ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.303
Committed: Wed Apr 3 03:09:04 2019 UTC (5 years, 2 months ago) by root
Branch: MAIN
Changes since 1.302: +5 -1 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.265 IO::AIO - Asynchronous/Advanced Input/Output
4 root 1.1
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.1 =head1 DESCRIPTION
32    
33     This module implements asynchronous I/O using whatever means your
34 root 1.156 operating system supports. It is implemented as an interface to C<libeio>
35     (L<http://software.schmorp.de/pkg/libeio.html>).
36 root 1.1
37 root 1.85 Asynchronous means that operations that can normally block your program
38     (e.g. reading from disk) will be done asynchronously: the operation
39     will still block, but you can do something else in the meantime. This
40     is extremely useful for programs that need to stay interactive even
41     when doing heavy I/O (GUI programs, high performance network servers
42     etc.), but can also be used to easily do operations in parallel that are
43     normally done sequentially, e.g. stat'ing many files, which is much faster
44     on a RAID volume or over NFS when you do a number of stat operations
45     concurrently.
46    
47 root 1.108 While most of this works on all types of file descriptors (for
48     example sockets), using these functions on file descriptors that
49 root 1.156 support nonblocking operation (again, sockets, pipes etc.) is
50     very inefficient. Use an event loop for that (such as the L<EV>
51 root 1.108 module): IO::AIO will naturally fit into such an event loop itself.
52 root 1.85
53 root 1.72 In this version, a number of threads are started that execute your
54     requests and signal their completion. You don't need thread support
55     in perl, and the threads created by this module will not be visible
56     to perl. In the future, this module might make use of the native aio
57     functions available on many operating systems. However, they are often
58 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
59 root 1.72 files currently, for example), and they would only support aio_read and
60     aio_write, so the remaining functionality would have to be implemented
61     using threads anyway.
62    
63 root 1.265 In addition to asynchronous I/O, this module also exports some rather
64     arcane interfaces, such as C<madvise> or linux's C<splice> system call,
65     which is why the C<A> in C<AIO> can also mean I<advanced>.
66    
67 root 1.108 Although the module will work in the presence of other (Perl-) threads,
68     it is currently not reentrant in any way, so use appropriate locking
69     yourself, always call C<poll_cb> from within the same thread, or never
70     call C<poll_cb> (or other C<aio_> functions) recursively.
71 root 1.72
72 root 1.86 =head2 EXAMPLE
73    
74 root 1.156 This is a simple example that uses the EV module and loads
75 root 1.86 F</etc/passwd> asynchronously:
76    
77 root 1.156 use EV;
78 root 1.86 use IO::AIO;
79    
80 root 1.156 # register the IO::AIO callback with EV
81     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
82 root 1.86
83     # queue the request to open /etc/passwd
84 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
85 root 1.94 my $fh = shift
86 root 1.86 or die "error while opening: $!";
87    
88     # stat'ing filehandles is generally non-blocking
89     my $size = -s $fh;
90    
91     # queue a request to read the file
92     my $contents;
93     aio_read $fh, 0, $size, $contents, 0, sub {
94     $_[0] == $size
95     or die "short read: $!";
96    
97     close $fh;
98    
99     # file contents now in $contents
100     print $contents;
101    
102     # exit event loop and program
103 root 1.257 EV::break;
104 root 1.86 };
105     };
106    
107     # possibly queue up other requests, or open GUI windows,
108     # check for sockets etc. etc.
109    
110     # process events as long as there are some:
111 root 1.257 EV::run;
112 root 1.86
113 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
114    
115     Every C<aio_*> function creates a request. which is a C data structure not
116     directly visible to Perl.
117    
118     If called in non-void context, every request function returns a Perl
119     object representing the request. In void context, nothing is returned,
120     which saves a bit of memory.
121    
122     The perl object is a fairly standard ref-to-hash object. The hash contents
123     are not used by IO::AIO so you are free to store anything you like in it.
124    
125     During their existance, aio requests travel through the following states,
126     in order:
127    
128     =over 4
129    
130     =item ready
131    
132     Immediately after a request is created it is put into the ready state,
133     waiting for a thread to execute it.
134    
135     =item execute
136    
137     A thread has accepted the request for processing and is currently
138     executing it (e.g. blocking in read).
139    
140     =item pending
141    
142     The request has been executed and is waiting for result processing.
143    
144     While request submission and execution is fully asynchronous, result
145     processing is not and relies on the perl interpreter calling C<poll_cb>
146     (or another function with the same effect).
147    
148     =item result
149    
150     The request results are processed synchronously by C<poll_cb>.
151    
152     The C<poll_cb> function will process all outstanding aio requests by
153     calling their callbacks, freeing memory associated with them and managing
154     any groups they are contained in.
155    
156     =item done
157    
158     Request has reached the end of its lifetime and holds no resources anymore
159     (except possibly for the Perl object, but its connection to the actual
160     aio request is severed and calling its methods will either do nothing or
161     result in a runtime error).
162 root 1.1
163 root 1.88 =back
164    
165 root 1.1 =cut
166    
167     package IO::AIO;
168    
169 root 1.117 use Carp ();
170    
171 root 1.161 use common::sense;
172 root 1.23
173 root 1.1 use base 'Exporter';
174    
175     BEGIN {
176 root 1.302 our $VERSION = 4.72;
177 root 1.1
178 root 1.220 our @AIO_REQ = qw(aio_sendfile aio_seek aio_read aio_write aio_open aio_close
179 root 1.148 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
180 root 1.259 aio_scandir aio_symlink aio_readlink aio_realpath aio_fcntl aio_ioctl
181     aio_sync aio_fsync aio_syncfs aio_fdatasync aio_sync_file_range
182     aio_pathsync aio_readahead aio_fiemap aio_allocate
183 root 1.270 aio_rename aio_rename2 aio_link aio_move aio_copy aio_group
184 root 1.120 aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
185 root 1.170 aio_chmod aio_utime aio_truncate
186 root 1.182 aio_msync aio_mtouch aio_mlock aio_mlockall
187 root 1.208 aio_statvfs
188 root 1.279 aio_slurp
189 root 1.208 aio_wd);
190 root 1.120
191 root 1.123 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice));
192 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
193 root 1.188 min_parallel max_parallel max_idle idle_timeout
194 root 1.86 nreqs nready npending nthreads
195 root 1.157 max_poll_time max_poll_reqs
196 root 1.182 sendfile fadvise madvise
197 root 1.285 mmap munmap mremap munlock munlockall);
198 root 1.1
199 root 1.143 push @AIO_REQ, qw(aio_busy); # not exported
200    
201 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
202    
203 root 1.1 require XSLoader;
204 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
205 root 1.1 }
206    
207 root 1.5 =head1 FUNCTIONS
208 root 1.1
209 root 1.175 =head2 QUICK OVERVIEW
210    
211 root 1.230 This section simply lists the prototypes most of the functions for
212     quick reference. See the following sections for function-by-function
213 root 1.175 documentation.
214    
215 root 1.208 aio_wd $pathname, $callback->($wd)
216 root 1.175 aio_open $pathname, $flags, $mode, $callback->($fh)
217     aio_close $fh, $callback->($status)
218 root 1.220 aio_seek $fh,$offset,$whence, $callback->($offs)
219 root 1.175 aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
220     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
221     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
222     aio_readahead $fh,$offset,$length, $callback->($retval)
223     aio_stat $fh_or_path, $callback->($status)
224     aio_lstat $fh, $callback->($status)
225     aio_statvfs $fh_or_path, $callback->($statvfs)
226     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
227     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
228 root 1.220 aio_chmod $fh_or_path, $mode, $callback->($status)
229 root 1.175 aio_truncate $fh_or_path, $offset, $callback->($status)
230 root 1.229 aio_allocate $fh, $mode, $offset, $len, $callback->($status)
231 root 1.230 aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
232 root 1.175 aio_unlink $pathname, $callback->($status)
233 root 1.209 aio_mknod $pathname, $mode, $dev, $callback->($status)
234 root 1.175 aio_link $srcpath, $dstpath, $callback->($status)
235     aio_symlink $srcpath, $dstpath, $callback->($status)
236 root 1.209 aio_readlink $pathname, $callback->($link)
237 root 1.249 aio_realpath $pathname, $callback->($path)
238 root 1.175 aio_rename $srcpath, $dstpath, $callback->($status)
239 root 1.270 aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
240 root 1.175 aio_mkdir $pathname, $mode, $callback->($status)
241     aio_rmdir $pathname, $callback->($status)
242     aio_readdir $pathname, $callback->($entries)
243     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
244     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
245     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
246 root 1.215 aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
247 root 1.209 aio_load $pathname, $data, $callback->($status)
248 root 1.175 aio_copy $srcpath, $dstpath, $callback->($status)
249     aio_move $srcpath, $dstpath, $callback->($status)
250 root 1.209 aio_rmtree $pathname, $callback->($status)
251 root 1.259 aio_fcntl $fh, $cmd, $arg, $callback->($status)
252     aio_ioctl $fh, $request, $buf, $callback->($status)
253 root 1.175 aio_sync $callback->($status)
254 root 1.206 aio_syncfs $fh, $callback->($status)
255 root 1.175 aio_fsync $fh, $callback->($status)
256     aio_fdatasync $fh, $callback->($status)
257     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
258 root 1.209 aio_pathsync $pathname, $callback->($status)
259 root 1.268 aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
260 root 1.175 aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
261 root 1.182 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
262     aio_mlockall $flags, $callback->($status)
263 root 1.175 aio_group $callback->(...)
264     aio_nop $callback->()
265    
266     $prev_pri = aioreq_pri [$pri]
267     aioreq_nice $pri_adjust
268    
269     IO::AIO::poll_wait
270     IO::AIO::poll_cb
271     IO::AIO::poll
272     IO::AIO::flush
273     IO::AIO::max_poll_reqs $nreqs
274     IO::AIO::max_poll_time $seconds
275     IO::AIO::min_parallel $nthreads
276     IO::AIO::max_parallel $nthreads
277     IO::AIO::max_idle $nthreads
278 root 1.188 IO::AIO::idle_timeout $seconds
279 root 1.175 IO::AIO::max_outstanding $maxreqs
280     IO::AIO::nreqs
281     IO::AIO::nready
282     IO::AIO::npending
283 root 1.302 IO::AIO::reinit
284    
285 root 1.278 $nfd = IO::AIO::get_fdlimit [EXPERIMENTAL]
286     IO::AIO::min_fdlimit $nfd [EXPERIMENTAL]
287 root 1.175
288     IO::AIO::sendfile $ofh, $ifh, $offset, $count
289     IO::AIO::fadvise $fh, $offset, $len, $advice
290 root 1.302
291 root 1.226 IO::AIO::mmap $scalar, $length, $prot, $flags[, $fh[, $offset]]
292     IO::AIO::munmap $scalar
293 root 1.285 IO::AIO::mremap $scalar, $new_length, $flags[, $new_address]
294 root 1.184 IO::AIO::madvise $scalar, $offset, $length, $advice
295     IO::AIO::mprotect $scalar, $offset, $length, $protect
296 root 1.182 IO::AIO::munlock $scalar, $offset = 0, $length = undef
297 root 1.175 IO::AIO::munlockall
298    
299 root 1.302 # stat extensions
300     $counter = IO::AIO::st_gen
301     $seconds = IO::AIO::st_atime, IO::AIO::st_mtime, IO::AIO::st_ctime, IO::AIO::st_btime
302     ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtime
303     $nanoseconds = IO::AIO::st_atimensec, IO::AIO::st_mtimensec, IO::AIO::st_ctimensec, IO::AIO::st_btimensec
304     $seconds = IO::AIO::st_btimesec
305     ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtimensec
306    
307     # very much unportable syscalls
308     IO::AIO::splice $r_fh, $r_off, $w_fh, $w_off, $length, $flags
309     IO::AIO::tee $r_fh, $w_fh, $length, $flags
310     $actual_size = IO::AIO::pipesize $r_fh[, $new_size]
311     ($rfh, $wfh) = IO::AIO::pipe2 [$flags]
312     $fh = IO::AIO::memfd_create $pathname[, $flags]
313     $fh = IO::AIO::eventfd [$initval, [$flags]]
314     $fh = IO::AIO::timerfd_create $clockid[, $flags]
315     ($cur_interval, $cur_value) = IO::AIO::timerfd_settime $fh, $flags, $new_interval, $nbw_value
316     ($cur_interval, $cur_value) = IO::AIO::timerfd_gettime $fh
317    
318 root 1.219 =head2 API NOTES
319 root 1.1
320 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
321     with the same name (sans C<aio_>). The arguments are similar or identical,
322 root 1.14 and they all accept an additional (and optional) C<$callback> argument
323 root 1.212 which must be a code reference. This code reference will be called after
324     the syscall has been executed in an asynchronous fashion. The results
325     of the request will be passed as arguments to the callback (and, if an
326     error occured, in C<$!>) - for most requests the syscall return code (e.g.
327     most syscalls return C<-1> on error, unlike perl, which usually delivers
328     "false").
329    
330     Some requests (such as C<aio_readdir>) pass the actual results and
331     communicate failures by passing C<undef>.
332 root 1.1
333 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
334     internally until the request has finished.
335 root 1.1
336 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
337     further manipulation of those requests while they are in-flight.
338 root 1.52
339 root 1.209 The pathnames you pass to these routines I<should> be absolute. The
340     reason for this is that at the time the request is being executed, the
341 root 1.212 current working directory could have changed. Alternatively, you can
342     make sure that you never change the current working directory anywhere
343     in the program and then use relative paths. You can also take advantage
344     of IO::AIOs working directory abstraction, that lets you specify paths
345     relative to some previously-opened "working directory object" - see the
346     description of the C<IO::AIO::WD> class later in this document.
347 root 1.28
348 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
349     in filenames you got from outside (command line, readdir etc.) without
350 root 1.212 tinkering, b) are in your native filesystem encoding, c) use the Encode
351     module and encode your pathnames to the locale (or other) encoding in
352     effect in the user environment, d) use Glib::filename_from_unicode on
353     unicode filenames or e) use something else to ensure your scalar has the
354     correct contents.
355 root 1.87
356     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
357 root 1.136 handles correctly whether it is set or not.
358 root 1.1
359 root 1.219 =head2 AIO REQUEST FUNCTIONS
360    
361 root 1.5 =over 4
362 root 1.1
363 root 1.80 =item $prev_pri = aioreq_pri [$pri]
364 root 1.68
365 root 1.80 Returns the priority value that would be used for the next request and, if
366     C<$pri> is given, sets the priority for the next aio request.
367 root 1.68
368 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
369     and C<4>, respectively. Requests with higher priority will be serviced
370     first.
371    
372     The priority will be reset to C<0> after each call to one of the C<aio_*>
373 root 1.68 functions.
374    
375 root 1.69 Example: open a file with low priority, then read something from it with
376     higher priority so the read request is serviced before other low priority
377     open requests (potentially spamming the cache):
378    
379     aioreq_pri -3;
380     aio_open ..., sub {
381     return unless $_[0];
382    
383     aioreq_pri -2;
384     aio_read $_[0], ..., sub {
385     ...
386     };
387     };
388    
389 root 1.106
390 root 1.69 =item aioreq_nice $pri_adjust
391    
392     Similar to C<aioreq_pri>, but subtracts the given value from the current
393 root 1.87 priority, so the effect is cumulative.
394 root 1.69
395 root 1.106
396 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
397 root 1.1
398 root 1.2 Asynchronously open or create a file and call the callback with a newly
399 root 1.233 created filehandle for the file (or C<undef> in case of an error).
400 root 1.1
401     The pathname passed to C<aio_open> must be absolute. See API NOTES, above,
402     for an explanation.
403    
404 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
405     list. They are the same as used by C<sysopen>.
406    
407     Likewise, C<$mode> specifies the mode of the newly created file, if it
408     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
409     except that it is mandatory (i.e. use C<0> if you don't create new files,
410 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
411     by the umask in effect then the request is being executed, so better never
412     change the umask.
413 root 1.1
414     Example:
415    
416 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
417 root 1.2 if ($_[0]) {
418     print "open successful, fh is $_[0]\n";
419 root 1.1 ...
420     } else {
421     die "open failed: $!\n";
422     }
423     };
424    
425 root 1.194 In addition to all the common open modes/flags (C<O_RDONLY>, C<O_WRONLY>,
426     C<O_RDWR>, C<O_CREAT>, C<O_TRUNC>, C<O_EXCL> and C<O_APPEND>), the
427     following POSIX and non-POSIX constants are available (missing ones on
428     your system are, as usual, C<0>):
429    
430     C<O_ASYNC>, C<O_DIRECT>, C<O_NOATIME>, C<O_CLOEXEC>, C<O_NOCTTY>, C<O_NOFOLLOW>,
431     C<O_NONBLOCK>, C<O_EXEC>, C<O_SEARCH>, C<O_DIRECTORY>, C<O_DSYNC>,
432 root 1.286 C<O_RSYNC>, C<O_SYNC>, C<O_PATH>, C<O_TMPFILE>, C<O_TTY_INIT> and C<O_ACCMODE>.
433 root 1.194
434 root 1.106
435 root 1.40 =item aio_close $fh, $callback->($status)
436 root 1.1
437 root 1.2 Asynchronously close a file and call the callback with the result
438 root 1.116 code.
439    
440 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
441 root 1.121 closing the file descriptor associated with the filehandle itself.
442 root 1.117
443 root 1.121 Therefore, C<aio_close> will not close the filehandle - instead it will
444     use dup2 to overwrite the file descriptor with the write-end of a pipe
445     (the pipe fd will be created on demand and will be cached).
446 root 1.117
447 root 1.121 Or in other words: the file descriptor will be closed, but it will not be
448     free for reuse until the perl filehandle is closed.
449 root 1.117
450     =cut
451    
452 root 1.220 =item aio_seek $fh, $offset, $whence, $callback->($offs)
453    
454 root 1.221 Seeks the filehandle to the new C<$offset>, similarly to perl's
455 root 1.220 C<sysseek>. The C<$whence> can use the traditional values (C<0> for
456     C<IO::AIO::SEEK_SET>, C<1> for C<IO::AIO::SEEK_CUR> or C<2> for
457     C<IO::AIO::SEEK_END>).
458    
459     The resulting absolute offset will be passed to the callback, or C<-1> in
460     case of an error.
461    
462     In theory, the C<$whence> constants could be different than the
463     corresponding values from L<Fcntl>, but perl guarantees they are the same,
464     so don't panic.
465    
466 root 1.225 As a GNU/Linux (and maybe Solaris) extension, also the constants
467     C<IO::AIO::SEEK_DATA> and C<IO::AIO::SEEK_HOLE> are available, if they
468     could be found. No guarantees about suitability for use in C<aio_seek> or
469     Perl's C<sysseek> can be made though, although I would naively assume they
470     "just work".
471    
472 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
473 root 1.1
474 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
475 root 1.1
476 root 1.145 Reads or writes C<$length> bytes from or to the specified C<$fh> and
477 root 1.267 C<$offset> into the scalar given by C<$data> and offset C<$dataoffset> and
478     calls the callback with the actual number of bytes transferred (or -1 on
479 root 1.145 error, just like the syscall).
480 root 1.109
481 root 1.146 C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
482     offset plus the actual number of bytes read.
483    
484 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
485     be used (and updated), otherwise the file descriptor offset will not be
486     changed by these calls.
487 root 1.109
488 root 1.145 If C<$length> is undefined in C<aio_write>, use the remaining length of
489     C<$data>.
490 root 1.109
491     If C<$dataoffset> is less than zero, it will be counted from the end of
492     C<$data>.
493 root 1.1
494 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
495 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
496     the necessary/optional hardware is installed).
497 root 1.31
498 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
499 root 1.1 offset C<0> within the scalar:
500    
501     aio_read $fh, 7, 15, $buffer, 0, sub {
502 root 1.9 $_[0] > 0 or die "read error: $!";
503     print "read $_[0] bytes: <$buffer>\n";
504 root 1.1 };
505    
506 root 1.106
507 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
508 root 1.35
509     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
510     reading at byte offset C<$in_offset>, and starts writing at the current
511     file offset of C<$out_fh>. Because of that, it is not safe to issue more
512     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
513 root 1.196 other. The same C<$in_fh> works fine though, as this function does not
514     move or use the file offset of C<$in_fh>.
515 root 1.35
516 root 1.185 Please note that C<aio_sendfile> can read more bytes from C<$in_fh> than
517 root 1.196 are written, and there is no way to find out how many more bytes have been
518     read from C<aio_sendfile> alone, as C<aio_sendfile> only provides the
519     number of bytes written to C<$out_fh>. Only if the result value equals
520     C<$length> one can assume that C<$length> bytes have been read.
521 root 1.185
522     Unlike with other C<aio_> functions, it makes a lot of sense to use
523     C<aio_sendfile> on non-blocking sockets, as long as one end (typically
524     the C<$in_fh>) is a file - the file I/O will then be asynchronous, while
525 root 1.196 the socket I/O will be non-blocking. Note, however, that you can run
526     into a trap where C<aio_sendfile> reads some data with readahead, then
527     fails to write all data, and when the socket is ready the next time, the
528     data in the cache is already lost, forcing C<aio_sendfile> to again hit
529     the disk. Explicit C<aio_read> + C<aio_write> let's you better control
530     resource usage.
531    
532     This call tries to make use of a native C<sendfile>-like syscall to
533     provide zero-copy operation. For this to work, C<$out_fh> should refer to
534     a socket, and C<$in_fh> should refer to an mmap'able file.
535 root 1.35
536 root 1.170 If a native sendfile cannot be found or it fails with C<ENOSYS>,
537 root 1.196 C<EINVAL>, C<ENOTSUP>, C<EOPNOTSUPP>, C<EAFNOSUPPORT>, C<EPROTOTYPE> or
538     C<ENOTSOCK>, it will be emulated, so you can call C<aio_sendfile> on any
539     type of filehandle regardless of the limitations of the operating system.
540    
541     As native sendfile syscalls (as practically any non-POSIX interface hacked
542     together in a hurry to improve benchmark numbers) tend to be rather buggy
543     on many systems, this implementation tries to work around some known bugs
544     in Linux and FreeBSD kernels (probably others, too), but that might fail,
545     so you really really should check the return value of C<aio_sendfile> -
546 root 1.262 fewer bytes than expected might have been transferred.
547 root 1.35
548 root 1.106
549 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
550 root 1.1
551 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
552 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
553     argument specifies the starting point from which data is to be read and
554     C<$length> specifies the number of bytes to be read. I/O is performed in
555     whole pages, so that offset is effectively rounded down to a page boundary
556     and bytes are read up to the next page boundary greater than or equal to
557 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
558 root 1.1 file. The current file offset of the file is left unchanged.
559    
560 root 1.261 If that syscall doesn't exist (likely if your kernel isn't Linux) it will
561     be emulated by simply reading the data, which would have a similar effect.
562 root 1.26
563 root 1.106
564 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
565 root 1.1
566 root 1.40 =item aio_lstat $fh, $callback->($status)
567 root 1.1
568 root 1.294 Works almost exactly like perl's C<stat> or C<lstat> in void context. The
569     callback will be called after the stat and the results will be available
570     using C<stat _> or C<-s _> and other tests (with the exception of C<-B>
571     and C<-T>).
572 root 1.1
573     The pathname passed to C<aio_stat> must be absolute. See API NOTES, above,
574     for an explanation.
575    
576     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
577     error when stat'ing a large file, the results will be silently truncated
578     unless perl itself is compiled with large file support.
579    
580 root 1.187 To help interpret the mode and dev/rdev stat values, IO::AIO offers the
581     following constants and functions (if not implemented, the constants will
582     be C<0> and the functions will either C<croak> or fall back on traditional
583     behaviour).
584    
585     C<S_IFMT>, C<S_IFIFO>, C<S_IFCHR>, C<S_IFBLK>, C<S_IFLNK>, C<S_IFREG>,
586     C<S_IFDIR>, C<S_IFWHT>, C<S_IFSOCK>, C<IO::AIO::major $dev_t>,
587     C<IO::AIO::minor $dev_t>, C<IO::AIO::makedev $major, $minor>.
588    
589 root 1.289 To access higher resolution stat timestamps, see L<SUBSECOND STAT TIME
590     ACCESS>.
591    
592 root 1.1 Example: Print the length of F</etc/passwd>:
593    
594     aio_stat "/etc/passwd", sub {
595     $_[0] and die "stat failed: $!";
596     print "size is ", -s _, "\n";
597     };
598    
599 root 1.106
600 root 1.175 =item aio_statvfs $fh_or_path, $callback->($statvfs)
601 root 1.172
602     Works like the POSIX C<statvfs> or C<fstatvfs> syscalls, depending on
603     whether a file handle or path was passed.
604    
605     On success, the callback is passed a hash reference with the following
606     members: C<bsize>, C<frsize>, C<blocks>, C<bfree>, C<bavail>, C<files>,
607     C<ffree>, C<favail>, C<fsid>, C<flag> and C<namemax>. On failure, C<undef>
608     is passed.
609    
610     The following POSIX IO::AIO::ST_* constants are defined: C<ST_RDONLY> and
611     C<ST_NOSUID>.
612    
613     The following non-POSIX IO::AIO::ST_* flag masks are defined to
614     their correct value when available, or to C<0> on systems that do
615     not support them: C<ST_NODEV>, C<ST_NOEXEC>, C<ST_SYNCHRONOUS>,
616     C<ST_MANDLOCK>, C<ST_WRITE>, C<ST_APPEND>, C<ST_IMMUTABLE>, C<ST_NOATIME>,
617     C<ST_NODIRATIME> and C<ST_RELATIME>.
618    
619     Example: stat C</wd> and dump out the data if successful.
620    
621     aio_statvfs "/wd", sub {
622     my $f = $_[0]
623     or die "statvfs: $!";
624    
625     use Data::Dumper;
626     say Dumper $f;
627     };
628    
629     # result:
630     {
631     bsize => 1024,
632     bfree => 4333064312,
633     blocks => 10253828096,
634     files => 2050765568,
635     flag => 4096,
636     favail => 2042092649,
637     bavail => 4333064312,
638     ffree => 2042092649,
639     namemax => 255,
640     frsize => 1024,
641     fsid => 1810
642     }
643    
644 root 1.106 =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
645    
646     Works like perl's C<utime> function (including the special case of $atime
647     and $mtime being undef). Fractional times are supported if the underlying
648     syscalls support them.
649    
650 root 1.294 When called with a pathname, uses utimensat(2) or utimes(2) if available,
651     otherwise utime(2). If called on a file descriptor, uses futimens(2)
652     or futimes(2) if available, otherwise returns ENOSYS, so this is not
653     portable.
654 root 1.106
655     Examples:
656    
657 root 1.107 # set atime and mtime to current time (basically touch(1)):
658 root 1.106 aio_utime "path", undef, undef;
659     # set atime to current time and mtime to beginning of the epoch:
660     aio_utime "path", time, undef; # undef==0
661    
662    
663     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
664    
665     Works like perl's C<chown> function, except that C<undef> for either $uid
666     or $gid is being interpreted as "do not change" (but -1 can also be used).
667    
668     Examples:
669    
670     # same as "chown root path" in the shell:
671     aio_chown "path", 0, -1;
672     # same as above:
673     aio_chown "path", 0, undef;
674    
675    
676 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
677    
678     Works like truncate(2) or ftruncate(2).
679    
680    
681 root 1.229 =item aio_allocate $fh, $mode, $offset, $len, $callback->($status)
682    
683 root 1.249 Allocates or frees disk space according to the C<$mode> argument. See the
684     linux C<fallocate> documentation for details.
685 root 1.229
686 root 1.252 C<$mode> is usually C<0> or C<IO::AIO::FALLOC_FL_KEEP_SIZE> to allocate
687     space, or C<IO::AIO::FALLOC_FL_PUNCH_HOLE | IO::AIO::FALLOC_FL_KEEP_SIZE>,
688     to deallocate a file range.
689    
690     IO::AIO also supports C<FALLOC_FL_COLLAPSE_RANGE>, to remove a range
691 root 1.273 (without leaving a hole), C<FALLOC_FL_ZERO_RANGE>, to zero a range,
692     C<FALLOC_FL_INSERT_RANGE> to insert a range and C<FALLOC_FL_UNSHARE_RANGE>
693     to unshare shared blocks (see your L<fallocate(2)> manpage).
694 root 1.229
695     The file system block size used by C<fallocate> is presumably the
696 root 1.273 C<f_bsize> returned by C<statvfs>, but different filesystems and filetypes
697     can dictate other limitations.
698 root 1.229
699     If C<fallocate> isn't available or cannot be emulated (currently no
700     emulation will be attempted), passes C<-1> and sets C<$!> to C<ENOSYS>.
701    
702    
703 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
704    
705     Works like perl's C<chmod> function.
706    
707    
708 root 1.40 =item aio_unlink $pathname, $callback->($status)
709 root 1.1
710     Asynchronously unlink (delete) a file and call the callback with the
711     result code.
712    
713 root 1.106
714 root 1.209 =item aio_mknod $pathname, $mode, $dev, $callback->($status)
715 root 1.82
716 root 1.86 [EXPERIMENTAL]
717    
718 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
719    
720 root 1.86 The only (POSIX-) portable way of calling this function is:
721 root 1.83
722 root 1.209 aio_mknod $pathname, IO::AIO::S_IFIFO | $mode, 0, sub { ...
723 root 1.82
724 root 1.187 See C<aio_stat> for info about some potentially helpful extra constants
725     and functions.
726 root 1.106
727 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
728    
729     Asynchronously create a new link to the existing object at C<$srcpath> at
730     the path C<$dstpath> and call the callback with the result code.
731    
732 root 1.106
733 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
734    
735     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
736     the path C<$dstpath> and call the callback with the result code.
737    
738 root 1.106
739 root 1.209 =item aio_readlink $pathname, $callback->($link)
740 root 1.90
741     Asynchronously read the symlink specified by C<$path> and pass it to
742     the callback. If an error occurs, nothing or undef gets passed to the
743     callback.
744    
745 root 1.106
746 root 1.209 =item aio_realpath $pathname, $callback->($path)
747 root 1.201
748     Asynchronously make the path absolute and resolve any symlinks in
749 root 1.239 C<$path>. The resulting path only consists of directories (same as
750 root 1.202 L<Cwd::realpath>).
751 root 1.201
752     This request can be used to get the absolute path of the current working
753     directory by passing it a path of F<.> (a single dot).
754    
755    
756 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
757    
758     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
759     rename(2) and call the callback with the result code.
760    
761 root 1.241 On systems that support the AIO::WD working directory abstraction
762     natively, the case C<[$wd, "."]> as C<$srcpath> is specialcased - instead
763     of failing, C<rename> is called on the absolute path of C<$wd>.
764    
765 root 1.106
766 root 1.270 =item aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
767    
768     Basically a version of C<aio_rename> with an additional C<$flags>
769     argument. Calling this with C<$flags=0> is the same as calling
770     C<aio_rename>.
771    
772     Non-zero flags are currently only supported on GNU/Linux systems that
773     support renameat2. Other systems fail with C<ENOSYS> in this case.
774    
775     The following constants are available (missing ones are, as usual C<0>),
776     see renameat2(2) for details:
777    
778     C<IO::AIO::RENAME_NOREPLACE>, C<IO::AIO::RENAME_EXCHANGE>
779     and C<IO::AIO::RENAME_WHITEOUT>.
780    
781    
782 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
783    
784     Asynchronously mkdir (create) a directory and call the callback with
785     the result code. C<$mode> will be modified by the umask at the time the
786     request is executed, so do not change your umask.
787    
788 root 1.106
789 root 1.40 =item aio_rmdir $pathname, $callback->($status)
790 root 1.27
791     Asynchronously rmdir (delete) a directory and call the callback with the
792     result code.
793    
794 root 1.241 On systems that support the AIO::WD working directory abstraction
795     natively, the case C<[$wd, "."]> is specialcased - instead of failing,
796     C<rmdir> is called on the absolute path of C<$wd>.
797    
798 root 1.106
799 root 1.46 =item aio_readdir $pathname, $callback->($entries)
800 root 1.37
801     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
802     directory (i.e. opendir + readdir + closedir). The entries will not be
803     sorted, and will B<NOT> include the C<.> and C<..> entries.
804    
805 root 1.148 The callback is passed a single argument which is either C<undef> or an
806     array-ref with the filenames.
807    
808    
809     =item aio_readdirx $pathname, $flags, $callback->($entries, $flags)
810    
811 root 1.207 Quite similar to C<aio_readdir>, but the C<$flags> argument allows one to
812     tune behaviour and output format. In case of an error, C<$entries> will be
813 root 1.148 C<undef>.
814    
815     The flags are a combination of the following constants, ORed together (the
816     flags will also be passed to the callback, possibly modified):
817    
818     =over 4
819    
820 root 1.150 =item IO::AIO::READDIR_DENTS
821 root 1.148
822 root 1.284 Normally the callback gets an arrayref consisting of names only (as
823     with C<aio_readdir>). If this flag is set, then the callback gets an
824     arrayref with C<[$name, $type, $inode]> arrayrefs, each describing a
825     single directory entry in more detail:
826 root 1.148
827     C<$name> is the name of the entry.
828    
829 root 1.150 C<$type> is one of the C<IO::AIO::DT_xxx> constants:
830 root 1.148
831 root 1.150 C<IO::AIO::DT_UNKNOWN>, C<IO::AIO::DT_FIFO>, C<IO::AIO::DT_CHR>, C<IO::AIO::DT_DIR>,
832     C<IO::AIO::DT_BLK>, C<IO::AIO::DT_REG>, C<IO::AIO::DT_LNK>, C<IO::AIO::DT_SOCK>,
833     C<IO::AIO::DT_WHT>.
834 root 1.148
835 root 1.284 C<IO::AIO::DT_UNKNOWN> means just that: readdir does not know. If you need
836     to know, you have to run stat yourself. Also, for speed/memory reasons,
837     the C<$type> scalars are read-only: you must not modify them.
838 root 1.148
839 root 1.150 C<$inode> is the inode number (which might not be exact on systems with 64
840 root 1.155 bit inode numbers and 32 bit perls). This field has unspecified content on
841     systems that do not deliver the inode information.
842 root 1.150
843     =item IO::AIO::READDIR_DIRS_FIRST
844 root 1.148
845     When this flag is set, then the names will be returned in an order where
846 root 1.193 likely directories come first, in optimal stat order. This is useful when
847     you need to quickly find directories, or you want to find all directories
848     while avoiding to stat() each entry.
849 root 1.148
850 root 1.149 If the system returns type information in readdir, then this is used
851 root 1.193 to find directories directly. Otherwise, likely directories are names
852     beginning with ".", or otherwise names with no dots, of which names with
853 root 1.149 short names are tried first.
854    
855 root 1.150 =item IO::AIO::READDIR_STAT_ORDER
856 root 1.148
857     When this flag is set, then the names will be returned in an order
858 root 1.284 suitable for stat()'ing each one. That is, when you plan to stat() most or
859     all files in the given directory, then the returned order will likely be
860     faster.
861    
862     If both this flag and C<IO::AIO::READDIR_DIRS_FIRST> are specified,
863     then the likely dirs come first, resulting in a less optimal stat order
864     for stat'ing all entries, but likely a more optimal order for finding
865     subdirectories.
866 root 1.148
867 root 1.150 =item IO::AIO::READDIR_FOUND_UNKNOWN
868 root 1.148
869     This flag should not be set when calling C<aio_readdirx>. Instead, it
870     is being set by C<aio_readdirx>, when any of the C<$type>'s found were
871 root 1.207 C<IO::AIO::DT_UNKNOWN>. The absence of this flag therefore indicates that all
872 root 1.148 C<$type>'s are known, which can be used to speed up some algorithms.
873    
874     =back
875 root 1.37
876 root 1.106
877 root 1.279 =item aio_slurp $pathname, $offset, $length, $data, $callback->($status)
878    
879     Opens, reads and closes the given file. The data is put into C<$data>,
880     which is resized as required.
881    
882     If C<$offset> is negative, then it is counted from the end of the file.
883    
884     If C<$length> is zero, then the remaining length of the file is
885     used. Also, in this case, the same limitations to modifying C<$data> apply
886     as when IO::AIO::mmap is used, i.e. it must only be modified in-place
887     with C<substr>. If the size of the file is known, specifying a non-zero
888     C<$length> results in a performance advantage.
889    
890     This request is similar to the older C<aio_load> request, but since it is
891     a single request, it might be more efficient to use.
892    
893     Example: load F</etc/passwd> into C<$passwd>.
894    
895     my $passwd;
896     aio_slurp "/etc/passwd", 0, 0, $passwd, sub {
897     $_[0] >= 0
898     or die "/etc/passwd: $!\n";
899    
900     printf "/etc/passwd is %d bytes long, and contains:\n", length $passwd;
901     print $passwd;
902     };
903     IO::AIO::flush;
904    
905    
906 root 1.209 =item aio_load $pathname, $data, $callback->($status)
907 root 1.98
908     This is a composite request that tries to fully load the given file into
909     memory. Status is the same as with aio_read.
910    
911 root 1.279 Using C<aio_slurp> might be more efficient, as it is a single request.
912    
913 root 1.98 =cut
914    
915     sub aio_load($$;$) {
916 root 1.123 my ($path, undef, $cb) = @_;
917     my $data = \$_[1];
918 root 1.98
919 root 1.123 my $pri = aioreq_pri;
920     my $grp = aio_group $cb;
921    
922     aioreq_pri $pri;
923     add $grp aio_open $path, O_RDONLY, 0, sub {
924     my $fh = shift
925     or return $grp->result (-1);
926 root 1.98
927     aioreq_pri $pri;
928 root 1.123 add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
929     $grp->result ($_[0]);
930 root 1.98 };
931 root 1.123 };
932 root 1.98
933 root 1.123 $grp
934 root 1.98 }
935    
936 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
937    
938     Try to copy the I<file> (directories not supported as either source or
939     destination) from C<$srcpath> to C<$dstpath> and call the callback with
940 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
941 root 1.82
942 root 1.275 Existing destination files will be truncated.
943    
944 root 1.134 This is a composite request that creates the destination file with
945 root 1.82 mode 0200 and copies the contents of the source file into it using
946     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
947     uid/gid, in that order.
948    
949     If an error occurs, the partial destination file will be unlinked, if
950     possible, except when setting atime, mtime, access mode and uid/gid, where
951     errors are being ignored.
952    
953     =cut
954    
955     sub aio_copy($$;$) {
956 root 1.123 my ($src, $dst, $cb) = @_;
957 root 1.82
958 root 1.123 my $pri = aioreq_pri;
959     my $grp = aio_group $cb;
960 root 1.82
961 root 1.123 aioreq_pri $pri;
962     add $grp aio_open $src, O_RDONLY, 0, sub {
963     if (my $src_fh = $_[0]) {
964 root 1.166 my @stat = stat $src_fh; # hmm, might block over nfs?
965 root 1.95
966 root 1.123 aioreq_pri $pri;
967     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
968     if (my $dst_fh = $_[0]) {
969     aioreq_pri $pri;
970     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
971     if ($_[0] == $stat[7]) {
972     $grp->result (0);
973     close $src_fh;
974    
975 root 1.147 my $ch = sub {
976     aioreq_pri $pri;
977     add $grp aio_chmod $dst_fh, $stat[2] & 07777, sub {
978     aioreq_pri $pri;
979     add $grp aio_chown $dst_fh, $stat[4], $stat[5], sub {
980     aioreq_pri $pri;
981     add $grp aio_close $dst_fh;
982     }
983     };
984     };
985 root 1.123
986     aioreq_pri $pri;
987 root 1.147 add $grp aio_utime $dst_fh, $stat[8], $stat[9], sub {
988     if ($_[0] < 0 && $! == ENOSYS) {
989     aioreq_pri $pri;
990     add $grp aio_utime $dst, $stat[8], $stat[9], $ch;
991     } else {
992     $ch->();
993     }
994     };
995 root 1.123 } else {
996     $grp->result (-1);
997     close $src_fh;
998     close $dst_fh;
999    
1000     aioreq $pri;
1001     add $grp aio_unlink $dst;
1002     }
1003     };
1004     } else {
1005     $grp->result (-1);
1006     }
1007     },
1008 root 1.82
1009 root 1.123 } else {
1010     $grp->result (-1);
1011     }
1012     };
1013 root 1.82
1014 root 1.123 $grp
1015 root 1.82 }
1016    
1017     =item aio_move $srcpath, $dstpath, $callback->($status)
1018    
1019     Try to move the I<file> (directories not supported as either source or
1020     destination) from C<$srcpath> to C<$dstpath> and call the callback with
1021 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
1022 root 1.82
1023 root 1.137 This is a composite request that tries to rename(2) the file first; if
1024     rename fails with C<EXDEV>, it copies the file with C<aio_copy> and, if
1025     that is successful, unlinks the C<$srcpath>.
1026 root 1.82
1027     =cut
1028    
1029     sub aio_move($$;$) {
1030 root 1.123 my ($src, $dst, $cb) = @_;
1031 root 1.82
1032 root 1.123 my $pri = aioreq_pri;
1033     my $grp = aio_group $cb;
1034 root 1.82
1035 root 1.123 aioreq_pri $pri;
1036     add $grp aio_rename $src, $dst, sub {
1037     if ($_[0] && $! == EXDEV) {
1038     aioreq_pri $pri;
1039     add $grp aio_copy $src, $dst, sub {
1040     $grp->result ($_[0]);
1041 root 1.95
1042 root 1.196 unless ($_[0]) {
1043 root 1.123 aioreq_pri $pri;
1044     add $grp aio_unlink $src;
1045     }
1046     };
1047     } else {
1048     $grp->result ($_[0]);
1049     }
1050     };
1051 root 1.82
1052 root 1.123 $grp
1053 root 1.82 }
1054    
1055 root 1.209 =item aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
1056 root 1.40
1057 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
1058 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
1059     names, directories you can recurse into (directories), and ones you cannot
1060     recurse into (everything else, including symlinks to directories).
1061 root 1.52
1062 root 1.277 C<aio_scandir> is a composite request that generates many sub requests.
1063 root 1.61 C<$maxreq> specifies the maximum number of outstanding aio requests that
1064     this function generates. If it is C<< <= 0 >>, then a suitable default
1065 root 1.81 will be chosen (currently 4).
1066 root 1.40
1067     On error, the callback is called without arguments, otherwise it receives
1068     two array-refs with path-relative entry names.
1069    
1070     Example:
1071    
1072     aio_scandir $dir, 0, sub {
1073     my ($dirs, $nondirs) = @_;
1074     print "real directories: @$dirs\n";
1075     print "everything else: @$nondirs\n";
1076     };
1077    
1078     Implementation notes.
1079    
1080     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
1081    
1082 root 1.149 If readdir returns file type information, then this is used directly to
1083     find directories.
1084    
1085     Otherwise, after reading the directory, the modification time, size etc.
1086     of the directory before and after the readdir is checked, and if they
1087     match (and isn't the current time), the link count will be used to decide
1088     how many entries are directories (if >= 2). Otherwise, no knowledge of the
1089     number of subdirectories will be assumed.
1090    
1091     Then entries will be sorted into likely directories a non-initial dot
1092     currently) and likely non-directories (see C<aio_readdirx>). Then every
1093     entry plus an appended C</.> will be C<stat>'ed, likely directories first,
1094     in order of their inode numbers. If that succeeds, it assumes that the
1095     entry is a directory or a symlink to directory (which will be checked
1096 root 1.207 separately). This is often faster than stat'ing the entry itself because
1097 root 1.52 filesystems might detect the type of the entry without reading the inode
1098 root 1.149 data (e.g. ext2fs filetype feature), even on systems that cannot return
1099     the filetype information on readdir.
1100 root 1.52
1101     If the known number of directories (link count - 2) has been reached, the
1102     rest of the entries is assumed to be non-directories.
1103    
1104     This only works with certainty on POSIX (= UNIX) filesystems, which
1105     fortunately are the vast majority of filesystems around.
1106    
1107     It will also likely work on non-POSIX filesystems with reduced efficiency
1108     as those tend to return 0 or 1 as link counts, which disables the
1109     directory counting heuristic.
1110 root 1.40
1111     =cut
1112    
1113 root 1.100 sub aio_scandir($$;$) {
1114 root 1.123 my ($path, $maxreq, $cb) = @_;
1115    
1116     my $pri = aioreq_pri;
1117 root 1.40
1118 root 1.123 my $grp = aio_group $cb;
1119 root 1.80
1120 root 1.123 $maxreq = 4 if $maxreq <= 0;
1121 root 1.55
1122 root 1.210 # get a wd object
1123 root 1.123 aioreq_pri $pri;
1124 root 1.210 add $grp aio_wd $path, sub {
1125 root 1.212 $_[0]
1126     or return $grp->result ();
1127    
1128 root 1.210 my $wd = [shift, "."];
1129 root 1.40
1130 root 1.210 # stat once
1131 root 1.80 aioreq_pri $pri;
1132 root 1.210 add $grp aio_stat $wd, sub {
1133     return $grp->result () if $_[0];
1134     my $now = time;
1135     my $hash1 = join ":", (stat _)[0,1,3,7,9];
1136 root 1.299 my $rdxflags = READDIR_DIRS_FIRST;
1137    
1138     if ((stat _)[3] < 2) {
1139     # at least one non-POSIX filesystem exists
1140     # that returns useful DT_type values: btrfs,
1141     # so optimise for this here by requesting dents
1142     $rdxflags |= READDIR_DENTS;
1143     }
1144 root 1.40
1145 root 1.210 # read the directory entries
1146 root 1.80 aioreq_pri $pri;
1147 root 1.299 add $grp aio_readdirx $wd, $rdxflags, sub {
1148     my ($entries, $flags) = @_
1149 root 1.210 or return $grp->result ();
1150    
1151 root 1.299 if ($rdxflags & READDIR_DENTS) {
1152     # if we requested type values, see if we can use them directly.
1153    
1154     # if there were any DT_UNKNOWN entries then we assume we
1155     # don't know. alternatively, we could assume that if we get
1156     # one DT_DIR, then all directories are indeed marked with
1157     # DT_DIR, but this seems not required for btrfs, and this
1158     # is basically the "btrfs can't get it's act together" code
1159     # branch.
1160     unless ($flags & READDIR_FOUND_UNKNOWN) {
1161     # now we have valid DT_ information for all entries,
1162     # so use it as an optimisation without further stat's.
1163     # they must also all be at the beginning of @$entries
1164     # by now.
1165    
1166     my $dirs;
1167    
1168     if (@$entries) {
1169     for (0 .. $#$entries) {
1170     if ($entries->[$_][1] != DT_DIR) {
1171     # splice out directories
1172     $dirs = [splice @$entries, 0, $_];
1173     last;
1174     }
1175     }
1176    
1177     # if we didn't find any non-dir, then all entries are dirs
1178     unless ($dirs) {
1179     ($dirs, $entries) = ($entries, []);
1180     }
1181     } else {
1182     # directory is empty, so there are no sbdirs
1183     $dirs = [];
1184     }
1185    
1186     # either splice'd the directories out or the dir was empty.
1187     # convert dents to filenames
1188     $_ = $_->[0] for @$dirs;
1189     $_ = $_->[0] for @$entries;
1190    
1191     return $grp->result ($dirs, $entries);
1192     }
1193    
1194     # cannot use, so return to our old ways
1195     # by pretending we only scanned for names.
1196     $_ = $_->[0] for @$entries;
1197     }
1198    
1199 root 1.210 # stat the dir another time
1200     aioreq_pri $pri;
1201     add $grp aio_stat $wd, sub {
1202     my $hash2 = join ":", (stat _)[0,1,3,7,9];
1203 root 1.95
1204 root 1.210 my $ndirs;
1205 root 1.95
1206 root 1.210 # take the slow route if anything looks fishy
1207     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
1208     $ndirs = -1;
1209     } else {
1210     # if nlink == 2, we are finished
1211     # for non-posix-fs's, we rely on nlink < 2
1212     $ndirs = (stat _)[3] - 2
1213     or return $grp->result ([], $entries);
1214     }
1215 root 1.123
1216 root 1.210 my (@dirs, @nondirs);
1217 root 1.40
1218 root 1.210 my $statgrp = add $grp aio_group sub {
1219     $grp->result (\@dirs, \@nondirs);
1220     };
1221 root 1.40
1222 root 1.210 limit $statgrp $maxreq;
1223     feed $statgrp sub {
1224     return unless @$entries;
1225     my $entry = shift @$entries;
1226    
1227     aioreq_pri $pri;
1228     $wd->[1] = "$entry/.";
1229     add $statgrp aio_stat $wd, sub {
1230     if ($_[0] < 0) {
1231     push @nondirs, $entry;
1232     } else {
1233     # need to check for real directory
1234     aioreq_pri $pri;
1235     $wd->[1] = $entry;
1236     add $statgrp aio_lstat $wd, sub {
1237     if (-d _) {
1238     push @dirs, $entry;
1239    
1240     unless (--$ndirs) {
1241     push @nondirs, @$entries;
1242     feed $statgrp;
1243     }
1244     } else {
1245     push @nondirs, $entry;
1246 root 1.74 }
1247 root 1.40 }
1248     }
1249 root 1.210 };
1250 root 1.74 };
1251 root 1.40 };
1252     };
1253     };
1254 root 1.123 };
1255 root 1.55
1256 root 1.123 $grp
1257 root 1.40 }
1258    
1259 root 1.209 =item aio_rmtree $pathname, $callback->($status)
1260 root 1.99
1261 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
1262 root 1.239 status of the final C<rmdir> only. This is a composite request that
1263 root 1.100 uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1264     everything else.
1265 root 1.99
1266     =cut
1267    
1268     sub aio_rmtree;
1269 root 1.100 sub aio_rmtree($;$) {
1270 root 1.123 my ($path, $cb) = @_;
1271 root 1.99
1272 root 1.123 my $pri = aioreq_pri;
1273     my $grp = aio_group $cb;
1274 root 1.99
1275 root 1.123 aioreq_pri $pri;
1276     add $grp aio_scandir $path, 0, sub {
1277     my ($dirs, $nondirs) = @_;
1278 root 1.99
1279 root 1.123 my $dirgrp = aio_group sub {
1280     add $grp aio_rmdir $path, sub {
1281     $grp->result ($_[0]);
1282 root 1.99 };
1283 root 1.123 };
1284 root 1.99
1285 root 1.123 (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
1286     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
1287 root 1.99
1288 root 1.123 add $grp $dirgrp;
1289     };
1290 root 1.99
1291 root 1.123 $grp
1292 root 1.99 }
1293    
1294 root 1.259 =item aio_fcntl $fh, $cmd, $arg, $callback->($status)
1295    
1296     =item aio_ioctl $fh, $request, $buf, $callback->($status)
1297    
1298     These work just like the C<fcntl> and C<ioctl> built-in functions, except
1299     they execute asynchronously and pass the return value to the callback.
1300    
1301     Both calls can be used for a lot of things, some of which make more sense
1302     to run asynchronously in their own thread, while some others make less
1303     sense. For example, calls that block waiting for external events, such
1304     as locking, will also lock down an I/O thread while it is waiting, which
1305     can deadlock the whole I/O system. At the same time, there might be no
1306     alternative to using a thread to wait.
1307    
1308     So in general, you should only use these calls for things that do
1309     (filesystem) I/O, not for things that wait for other events (network,
1310     other processes), although if you are careful and know what you are doing,
1311     you still can.
1312    
1313 root 1.303 The following constants are available and can be used for normal C<ioctl>
1314     and C<fcntl> as well (missing ones are, as usual C<0>):
1315 root 1.264
1316 root 1.271 C<F_DUPFD_CLOEXEC>,
1317    
1318     C<F_OFD_GETLK>, C<F_OFD_SETLK>, C<F_OFD_GETLKW>,
1319    
1320 root 1.264 C<FIFREEZE>, C<FITHAW>, C<FITRIM>, C<FICLONE>, C<FICLONERANGE>, C<FIDEDUPERANGE>.
1321    
1322 root 1.303 C<F_ADD_SEALS>, C<F_GET_SEALS>, C<F_SEAL_SEAL>, C<F_SEAL_SHRINK>, C<F_SEAL_GROW> and
1323     C<F_SEAL_WRITE>.
1324    
1325 root 1.264 C<FS_IOC_GETFLAGS>, C<FS_IOC_SETFLAGS>, C<FS_IOC_GETVERSION>, C<FS_IOC_SETVERSION>,
1326     C<FS_IOC_FIEMAP>.
1327    
1328     C<FS_IOC_FSGETXATTR>, C<FS_IOC_FSSETXATTR>, C<FS_IOC_SET_ENCRYPTION_POLICY>,
1329     C<FS_IOC_GET_ENCRYPTION_PWSALT>, C<FS_IOC_GET_ENCRYPTION_POLICY>, C<FS_KEY_DESCRIPTOR_SIZE>.
1330    
1331     C<FS_SECRM_FL>, C<FS_UNRM_FL>, C<FS_COMPR_FL>, C<FS_SYNC_FL>, C<FS_IMMUTABLE_FL>,
1332     C<FS_APPEND_FL>, C<FS_NODUMP_FL>, C<FS_NOATIME_FL>, C<FS_DIRTY_FL>,
1333     C<FS_COMPRBLK_FL>, C<FS_NOCOMP_FL>, C<FS_ENCRYPT_FL>, C<FS_BTREE_FL>,
1334     C<FS_INDEX_FL>, C<FS_JOURNAL_DATA_FL>, C<FS_NOTAIL_FL>, C<FS_DIRSYNC_FL>, C<FS_TOPDIR_FL>,
1335     C<FS_FL_USER_MODIFIABLE>.
1336    
1337     C<FS_XFLAG_REALTIME>, C<FS_XFLAG_PREALLOC>, C<FS_XFLAG_IMMUTABLE>, C<FS_XFLAG_APPEND>,
1338     C<FS_XFLAG_SYNC>, C<FS_XFLAG_NOATIME>, C<FS_XFLAG_NODUMP>, C<FS_XFLAG_RTINHERIT>,
1339     C<FS_XFLAG_PROJINHERIT>, C<FS_XFLAG_NOSYMLINKS>, C<FS_XFLAG_EXTSIZE>, C<FS_XFLAG_EXTSZINHERIT>,
1340     C<FS_XFLAG_NODEFRAG>, C<FS_XFLAG_FILESTREAM>, C<FS_XFLAG_DAX>, C<FS_XFLAG_HASATTR>,
1341    
1342 root 1.119 =item aio_sync $callback->($status)
1343    
1344     Asynchronously call sync and call the callback when finished.
1345    
1346 root 1.40 =item aio_fsync $fh, $callback->($status)
1347 root 1.1
1348     Asynchronously call fsync on the given filehandle and call the callback
1349     with the fsync result code.
1350    
1351 root 1.40 =item aio_fdatasync $fh, $callback->($status)
1352 root 1.1
1353     Asynchronously call fdatasync on the given filehandle and call the
1354 root 1.26 callback with the fdatasync result code.
1355    
1356     If this call isn't available because your OS lacks it or it couldn't be
1357     detected, it will be emulated by calling C<fsync> instead.
1358 root 1.1
1359 root 1.206 =item aio_syncfs $fh, $callback->($status)
1360    
1361     Asynchronously call the syncfs syscall to sync the filesystem associated
1362     to the given filehandle and call the callback with the syncfs result
1363     code. If syncfs is not available, calls sync(), but returns C<-1> and sets
1364     errno to C<ENOSYS> nevertheless.
1365    
1366 root 1.142 =item aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
1367    
1368     Sync the data portion of the file specified by C<$offset> and C<$length>
1369     to disk (but NOT the metadata), by calling the Linux-specific
1370     sync_file_range call. If sync_file_range is not available or it returns
1371     ENOSYS, then fdatasync or fsync is being substituted.
1372    
1373     C<$flags> can be a combination of C<IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE>,
1374     C<IO::AIO::SYNC_FILE_RANGE_WRITE> and
1375     C<IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER>: refer to the sync_file_range
1376     manpage for details.
1377    
1378 root 1.209 =item aio_pathsync $pathname, $callback->($status)
1379 root 1.120
1380     This request tries to open, fsync and close the given path. This is a
1381 root 1.135 composite request intended to sync directories after directory operations
1382 root 1.120 (E.g. rename). This might not work on all operating systems or have any
1383     specific effect, but usually it makes sure that directory changes get
1384     written to disc. It works for anything that can be opened for read-only,
1385     not just directories.
1386    
1387 root 1.162 Future versions of this function might fall back to other methods when
1388     C<fsync> on the directory fails (such as calling C<sync>).
1389    
1390 root 1.120 Passes C<0> when everything went ok, and C<-1> on error.
1391    
1392     =cut
1393    
1394     sub aio_pathsync($;$) {
1395 root 1.123 my ($path, $cb) = @_;
1396    
1397     my $pri = aioreq_pri;
1398     my $grp = aio_group $cb;
1399 root 1.120
1400 root 1.123 aioreq_pri $pri;
1401     add $grp aio_open $path, O_RDONLY, 0, sub {
1402     my ($fh) = @_;
1403     if ($fh) {
1404     aioreq_pri $pri;
1405     add $grp aio_fsync $fh, sub {
1406     $grp->result ($_[0]);
1407 root 1.120
1408     aioreq_pri $pri;
1409 root 1.123 add $grp aio_close $fh;
1410     };
1411     } else {
1412     $grp->result (-1);
1413     }
1414     };
1415 root 1.120
1416 root 1.123 $grp
1417 root 1.120 }
1418    
1419 root 1.268 =item aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
1420 root 1.170
1421     This is a rather advanced IO::AIO call, which only works on mmap(2)ed
1422 root 1.176 scalars (see the C<IO::AIO::mmap> function, although it also works on data
1423     scalars managed by the L<Sys::Mmap> or L<Mmap> modules, note that the
1424     scalar must only be modified in-place while an aio operation is pending on
1425     it).
1426 root 1.170
1427     It calls the C<msync> function of your OS, if available, with the memory
1428     area starting at C<$offset> in the string and ending C<$length> bytes
1429     later. If C<$length> is negative, counts from the end, and if C<$length>
1430     is C<undef>, then it goes till the end of the string. The flags can be
1431 root 1.268 either C<IO::AIO::MS_ASYNC> or C<IO::AIO::MS_SYNC>, plus an optional
1432     C<IO::AIO::MS_INVALIDATE>.
1433 root 1.170
1434     =item aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1435    
1436     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1437     scalars.
1438    
1439     It touches (reads or writes) all memory pages in the specified
1440 root 1.239 range inside the scalar. All caveats and parameters are the same
1441 root 1.170 as for C<aio_msync>, above, except for flags, which must be either
1442     C<0> (which reads all pages and ensures they are instantiated) or
1443 root 1.239 C<IO::AIO::MT_MODIFY>, which modifies the memory pages (by reading and
1444 root 1.170 writing an octet from it, which dirties the page).
1445    
1446 root 1.182 =item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1447    
1448     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1449     scalars.
1450    
1451     It reads in all the pages of the underlying storage into memory (if any)
1452     and locks them, so they are not getting swapped/paged out or removed.
1453    
1454     If C<$length> is undefined, then the scalar will be locked till the end.
1455    
1456     On systems that do not implement C<mlock>, this function returns C<-1>
1457     and sets errno to C<ENOSYS>.
1458    
1459     Note that the corresponding C<munlock> is synchronous and is
1460     documented under L<MISCELLANEOUS FUNCTIONS>.
1461    
1462 root 1.183 Example: open a file, mmap and mlock it - both will be undone when
1463     C<$data> gets destroyed.
1464    
1465     open my $fh, "<", $path or die "$path: $!";
1466     my $data;
1467     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1468     aio_mlock $data; # mlock in background
1469    
1470 root 1.182 =item aio_mlockall $flags, $callback->($status)
1471    
1472 root 1.297 Calls the C<mlockall> function with the given C<$flags> (a
1473     combination of C<IO::AIO::MCL_CURRENT>, C<IO::AIO::MCL_FUTURE> and
1474     C<IO::AIO::MCL_ONFAULT>).
1475 root 1.182
1476     On systems that do not implement C<mlockall>, this function returns C<-1>
1477 root 1.297 and sets errno to C<ENOSYS>. Similarly, flag combinations not supported
1478     by the system result in a return value of C<-1> with errno being set to
1479     C<EINVAL>.
1480 root 1.182
1481     Note that the corresponding C<munlockall> is synchronous and is
1482     documented under L<MISCELLANEOUS FUNCTIONS>.
1483    
1484 root 1.183 Example: asynchronously lock all current and future pages into memory.
1485    
1486     aio_mlockall IO::AIO::MCL_FUTURE;
1487    
1488 root 1.223 =item aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
1489    
1490 root 1.234 Queries the extents of the given file (by calling the Linux C<FIEMAP>
1491     ioctl, see L<http://cvs.schmorp.de/IO-AIO/doc/fiemap.txt> for details). If
1492     the ioctl is not available on your OS, then this request will fail with
1493 root 1.223 C<ENOSYS>.
1494    
1495     C<$start> is the starting offset to query extents for, C<$length> is the
1496     size of the range to query - if it is C<undef>, then the whole file will
1497     be queried.
1498    
1499     C<$flags> is a combination of flags (C<IO::AIO::FIEMAP_FLAG_SYNC> or
1500     C<IO::AIO::FIEMAP_FLAG_XATTR> - C<IO::AIO::FIEMAP_FLAGS_COMPAT> is also
1501     exported), and is normally C<0> or C<IO::AIO::FIEMAP_FLAG_SYNC> to query
1502     the data portion.
1503    
1504     C<$count> is the maximum number of extent records to return. If it is
1505 root 1.232 C<undef>, then IO::AIO queries all extents of the range. As a very special
1506 root 1.223 case, if it is C<0>, then the callback receives the number of extents
1507 root 1.232 instead of the extents themselves (which is unreliable, see below).
1508 root 1.223
1509     If an error occurs, the callback receives no arguments. The special
1510     C<errno> value C<IO::AIO::EBADR> is available to test for flag errors.
1511    
1512     Otherwise, the callback receives an array reference with extent
1513     structures. Each extent structure is an array reference itself, with the
1514     following members:
1515    
1516     [$logical, $physical, $length, $flags]
1517    
1518     Flags is any combination of the following flag values (typically either C<0>
1519 root 1.231 or C<IO::AIO::FIEMAP_EXTENT_LAST> (1)):
1520 root 1.223
1521     C<IO::AIO::FIEMAP_EXTENT_LAST>, C<IO::AIO::FIEMAP_EXTENT_UNKNOWN>,
1522     C<IO::AIO::FIEMAP_EXTENT_DELALLOC>, C<IO::AIO::FIEMAP_EXTENT_ENCODED>,
1523     C<IO::AIO::FIEMAP_EXTENT_DATA_ENCRYPTED>, C<IO::AIO::FIEMAP_EXTENT_NOT_ALIGNED>,
1524     C<IO::AIO::FIEMAP_EXTENT_DATA_INLINE>, C<IO::AIO::FIEMAP_EXTENT_DATA_TAIL>,
1525     C<IO::AIO::FIEMAP_EXTENT_UNWRITTEN>, C<IO::AIO::FIEMAP_EXTENT_MERGED> or
1526     C<IO::AIO::FIEMAP_EXTENT_SHARED>.
1527    
1528 root 1.278 At the time of this writing (Linux 3.2), this request is unreliable unless
1529 root 1.232 C<$count> is C<undef>, as the kernel has all sorts of bugs preventing
1530 root 1.278 it to return all extents of a range for files with a large number of
1531     extents. The code (only) works around all these issues if C<$count> is
1532     C<undef>.
1533 root 1.232
1534 root 1.58 =item aio_group $callback->(...)
1535 root 1.54
1536 root 1.55 This is a very special aio request: Instead of doing something, it is a
1537     container for other aio requests, which is useful if you want to bundle
1538 root 1.71 many requests into a single, composite, request with a definite callback
1539     and the ability to cancel the whole request with its subrequests.
1540 root 1.55
1541     Returns an object of class L<IO::AIO::GRP>. See its documentation below
1542     for more info.
1543    
1544     Example:
1545    
1546     my $grp = aio_group sub {
1547     print "all stats done\n";
1548     };
1549    
1550     add $grp
1551     (aio_stat ...),
1552     (aio_stat ...),
1553     ...;
1554    
1555 root 1.63 =item aio_nop $callback->()
1556    
1557     This is a special request - it does nothing in itself and is only used for
1558     side effects, such as when you want to add a dummy request to a group so
1559     that finishing the requests in the group depends on executing the given
1560     code.
1561    
1562 root 1.64 While this request does nothing, it still goes through the execution
1563     phase and still requires a worker thread. Thus, the callback will not
1564     be executed immediately but only after other requests in the queue have
1565     entered their execution phase. This can be used to measure request
1566     latency.
1567    
1568 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1569 root 1.54
1570     Mainly used for debugging and benchmarking, this aio request puts one of
1571     the request workers to sleep for the given time.
1572    
1573 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1574 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1575     immense (it blocks a thread for a long time) so do not use this function
1576     except to put your application under artificial I/O pressure.
1577 root 1.56
1578 root 1.5 =back
1579    
1580 root 1.209
1581     =head2 IO::AIO::WD - multiple working directories
1582    
1583     Your process only has one current working directory, which is used by all
1584     threads. This makes it hard to use relative paths (some other component
1585     could call C<chdir> at any time, and it is hard to control when the path
1586     will be used by IO::AIO).
1587    
1588     One solution for this is to always use absolute paths. This usually works,
1589     but can be quite slow (the kernel has to walk the whole path on every
1590     access), and can also be a hassle to implement.
1591    
1592     Newer POSIX systems have a number of functions (openat, fdopendir,
1593     futimensat and so on) that make it possible to specify working directories
1594     per operation.
1595    
1596     For portability, and because the clowns who "designed", or shall I write,
1597     perpetrated this new interface were obviously half-drunk, this abstraction
1598     cannot be perfect, though.
1599    
1600     IO::AIO allows you to convert directory paths into a so-called IO::AIO::WD
1601     object. This object stores the canonicalised, absolute version of the
1602     path, and on systems that allow it, also a directory file descriptor.
1603    
1604     Everywhere where a pathname is accepted by IO::AIO (e.g. in C<aio_stat>
1605     or C<aio_unlink>), one can specify an array reference with an IO::AIO::WD
1606 root 1.214 object and a pathname instead (or the IO::AIO::WD object alone, which
1607     gets interpreted as C<[$wd, "."]>). If the pathname is absolute, the
1608 root 1.213 IO::AIO::WD object is ignored, otherwise the pathname is resolved relative
1609 root 1.209 to that IO::AIO::WD object.
1610    
1611     For example, to get a wd object for F</etc> and then stat F<passwd>
1612     inside, you would write:
1613    
1614     aio_wd "/etc", sub {
1615     my $etcdir = shift;
1616    
1617     # although $etcdir can be undef on error, there is generally no reason
1618     # to check for errors here, as aio_stat will fail with ENOENT
1619     # when $etcdir is undef.
1620    
1621     aio_stat [$etcdir, "passwd"], sub {
1622     # yay
1623     };
1624     };
1625    
1626 root 1.250 The fact that C<aio_wd> is a request and not a normal function shows that
1627     creating an IO::AIO::WD object is itself a potentially blocking operation,
1628     which is why it is done asynchronously.
1629 root 1.214
1630     To stat the directory obtained with C<aio_wd> above, one could write
1631     either of the following three request calls:
1632    
1633     aio_lstat "/etc" , sub { ... # pathname as normal string
1634     aio_lstat [$wd, "."], sub { ... # "." relative to $wd (i.e. $wd itself)
1635     aio_lstat $wd , sub { ... # shorthand for the previous
1636 root 1.209
1637     As with normal pathnames, IO::AIO keeps a copy of the working directory
1638     object and the pathname string, so you could write the following without
1639     causing any issues due to C<$path> getting reused:
1640    
1641     my $path = [$wd, undef];
1642    
1643     for my $name (qw(abc def ghi)) {
1644     $path->[1] = $name;
1645     aio_stat $path, sub {
1646     # ...
1647     };
1648     }
1649    
1650     There are some caveats: when directories get renamed (or deleted), the
1651     pathname string doesn't change, so will point to the new directory (or
1652     nowhere at all), while the directory fd, if available on the system,
1653     will still point to the original directory. Most functions accepting a
1654     pathname will use the directory fd on newer systems, and the string on
1655 root 1.277 older systems. Some functions (such as C<aio_realpath>) will always rely on
1656     the string form of the pathname.
1657 root 1.209
1658 root 1.239 So this functionality is mainly useful to get some protection against
1659 root 1.209 C<chdir>, to easily get an absolute path out of a relative path for future
1660     reference, and to speed up doing many operations in the same directory
1661     (e.g. when stat'ing all files in a directory).
1662    
1663     The following functions implement this working directory abstraction:
1664    
1665     =over 4
1666    
1667     =item aio_wd $pathname, $callback->($wd)
1668    
1669     Asynchonously canonicalise the given pathname and convert it to an
1670     IO::AIO::WD object representing it. If possible and supported on the
1671     system, also open a directory fd to speed up pathname resolution relative
1672     to this working directory.
1673    
1674     If something goes wrong, then C<undef> is passwd to the callback instead
1675     of a working directory object and C<$!> is set appropriately. Since
1676     passing C<undef> as working directory component of a pathname fails the
1677     request with C<ENOENT>, there is often no need for error checking in the
1678     C<aio_wd> callback, as future requests using the value will fail in the
1679     expected way.
1680    
1681     =item IO::AIO::CWD
1682    
1683     This is a compiletime constant (object) that represents the process
1684     current working directory.
1685    
1686 root 1.239 Specifying this object as working directory object for a pathname is as if
1687     the pathname would be specified directly, without a directory object. For
1688     example, these calls are functionally identical:
1689 root 1.209
1690     aio_stat "somefile", sub { ... };
1691     aio_stat [IO::AIO::CWD, "somefile"], sub { ... };
1692    
1693     =back
1694    
1695 root 1.239 To recover the path associated with an IO::AIO::WD object, you can use
1696     C<aio_realpath>:
1697    
1698     aio_realpath $wd, sub {
1699     warn "path is $_[0]\n";
1700     };
1701    
1702 root 1.241 Currently, C<aio_statvfs> always, and C<aio_rename> and C<aio_rmdir>
1703     sometimes, fall back to using an absolue path.
1704 root 1.209
1705 root 1.53 =head2 IO::AIO::REQ CLASS
1706 root 1.52
1707     All non-aggregate C<aio_*> functions return an object of this class when
1708     called in non-void context.
1709    
1710     =over 4
1711    
1712 root 1.65 =item cancel $req
1713 root 1.52
1714     Cancels the request, if possible. Has the effect of skipping execution
1715     when entering the B<execute> state and skipping calling the callback when
1716     entering the the B<result> state, but will leave the request otherwise
1717 root 1.151 untouched (with the exception of readdir). That means that requests that
1718     currently execute will not be stopped and resources held by the request
1719     will not be freed prematurely.
1720 root 1.52
1721 root 1.65 =item cb $req $callback->(...)
1722    
1723     Replace (or simply set) the callback registered to the request.
1724    
1725 root 1.52 =back
1726    
1727 root 1.55 =head2 IO::AIO::GRP CLASS
1728    
1729     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1730     objects of this class, too.
1731    
1732     A IO::AIO::GRP object is a special request that can contain multiple other
1733     aio requests.
1734    
1735     You create one by calling the C<aio_group> constructing function with a
1736     callback that will be called when all contained requests have entered the
1737     C<done> state:
1738    
1739     my $grp = aio_group sub {
1740     print "all requests are done\n";
1741     };
1742    
1743     You add requests by calling the C<add> method with one or more
1744     C<IO::AIO::REQ> objects:
1745    
1746     $grp->add (aio_unlink "...");
1747    
1748 root 1.58 add $grp aio_stat "...", sub {
1749     $_[0] or return $grp->result ("error");
1750    
1751     # add another request dynamically, if first succeeded
1752     add $grp aio_open "...", sub {
1753     $grp->result ("ok");
1754     };
1755     };
1756 root 1.55
1757     This makes it very easy to create composite requests (see the source of
1758     C<aio_move> for an application) that work and feel like simple requests.
1759    
1760 root 1.62 =over 4
1761    
1762     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1763 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1764    
1765 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1766 root 1.59 only the request itself, but also all requests it contains.
1767 root 1.55
1768 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1769 root 1.55
1770 root 1.62 =item * You must not add requests to a group from within the group callback (or
1771 root 1.60 any later time).
1772    
1773 root 1.62 =back
1774    
1775 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1776     will finish very quickly. If they contain only requests that are in the
1777     C<done> state, they will also finish. Otherwise they will continue to
1778     exist.
1779    
1780 root 1.133 That means after creating a group you have some time to add requests
1781     (precisely before the callback has been invoked, which is only done within
1782     the C<poll_cb>). And in the callbacks of those requests, you can add
1783     further requests to the group. And only when all those requests have
1784     finished will the the group itself finish.
1785 root 1.57
1786 root 1.55 =over 4
1787    
1788 root 1.65 =item add $grp ...
1789    
1790 root 1.55 =item $grp->add (...)
1791    
1792 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1793     be added, including other groups, as long as you do not create circular
1794     dependencies.
1795    
1796     Returns all its arguments.
1797 root 1.55
1798 root 1.74 =item $grp->cancel_subs
1799    
1800     Cancel all subrequests and clears any feeder, but not the group request
1801     itself. Useful when you queued a lot of events but got a result early.
1802    
1803 root 1.168 The group request will finish normally (you cannot add requests to the
1804     group).
1805    
1806 root 1.58 =item $grp->result (...)
1807    
1808     Set the result value(s) that will be passed to the group callback when all
1809 root 1.120 subrequests have finished and set the groups errno to the current value
1810 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1811     no argument will be passed and errno is zero.
1812    
1813     =item $grp->errno ([$errno])
1814    
1815     Sets the group errno value to C<$errno>, or the current value of errno
1816     when the argument is missing.
1817    
1818     Every aio request has an associated errno value that is restored when
1819     the callback is invoked. This method lets you change this value from its
1820     default (0).
1821    
1822     Calling C<result> will also set errno, so make sure you either set C<$!>
1823     before the call to C<result>, or call c<errno> after it.
1824 root 1.58
1825 root 1.65 =item feed $grp $callback->($grp)
1826 root 1.60
1827     Sets a feeder/generator on this group: every group can have an attached
1828     generator that generates requests if idle. The idea behind this is that,
1829     although you could just queue as many requests as you want in a group,
1830 root 1.139 this might starve other requests for a potentially long time. For example,
1831 root 1.211 C<aio_scandir> might generate hundreds of thousands of C<aio_stat>
1832     requests, delaying any later requests for a long time.
1833 root 1.60
1834     To avoid this, and allow incremental generation of requests, you can
1835     instead a group and set a feeder on it that generates those requests. The
1836 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1837 root 1.60 below) requests active in the group itself and is expected to queue more
1838     requests.
1839    
1840 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1841     not impose any limits).
1842 root 1.60
1843 root 1.65 If the feed does not queue more requests when called, it will be
1844 root 1.60 automatically removed from the group.
1845    
1846 root 1.138 If the feed limit is C<0> when this method is called, it will be set to
1847     C<2> automatically.
1848 root 1.60
1849     Example:
1850    
1851     # stat all files in @files, but only ever use four aio requests concurrently:
1852    
1853     my $grp = aio_group sub { print "finished\n" };
1854 root 1.68 limit $grp 4;
1855 root 1.65 feed $grp sub {
1856 root 1.60 my $file = pop @files
1857     or return;
1858    
1859     add $grp aio_stat $file, sub { ... };
1860 root 1.65 };
1861 root 1.60
1862 root 1.68 =item limit $grp $num
1863 root 1.60
1864     Sets the feeder limit for the group: The feeder will be called whenever
1865     the group contains less than this many requests.
1866    
1867     Setting the limit to C<0> will pause the feeding process.
1868    
1869 root 1.138 The default value for the limit is C<0>, but note that setting a feeder
1870     automatically bumps it up to C<2>.
1871    
1872 root 1.55 =back
1873    
1874 root 1.294
1875 root 1.5 =head2 SUPPORT FUNCTIONS
1876    
1877 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1878    
1879 root 1.5 =over 4
1880    
1881     =item $fileno = IO::AIO::poll_fileno
1882    
1883 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1884 root 1.156 polled for reading by some mechanism outside this module (e.g. EV, Glib,
1885     select and so on, see below or the SYNOPSIS). If the pipe becomes readable
1886     you have to call C<poll_cb> to check the results.
1887 root 1.5
1888     See C<poll_cb> for an example.
1889    
1890     =item IO::AIO::poll_cb
1891    
1892 root 1.240 Process some requests that have reached the result phase (i.e. they have
1893     been executed but the results are not yet reported). You have to call
1894     this "regularly" to finish outstanding requests.
1895    
1896     Returns C<0> if all events could be processed (or there were no
1897     events to process), or C<-1> if it returned earlier for whatever
1898     reason. Returns immediately when no events are outstanding. The amount
1899     of events processed depends on the settings of C<IO::AIO::max_poll_req>,
1900     C<IO::AIO::max_poll_time> and C<IO::AIO::max_outstanding>.
1901    
1902     If not all requests were processed for whatever reason, the poll file
1903     descriptor will still be ready when C<poll_cb> returns, so normally you
1904     don't have to do anything special to have it called later.
1905 root 1.78
1906 root 1.192 Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes
1907     ready, it can be beneficial to call this function from loops which submit
1908     a lot of requests, to make sure the results get processed when they become
1909     available and not just when the loop is finished and the event loop takes
1910     over again. This function returns very fast when there are no outstanding
1911     requests.
1912    
1913 root 1.20 Example: Install an Event watcher that automatically calls
1914 root 1.156 IO::AIO::poll_cb with high priority (more examples can be found in the
1915     SYNOPSIS section, at the top of this document):
1916 root 1.5
1917     Event->io (fd => IO::AIO::poll_fileno,
1918     poll => 'r', async => 1,
1919     cb => \&IO::AIO::poll_cb);
1920    
1921 root 1.175 =item IO::AIO::poll_wait
1922    
1923 root 1.240 Wait until either at least one request is in the result phase or no
1924     requests are outstanding anymore.
1925    
1926     This is useful if you want to synchronously wait for some requests to
1927     become ready, without actually handling them.
1928 root 1.175
1929     See C<nreqs> for an example.
1930    
1931     =item IO::AIO::poll
1932    
1933     Waits until some requests have been handled.
1934    
1935     Returns the number of requests processed, but is otherwise strictly
1936     equivalent to:
1937    
1938     IO::AIO::poll_wait, IO::AIO::poll_cb
1939    
1940     =item IO::AIO::flush
1941    
1942     Wait till all outstanding AIO requests have been handled.
1943    
1944     Strictly equivalent to:
1945    
1946     IO::AIO::poll_wait, IO::AIO::poll_cb
1947     while IO::AIO::nreqs;
1948    
1949 root 1.294 This function can be useful at program aborts, to make sure outstanding
1950     I/O has been done (C<IO::AIO> uses an C<END> block which already calls
1951     this function on normal exits), or when you are merely using C<IO::AIO>
1952     for its more advanced functions, rather than for async I/O, e.g.:
1953    
1954     my ($dirs, $nondirs);
1955     IO::AIO::aio_scandir "/tmp", 0, sub { ($dirs, $nondirs) = @_ };
1956     IO::AIO::flush;
1957     # $dirs, $nondirs are now set
1958    
1959 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1960    
1961     =item IO::AIO::max_poll_time $seconds
1962    
1963     These set the maximum number of requests (default C<0>, meaning infinity)
1964     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1965     the maximum amount of time (default C<0>, meaning infinity) spent in
1966     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1967     of time C<poll_cb> is allowed to use).
1968 root 1.78
1969 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1970     syscall per request processed, which is not normally a problem unless your
1971     callbacks are really really fast or your OS is really really slow (I am
1972     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1973    
1974 root 1.86 Setting these is useful if you want to ensure some level of
1975     interactiveness when perl is not fast enough to process all requests in
1976     time.
1977 root 1.78
1978 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
1979 root 1.78
1980     Example: Install an Event watcher that automatically calls
1981 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
1982 root 1.78 program get the CPU sometimes even under high AIO load.
1983    
1984 root 1.86 # try not to spend much more than 0.1s in poll_cb
1985     IO::AIO::max_poll_time 0.1;
1986    
1987     # use a low priority so other tasks have priority
1988 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
1989     poll => 'r', nice => 1,
1990 root 1.86 cb => &IO::AIO::poll_cb);
1991 root 1.78
1992 root 1.104 =back
1993    
1994 root 1.294
1995 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
1996 root 1.13
1997 root 1.105 =over
1998    
1999 root 1.5 =item IO::AIO::min_parallel $nthreads
2000    
2001 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
2002     default is C<8>, which means eight asynchronous operations can execute
2003     concurrently at any one time (the number of outstanding requests,
2004     however, is unlimited).
2005 root 1.5
2006 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
2007 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
2008     create demand for a hundred threads, even if it turns out that everything
2009     is in the cache and could have been processed faster by a single thread.
2010 root 1.34
2011 root 1.61 It is recommended to keep the number of threads relatively low, as some
2012     Linux kernel versions will scale negatively with the number of threads
2013     (higher parallelity => MUCH higher latency). With current Linux 2.6
2014     versions, 4-32 threads should be fine.
2015 root 1.5
2016 root 1.34 Under most circumstances you don't need to call this function, as the
2017     module selects a default that is suitable for low to moderate load.
2018 root 1.5
2019     =item IO::AIO::max_parallel $nthreads
2020    
2021 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
2022     specified number of threads are currently running, this function kills
2023     them. This function blocks until the limit is reached.
2024    
2025     While C<$nthreads> are zero, aio requests get queued but not executed
2026     until the number of threads has been increased again.
2027 root 1.5
2028     This module automatically runs C<max_parallel 0> at program end, to ensure
2029     that all threads are killed and that there are no outstanding requests.
2030    
2031     Under normal circumstances you don't need to call this function.
2032    
2033 root 1.86 =item IO::AIO::max_idle $nthreads
2034    
2035 root 1.188 Limit the number of threads (default: 4) that are allowed to idle
2036     (i.e., threads that did not get a request to process within the idle
2037     timeout (default: 10 seconds). That means if a thread becomes idle while
2038     C<$nthreads> other threads are also idle, it will free its resources and
2039     exit.
2040 root 1.86
2041     This is useful when you allow a large number of threads (e.g. 100 or 1000)
2042     to allow for extremely high load situations, but want to free resources
2043     under normal circumstances (1000 threads can easily consume 30MB of RAM).
2044    
2045     The default is probably ok in most situations, especially if thread
2046     creation is fast. If thread creation is very slow on your system you might
2047     want to use larger values.
2048    
2049 root 1.188 =item IO::AIO::idle_timeout $seconds
2050    
2051     Sets the minimum idle timeout (default 10) after which worker threads are
2052     allowed to exit. SEe C<IO::AIO::max_idle>.
2053    
2054 root 1.123 =item IO::AIO::max_outstanding $maxreqs
2055 root 1.5
2056 root 1.195 Sets the maximum number of outstanding requests to C<$nreqs>. If
2057     you do queue up more than this number of requests, the next call to
2058     C<IO::AIO::poll_cb> (and other functions calling C<poll_cb>, such as
2059     C<IO::AIO::flush> or C<IO::AIO::poll>) will block until the limit is no
2060     longer exceeded.
2061    
2062     In other words, this setting does not enforce a queue limit, but can be
2063     used to make poll functions block if the limit is exceeded.
2064    
2065 root 1.79 This is a very bad function to use in interactive programs because it
2066     blocks, and a bad way to reduce concurrency because it is inexact: Better
2067     use an C<aio_group> together with a feed callback.
2068    
2069 root 1.248 Its main use is in scripts without an event loop - when you want to stat
2070 root 1.274 a lot of files, you can write something like this:
2071 root 1.195
2072     IO::AIO::max_outstanding 32;
2073    
2074     for my $path (...) {
2075     aio_stat $path , ...;
2076     IO::AIO::poll_cb;
2077     }
2078    
2079     IO::AIO::flush;
2080    
2081     The call to C<poll_cb> inside the loop will normally return instantly, but
2082     as soon as more thna C<32> reqeusts are in-flight, it will block until
2083     some requests have been handled. This keeps the loop from pushing a large
2084     number of C<aio_stat> requests onto the queue.
2085    
2086     The default value for C<max_outstanding> is very large, so there is no
2087     practical limit on the number of outstanding requests.
2088 root 1.5
2089 root 1.104 =back
2090    
2091 root 1.294
2092 root 1.86 =head3 STATISTICAL INFORMATION
2093    
2094 root 1.104 =over
2095    
2096 root 1.86 =item IO::AIO::nreqs
2097    
2098     Returns the number of requests currently in the ready, execute or pending
2099     states (i.e. for which their callback has not been invoked yet).
2100    
2101     Example: wait till there are no outstanding requests anymore:
2102    
2103     IO::AIO::poll_wait, IO::AIO::poll_cb
2104     while IO::AIO::nreqs;
2105    
2106     =item IO::AIO::nready
2107    
2108     Returns the number of requests currently in the ready state (not yet
2109     executed).
2110    
2111     =item IO::AIO::npending
2112    
2113     Returns the number of requests currently in the pending state (executed,
2114     but not yet processed by poll_cb).
2115    
2116 root 1.5 =back
2117    
2118 root 1.294
2119 root 1.289 =head3 SUBSECOND STAT TIME ACCESS
2120    
2121     Both C<aio_stat>/C<aio_lstat> and perl's C<stat>/C<lstat> functions can
2122     generally find access/modification and change times with subsecond time
2123     accuracy of the system supports it, but perl's built-in functions only
2124     return the integer part.
2125    
2126     The following functions return the timestamps of the most recent
2127     stat with subsecond precision on most systems and work both after
2128     C<aio_stat>/C<aio_lstat> and perl's C<stat>/C<lstat> calls. Their return
2129     value is only meaningful after a successful C<stat>/C<lstat> call, or
2130     during/after a successful C<aio_stat>/C<aio_lstat> callback.
2131    
2132     This is similar to the L<Time::HiRes> C<stat> functions, but can return
2133     full resolution without rounding and work with standard perl C<stat>,
2134     alleviating the need to call the special C<Time::HiRes> functions, which
2135     do not act like their perl counterparts.
2136    
2137     On operating systems or file systems where subsecond time resolution is
2138     not supported or could not be detected, a fractional part of C<0> is
2139     returned, so it is always safe to call these functions.
2140    
2141     =over 4
2142    
2143 root 1.294 =item $seconds = IO::AIO::st_atime, IO::AIO::st_mtime, IO::AIO::st_ctime, IO::AIO::st_btime
2144 root 1.289
2145 root 1.294 Return the access, modication, change or birth time, respectively,
2146     including fractional part. Due to the limited precision of floating point,
2147     the accuracy on most platforms is only a bit better than milliseconds
2148     for times around now - see the I<nsec> function family, below, for full
2149 root 1.289 accuracy.
2150    
2151 root 1.294 File birth time is only available when the OS and perl support it (on
2152     FreeBSD and NetBSD at the time of this writing, although support is
2153 root 1.301 adaptive, so if your OS/perl gains support, IO::AIO can take advantage of
2154 root 1.294 it). On systems where it isn't available, C<0> is currently returned, but
2155     this might change to C<undef> in a future version.
2156 root 1.289
2157 root 1.294 =item ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtime
2158 root 1.289
2159 root 1.294 Returns access, modification, change and birth time all in one go, and
2160     maybe more times in the future version.
2161 root 1.289
2162 root 1.294 =item $nanoseconds = IO::AIO::st_atimensec, IO::AIO::st_mtimensec, IO::AIO::st_ctimensec, IO::AIO::st_btimensec
2163    
2164     Return the fractional access, modifcation, change or birth time, in nanoseconds,
2165 root 1.289 as an integer in the range C<0> to C<999999999>.
2166    
2167 root 1.294 Note that no accessors are provided for access, modification and
2168     change times - you need to get those from C<stat _> if required (C<int
2169     IO::AIO::st_atime> and so on will I<not> generally give you the correct
2170     value).
2171    
2172     =item $seconds = IO::AIO::st_btimesec
2173    
2174     The (integral) seconds part of the file birth time, if available.
2175    
2176     =item ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtimensec
2177 root 1.290
2178 root 1.294 Like the functions above, but returns all four times in one go (and maybe
2179 root 1.290 more in future versions).
2180    
2181 root 1.294 =item $counter = IO::AIO::st_gen
2182    
2183 root 1.296 Returns the generation counter (in practice this is just a random number)
2184     of the file. This is only available on platforms which have this member in
2185     their C<struct stat> (most BSDs at the time of this writing) and generally
2186     only to the root usert. If unsupported, C<0> is returned, but this might
2187     change to C<undef> in a future version.
2188 root 1.294
2189 root 1.289 =back
2190    
2191     Example: print the high resolution modification time of F</etc>, using
2192     C<stat>, and C<IO::AIO::aio_stat>.
2193    
2194     if (stat "/etc") {
2195 root 1.290 printf "stat(/etc) mtime: %f\n", IO::AIO::st_mtime;
2196 root 1.289 }
2197    
2198     IO::AIO::aio_stat "/etc", sub {
2199     $_[0]
2200     and return;
2201    
2202 root 1.290 printf "aio_stat(/etc) mtime: %d.%09d\n", (stat _)[9], IO::AIO::st_mtimensec;
2203 root 1.289 };
2204    
2205     IO::AIO::flush;
2206    
2207     Output of the awbove on my system, showing reduced and full accuracy:
2208    
2209     stat(/etc) mtime: 1534043702.020808
2210     aio_stat(/etc) mtime: 1534043702.020807792
2211    
2212 root 1.294
2213 root 1.157 =head3 MISCELLANEOUS FUNCTIONS
2214    
2215 root 1.248 IO::AIO implements some functions that are useful when you want to use
2216     some "Advanced I/O" function not available to in Perl, without going the
2217     "Asynchronous I/O" route. Many of these have an asynchronous C<aio_*>
2218     counterpart.
2219 root 1.157
2220     =over 4
2221    
2222 root 1.275 =item $numfd = IO::AIO::get_fdlimit
2223    
2224 root 1.278 This function is I<EXPERIMENTAL> and subject to change.
2225    
2226 root 1.275 Tries to find the current file descriptor limit and returns it, or
2227     C<undef> and sets C<$!> in case of an error. The limit is one larger than
2228     the highest valid file descriptor number.
2229    
2230     =item IO::AIO::min_fdlimit [$numfd]
2231    
2232 root 1.278 This function is I<EXPERIMENTAL> and subject to change.
2233    
2234 root 1.275 Try to increase the current file descriptor limit(s) to at least C<$numfd>
2235     by changing the soft or hard file descriptor resource limit. If C<$numfd>
2236     is missing, it will try to set a very high limit, although this is not
2237     recommended when you know the actual minimum that you require.
2238    
2239     If the limit cannot be raised enough, the function makes a best-effort
2240     attempt to increase the limit as much as possible, using various
2241     tricks, while still failing. You can query the resulting limit using
2242     C<IO::AIO::get_fdlimit>.
2243    
2244 root 1.276 If an error occurs, returns C<undef> and sets C<$!>, otherwise returns
2245     true.
2246 root 1.275
2247 root 1.157 =item IO::AIO::sendfile $ofh, $ifh, $offset, $count
2248    
2249     Calls the C<eio_sendfile_sync> function, which is like C<aio_sendfile>,
2250     but is blocking (this makes most sense if you know the input data is
2251     likely cached already and the output filehandle is set to non-blocking
2252     operations).
2253    
2254     Returns the number of bytes copied, or C<-1> on error.
2255    
2256     =item IO::AIO::fadvise $fh, $offset, $len, $advice
2257    
2258 root 1.184 Simply calls the C<posix_fadvise> function (see its
2259 root 1.157 manpage for details). The following advice constants are
2260 root 1.207 available: C<IO::AIO::FADV_NORMAL>, C<IO::AIO::FADV_SEQUENTIAL>,
2261 root 1.157 C<IO::AIO::FADV_RANDOM>, C<IO::AIO::FADV_NOREUSE>,
2262     C<IO::AIO::FADV_WILLNEED>, C<IO::AIO::FADV_DONTNEED>.
2263    
2264     On systems that do not implement C<posix_fadvise>, this function returns
2265     ENOSYS, otherwise the return value of C<posix_fadvise>.
2266    
2267 root 1.184 =item IO::AIO::madvise $scalar, $offset, $len, $advice
2268    
2269     Simply calls the C<posix_madvise> function (see its
2270     manpage for details). The following advice constants are
2271 root 1.207 available: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
2272 root 1.272 C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>,
2273     C<IO::AIO::MADV_DONTNEED>.
2274 root 1.184
2275 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2276     the remaining length of the C<$scalar> is used. If possible, C<$length>
2277     will be reduced to fit into the C<$scalar>.
2278    
2279 root 1.184 On systems that do not implement C<posix_madvise>, this function returns
2280     ENOSYS, otherwise the return value of C<posix_madvise>.
2281    
2282     =item IO::AIO::mprotect $scalar, $offset, $len, $protect
2283    
2284     Simply calls the C<mprotect> function on the preferably AIO::mmap'ed
2285     $scalar (see its manpage for details). The following protect
2286 root 1.207 constants are available: C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_READ>,
2287 root 1.184 C<IO::AIO::PROT_WRITE>, C<IO::AIO::PROT_EXEC>.
2288    
2289 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2290     the remaining length of the C<$scalar> is used. If possible, C<$length>
2291     will be reduced to fit into the C<$scalar>.
2292    
2293 root 1.184 On systems that do not implement C<mprotect>, this function returns
2294     ENOSYS, otherwise the return value of C<mprotect>.
2295    
2296 root 1.176 =item IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
2297    
2298     Memory-maps a file (or anonymous memory range) and attaches it to the
2299 root 1.228 given C<$scalar>, which will act like a string scalar. Returns true on
2300     success, and false otherwise.
2301 root 1.176
2302 root 1.268 The scalar must exist, but its contents do not matter - this means you
2303     cannot use a nonexistant array or hash element. When in doubt, C<undef>
2304     the scalar first.
2305    
2306     The only operations allowed on the mmapped scalar are C<substr>/C<vec>,
2307     which don't change the string length, and most read-only operations such
2308     as copying it or searching it with regexes and so on.
2309 root 1.176
2310     Anything else is unsafe and will, at best, result in memory leaks.
2311    
2312     The memory map associated with the C<$scalar> is automatically removed
2313 root 1.268 when the C<$scalar> is undef'd or destroyed, or when the C<IO::AIO::mmap>
2314     or C<IO::AIO::munmap> functions are called on it.
2315 root 1.176
2316     This calls the C<mmap>(2) function internally. See your system's manual
2317     page for details on the C<$length>, C<$prot> and C<$flags> parameters.
2318    
2319     The C<$length> must be larger than zero and smaller than the actual
2320     filesize.
2321    
2322     C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
2323     C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
2324    
2325 root 1.256 C<$flags> can be a combination of
2326     C<IO::AIO::MAP_SHARED> or
2327     C<IO::AIO::MAP_PRIVATE>,
2328     or a number of system-specific flags (when not available, the are C<0>):
2329     C<IO::AIO::MAP_ANONYMOUS> (which is set to C<MAP_ANON> if your system only provides this constant),
2330     C<IO::AIO::MAP_LOCKED>,
2331     C<IO::AIO::MAP_NORESERVE>,
2332     C<IO::AIO::MAP_POPULATE>,
2333     C<IO::AIO::MAP_NONBLOCK>,
2334     C<IO::AIO::MAP_FIXED>,
2335     C<IO::AIO::MAP_GROWSDOWN>,
2336     C<IO::AIO::MAP_32BIT>,
2337     C<IO::AIO::MAP_HUGETLB> or
2338     C<IO::AIO::MAP_STACK>.
2339 root 1.176
2340     If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
2341    
2342 root 1.179 C<$offset> is the offset from the start of the file - it generally must be
2343     a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
2344    
2345 root 1.177 Example:
2346    
2347     use Digest::MD5;
2348     use IO::AIO;
2349    
2350     open my $fh, "<verybigfile"
2351     or die "$!";
2352    
2353     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
2354     or die "verybigfile: $!";
2355    
2356     my $fast_md5 = md5 $data;
2357    
2358 root 1.176 =item IO::AIO::munmap $scalar
2359    
2360     Removes a previous mmap and undefines the C<$scalar>.
2361    
2362 root 1.287 =item IO::AIO::mremap $scalar, $new_length, $flags = MREMAP_MAYMOVE[, $new_address = 0]
2363 root 1.285
2364     Calls the Linux-specific mremap(2) system call. The C<$scalar> must have
2365     been mapped by C<IO::AIO::mmap>, and C<$flags> must currently either be
2366     C<0> or C<IO::AIO::MREMAP_MAYMOVE>.
2367    
2368     Returns true if successful, and false otherwise. If the underlying mmapped
2369     region has changed address, then the true value has the numerical value
2370     C<1>, otherwise it has the numerical value C<0>:
2371    
2372     my $success = IO::AIO::mremap $mmapped, 8192, IO::AIO::MREMAP_MAYMOVE
2373     or die "mremap: $!";
2374    
2375     if ($success*1) {
2376     warn "scalar has chanegd address in memory\n";
2377     }
2378    
2379     C<IO::AIO::MREMAP_FIXED> and the C<$new_address> argument are currently
2380     implemented, but not supported and might go away in a future version.
2381    
2382     On systems where this call is not supported or is not emulated, this call
2383     returns falls and sets C<$!> to C<ENOSYS>.
2384    
2385 root 1.298 =item IO::AIO::mlockall $flags
2386    
2387     Calls the C<eio_mlockall_sync> function, which is like C<aio_mlockall>,
2388     but is blocking.
2389    
2390 root 1.182 =item IO::AIO::munlock $scalar, $offset = 0, $length = undef
2391 root 1.174
2392 root 1.182 Calls the C<munlock> function, undoing the effects of a previous
2393     C<aio_mlock> call (see its description for details).
2394 root 1.174
2395     =item IO::AIO::munlockall
2396    
2397     Calls the C<munlockall> function.
2398    
2399     On systems that do not implement C<munlockall>, this function returns
2400     ENOSYS, otherwise the return value of C<munlockall>.
2401    
2402 root 1.225 =item IO::AIO::splice $r_fh, $r_off, $w_fh, $w_off, $length, $flags
2403    
2404     Calls the GNU/Linux C<splice(2)> syscall, if available. If C<$r_off> or
2405     C<$w_off> are C<undef>, then C<NULL> is passed for these, otherwise they
2406     should be the file offset.
2407    
2408 root 1.227 C<$r_fh> and C<$w_fh> should not refer to the same file, as splice might
2409     silently corrupt the data in this case.
2410    
2411 root 1.225 The following symbol flag values are available: C<IO::AIO::SPLICE_F_MOVE>,
2412     C<IO::AIO::SPLICE_F_NONBLOCK>, C<IO::AIO::SPLICE_F_MORE> and
2413     C<IO::AIO::SPLICE_F_GIFT>.
2414    
2415     See the C<splice(2)> manpage for details.
2416    
2417     =item IO::AIO::tee $r_fh, $w_fh, $length, $flags
2418    
2419 root 1.248 Calls the GNU/Linux C<tee(2)> syscall, see its manpage and the
2420 root 1.225 description for C<IO::AIO::splice> above for details.
2421    
2422 root 1.243 =item $actual_size = IO::AIO::pipesize $r_fh[, $new_size]
2423    
2424     Attempts to query or change the pipe buffer size. Obviously works only
2425     on pipes, and currently works only on GNU/Linux systems, and fails with
2426     C<-1>/C<ENOSYS> everywhere else. If anybody knows how to influence pipe buffer
2427     size on other systems, drop me a note.
2428    
2429 root 1.253 =item ($rfh, $wfh) = IO::AIO::pipe2 [$flags]
2430    
2431     This is a direct interface to the Linux L<pipe2(2)> system call. If
2432     C<$flags> is missing or C<0>, then this should be the same as a call to
2433 root 1.254 perl's built-in C<pipe> function and create a new pipe, and works on
2434     systems that lack the pipe2 syscall. On win32, this case invokes C<_pipe
2435     (..., 4096, O_BINARY)>.
2436 root 1.253
2437     If C<$flags> is non-zero, it tries to invoke the pipe2 system call with
2438     the given flags (Linux 2.6.27, glibc 2.9).
2439    
2440     On success, the read and write file handles are returned.
2441    
2442     On error, nothing will be returned. If the pipe2 syscall is missing and
2443     C<$flags> is non-zero, fails with C<ENOSYS>.
2444    
2445     Please refer to L<pipe2(2)> for more info on the C<$flags>, but at the
2446     time of this writing, C<IO::AIO::O_CLOEXEC>, C<IO::AIO::O_NONBLOCK> and
2447     C<IO::AIO::O_DIRECT> (Linux 3.4, for packet-based pipes) were supported.
2448    
2449 root 1.281 Example: create a pipe race-free w.r.t. threads and fork:
2450    
2451     my ($rfh, $wfh) = IO::AIO::pipe2 IO::AIO::O_CLOEXEC
2452     or die "pipe2: $!\n";
2453    
2454 root 1.302 =item $fh = IO::AIO::memfd_create $pathname[, $flags]
2455    
2456     This is a direct interface to the Linux L<memfd_create(2)> system
2457     call. The (unhelpful) default for C<$flags> is C<0>, but your default
2458     should be C<IO::AIO::MFD_CLOEXEC>.
2459    
2460     On success, the new memfd filehandle is returned, otherwise returns
2461     C<undef>. If the memfd_create syscall is missing, fails with C<ENOSYS>.
2462    
2463     Please refer to L<memfd_create(2)> for more info on this call.
2464    
2465     The following C<$flags> values are available: C<IO::AIO::MFD_CLOEXEC>,
2466     C<IO::AIO::MFD_ALLOW_SEALING> and C<IO::AIO::MFD_HUGETLB>.
2467    
2468     Example: create a new memfd.
2469    
2470     my $fh = IO::AIO::memfd_create "somenameforprocfd", IO::AIO::MFD_CLOEXEC
2471     or die "m,emfd_create: $!\n";
2472 root 1.282 =item $fh = IO::AIO::eventfd [$initval, [$flags]]
2473 root 1.281
2474     This is a direct interface to the Linux L<eventfd(2)> system call. The
2475     (unhelpful) defaults for C<$initval> and C<$flags> are C<0> for both.
2476    
2477     On success, the new eventfd filehandle is returned, otherwise returns
2478     C<undef>. If the eventfd syscall is missing, fails with C<ENOSYS>.
2479    
2480     Please refer to L<eventfd(2)> for more info on this call.
2481    
2482     The following symbol flag values are available: C<IO::AIO::EFD_CLOEXEC>,
2483     C<IO::AIO::EFD_NONBLOCK> and C<IO::AIO::EFD_SEMAPHORE> (Linux 2.6.30).
2484    
2485 root 1.282 Example: create a new eventfd filehandle:
2486    
2487 root 1.302 $fh = IO::AIO::eventfd 0, IO::AIO::EFD_CLOEXEC
2488 root 1.282 or die "eventfd: $!\n";
2489    
2490     =item $fh = IO::AIO::timerfd_create $clockid[, $flags]
2491    
2492 root 1.302 This is a direct interface to the Linux L<timerfd_create(2)> system
2493     call. The (unhelpful) default for C<$flags> is C<0>, but your default
2494     should be C<IO::AIO::TFD_CLOEXEC>.
2495 root 1.282
2496     On success, the new timerfd filehandle is returned, otherwise returns
2497 root 1.302 C<undef>. If the timerfd_create syscall is missing, fails with C<ENOSYS>.
2498 root 1.282
2499     Please refer to L<timerfd_create(2)> for more info on this call.
2500    
2501     The following C<$clockid> values are
2502     available: C<IO::AIO::CLOCK_REALTIME>, C<IO::AIO::CLOCK_MONOTONIC>
2503     C<IO::AIO::CLOCK_CLOCK_BOOTTIME> (Linux 3.15)
2504     C<IO::AIO::CLOCK_CLOCK_REALTIME_ALARM> (Linux 3.11) and
2505     C<IO::AIO::CLOCK_CLOCK_BOOTTIME_ALARM> (Linux 3.11).
2506    
2507     The following C<$flags> values are available (Linux
2508     2.6.27): C<IO::AIO::TFD_NONBLOCK> and C<IO::AIO::TFD_CLOEXEC>.
2509    
2510     Example: create a new timerfd and set it to one-second repeated alarms,
2511     then wait for two alarms:
2512    
2513     my $fh = IO::AIO::timerfd_create IO::AIO::CLOCK_BOOTTIME, IO::AIO::TFD_CLOEXEC
2514     or die "timerfd_create: $!\n";
2515    
2516     defined IO::AIO::timerfd_settime $fh, 0, 1, 1
2517     or die "timerfd_settime: $!\n";
2518    
2519     for (1..2) {
2520     8 == sysread $fh, my $buf, 8
2521     or die "timerfd read failure\n";
2522    
2523     printf "number of expirations (likely 1): %d\n",
2524     unpack "Q", $buf;
2525     }
2526    
2527     =item ($cur_interval, $cur_value) = IO::AIO::timerfd_settime $fh, $flags, $new_interval, $nbw_value
2528    
2529     This is a direct interface to the Linux L<timerfd_settime(2)> system
2530     call. Please refer to its manpage for more info on this call.
2531    
2532     The new itimerspec is specified using two (possibly fractional) second
2533     values, C<$new_interval> and C<$new_value>).
2534    
2535     On success, the current interval and value are returned (as per
2536     C<timerfd_gettime>). On failure, the empty list is returned.
2537    
2538     The following C<$flags> values are
2539     available: C<IO::AIO::TFD_TIMER_ABSTIME> and
2540     C<IO::AIO::TFD_TIMER_CANCEL_ON_SET>.
2541    
2542     See C<IO::AIO::timerfd_create> for a full example.
2543    
2544     =item ($cur_interval, $cur_value) = IO::AIO::timerfd_gettime $fh
2545    
2546     This is a direct interface to the Linux L<timerfd_gettime(2)> system
2547     call. Please refer to its manpage for more info on this call.
2548    
2549     On success, returns the current values of interval and value for the given
2550     timerfd (as potentially fractional second values). On failure, the empty
2551     list is returned.
2552    
2553 root 1.157 =back
2554    
2555 root 1.1 =cut
2556    
2557 root 1.61 min_parallel 8;
2558 root 1.1
2559 root 1.95 END { flush }
2560 root 1.82
2561 root 1.1 1;
2562    
2563 root 1.175 =head1 EVENT LOOP INTEGRATION
2564    
2565     It is recommended to use L<AnyEvent::AIO> to integrate IO::AIO
2566     automatically into many event loops:
2567    
2568     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
2569     use AnyEvent::AIO;
2570    
2571     You can also integrate IO::AIO manually into many event loops, here are
2572     some examples of how to do this:
2573    
2574     # EV integration
2575     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
2576    
2577     # Event integration
2578     Event->io (fd => IO::AIO::poll_fileno,
2579     poll => 'r',
2580     cb => \&IO::AIO::poll_cb);
2581    
2582     # Glib/Gtk2 integration
2583     add_watch Glib::IO IO::AIO::poll_fileno,
2584     in => sub { IO::AIO::poll_cb; 1 };
2585    
2586     # Tk integration
2587     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
2588     readable => \&IO::AIO::poll_cb);
2589    
2590     # Danga::Socket integration
2591     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
2592     \&IO::AIO::poll_cb);
2593    
2594 root 1.27 =head2 FORK BEHAVIOUR
2595    
2596 root 1.197 Usage of pthreads in a program changes the semantics of fork
2597     considerably. Specifically, only async-safe functions can be called after
2598     fork. Perl doesn't know about this, so in general, you cannot call fork
2599 root 1.204 with defined behaviour in perl if pthreads are involved. IO::AIO uses
2600     pthreads, so this applies, but many other extensions and (for inexplicable
2601     reasons) perl itself often is linked against pthreads, so this limitation
2602     applies to quite a lot of perls.
2603    
2604     This module no longer tries to fight your OS, or POSIX. That means IO::AIO
2605     only works in the process that loaded it. Forking is fully supported, but
2606     using IO::AIO in the child is not.
2607    
2608     You might get around by not I<using> IO::AIO before (or after)
2609     forking. You could also try to call the L<IO::AIO::reinit> function in the
2610     child:
2611    
2612     =over 4
2613    
2614     =item IO::AIO::reinit
2615    
2616 root 1.207 Abandons all current requests and I/O threads and simply reinitialises all
2617     data structures. This is not an operation supported by any standards, but
2618 root 1.204 happens to work on GNU/Linux and some newer BSD systems.
2619    
2620     The only reasonable use for this function is to call it after forking, if
2621     C<IO::AIO> was used in the parent. Calling it while IO::AIO is active in
2622     the process will result in undefined behaviour. Calling it at any time
2623     will also result in any undefined (by POSIX) behaviour.
2624    
2625     =back
2626 root 1.52
2627 root 1.282 =head2 LINUX-SPECIFIC CALLS
2628    
2629     When a call is documented as "linux-specific" then this means it
2630     originated on GNU/Linux. C<IO::AIO> will usually try to autodetect the
2631     availability and compatibility of such calls regardless of the platform
2632     it is compiled on, so platforms such as FreeBSD which often implement
2633     these calls will work. When in doubt, call them and see if they fail wth
2634     C<ENOSYS>.
2635    
2636 root 1.60 =head2 MEMORY USAGE
2637    
2638 root 1.72 Per-request usage:
2639    
2640     Each aio request uses - depending on your architecture - around 100-200
2641     bytes of memory. In addition, stat requests need a stat buffer (possibly
2642     a few hundred bytes), readdir requires a result buffer and so on. Perl
2643     scalars and other data passed into aio requests will also be locked and
2644     will consume memory till the request has entered the done state.
2645 root 1.60
2646 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
2647 root 1.60 problem.
2648    
2649 root 1.72 Per-thread usage:
2650    
2651     In the execution phase, some aio requests require more memory for
2652     temporary buffers, and each thread requires a stack and other data
2653     structures (usually around 16k-128k, depending on the OS).
2654    
2655     =head1 KNOWN BUGS
2656    
2657 root 1.283 Known bugs will be fixed in the next release :)
2658    
2659     =head1 KNOWN ISSUES
2660    
2661     Calls that try to "import" foreign memory areas (such as C<IO::AIO::mmap>
2662     or C<IO::AIO::aio_slurp>) do not work with generic lvalues, such as
2663     non-created hash slots or other scalars I didn't think of. It's best to
2664     avoid such and either use scalar variables or making sure that the scalar
2665     exists (e.g. by storing C<undef>) and isn't "funny" (e.g. tied).
2666    
2667     I am not sure anything can be done about this, so this is considered a
2668     known issue, rather than a bug.
2669 root 1.60
2670 root 1.1 =head1 SEE ALSO
2671    
2672 root 1.125 L<AnyEvent::AIO> for easy integration into event loops, L<Coro::AIO> for a
2673     more natural syntax.
2674 root 1.1
2675     =head1 AUTHOR
2676    
2677     Marc Lehmann <schmorp@schmorp.de>
2678     http://home.schmorp.de/
2679    
2680     =cut
2681