, C<IO::AIO::PROT_EXEC>.
2262    
2263 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2264     the remaining length of the C<$scalar> is used. If possible, C<$length>
2265     will be reduced to fit into the C<$scalar>.
2266    
2267 root 1.184 On systems that do not implement C<mprotect>, this function returns
2268     ENOSYS, otherwise the return value of C<mprotect>.
2269    
2270 root 1.176 =item IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
2271    
2272     Memory-maps a file (or anonymous memory range) and attaches it to the
2273 root 1.228 given C<$scalar>, which will act like a string scalar. Returns true on
2274     success, and false otherwise.
2275 root 1.176
2276 root 1.268 The scalar must exist, but its contents do not matter - this means you
2277     cannot use a nonexistant array or hash element. When in doubt, C<undef>
2278     the scalar first.
2279    
2280     The only operations allowed on the mmapped scalar are C<substr>/C<vec>,
2281     which don't change the string length, and most read-only operations such
2282     as copying it or searching it with regexes and so on.
2283 root 1.176
2284     Anything else is unsafe and will, at best, result in memory leaks.
2285    
2286     The memory map associated with the C<$scalar> is automatically removed
2287 root 1.268 when the C<$scalar> is undef'd or destroyed, or when the C<IO::AIO::mmap>
2288     or C<IO::AIO::munmap> functions are called on it.
2289 root 1.176
2290     This calls the C<mmap>(2) function internally. See your system's manual
2291     page for details on the C<$length>, C<$prot> and C<$flags> parameters.
2292    
2293     The C<$length> must be larger than zero and smaller than the actual
2294     filesize.
2295    
2296     C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
2297     C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
2298    
2299 root 1.256 C<$flags> can be a combination of
2300     C<IO::AIO::MAP_SHARED> or
2301     C<IO::AIO::MAP_PRIVATE>,
2302     or a number of system-specific flags (when not available, the are C<0>):
2303     C<IO::AIO::MAP_ANONYMOUS> (which is set to C<MAP_ANON> if your system only provides this constant),
2304     C<IO::AIO::MAP_LOCKED>,
2305     C<IO::AIO::MAP_NORESERVE>,
2306     C<IO::AIO::MAP_POPULATE>,
2307     C<IO::AIO::MAP_NONBLOCK>,
2308     C<IO::AIO::MAP_FIXED>,
2309     C<IO::AIO::MAP_GROWSDOWN>,
2310     C<IO::AIO::MAP_32BIT>,
2311     C<IO::AIO::MAP_HUGETLB> or
2312     C<IO::AIO::MAP_STACK>.
2313 root 1.176
2314     If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
2315    
2316 root 1.179 C<$offset> is the offset from the start of the file - it generally must be
2317     a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
2318    
2319 root 1.177 Example:
2320    
2321     use Digest::MD5;
2322     use IO::AIO;
2323    
2324     open my $fh, "<verybigfile"
2325     or die "$!";
2326    
2327     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
2328     or die "verybigfile: $!";
2329    
2330     my $fast_md5 = md5 $data;
2331    
2332 root 1.176 =item IO::AIO::munmap $scalar
2333    
2334     Removes a previous mmap and undefines the C<$scalar>.
2335    
2336 root 1.287 =item IO::AIO::mremap $scalar, $new_length, $flags = MREMAP_MAYMOVE[, $new_address = 0]
2337 root 1.285
2338     Calls the Linux-specific mremap(2) system call. The C<$scalar> must have
2339     been mapped by C<IO::AIO::mmap>, and C<$flags> must currently either be
2340     C<0> or C<IO::AIO::MREMAP_MAYMOVE>.
2341    
2342     Returns true if successful, and false otherwise. If the underlying mmapped
2343     region has changed address, then the true value has the numerical value
2344     C<1>, otherwise it has the numerical value C<0>:
2345    
2346     my $success = IO::AIO::mremap $mmapped, 8192, IO::AIO::MREMAP_MAYMOVE
2347     or die "mremap: $!";
2348    
2349     if ($success*1) {
2350     warn "scalar has chanegd address in memory\n";
2351     }
2352    
2353     C<IO::AIO::MREMAP_FIXED> and the C<$new_address> argument are currently
2354     implemented, but not supported and might go away in a future version.
2355    
2356     On systems where this call is not supported or is not emulated, this call
2357     returns falls and sets C<$!> to C<ENOSYS>.
2358    
2359 root 1.298 =item IO::AIO::mlockall $flags
2360    
2361     Calls the C<eio_mlockall_sync> function, which is like C<aio_mlockall>,
2362     but is blocking.
2363    
2364 root 1.182 =item IO::AIO::munlock $scalar, $offset = 0, $length = undef
2365 root 1.174
2366 root 1.182 Calls the C<munlock> function, undoing the effects of a previous
2367     C<aio_mlock> call (see its description for details).
2368 root 1.174
2369     =item IO::AIO::munlockall
2370    
2371     Calls the C<munlockall> function.
2372    
2373     On systems that do not implement C<munlockall>, this function returns
2374     ENOSYS, otherwise the return value of C<munlockall>.
2375    
2376 root 1.225 =item IO::AIO::splice $r_fh, $r_off, $w_fh, $w_off, $length, $flags
2377    
2378     Calls the GNU/Linux C<splice(2)> syscall, if available. If C<$r_off> or
2379     C<$w_off> are C<undef>, then C<NULL> is passed for these, otherwise they
2380     should be the file offset.
2381    
2382 root 1.227 C<$r_fh> and C<$w_fh> should not refer to the same file, as splice might
2383     silently corrupt the data in this case.
2384    
2385 root 1.225 The following symbol flag values are available: C<IO::AIO::SPLICE_F_MOVE>,
2386     C<IO::AIO::SPLICE_F_NONBLOCK>, C<IO::AIO::SPLICE_F_MORE> and
2387     C<IO::AIO::SPLICE_F_GIFT>.
2388    
2389     See the C<splice(2)> manpage for details.
2390    
2391     =item IO::AIO::tee $r_fh, $w_fh, $length, $flags
2392    
2393 root 1.248 Calls the GNU/Linux C<tee(2)> syscall, see its manpage and the
2394 root 1.225 description for C<IO::AIO::splice> above for details.
2395    
2396 root 1.243 =item $actual_size = IO::AIO::pipesize $r_fh[, $new_size]
2397    
2398     Attempts to query or change the pipe buffer size. Obviously works only
2399     on pipes, and currently works only on GNU/Linux systems, and fails with
2400     C<-1>/C<ENOSYS> everywhere else. If anybody knows how to influence pipe buffer
2401     size on other systems, drop me a note.
2402    
2403 root 1.253 =item ($rfh, $wfh) = IO::AIO::pipe2 [$flags]
2404    
2405     This is a direct interface to the Linux L<pipe2(2)> system call. If
2406     C<$flags> is missing or C<0>, then this should be the same as a call to
2407 root 1.254 perl's built-in C<pipe> function and create a new pipe, and works on
2408     systems that lack the pipe2 syscall. On win32, this case invokes C<_pipe
2409     (..., 4096, O_BINARY)>.
2410 root 1.253
2411     If C<$flags> is non-zero, it tries to invoke the pipe2 system call with
2412     the given flags (Linux 2.6.27, glibc 2.9).
2413    
2414     On success, the read and write file handles are returned.
2415    
2416     On error, nothing will be returned. If the pipe2 syscall is missing and
2417     C<$flags> is non-zero, fails with C<ENOSYS>.
2418    
2419     Please refer to L<pipe2(2)> for more info on the C<$flags>, but at the
2420     time of this writing, C<IO::AIO::O_CLOEXEC>, C<IO::AIO::O_NONBLOCK> and
2421     C<IO::AIO::O_DIRECT> (Linux 3.4, for packet-based pipes) were supported.
2422    
2423 root 1.281 Example: create a pipe race-free w.r.t. threads and fork:
2424    
2425     my ($rfh, $wfh) = IO::AIO::pipe2 IO::AIO::O_CLOEXEC
2426     or die "pipe2: $!\n";
2427    
2428 root 1.282 =item $fh = IO::AIO::eventfd [$initval, [$flags]]
2429 root 1.281
2430     This is a direct interface to the Linux L<eventfd(2)> system call. The
2431     (unhelpful) defaults for C<$initval> and C<$flags> are C<0> for both.
2432    
2433     On success, the new eventfd filehandle is returned, otherwise returns
2434     C<undef>. If the eventfd syscall is missing, fails with C<ENOSYS>.
2435    
2436     Please refer to L<eventfd(2)> for more info on this call.
2437    
2438     The following symbol flag values are available: C<IO::AIO::EFD_CLOEXEC>,
2439     C<IO::AIO::EFD_NONBLOCK> and C<IO::AIO::EFD_SEMAPHORE> (Linux 2.6.30).
2440    
2441 root 1.282 Example: create a new eventfd filehandle:
2442    
2443     $fh = IO::AIO::eventfd 0, IO::AIO::O_CLOEXEC
2444     or die "eventfd: $!\n";
2445    
2446     =item $fh = IO::AIO::timerfd_create $clockid[, $flags]
2447    
2448     This is a direct interface to the Linux L<timerfd_create(2)> system call. The
2449     (unhelpful) default for C<$flags> is C<0>.
2450    
2451     On success, the new timerfd filehandle is returned, otherwise returns
2452     C<undef>. If the eventfd syscall is missing, fails with C<ENOSYS>.
2453    
2454     Please refer to L<timerfd_create(2)> for more info on this call.
2455    
2456     The following C<$clockid> values are
2457     available: C<IO::AIO::CLOCK_REALTIME>, C<IO::AIO::CLOCK_MONOTONIC>
2458     C<IO::AIO::CLOCK_CLOCK_BOOTTIME> (Linux 3.15)
2459     C<IO::AIO::CLOCK_CLOCK_REALTIME_ALARM> (Linux 3.11) and
2460     C<IO::AIO::CLOCK_CLOCK_BOOTTIME_ALARM> (Linux 3.11).
2461    
2462     The following C<$flags> values are available (Linux
2463     2.6.27): C<IO::AIO::TFD_NONBLOCK> and C<IO::AIO::TFD_CLOEXEC>.
2464    
2465     Example: create a new timerfd and set it to one-second repeated alarms,
2466     then wait for two alarms:
2467    
2468     my $fh = IO::AIO::timerfd_create IO::AIO::CLOCK_BOOTTIME, IO::AIO::TFD_CLOEXEC
2469     or die "timerfd_create: $!\n";
2470    
2471     defined IO::AIO::timerfd_settime $fh, 0, 1, 1
2472     or die "timerfd_settime: $!\n";
2473    
2474     for (1..2) {
2475     8 == sysread $fh, my $buf, 8
2476     or die "timerfd read failure\n";
2477    
2478     printf "number of expirations (likely 1): %d\n",
2479     unpack "Q", $buf;
2480     }
2481    
2482     =item ($cur_interval, $cur_value) = IO::AIO::timerfd_settime $fh, $flags, $new_interval, $nbw_value
2483    
2484     This is a direct interface to the Linux L<timerfd_settime(2)> system
2485     call. Please refer to its manpage for more info on this call.
2486    
2487     The new itimerspec is specified using two (possibly fractional) second
2488     values, C<$new_interval> and C<$new_value>).
2489    
2490     On success, the current interval and value are returned (as per
2491     C<timerfd_gettime>). On failure, the empty list is returned.
2492    
2493     The following C<$flags> values are
2494     available: C<IO::AIO::TFD_TIMER_ABSTIME> and
2495     C<IO::AIO::TFD_TIMER_CANCEL_ON_SET>.
2496    
2497     See C<IO::AIO::timerfd_create> for a full example.
2498    
2499     =item ($cur_interval, $cur_value) = IO::AIO::timerfd_gettime $fh
2500    
2501     This is a direct interface to the Linux L<timerfd_gettime(2)> system
2502     call. Please refer to its manpage for more info on this call.
2503    
2504     On success, returns the current values of interval and value for the given
2505     timerfd (as potentially fractional second values). On failure, the empty
2506     list is returned.
2507    
2508 root 1.157 =back
2509    
2510 root 1.1 =cut
2511    
2512 root 1.61 min_parallel 8;
2513 root 1.1
2514 root 1.95 END { flush }
2515 root 1.82
2516 root 1.1 1;
2517    
2518 root 1.175 =head1 EVENT LOOP INTEGRATION
2519    
2520     It is recommended to use L<AnyEvent::AIO> to integrate IO::AIO
2521     automatically into many event loops:
2522    
2523     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
2524     use AnyEvent::AIO;
2525    
2526     You can also integrate IO::AIO manually into many event loops, here are
2527     some examples of how to do this:
2528    
2529     # EV integration
2530     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
2531    
2532     # Event integration
2533     Event->io (fd => IO::AIO::poll_fileno,
2534     poll => 'r',
2535     cb => \&IO::AIO::poll_cb);
2536    
2537     # Glib/Gtk2 integration
2538     add_watch Glib::IO IO::AIO::poll_fileno,
2539     in => sub { IO::AIO::poll_cb; 1 };
2540    
2541     # Tk integration
2542     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
2543     readable => \&IO::AIO::poll_cb);
2544    
2545     # Danga::Socket integration
2546     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
2547     \&IO::AIO::poll_cb);
2548    
2549 root 1.27 =head2 FORK BEHAVIOUR
2550    
2551 root 1.197 Usage of pthreads in a program changes the semantics of fork
2552     considerably. Specifically, only async-safe functions can be called after
2553     fork. Perl doesn't know about this, so in general, you cannot call fork
2554 root 1.204 with defined behaviour in perl if pthreads are involved. IO::AIO uses
2555     pthreads, so this applies, but many other extensions and (for inexplicable
2556     reasons) perl itself often is linked against pthreads, so this limitation
2557     applies to quite a lot of perls.
2558    
2559     This module no longer tries to fight your OS, or POSIX. That means IO::AIO
2560     only works in the process that loaded it. Forking is fully supported, but
2561     using IO::AIO in the child is not.
2562    
2563     You might get around by not I<using> IO::AIO before (or after)
2564     forking. You could also try to call the L<IO::AIO::reinit> function in the
2565     child:
2566    
2567     =over 4
2568    
2569     =item IO::AIO::reinit
2570    
2571 root 1.207 Abandons all current requests and I/O threads and simply reinitialises all
2572     data structures. This is not an operation supported by any standards, but
2573 root 1.204 happens to work on GNU/Linux and some newer BSD systems.
2574    
2575     The only reasonable use for this function is to call it after forking, if
2576     C<IO::AIO> was used in the parent. Calling it while IO::AIO is active in
2577     the process will result in undefined behaviour. Calling it at any time
2578     will also result in any undefined (by POSIX) behaviour.
2579    
2580     =back
2581 root 1.52
2582 root 1.282 =head2 LINUX-SPECIFIC CALLS
2583    
2584     When a call is documented as "linux-specific" then this means it
2585     originated on GNU/Linux. C<IO::AIO> will usually try to autodetect the
2586     availability and compatibility of such calls regardless of the platform
2587     it is compiled on, so platforms such as FreeBSD which often implement
2588     these calls will work. When in doubt, call them and see if they fail wth
2589     C<ENOSYS>.
2590    
2591 root 1.60 =head2 MEMORY USAGE
2592    
2593 root 1.72 Per-request usage:
2594    
2595     Each aio request uses - depending on your architecture - around 100-200
2596     bytes of memory. In addition, stat requests need a stat buffer (possibly
2597     a few hundred bytes), readdir requires a result buffer and so on. Perl
2598     scalars and other data passed into aio requests will also be locked and
2599     will consume memory till the request has entered the done state.
2600 root 1.60
2601 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
2602 root 1.60 problem.
2603    
2604 root 1.72 Per-thread usage:
2605    
2606     In the execution phase, some aio requests require more memory for
2607     temporary buffers, and each thread requires a stack and other data
2608     structures (usually around 16k-128k, depending on the OS).
2609    
2610     =head1 KNOWN BUGS
2611    
2612 root 1.283 Known bugs will be fixed in the next release :)
2613    
2614     =head1 KNOWN ISSUES
2615    
2616     Calls that try to "import" foreign memory areas (such as C<IO::AIO::mmap>
2617     or C<IO::AIO::aio_slurp>) do not work with generic lvalues, such as
2618     non-created hash slots or other scalars I didn't think of. It's best to
2619     avoid such and either use scalar variables or making sure that the scalar
2620     exists (e.g. by storing C<undef>) and isn't "funny" (e.g. tied).
2621    
2622     I am not sure anything can be done about this, so this is considered a
2623     known issue, rather than a bug.
2624 root 1.60
2625 root 1.1 =head1 SEE ALSO
2626    
2627 root 1.125 L<AnyEvent::AIO> for easy integration into event loops, L<Coro::AIO> for a
2628     more natural syntax.
2629 root 1.1
2630     =head1 AUTHOR
2631    
2632     Marc Lehmann <schmorp@schmorp.de>
2633     http://home.schmorp.de/
2634    
2635     =cut
2636