ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.315
Committed: Mon Sep 5 00:03:32 2022 UTC (21 months ago) by root
Branch: MAIN
CVS Tags: rel-4_77
Changes since 1.314: +22 -3 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.265 IO::AIO - Asynchronous/Advanced Input/Output
4 root 1.1
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.1 =head1 DESCRIPTION
32    
33     This module implements asynchronous I/O using whatever means your
34 root 1.156 operating system supports. It is implemented as an interface to C<libeio>
35     (L<http://software.schmorp.de/pkg/libeio.html>).
36 root 1.1
37 root 1.85 Asynchronous means that operations that can normally block your program
38     (e.g. reading from disk) will be done asynchronously: the operation
39     will still block, but you can do something else in the meantime. This
40     is extremely useful for programs that need to stay interactive even
41     when doing heavy I/O (GUI programs, high performance network servers
42     etc.), but can also be used to easily do operations in parallel that are
43     normally done sequentially, e.g. stat'ing many files, which is much faster
44     on a RAID volume or over NFS when you do a number of stat operations
45     concurrently.
46    
47 root 1.108 While most of this works on all types of file descriptors (for
48     example sockets), using these functions on file descriptors that
49 root 1.156 support nonblocking operation (again, sockets, pipes etc.) is
50     very inefficient. Use an event loop for that (such as the L<EV>
51 root 1.108 module): IO::AIO will naturally fit into such an event loop itself.
52 root 1.85
53 root 1.72 In this version, a number of threads are started that execute your
54     requests and signal their completion. You don't need thread support
55     in perl, and the threads created by this module will not be visible
56     to perl. In the future, this module might make use of the native aio
57     functions available on many operating systems. However, they are often
58 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
59 root 1.72 files currently, for example), and they would only support aio_read and
60     aio_write, so the remaining functionality would have to be implemented
61     using threads anyway.
62    
63 root 1.265 In addition to asynchronous I/O, this module also exports some rather
64     arcane interfaces, such as C<madvise> or linux's C<splice> system call,
65     which is why the C<A> in C<AIO> can also mean I<advanced>.
66    
67 root 1.108 Although the module will work in the presence of other (Perl-) threads,
68     it is currently not reentrant in any way, so use appropriate locking
69     yourself, always call C<poll_cb> from within the same thread, or never
70     call C<poll_cb> (or other C<aio_> functions) recursively.
71 root 1.72
72 root 1.86 =head2 EXAMPLE
73    
74 root 1.156 This is a simple example that uses the EV module and loads
75 root 1.86 F</etc/passwd> asynchronously:
76    
77 root 1.156 use EV;
78 root 1.86 use IO::AIO;
79    
80 root 1.156 # register the IO::AIO callback with EV
81     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
82 root 1.86
83     # queue the request to open /etc/passwd
84 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
85 root 1.94 my $fh = shift
86 root 1.86 or die "error while opening: $!";
87    
88     # stat'ing filehandles is generally non-blocking
89     my $size = -s $fh;
90    
91     # queue a request to read the file
92     my $contents;
93     aio_read $fh, 0, $size, $contents, 0, sub {
94     $_[0] == $size
95     or die "short read: $!";
96    
97     close $fh;
98    
99     # file contents now in $contents
100     print $contents;
101    
102     # exit event loop and program
103 root 1.257 EV::break;
104 root 1.86 };
105     };
106    
107     # possibly queue up other requests, or open GUI windows,
108     # check for sockets etc. etc.
109    
110     # process events as long as there are some:
111 root 1.257 EV::run;
112 root 1.86
113 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
114    
115     Every C<aio_*> function creates a request. which is a C data structure not
116     directly visible to Perl.
117    
118     If called in non-void context, every request function returns a Perl
119     object representing the request. In void context, nothing is returned,
120     which saves a bit of memory.
121    
122     The perl object is a fairly standard ref-to-hash object. The hash contents
123     are not used by IO::AIO so you are free to store anything you like in it.
124    
125     During their existance, aio requests travel through the following states,
126     in order:
127    
128     =over 4
129    
130     =item ready
131    
132     Immediately after a request is created it is put into the ready state,
133     waiting for a thread to execute it.
134    
135     =item execute
136    
137     A thread has accepted the request for processing and is currently
138     executing it (e.g. blocking in read).
139    
140     =item pending
141    
142     The request has been executed and is waiting for result processing.
143    
144     While request submission and execution is fully asynchronous, result
145     processing is not and relies on the perl interpreter calling C<poll_cb>
146     (or another function with the same effect).
147    
148     =item result
149    
150     The request results are processed synchronously by C<poll_cb>.
151    
152     The C<poll_cb> function will process all outstanding aio requests by
153     calling their callbacks, freeing memory associated with them and managing
154     any groups they are contained in.
155    
156     =item done
157    
158     Request has reached the end of its lifetime and holds no resources anymore
159     (except possibly for the Perl object, but its connection to the actual
160     aio request is severed and calling its methods will either do nothing or
161     result in a runtime error).
162 root 1.1
163 root 1.88 =back
164    
165 root 1.1 =cut
166    
167     package IO::AIO;
168    
169 root 1.117 use Carp ();
170    
171 root 1.161 use common::sense;
172 root 1.23
173 root 1.1 use base 'Exporter';
174    
175     BEGIN {
176 root 1.315 our $VERSION = 4.77;
177 root 1.1
178 root 1.220 our @AIO_REQ = qw(aio_sendfile aio_seek aio_read aio_write aio_open aio_close
179 root 1.148 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
180 root 1.259 aio_scandir aio_symlink aio_readlink aio_realpath aio_fcntl aio_ioctl
181     aio_sync aio_fsync aio_syncfs aio_fdatasync aio_sync_file_range
182     aio_pathsync aio_readahead aio_fiemap aio_allocate
183 root 1.270 aio_rename aio_rename2 aio_link aio_move aio_copy aio_group
184 root 1.120 aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
185 root 1.170 aio_chmod aio_utime aio_truncate
186 root 1.182 aio_msync aio_mtouch aio_mlock aio_mlockall
187 root 1.208 aio_statvfs
188 root 1.279 aio_slurp
189 root 1.208 aio_wd);
190 root 1.120
191 root 1.123 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice));
192 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
193 root 1.188 min_parallel max_parallel max_idle idle_timeout
194 root 1.86 nreqs nready npending nthreads
195 root 1.157 max_poll_time max_poll_reqs
196 root 1.182 sendfile fadvise madvise
197 root 1.315 mmap munmap mremap munlock munlockall
198    
199     accept4 tee splice pipe2 pipesize
200     fexecve memfd_create eventfd
201     timerfd_create timerfd_settime timerfd_gettime
202     pidfd_open pidfd_send_signal pidfd_getfd);
203 root 1.1
204 root 1.143 push @AIO_REQ, qw(aio_busy); # not exported
205    
206 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
207    
208 root 1.1 require XSLoader;
209 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
210 root 1.1 }
211    
212 root 1.5 =head1 FUNCTIONS
213 root 1.1
214 root 1.175 =head2 QUICK OVERVIEW
215    
216 root 1.230 This section simply lists the prototypes most of the functions for
217     quick reference. See the following sections for function-by-function
218 root 1.175 documentation.
219    
220 root 1.208 aio_wd $pathname, $callback->($wd)
221 root 1.175 aio_open $pathname, $flags, $mode, $callback->($fh)
222     aio_close $fh, $callback->($status)
223 root 1.220 aio_seek $fh,$offset,$whence, $callback->($offs)
224 root 1.175 aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
225     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
226     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
227     aio_readahead $fh,$offset,$length, $callback->($retval)
228     aio_stat $fh_or_path, $callback->($status)
229     aio_lstat $fh, $callback->($status)
230     aio_statvfs $fh_or_path, $callback->($statvfs)
231     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
232     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
233 root 1.220 aio_chmod $fh_or_path, $mode, $callback->($status)
234 root 1.175 aio_truncate $fh_or_path, $offset, $callback->($status)
235 root 1.229 aio_allocate $fh, $mode, $offset, $len, $callback->($status)
236 root 1.230 aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
237 root 1.175 aio_unlink $pathname, $callback->($status)
238 root 1.209 aio_mknod $pathname, $mode, $dev, $callback->($status)
239 root 1.175 aio_link $srcpath, $dstpath, $callback->($status)
240     aio_symlink $srcpath, $dstpath, $callback->($status)
241 root 1.209 aio_readlink $pathname, $callback->($link)
242 root 1.249 aio_realpath $pathname, $callback->($path)
243 root 1.175 aio_rename $srcpath, $dstpath, $callback->($status)
244 root 1.270 aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
245 root 1.175 aio_mkdir $pathname, $mode, $callback->($status)
246     aio_rmdir $pathname, $callback->($status)
247     aio_readdir $pathname, $callback->($entries)
248     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
249     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
250     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
251 root 1.215 aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
252 root 1.209 aio_load $pathname, $data, $callback->($status)
253 root 1.175 aio_copy $srcpath, $dstpath, $callback->($status)
254     aio_move $srcpath, $dstpath, $callback->($status)
255 root 1.209 aio_rmtree $pathname, $callback->($status)
256 root 1.259 aio_fcntl $fh, $cmd, $arg, $callback->($status)
257     aio_ioctl $fh, $request, $buf, $callback->($status)
258 root 1.175 aio_sync $callback->($status)
259 root 1.206 aio_syncfs $fh, $callback->($status)
260 root 1.175 aio_fsync $fh, $callback->($status)
261     aio_fdatasync $fh, $callback->($status)
262     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
263 root 1.209 aio_pathsync $pathname, $callback->($status)
264 root 1.268 aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
265 root 1.175 aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
266 root 1.182 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
267     aio_mlockall $flags, $callback->($status)
268 root 1.175 aio_group $callback->(...)
269     aio_nop $callback->()
270    
271     $prev_pri = aioreq_pri [$pri]
272     aioreq_nice $pri_adjust
273    
274     IO::AIO::poll_wait
275     IO::AIO::poll_cb
276     IO::AIO::poll
277     IO::AIO::flush
278     IO::AIO::max_poll_reqs $nreqs
279     IO::AIO::max_poll_time $seconds
280     IO::AIO::min_parallel $nthreads
281     IO::AIO::max_parallel $nthreads
282     IO::AIO::max_idle $nthreads
283 root 1.188 IO::AIO::idle_timeout $seconds
284 root 1.175 IO::AIO::max_outstanding $maxreqs
285     IO::AIO::nreqs
286     IO::AIO::nready
287     IO::AIO::npending
288 root 1.302 IO::AIO::reinit
289    
290 root 1.307 $nfd = IO::AIO::get_fdlimit
291     IO::AIO::min_fdlimit $nfd
292 root 1.175
293     IO::AIO::sendfile $ofh, $ifh, $offset, $count
294     IO::AIO::fadvise $fh, $offset, $len, $advice
295 root 1.315 IO::AIO::fexecve $fh, $argv, $envp
296 root 1.302
297 root 1.226 IO::AIO::mmap $scalar, $length, $prot, $flags[, $fh[, $offset]]
298     IO::AIO::munmap $scalar
299 root 1.285 IO::AIO::mremap $scalar, $new_length, $flags[, $new_address]
300 root 1.184 IO::AIO::madvise $scalar, $offset, $length, $advice
301     IO::AIO::mprotect $scalar, $offset, $length, $protect
302 root 1.182 IO::AIO::munlock $scalar, $offset = 0, $length = undef
303 root 1.175 IO::AIO::munlockall
304    
305 root 1.302 # stat extensions
306     $counter = IO::AIO::st_gen
307     $seconds = IO::AIO::st_atime, IO::AIO::st_mtime, IO::AIO::st_ctime, IO::AIO::st_btime
308     ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtime
309     $nanoseconds = IO::AIO::st_atimensec, IO::AIO::st_mtimensec, IO::AIO::st_ctimensec, IO::AIO::st_btimensec
310     $seconds = IO::AIO::st_btimesec
311     ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtimensec
312    
313     # very much unportable syscalls
314 root 1.305 IO::AIO::accept4 $r_fh, $sockaddr, $sockaddr_len, $flags
315 root 1.302 IO::AIO::splice $r_fh, $r_off, $w_fh, $w_off, $length, $flags
316     IO::AIO::tee $r_fh, $w_fh, $length, $flags
317 root 1.315
318 root 1.302 $actual_size = IO::AIO::pipesize $r_fh[, $new_size]
319     ($rfh, $wfh) = IO::AIO::pipe2 [$flags]
320 root 1.315
321     $fh = IO::AIO::eventfd [$initval, [$flags]]
322 root 1.302 $fh = IO::AIO::memfd_create $pathname[, $flags]
323 root 1.315
324 root 1.302 $fh = IO::AIO::timerfd_create $clockid[, $flags]
325     ($cur_interval, $cur_value) = IO::AIO::timerfd_settime $fh, $flags, $new_interval, $nbw_value
326     ($cur_interval, $cur_value) = IO::AIO::timerfd_gettime $fh
327    
328 root 1.315 $fh = IO::AIO::pidfd_open $pid[, $flags]
329     $status = IO::AIO::pidfd_send_signal $pidfh, $signal[, $siginfo[, $flags]]
330     $fh = IO::AIO::pidfd_getfd $pidfh, $targetfd[, $flags]
331    
332 root 1.219 =head2 API NOTES
333 root 1.1
334 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
335     with the same name (sans C<aio_>). The arguments are similar or identical,
336 root 1.14 and they all accept an additional (and optional) C<$callback> argument
337 root 1.212 which must be a code reference. This code reference will be called after
338     the syscall has been executed in an asynchronous fashion. The results
339     of the request will be passed as arguments to the callback (and, if an
340     error occured, in C<$!>) - for most requests the syscall return code (e.g.
341     most syscalls return C<-1> on error, unlike perl, which usually delivers
342     "false").
343    
344     Some requests (such as C<aio_readdir>) pass the actual results and
345     communicate failures by passing C<undef>.
346 root 1.1
347 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
348     internally until the request has finished.
349 root 1.1
350 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
351     further manipulation of those requests while they are in-flight.
352 root 1.52
353 root 1.209 The pathnames you pass to these routines I<should> be absolute. The
354     reason for this is that at the time the request is being executed, the
355 root 1.212 current working directory could have changed. Alternatively, you can
356     make sure that you never change the current working directory anywhere
357     in the program and then use relative paths. You can also take advantage
358     of IO::AIOs working directory abstraction, that lets you specify paths
359     relative to some previously-opened "working directory object" - see the
360     description of the C<IO::AIO::WD> class later in this document.
361 root 1.28
362 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
363     in filenames you got from outside (command line, readdir etc.) without
364 root 1.212 tinkering, b) are in your native filesystem encoding, c) use the Encode
365     module and encode your pathnames to the locale (or other) encoding in
366     effect in the user environment, d) use Glib::filename_from_unicode on
367     unicode filenames or e) use something else to ensure your scalar has the
368     correct contents.
369 root 1.87
370     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
371 root 1.136 handles correctly whether it is set or not.
372 root 1.1
373 root 1.219 =head2 AIO REQUEST FUNCTIONS
374    
375 root 1.5 =over 4
376 root 1.1
377 root 1.80 =item $prev_pri = aioreq_pri [$pri]
378 root 1.68
379 root 1.80 Returns the priority value that would be used for the next request and, if
380     C<$pri> is given, sets the priority for the next aio request.
381 root 1.68
382 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
383     and C<4>, respectively. Requests with higher priority will be serviced
384     first.
385    
386     The priority will be reset to C<0> after each call to one of the C<aio_*>
387 root 1.68 functions.
388    
389 root 1.69 Example: open a file with low priority, then read something from it with
390     higher priority so the read request is serviced before other low priority
391     open requests (potentially spamming the cache):
392    
393     aioreq_pri -3;
394     aio_open ..., sub {
395     return unless $_[0];
396    
397     aioreq_pri -2;
398     aio_read $_[0], ..., sub {
399     ...
400     };
401     };
402    
403 root 1.106
404 root 1.69 =item aioreq_nice $pri_adjust
405    
406     Similar to C<aioreq_pri>, but subtracts the given value from the current
407 root 1.87 priority, so the effect is cumulative.
408 root 1.69
409 root 1.106
410 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
411 root 1.1
412 root 1.2 Asynchronously open or create a file and call the callback with a newly
413 root 1.233 created filehandle for the file (or C<undef> in case of an error).
414 root 1.1
415     The pathname passed to C<aio_open> must be absolute. See API NOTES, above,
416     for an explanation.
417    
418 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
419     list. They are the same as used by C<sysopen>.
420    
421     Likewise, C<$mode> specifies the mode of the newly created file, if it
422     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
423     except that it is mandatory (i.e. use C<0> if you don't create new files,
424 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
425     by the umask in effect then the request is being executed, so better never
426     change the umask.
427 root 1.1
428     Example:
429    
430 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
431 root 1.2 if ($_[0]) {
432     print "open successful, fh is $_[0]\n";
433 root 1.1 ...
434     } else {
435     die "open failed: $!\n";
436     }
437     };
438    
439 root 1.194 In addition to all the common open modes/flags (C<O_RDONLY>, C<O_WRONLY>,
440     C<O_RDWR>, C<O_CREAT>, C<O_TRUNC>, C<O_EXCL> and C<O_APPEND>), the
441     following POSIX and non-POSIX constants are available (missing ones on
442     your system are, as usual, C<0>):
443    
444     C<O_ASYNC>, C<O_DIRECT>, C<O_NOATIME>, C<O_CLOEXEC>, C<O_NOCTTY>, C<O_NOFOLLOW>,
445     C<O_NONBLOCK>, C<O_EXEC>, C<O_SEARCH>, C<O_DIRECTORY>, C<O_DSYNC>,
446 root 1.286 C<O_RSYNC>, C<O_SYNC>, C<O_PATH>, C<O_TMPFILE>, C<O_TTY_INIT> and C<O_ACCMODE>.
447 root 1.194
448 root 1.106
449 root 1.40 =item aio_close $fh, $callback->($status)
450 root 1.1
451 root 1.2 Asynchronously close a file and call the callback with the result
452 root 1.116 code.
453    
454 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
455 root 1.121 closing the file descriptor associated with the filehandle itself.
456 root 1.117
457 root 1.121 Therefore, C<aio_close> will not close the filehandle - instead it will
458     use dup2 to overwrite the file descriptor with the write-end of a pipe
459     (the pipe fd will be created on demand and will be cached).
460 root 1.117
461 root 1.121 Or in other words: the file descriptor will be closed, but it will not be
462     free for reuse until the perl filehandle is closed.
463 root 1.117
464     =cut
465    
466 root 1.220 =item aio_seek $fh, $offset, $whence, $callback->($offs)
467    
468 root 1.221 Seeks the filehandle to the new C<$offset>, similarly to perl's
469 root 1.220 C<sysseek>. The C<$whence> can use the traditional values (C<0> for
470     C<IO::AIO::SEEK_SET>, C<1> for C<IO::AIO::SEEK_CUR> or C<2> for
471     C<IO::AIO::SEEK_END>).
472    
473     The resulting absolute offset will be passed to the callback, or C<-1> in
474     case of an error.
475    
476     In theory, the C<$whence> constants could be different than the
477     corresponding values from L<Fcntl>, but perl guarantees they are the same,
478     so don't panic.
479    
480 root 1.225 As a GNU/Linux (and maybe Solaris) extension, also the constants
481     C<IO::AIO::SEEK_DATA> and C<IO::AIO::SEEK_HOLE> are available, if they
482     could be found. No guarantees about suitability for use in C<aio_seek> or
483     Perl's C<sysseek> can be made though, although I would naively assume they
484     "just work".
485    
486 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
487 root 1.1
488 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
489 root 1.1
490 root 1.145 Reads or writes C<$length> bytes from or to the specified C<$fh> and
491 root 1.267 C<$offset> into the scalar given by C<$data> and offset C<$dataoffset> and
492     calls the callback with the actual number of bytes transferred (or -1 on
493 root 1.145 error, just like the syscall).
494 root 1.109
495 root 1.146 C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
496     offset plus the actual number of bytes read.
497    
498 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
499     be used (and updated), otherwise the file descriptor offset will not be
500     changed by these calls.
501 root 1.109
502 root 1.145 If C<$length> is undefined in C<aio_write>, use the remaining length of
503     C<$data>.
504 root 1.109
505     If C<$dataoffset> is less than zero, it will be counted from the end of
506     C<$data>.
507 root 1.1
508 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
509 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
510     the necessary/optional hardware is installed).
511 root 1.31
512 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
513 root 1.1 offset C<0> within the scalar:
514    
515     aio_read $fh, 7, 15, $buffer, 0, sub {
516 root 1.9 $_[0] > 0 or die "read error: $!";
517     print "read $_[0] bytes: <$buffer>\n";
518 root 1.1 };
519    
520 root 1.106
521 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
522 root 1.35
523     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
524     reading at byte offset C<$in_offset>, and starts writing at the current
525     file offset of C<$out_fh>. Because of that, it is not safe to issue more
526     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
527 root 1.196 other. The same C<$in_fh> works fine though, as this function does not
528     move or use the file offset of C<$in_fh>.
529 root 1.35
530 root 1.185 Please note that C<aio_sendfile> can read more bytes from C<$in_fh> than
531 root 1.196 are written, and there is no way to find out how many more bytes have been
532     read from C<aio_sendfile> alone, as C<aio_sendfile> only provides the
533     number of bytes written to C<$out_fh>. Only if the result value equals
534     C<$length> one can assume that C<$length> bytes have been read.
535 root 1.185
536     Unlike with other C<aio_> functions, it makes a lot of sense to use
537     C<aio_sendfile> on non-blocking sockets, as long as one end (typically
538     the C<$in_fh>) is a file - the file I/O will then be asynchronous, while
539 root 1.196 the socket I/O will be non-blocking. Note, however, that you can run
540     into a trap where C<aio_sendfile> reads some data with readahead, then
541     fails to write all data, and when the socket is ready the next time, the
542     data in the cache is already lost, forcing C<aio_sendfile> to again hit
543     the disk. Explicit C<aio_read> + C<aio_write> let's you better control
544     resource usage.
545    
546     This call tries to make use of a native C<sendfile>-like syscall to
547     provide zero-copy operation. For this to work, C<$out_fh> should refer to
548     a socket, and C<$in_fh> should refer to an mmap'able file.
549 root 1.35
550 root 1.170 If a native sendfile cannot be found or it fails with C<ENOSYS>,
551 root 1.196 C<EINVAL>, C<ENOTSUP>, C<EOPNOTSUPP>, C<EAFNOSUPPORT>, C<EPROTOTYPE> or
552     C<ENOTSOCK>, it will be emulated, so you can call C<aio_sendfile> on any
553     type of filehandle regardless of the limitations of the operating system.
554    
555     As native sendfile syscalls (as practically any non-POSIX interface hacked
556     together in a hurry to improve benchmark numbers) tend to be rather buggy
557     on many systems, this implementation tries to work around some known bugs
558     in Linux and FreeBSD kernels (probably others, too), but that might fail,
559     so you really really should check the return value of C<aio_sendfile> -
560 root 1.262 fewer bytes than expected might have been transferred.
561 root 1.35
562 root 1.106
563 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
564 root 1.1
565 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
566 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
567     argument specifies the starting point from which data is to be read and
568     C<$length> specifies the number of bytes to be read. I/O is performed in
569     whole pages, so that offset is effectively rounded down to a page boundary
570     and bytes are read up to the next page boundary greater than or equal to
571 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
572 root 1.1 file. The current file offset of the file is left unchanged.
573    
574 root 1.261 If that syscall doesn't exist (likely if your kernel isn't Linux) it will
575     be emulated by simply reading the data, which would have a similar effect.
576 root 1.26
577 root 1.106
578 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
579 root 1.1
580 root 1.40 =item aio_lstat $fh, $callback->($status)
581 root 1.1
582 root 1.294 Works almost exactly like perl's C<stat> or C<lstat> in void context. The
583     callback will be called after the stat and the results will be available
584     using C<stat _> or C<-s _> and other tests (with the exception of C<-B>
585     and C<-T>).
586 root 1.1
587     The pathname passed to C<aio_stat> must be absolute. See API NOTES, above,
588     for an explanation.
589    
590     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
591     error when stat'ing a large file, the results will be silently truncated
592     unless perl itself is compiled with large file support.
593    
594 root 1.187 To help interpret the mode and dev/rdev stat values, IO::AIO offers the
595     following constants and functions (if not implemented, the constants will
596     be C<0> and the functions will either C<croak> or fall back on traditional
597     behaviour).
598    
599     C<S_IFMT>, C<S_IFIFO>, C<S_IFCHR>, C<S_IFBLK>, C<S_IFLNK>, C<S_IFREG>,
600     C<S_IFDIR>, C<S_IFWHT>, C<S_IFSOCK>, C<IO::AIO::major $dev_t>,
601     C<IO::AIO::minor $dev_t>, C<IO::AIO::makedev $major, $minor>.
602    
603 root 1.289 To access higher resolution stat timestamps, see L<SUBSECOND STAT TIME
604     ACCESS>.
605    
606 root 1.1 Example: Print the length of F</etc/passwd>:
607    
608     aio_stat "/etc/passwd", sub {
609     $_[0] and die "stat failed: $!";
610     print "size is ", -s _, "\n";
611     };
612    
613 root 1.106
614 root 1.175 =item aio_statvfs $fh_or_path, $callback->($statvfs)
615 root 1.172
616     Works like the POSIX C<statvfs> or C<fstatvfs> syscalls, depending on
617     whether a file handle or path was passed.
618    
619     On success, the callback is passed a hash reference with the following
620     members: C<bsize>, C<frsize>, C<blocks>, C<bfree>, C<bavail>, C<files>,
621     C<ffree>, C<favail>, C<fsid>, C<flag> and C<namemax>. On failure, C<undef>
622     is passed.
623    
624     The following POSIX IO::AIO::ST_* constants are defined: C<ST_RDONLY> and
625     C<ST_NOSUID>.
626    
627     The following non-POSIX IO::AIO::ST_* flag masks are defined to
628     their correct value when available, or to C<0> on systems that do
629     not support them: C<ST_NODEV>, C<ST_NOEXEC>, C<ST_SYNCHRONOUS>,
630     C<ST_MANDLOCK>, C<ST_WRITE>, C<ST_APPEND>, C<ST_IMMUTABLE>, C<ST_NOATIME>,
631     C<ST_NODIRATIME> and C<ST_RELATIME>.
632    
633     Example: stat C</wd> and dump out the data if successful.
634    
635     aio_statvfs "/wd", sub {
636     my $f = $_[0]
637     or die "statvfs: $!";
638    
639     use Data::Dumper;
640     say Dumper $f;
641     };
642    
643     # result:
644     {
645     bsize => 1024,
646     bfree => 4333064312,
647     blocks => 10253828096,
648     files => 2050765568,
649     flag => 4096,
650     favail => 2042092649,
651     bavail => 4333064312,
652     ffree => 2042092649,
653     namemax => 255,
654     frsize => 1024,
655     fsid => 1810
656     }
657    
658 root 1.106 =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
659    
660     Works like perl's C<utime> function (including the special case of $atime
661     and $mtime being undef). Fractional times are supported if the underlying
662     syscalls support them.
663    
664 root 1.294 When called with a pathname, uses utimensat(2) or utimes(2) if available,
665     otherwise utime(2). If called on a file descriptor, uses futimens(2)
666     or futimes(2) if available, otherwise returns ENOSYS, so this is not
667     portable.
668 root 1.106
669     Examples:
670    
671 root 1.107 # set atime and mtime to current time (basically touch(1)):
672 root 1.106 aio_utime "path", undef, undef;
673     # set atime to current time and mtime to beginning of the epoch:
674     aio_utime "path", time, undef; # undef==0
675    
676    
677     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
678    
679     Works like perl's C<chown> function, except that C<undef> for either $uid
680     or $gid is being interpreted as "do not change" (but -1 can also be used).
681    
682     Examples:
683    
684     # same as "chown root path" in the shell:
685     aio_chown "path", 0, -1;
686     # same as above:
687     aio_chown "path", 0, undef;
688    
689    
690 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
691    
692     Works like truncate(2) or ftruncate(2).
693    
694    
695 root 1.229 =item aio_allocate $fh, $mode, $offset, $len, $callback->($status)
696    
697 root 1.249 Allocates or frees disk space according to the C<$mode> argument. See the
698     linux C<fallocate> documentation for details.
699 root 1.229
700 root 1.252 C<$mode> is usually C<0> or C<IO::AIO::FALLOC_FL_KEEP_SIZE> to allocate
701     space, or C<IO::AIO::FALLOC_FL_PUNCH_HOLE | IO::AIO::FALLOC_FL_KEEP_SIZE>,
702     to deallocate a file range.
703    
704     IO::AIO also supports C<FALLOC_FL_COLLAPSE_RANGE>, to remove a range
705 root 1.273 (without leaving a hole), C<FALLOC_FL_ZERO_RANGE>, to zero a range,
706     C<FALLOC_FL_INSERT_RANGE> to insert a range and C<FALLOC_FL_UNSHARE_RANGE>
707     to unshare shared blocks (see your L<fallocate(2)> manpage).
708 root 1.229
709     The file system block size used by C<fallocate> is presumably the
710 root 1.273 C<f_bsize> returned by C<statvfs>, but different filesystems and filetypes
711     can dictate other limitations.
712 root 1.229
713     If C<fallocate> isn't available or cannot be emulated (currently no
714     emulation will be attempted), passes C<-1> and sets C<$!> to C<ENOSYS>.
715    
716    
717 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
718    
719     Works like perl's C<chmod> function.
720    
721    
722 root 1.40 =item aio_unlink $pathname, $callback->($status)
723 root 1.1
724     Asynchronously unlink (delete) a file and call the callback with the
725     result code.
726    
727 root 1.106
728 root 1.209 =item aio_mknod $pathname, $mode, $dev, $callback->($status)
729 root 1.82
730 root 1.86 [EXPERIMENTAL]
731    
732 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
733    
734 root 1.86 The only (POSIX-) portable way of calling this function is:
735 root 1.83
736 root 1.209 aio_mknod $pathname, IO::AIO::S_IFIFO | $mode, 0, sub { ...
737 root 1.82
738 root 1.187 See C<aio_stat> for info about some potentially helpful extra constants
739     and functions.
740 root 1.106
741 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
742    
743     Asynchronously create a new link to the existing object at C<$srcpath> at
744     the path C<$dstpath> and call the callback with the result code.
745    
746 root 1.106
747 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
748    
749     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
750     the path C<$dstpath> and call the callback with the result code.
751    
752 root 1.106
753 root 1.209 =item aio_readlink $pathname, $callback->($link)
754 root 1.90
755     Asynchronously read the symlink specified by C<$path> and pass it to
756     the callback. If an error occurs, nothing or undef gets passed to the
757     callback.
758    
759 root 1.106
760 root 1.209 =item aio_realpath $pathname, $callback->($path)
761 root 1.201
762     Asynchronously make the path absolute and resolve any symlinks in
763 root 1.239 C<$path>. The resulting path only consists of directories (same as
764 root 1.202 L<Cwd::realpath>).
765 root 1.201
766     This request can be used to get the absolute path of the current working
767     directory by passing it a path of F<.> (a single dot).
768    
769    
770 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
771    
772     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
773     rename(2) and call the callback with the result code.
774    
775 root 1.241 On systems that support the AIO::WD working directory abstraction
776     natively, the case C<[$wd, "."]> as C<$srcpath> is specialcased - instead
777     of failing, C<rename> is called on the absolute path of C<$wd>.
778    
779 root 1.106
780 root 1.270 =item aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
781    
782     Basically a version of C<aio_rename> with an additional C<$flags>
783     argument. Calling this with C<$flags=0> is the same as calling
784     C<aio_rename>.
785    
786     Non-zero flags are currently only supported on GNU/Linux systems that
787     support renameat2. Other systems fail with C<ENOSYS> in this case.
788    
789     The following constants are available (missing ones are, as usual C<0>),
790     see renameat2(2) for details:
791    
792     C<IO::AIO::RENAME_NOREPLACE>, C<IO::AIO::RENAME_EXCHANGE>
793     and C<IO::AIO::RENAME_WHITEOUT>.
794    
795    
796 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
797    
798     Asynchronously mkdir (create) a directory and call the callback with
799     the result code. C<$mode> will be modified by the umask at the time the
800     request is executed, so do not change your umask.
801    
802 root 1.106
803 root 1.40 =item aio_rmdir $pathname, $callback->($status)
804 root 1.27
805     Asynchronously rmdir (delete) a directory and call the callback with the
806     result code.
807    
808 root 1.241 On systems that support the AIO::WD working directory abstraction
809     natively, the case C<[$wd, "."]> is specialcased - instead of failing,
810     C<rmdir> is called on the absolute path of C<$wd>.
811    
812 root 1.106
813 root 1.46 =item aio_readdir $pathname, $callback->($entries)
814 root 1.37
815     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
816     directory (i.e. opendir + readdir + closedir). The entries will not be
817     sorted, and will B<NOT> include the C<.> and C<..> entries.
818    
819 root 1.148 The callback is passed a single argument which is either C<undef> or an
820     array-ref with the filenames.
821    
822    
823     =item aio_readdirx $pathname, $flags, $callback->($entries, $flags)
824    
825 root 1.207 Quite similar to C<aio_readdir>, but the C<$flags> argument allows one to
826     tune behaviour and output format. In case of an error, C<$entries> will be
827 root 1.148 C<undef>.
828    
829     The flags are a combination of the following constants, ORed together (the
830     flags will also be passed to the callback, possibly modified):
831    
832     =over 4
833    
834 root 1.150 =item IO::AIO::READDIR_DENTS
835 root 1.148
836 root 1.284 Normally the callback gets an arrayref consisting of names only (as
837     with C<aio_readdir>). If this flag is set, then the callback gets an
838     arrayref with C<[$name, $type, $inode]> arrayrefs, each describing a
839     single directory entry in more detail:
840 root 1.148
841     C<$name> is the name of the entry.
842    
843 root 1.150 C<$type> is one of the C<IO::AIO::DT_xxx> constants:
844 root 1.148
845 root 1.150 C<IO::AIO::DT_UNKNOWN>, C<IO::AIO::DT_FIFO>, C<IO::AIO::DT_CHR>, C<IO::AIO::DT_DIR>,
846     C<IO::AIO::DT_BLK>, C<IO::AIO::DT_REG>, C<IO::AIO::DT_LNK>, C<IO::AIO::DT_SOCK>,
847     C<IO::AIO::DT_WHT>.
848 root 1.148
849 root 1.284 C<IO::AIO::DT_UNKNOWN> means just that: readdir does not know. If you need
850     to know, you have to run stat yourself. Also, for speed/memory reasons,
851     the C<$type> scalars are read-only: you must not modify them.
852 root 1.148
853 root 1.150 C<$inode> is the inode number (which might not be exact on systems with 64
854 root 1.155 bit inode numbers and 32 bit perls). This field has unspecified content on
855     systems that do not deliver the inode information.
856 root 1.150
857     =item IO::AIO::READDIR_DIRS_FIRST
858 root 1.148
859     When this flag is set, then the names will be returned in an order where
860 root 1.193 likely directories come first, in optimal stat order. This is useful when
861     you need to quickly find directories, or you want to find all directories
862     while avoiding to stat() each entry.
863 root 1.148
864 root 1.149 If the system returns type information in readdir, then this is used
865 root 1.193 to find directories directly. Otherwise, likely directories are names
866     beginning with ".", or otherwise names with no dots, of which names with
867 root 1.149 short names are tried first.
868    
869 root 1.150 =item IO::AIO::READDIR_STAT_ORDER
870 root 1.148
871     When this flag is set, then the names will be returned in an order
872 root 1.284 suitable for stat()'ing each one. That is, when you plan to stat() most or
873     all files in the given directory, then the returned order will likely be
874     faster.
875    
876     If both this flag and C<IO::AIO::READDIR_DIRS_FIRST> are specified,
877     then the likely dirs come first, resulting in a less optimal stat order
878     for stat'ing all entries, but likely a more optimal order for finding
879     subdirectories.
880 root 1.148
881 root 1.150 =item IO::AIO::READDIR_FOUND_UNKNOWN
882 root 1.148
883     This flag should not be set when calling C<aio_readdirx>. Instead, it
884     is being set by C<aio_readdirx>, when any of the C<$type>'s found were
885 root 1.207 C<IO::AIO::DT_UNKNOWN>. The absence of this flag therefore indicates that all
886 root 1.148 C<$type>'s are known, which can be used to speed up some algorithms.
887    
888     =back
889 root 1.37
890 root 1.106
891 root 1.279 =item aio_slurp $pathname, $offset, $length, $data, $callback->($status)
892    
893     Opens, reads and closes the given file. The data is put into C<$data>,
894     which is resized as required.
895    
896     If C<$offset> is negative, then it is counted from the end of the file.
897    
898     If C<$length> is zero, then the remaining length of the file is
899     used. Also, in this case, the same limitations to modifying C<$data> apply
900     as when IO::AIO::mmap is used, i.e. it must only be modified in-place
901     with C<substr>. If the size of the file is known, specifying a non-zero
902     C<$length> results in a performance advantage.
903    
904     This request is similar to the older C<aio_load> request, but since it is
905     a single request, it might be more efficient to use.
906    
907     Example: load F</etc/passwd> into C<$passwd>.
908    
909     my $passwd;
910     aio_slurp "/etc/passwd", 0, 0, $passwd, sub {
911     $_[0] >= 0
912     or die "/etc/passwd: $!\n";
913    
914     printf "/etc/passwd is %d bytes long, and contains:\n", length $passwd;
915     print $passwd;
916     };
917     IO::AIO::flush;
918    
919    
920 root 1.209 =item aio_load $pathname, $data, $callback->($status)
921 root 1.98
922     This is a composite request that tries to fully load the given file into
923     memory. Status is the same as with aio_read.
924    
925 root 1.279 Using C<aio_slurp> might be more efficient, as it is a single request.
926    
927 root 1.98 =cut
928    
929     sub aio_load($$;$) {
930 root 1.123 my ($path, undef, $cb) = @_;
931     my $data = \$_[1];
932 root 1.98
933 root 1.123 my $pri = aioreq_pri;
934     my $grp = aio_group $cb;
935    
936     aioreq_pri $pri;
937     add $grp aio_open $path, O_RDONLY, 0, sub {
938     my $fh = shift
939     or return $grp->result (-1);
940 root 1.98
941     aioreq_pri $pri;
942 root 1.123 add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
943     $grp->result ($_[0]);
944 root 1.98 };
945 root 1.123 };
946 root 1.98
947 root 1.123 $grp
948 root 1.98 }
949    
950 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
951    
952     Try to copy the I<file> (directories not supported as either source or
953     destination) from C<$srcpath> to C<$dstpath> and call the callback with
954 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
955 root 1.82
956 root 1.275 Existing destination files will be truncated.
957    
958 root 1.134 This is a composite request that creates the destination file with
959 root 1.82 mode 0200 and copies the contents of the source file into it using
960     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
961     uid/gid, in that order.
962    
963     If an error occurs, the partial destination file will be unlinked, if
964     possible, except when setting atime, mtime, access mode and uid/gid, where
965     errors are being ignored.
966    
967     =cut
968    
969     sub aio_copy($$;$) {
970 root 1.123 my ($src, $dst, $cb) = @_;
971 root 1.82
972 root 1.123 my $pri = aioreq_pri;
973     my $grp = aio_group $cb;
974 root 1.82
975 root 1.123 aioreq_pri $pri;
976     add $grp aio_open $src, O_RDONLY, 0, sub {
977     if (my $src_fh = $_[0]) {
978 root 1.166 my @stat = stat $src_fh; # hmm, might block over nfs?
979 root 1.95
980 root 1.123 aioreq_pri $pri;
981     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
982     if (my $dst_fh = $_[0]) {
983     aioreq_pri $pri;
984     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
985     if ($_[0] == $stat[7]) {
986     $grp->result (0);
987     close $src_fh;
988    
989 root 1.147 my $ch = sub {
990     aioreq_pri $pri;
991     add $grp aio_chmod $dst_fh, $stat[2] & 07777, sub {
992     aioreq_pri $pri;
993     add $grp aio_chown $dst_fh, $stat[4], $stat[5], sub {
994     aioreq_pri $pri;
995     add $grp aio_close $dst_fh;
996     }
997     };
998     };
999 root 1.123
1000     aioreq_pri $pri;
1001 root 1.147 add $grp aio_utime $dst_fh, $stat[8], $stat[9], sub {
1002     if ($_[0] < 0 && $! == ENOSYS) {
1003     aioreq_pri $pri;
1004     add $grp aio_utime $dst, $stat[8], $stat[9], $ch;
1005     } else {
1006     $ch->();
1007     }
1008     };
1009 root 1.123 } else {
1010     $grp->result (-1);
1011     close $src_fh;
1012     close $dst_fh;
1013    
1014     aioreq $pri;
1015     add $grp aio_unlink $dst;
1016     }
1017     };
1018     } else {
1019     $grp->result (-1);
1020     }
1021     },
1022 root 1.82
1023 root 1.123 } else {
1024     $grp->result (-1);
1025     }
1026     };
1027 root 1.82
1028 root 1.123 $grp
1029 root 1.82 }
1030    
1031     =item aio_move $srcpath, $dstpath, $callback->($status)
1032    
1033     Try to move the I<file> (directories not supported as either source or
1034     destination) from C<$srcpath> to C<$dstpath> and call the callback with
1035 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
1036 root 1.82
1037 root 1.137 This is a composite request that tries to rename(2) the file first; if
1038     rename fails with C<EXDEV>, it copies the file with C<aio_copy> and, if
1039     that is successful, unlinks the C<$srcpath>.
1040 root 1.82
1041     =cut
1042    
1043     sub aio_move($$;$) {
1044 root 1.123 my ($src, $dst, $cb) = @_;
1045 root 1.82
1046 root 1.123 my $pri = aioreq_pri;
1047     my $grp = aio_group $cb;
1048 root 1.82
1049 root 1.123 aioreq_pri $pri;
1050     add $grp aio_rename $src, $dst, sub {
1051     if ($_[0] && $! == EXDEV) {
1052     aioreq_pri $pri;
1053     add $grp aio_copy $src, $dst, sub {
1054     $grp->result ($_[0]);
1055 root 1.95
1056 root 1.196 unless ($_[0]) {
1057 root 1.123 aioreq_pri $pri;
1058     add $grp aio_unlink $src;
1059     }
1060     };
1061     } else {
1062     $grp->result ($_[0]);
1063     }
1064     };
1065 root 1.82
1066 root 1.123 $grp
1067 root 1.82 }
1068    
1069 root 1.209 =item aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
1070 root 1.40
1071 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
1072 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
1073     names, directories you can recurse into (directories), and ones you cannot
1074     recurse into (everything else, including symlinks to directories).
1075 root 1.52
1076 root 1.277 C<aio_scandir> is a composite request that generates many sub requests.
1077 root 1.61 C<$maxreq> specifies the maximum number of outstanding aio requests that
1078     this function generates. If it is C<< <= 0 >>, then a suitable default
1079 root 1.81 will be chosen (currently 4).
1080 root 1.40
1081     On error, the callback is called without arguments, otherwise it receives
1082     two array-refs with path-relative entry names.
1083    
1084     Example:
1085    
1086     aio_scandir $dir, 0, sub {
1087     my ($dirs, $nondirs) = @_;
1088     print "real directories: @$dirs\n";
1089     print "everything else: @$nondirs\n";
1090     };
1091    
1092     Implementation notes.
1093    
1094     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
1095    
1096 root 1.149 If readdir returns file type information, then this is used directly to
1097     find directories.
1098    
1099     Otherwise, after reading the directory, the modification time, size etc.
1100     of the directory before and after the readdir is checked, and if they
1101     match (and isn't the current time), the link count will be used to decide
1102     how many entries are directories (if >= 2). Otherwise, no knowledge of the
1103     number of subdirectories will be assumed.
1104    
1105     Then entries will be sorted into likely directories a non-initial dot
1106     currently) and likely non-directories (see C<aio_readdirx>). Then every
1107     entry plus an appended C</.> will be C<stat>'ed, likely directories first,
1108     in order of their inode numbers. If that succeeds, it assumes that the
1109     entry is a directory or a symlink to directory (which will be checked
1110 root 1.207 separately). This is often faster than stat'ing the entry itself because
1111 root 1.52 filesystems might detect the type of the entry without reading the inode
1112 root 1.149 data (e.g. ext2fs filetype feature), even on systems that cannot return
1113     the filetype information on readdir.
1114 root 1.52
1115     If the known number of directories (link count - 2) has been reached, the
1116     rest of the entries is assumed to be non-directories.
1117    
1118     This only works with certainty on POSIX (= UNIX) filesystems, which
1119     fortunately are the vast majority of filesystems around.
1120    
1121     It will also likely work on non-POSIX filesystems with reduced efficiency
1122     as those tend to return 0 or 1 as link counts, which disables the
1123     directory counting heuristic.
1124 root 1.40
1125     =cut
1126    
1127 root 1.100 sub aio_scandir($$;$) {
1128 root 1.123 my ($path, $maxreq, $cb) = @_;
1129    
1130     my $pri = aioreq_pri;
1131 root 1.40
1132 root 1.123 my $grp = aio_group $cb;
1133 root 1.80
1134 root 1.123 $maxreq = 4 if $maxreq <= 0;
1135 root 1.55
1136 root 1.210 # get a wd object
1137 root 1.123 aioreq_pri $pri;
1138 root 1.210 add $grp aio_wd $path, sub {
1139 root 1.212 $_[0]
1140     or return $grp->result ();
1141    
1142 root 1.210 my $wd = [shift, "."];
1143 root 1.40
1144 root 1.210 # stat once
1145 root 1.80 aioreq_pri $pri;
1146 root 1.210 add $grp aio_stat $wd, sub {
1147     return $grp->result () if $_[0];
1148     my $now = time;
1149     my $hash1 = join ":", (stat _)[0,1,3,7,9];
1150 root 1.299 my $rdxflags = READDIR_DIRS_FIRST;
1151    
1152     if ((stat _)[3] < 2) {
1153     # at least one non-POSIX filesystem exists
1154     # that returns useful DT_type values: btrfs,
1155     # so optimise for this here by requesting dents
1156     $rdxflags |= READDIR_DENTS;
1157     }
1158 root 1.40
1159 root 1.210 # read the directory entries
1160 root 1.80 aioreq_pri $pri;
1161 root 1.299 add $grp aio_readdirx $wd, $rdxflags, sub {
1162     my ($entries, $flags) = @_
1163 root 1.210 or return $grp->result ();
1164    
1165 root 1.299 if ($rdxflags & READDIR_DENTS) {
1166     # if we requested type values, see if we can use them directly.
1167    
1168     # if there were any DT_UNKNOWN entries then we assume we
1169     # don't know. alternatively, we could assume that if we get
1170     # one DT_DIR, then all directories are indeed marked with
1171     # DT_DIR, but this seems not required for btrfs, and this
1172     # is basically the "btrfs can't get it's act together" code
1173     # branch.
1174     unless ($flags & READDIR_FOUND_UNKNOWN) {
1175     # now we have valid DT_ information for all entries,
1176     # so use it as an optimisation without further stat's.
1177     # they must also all be at the beginning of @$entries
1178     # by now.
1179    
1180     my $dirs;
1181    
1182     if (@$entries) {
1183     for (0 .. $#$entries) {
1184     if ($entries->[$_][1] != DT_DIR) {
1185     # splice out directories
1186     $dirs = [splice @$entries, 0, $_];
1187     last;
1188     }
1189     }
1190    
1191     # if we didn't find any non-dir, then all entries are dirs
1192     unless ($dirs) {
1193     ($dirs, $entries) = ($entries, []);
1194     }
1195     } else {
1196     # directory is empty, so there are no sbdirs
1197     $dirs = [];
1198     }
1199    
1200     # either splice'd the directories out or the dir was empty.
1201     # convert dents to filenames
1202     $_ = $_->[0] for @$dirs;
1203     $_ = $_->[0] for @$entries;
1204    
1205     return $grp->result ($dirs, $entries);
1206     }
1207    
1208     # cannot use, so return to our old ways
1209     # by pretending we only scanned for names.
1210     $_ = $_->[0] for @$entries;
1211     }
1212    
1213 root 1.210 # stat the dir another time
1214     aioreq_pri $pri;
1215     add $grp aio_stat $wd, sub {
1216     my $hash2 = join ":", (stat _)[0,1,3,7,9];
1217 root 1.95
1218 root 1.210 my $ndirs;
1219 root 1.95
1220 root 1.210 # take the slow route if anything looks fishy
1221     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
1222     $ndirs = -1;
1223     } else {
1224     # if nlink == 2, we are finished
1225     # for non-posix-fs's, we rely on nlink < 2
1226     $ndirs = (stat _)[3] - 2
1227     or return $grp->result ([], $entries);
1228     }
1229 root 1.123
1230 root 1.210 my (@dirs, @nondirs);
1231 root 1.40
1232 root 1.210 my $statgrp = add $grp aio_group sub {
1233     $grp->result (\@dirs, \@nondirs);
1234     };
1235 root 1.40
1236 root 1.210 limit $statgrp $maxreq;
1237     feed $statgrp sub {
1238     return unless @$entries;
1239     my $entry = shift @$entries;
1240    
1241     aioreq_pri $pri;
1242     $wd->[1] = "$entry/.";
1243     add $statgrp aio_stat $wd, sub {
1244     if ($_[0] < 0) {
1245     push @nondirs, $entry;
1246     } else {
1247     # need to check for real directory
1248     aioreq_pri $pri;
1249     $wd->[1] = $entry;
1250     add $statgrp aio_lstat $wd, sub {
1251     if (-d _) {
1252     push @dirs, $entry;
1253    
1254     unless (--$ndirs) {
1255     push @nondirs, @$entries;
1256     feed $statgrp;
1257     }
1258     } else {
1259     push @nondirs, $entry;
1260 root 1.74 }
1261 root 1.40 }
1262     }
1263 root 1.210 };
1264 root 1.74 };
1265 root 1.40 };
1266     };
1267     };
1268 root 1.123 };
1269 root 1.55
1270 root 1.123 $grp
1271 root 1.40 }
1272    
1273 root 1.209 =item aio_rmtree $pathname, $callback->($status)
1274 root 1.99
1275 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
1276 root 1.239 status of the final C<rmdir> only. This is a composite request that
1277 root 1.100 uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1278     everything else.
1279 root 1.99
1280     =cut
1281    
1282     sub aio_rmtree;
1283 root 1.100 sub aio_rmtree($;$) {
1284 root 1.123 my ($path, $cb) = @_;
1285 root 1.99
1286 root 1.123 my $pri = aioreq_pri;
1287     my $grp = aio_group $cb;
1288 root 1.99
1289 root 1.123 aioreq_pri $pri;
1290     add $grp aio_scandir $path, 0, sub {
1291     my ($dirs, $nondirs) = @_;
1292 root 1.99
1293 root 1.123 my $dirgrp = aio_group sub {
1294     add $grp aio_rmdir $path, sub {
1295     $grp->result ($_[0]);
1296 root 1.99 };
1297 root 1.123 };
1298 root 1.99
1299 root 1.123 (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
1300     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
1301 root 1.99
1302 root 1.123 add $grp $dirgrp;
1303     };
1304 root 1.99
1305 root 1.123 $grp
1306 root 1.99 }
1307    
1308 root 1.259 =item aio_fcntl $fh, $cmd, $arg, $callback->($status)
1309    
1310     =item aio_ioctl $fh, $request, $buf, $callback->($status)
1311    
1312     These work just like the C<fcntl> and C<ioctl> built-in functions, except
1313     they execute asynchronously and pass the return value to the callback.
1314    
1315     Both calls can be used for a lot of things, some of which make more sense
1316     to run asynchronously in their own thread, while some others make less
1317     sense. For example, calls that block waiting for external events, such
1318     as locking, will also lock down an I/O thread while it is waiting, which
1319     can deadlock the whole I/O system. At the same time, there might be no
1320     alternative to using a thread to wait.
1321    
1322     So in general, you should only use these calls for things that do
1323     (filesystem) I/O, not for things that wait for other events (network,
1324     other processes), although if you are careful and know what you are doing,
1325     you still can.
1326    
1327 root 1.303 The following constants are available and can be used for normal C<ioctl>
1328     and C<fcntl> as well (missing ones are, as usual C<0>):
1329 root 1.264
1330 root 1.271 C<F_DUPFD_CLOEXEC>,
1331    
1332     C<F_OFD_GETLK>, C<F_OFD_SETLK>, C<F_OFD_GETLKW>,
1333    
1334 root 1.264 C<FIFREEZE>, C<FITHAW>, C<FITRIM>, C<FICLONE>, C<FICLONERANGE>, C<FIDEDUPERANGE>.
1335    
1336 root 1.303 C<F_ADD_SEALS>, C<F_GET_SEALS>, C<F_SEAL_SEAL>, C<F_SEAL_SHRINK>, C<F_SEAL_GROW> and
1337     C<F_SEAL_WRITE>.
1338    
1339 root 1.264 C<FS_IOC_GETFLAGS>, C<FS_IOC_SETFLAGS>, C<FS_IOC_GETVERSION>, C<FS_IOC_SETVERSION>,
1340     C<FS_IOC_FIEMAP>.
1341    
1342     C<FS_IOC_FSGETXATTR>, C<FS_IOC_FSSETXATTR>, C<FS_IOC_SET_ENCRYPTION_POLICY>,
1343     C<FS_IOC_GET_ENCRYPTION_PWSALT>, C<FS_IOC_GET_ENCRYPTION_POLICY>, C<FS_KEY_DESCRIPTOR_SIZE>.
1344    
1345     C<FS_SECRM_FL>, C<FS_UNRM_FL>, C<FS_COMPR_FL>, C<FS_SYNC_FL>, C<FS_IMMUTABLE_FL>,
1346     C<FS_APPEND_FL>, C<FS_NODUMP_FL>, C<FS_NOATIME_FL>, C<FS_DIRTY_FL>,
1347     C<FS_COMPRBLK_FL>, C<FS_NOCOMP_FL>, C<FS_ENCRYPT_FL>, C<FS_BTREE_FL>,
1348     C<FS_INDEX_FL>, C<FS_JOURNAL_DATA_FL>, C<FS_NOTAIL_FL>, C<FS_DIRSYNC_FL>, C<FS_TOPDIR_FL>,
1349     C<FS_FL_USER_MODIFIABLE>.
1350    
1351     C<FS_XFLAG_REALTIME>, C<FS_XFLAG_PREALLOC>, C<FS_XFLAG_IMMUTABLE>, C<FS_XFLAG_APPEND>,
1352     C<FS_XFLAG_SYNC>, C<FS_XFLAG_NOATIME>, C<FS_XFLAG_NODUMP>, C<FS_XFLAG_RTINHERIT>,
1353     C<FS_XFLAG_PROJINHERIT>, C<FS_XFLAG_NOSYMLINKS>, C<FS_XFLAG_EXTSIZE>, C<FS_XFLAG_EXTSZINHERIT>,
1354     C<FS_XFLAG_NODEFRAG>, C<FS_XFLAG_FILESTREAM>, C<FS_XFLAG_DAX>, C<FS_XFLAG_HASATTR>,
1355    
1356 root 1.119 =item aio_sync $callback->($status)
1357    
1358     Asynchronously call sync and call the callback when finished.
1359    
1360 root 1.40 =item aio_fsync $fh, $callback->($status)
1361 root 1.1
1362     Asynchronously call fsync on the given filehandle and call the callback
1363     with the fsync result code.
1364    
1365 root 1.40 =item aio_fdatasync $fh, $callback->($status)
1366 root 1.1
1367     Asynchronously call fdatasync on the given filehandle and call the
1368 root 1.26 callback with the fdatasync result code.
1369    
1370     If this call isn't available because your OS lacks it or it couldn't be
1371     detected, it will be emulated by calling C<fsync> instead.
1372 root 1.1
1373 root 1.206 =item aio_syncfs $fh, $callback->($status)
1374    
1375     Asynchronously call the syncfs syscall to sync the filesystem associated
1376     to the given filehandle and call the callback with the syncfs result
1377     code. If syncfs is not available, calls sync(), but returns C<-1> and sets
1378     errno to C<ENOSYS> nevertheless.
1379    
1380 root 1.142 =item aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
1381    
1382     Sync the data portion of the file specified by C<$offset> and C<$length>
1383     to disk (but NOT the metadata), by calling the Linux-specific
1384     sync_file_range call. If sync_file_range is not available or it returns
1385     ENOSYS, then fdatasync or fsync is being substituted.
1386    
1387     C<$flags> can be a combination of C<IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE>,
1388     C<IO::AIO::SYNC_FILE_RANGE_WRITE> and
1389     C<IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER>: refer to the sync_file_range
1390     manpage for details.
1391    
1392 root 1.209 =item aio_pathsync $pathname, $callback->($status)
1393 root 1.120
1394     This request tries to open, fsync and close the given path. This is a
1395 root 1.135 composite request intended to sync directories after directory operations
1396 root 1.120 (E.g. rename). This might not work on all operating systems or have any
1397     specific effect, but usually it makes sure that directory changes get
1398     written to disc. It works for anything that can be opened for read-only,
1399     not just directories.
1400    
1401 root 1.162 Future versions of this function might fall back to other methods when
1402     C<fsync> on the directory fails (such as calling C<sync>).
1403    
1404 root 1.120 Passes C<0> when everything went ok, and C<-1> on error.
1405    
1406     =cut
1407    
1408     sub aio_pathsync($;$) {
1409 root 1.123 my ($path, $cb) = @_;
1410    
1411     my $pri = aioreq_pri;
1412     my $grp = aio_group $cb;
1413 root 1.120
1414 root 1.123 aioreq_pri $pri;
1415     add $grp aio_open $path, O_RDONLY, 0, sub {
1416     my ($fh) = @_;
1417     if ($fh) {
1418     aioreq_pri $pri;
1419     add $grp aio_fsync $fh, sub {
1420     $grp->result ($_[0]);
1421 root 1.120
1422     aioreq_pri $pri;
1423 root 1.123 add $grp aio_close $fh;
1424     };
1425     } else {
1426     $grp->result (-1);
1427     }
1428     };
1429 root 1.120
1430 root 1.123 $grp
1431 root 1.120 }
1432    
1433 root 1.268 =item aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
1434 root 1.170
1435     This is a rather advanced IO::AIO call, which only works on mmap(2)ed
1436 root 1.176 scalars (see the C<IO::AIO::mmap> function, although it also works on data
1437     scalars managed by the L<Sys::Mmap> or L<Mmap> modules, note that the
1438     scalar must only be modified in-place while an aio operation is pending on
1439     it).
1440 root 1.170
1441     It calls the C<msync> function of your OS, if available, with the memory
1442     area starting at C<$offset> in the string and ending C<$length> bytes
1443     later. If C<$length> is negative, counts from the end, and if C<$length>
1444     is C<undef>, then it goes till the end of the string. The flags can be
1445 root 1.268 either C<IO::AIO::MS_ASYNC> or C<IO::AIO::MS_SYNC>, plus an optional
1446     C<IO::AIO::MS_INVALIDATE>.
1447 root 1.170
1448     =item aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1449    
1450     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1451     scalars.
1452    
1453     It touches (reads or writes) all memory pages in the specified
1454 root 1.239 range inside the scalar. All caveats and parameters are the same
1455 root 1.170 as for C<aio_msync>, above, except for flags, which must be either
1456     C<0> (which reads all pages and ensures they are instantiated) or
1457 root 1.239 C<IO::AIO::MT_MODIFY>, which modifies the memory pages (by reading and
1458 root 1.170 writing an octet from it, which dirties the page).
1459    
1460 root 1.182 =item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1461    
1462     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1463     scalars.
1464    
1465     It reads in all the pages of the underlying storage into memory (if any)
1466     and locks them, so they are not getting swapped/paged out or removed.
1467    
1468     If C<$length> is undefined, then the scalar will be locked till the end.
1469    
1470     On systems that do not implement C<mlock>, this function returns C<-1>
1471     and sets errno to C<ENOSYS>.
1472    
1473     Note that the corresponding C<munlock> is synchronous and is
1474     documented under L<MISCELLANEOUS FUNCTIONS>.
1475    
1476 root 1.183 Example: open a file, mmap and mlock it - both will be undone when
1477     C<$data> gets destroyed.
1478    
1479     open my $fh, "<", $path or die "$path: $!";
1480     my $data;
1481     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1482     aio_mlock $data; # mlock in background
1483    
1484 root 1.182 =item aio_mlockall $flags, $callback->($status)
1485    
1486 root 1.297 Calls the C<mlockall> function with the given C<$flags> (a
1487     combination of C<IO::AIO::MCL_CURRENT>, C<IO::AIO::MCL_FUTURE> and
1488     C<IO::AIO::MCL_ONFAULT>).
1489 root 1.182
1490     On systems that do not implement C<mlockall>, this function returns C<-1>
1491 root 1.297 and sets errno to C<ENOSYS>. Similarly, flag combinations not supported
1492     by the system result in a return value of C<-1> with errno being set to
1493     C<EINVAL>.
1494 root 1.182
1495     Note that the corresponding C<munlockall> is synchronous and is
1496     documented under L<MISCELLANEOUS FUNCTIONS>.
1497    
1498 root 1.183 Example: asynchronously lock all current and future pages into memory.
1499    
1500     aio_mlockall IO::AIO::MCL_FUTURE;
1501    
1502 root 1.223 =item aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
1503    
1504 root 1.234 Queries the extents of the given file (by calling the Linux C<FIEMAP>
1505     ioctl, see L<http://cvs.schmorp.de/IO-AIO/doc/fiemap.txt> for details). If
1506     the ioctl is not available on your OS, then this request will fail with
1507 root 1.223 C<ENOSYS>.
1508    
1509     C<$start> is the starting offset to query extents for, C<$length> is the
1510     size of the range to query - if it is C<undef>, then the whole file will
1511     be queried.
1512    
1513     C<$flags> is a combination of flags (C<IO::AIO::FIEMAP_FLAG_SYNC> or
1514     C<IO::AIO::FIEMAP_FLAG_XATTR> - C<IO::AIO::FIEMAP_FLAGS_COMPAT> is also
1515     exported), and is normally C<0> or C<IO::AIO::FIEMAP_FLAG_SYNC> to query
1516     the data portion.
1517    
1518     C<$count> is the maximum number of extent records to return. If it is
1519 root 1.232 C<undef>, then IO::AIO queries all extents of the range. As a very special
1520 root 1.223 case, if it is C<0>, then the callback receives the number of extents
1521 root 1.232 instead of the extents themselves (which is unreliable, see below).
1522 root 1.223
1523     If an error occurs, the callback receives no arguments. The special
1524     C<errno> value C<IO::AIO::EBADR> is available to test for flag errors.
1525    
1526     Otherwise, the callback receives an array reference with extent
1527     structures. Each extent structure is an array reference itself, with the
1528     following members:
1529    
1530     [$logical, $physical, $length, $flags]
1531    
1532     Flags is any combination of the following flag values (typically either C<0>
1533 root 1.231 or C<IO::AIO::FIEMAP_EXTENT_LAST> (1)):
1534 root 1.223
1535     C<IO::AIO::FIEMAP_EXTENT_LAST>, C<IO::AIO::FIEMAP_EXTENT_UNKNOWN>,
1536     C<IO::AIO::FIEMAP_EXTENT_DELALLOC>, C<IO::AIO::FIEMAP_EXTENT_ENCODED>,
1537     C<IO::AIO::FIEMAP_EXTENT_DATA_ENCRYPTED>, C<IO::AIO::FIEMAP_EXTENT_NOT_ALIGNED>,
1538     C<IO::AIO::FIEMAP_EXTENT_DATA_INLINE>, C<IO::AIO::FIEMAP_EXTENT_DATA_TAIL>,
1539     C<IO::AIO::FIEMAP_EXTENT_UNWRITTEN>, C<IO::AIO::FIEMAP_EXTENT_MERGED> or
1540     C<IO::AIO::FIEMAP_EXTENT_SHARED>.
1541    
1542 root 1.278 At the time of this writing (Linux 3.2), this request is unreliable unless
1543 root 1.232 C<$count> is C<undef>, as the kernel has all sorts of bugs preventing
1544 root 1.278 it to return all extents of a range for files with a large number of
1545     extents. The code (only) works around all these issues if C<$count> is
1546     C<undef>.
1547 root 1.232
1548 root 1.58 =item aio_group $callback->(...)
1549 root 1.54
1550 root 1.55 This is a very special aio request: Instead of doing something, it is a
1551     container for other aio requests, which is useful if you want to bundle
1552 root 1.71 many requests into a single, composite, request with a definite callback
1553     and the ability to cancel the whole request with its subrequests.
1554 root 1.55
1555     Returns an object of class L<IO::AIO::GRP>. See its documentation below
1556     for more info.
1557    
1558     Example:
1559    
1560     my $grp = aio_group sub {
1561     print "all stats done\n";
1562     };
1563    
1564     add $grp
1565     (aio_stat ...),
1566     (aio_stat ...),
1567     ...;
1568    
1569 root 1.63 =item aio_nop $callback->()
1570    
1571     This is a special request - it does nothing in itself and is only used for
1572     side effects, such as when you want to add a dummy request to a group so
1573     that finishing the requests in the group depends on executing the given
1574     code.
1575    
1576 root 1.64 While this request does nothing, it still goes through the execution
1577     phase and still requires a worker thread. Thus, the callback will not
1578     be executed immediately but only after other requests in the queue have
1579     entered their execution phase. This can be used to measure request
1580     latency.
1581    
1582 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1583 root 1.54
1584     Mainly used for debugging and benchmarking, this aio request puts one of
1585     the request workers to sleep for the given time.
1586    
1587 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1588 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1589     immense (it blocks a thread for a long time) so do not use this function
1590     except to put your application under artificial I/O pressure.
1591 root 1.56
1592 root 1.5 =back
1593    
1594 root 1.209
1595     =head2 IO::AIO::WD - multiple working directories
1596    
1597     Your process only has one current working directory, which is used by all
1598     threads. This makes it hard to use relative paths (some other component
1599     could call C<chdir> at any time, and it is hard to control when the path
1600     will be used by IO::AIO).
1601    
1602     One solution for this is to always use absolute paths. This usually works,
1603     but can be quite slow (the kernel has to walk the whole path on every
1604     access), and can also be a hassle to implement.
1605    
1606     Newer POSIX systems have a number of functions (openat, fdopendir,
1607     futimensat and so on) that make it possible to specify working directories
1608     per operation.
1609    
1610     For portability, and because the clowns who "designed", or shall I write,
1611     perpetrated this new interface were obviously half-drunk, this abstraction
1612     cannot be perfect, though.
1613    
1614     IO::AIO allows you to convert directory paths into a so-called IO::AIO::WD
1615     object. This object stores the canonicalised, absolute version of the
1616     path, and on systems that allow it, also a directory file descriptor.
1617    
1618     Everywhere where a pathname is accepted by IO::AIO (e.g. in C<aio_stat>
1619     or C<aio_unlink>), one can specify an array reference with an IO::AIO::WD
1620 root 1.214 object and a pathname instead (or the IO::AIO::WD object alone, which
1621     gets interpreted as C<[$wd, "."]>). If the pathname is absolute, the
1622 root 1.213 IO::AIO::WD object is ignored, otherwise the pathname is resolved relative
1623 root 1.209 to that IO::AIO::WD object.
1624    
1625     For example, to get a wd object for F</etc> and then stat F<passwd>
1626     inside, you would write:
1627    
1628     aio_wd "/etc", sub {
1629     my $etcdir = shift;
1630    
1631     # although $etcdir can be undef on error, there is generally no reason
1632     # to check for errors here, as aio_stat will fail with ENOENT
1633     # when $etcdir is undef.
1634    
1635     aio_stat [$etcdir, "passwd"], sub {
1636     # yay
1637     };
1638     };
1639    
1640 root 1.250 The fact that C<aio_wd> is a request and not a normal function shows that
1641     creating an IO::AIO::WD object is itself a potentially blocking operation,
1642     which is why it is done asynchronously.
1643 root 1.214
1644     To stat the directory obtained with C<aio_wd> above, one could write
1645     either of the following three request calls:
1646    
1647     aio_lstat "/etc" , sub { ... # pathname as normal string
1648     aio_lstat [$wd, "."], sub { ... # "." relative to $wd (i.e. $wd itself)
1649     aio_lstat $wd , sub { ... # shorthand for the previous
1650 root 1.209
1651     As with normal pathnames, IO::AIO keeps a copy of the working directory
1652     object and the pathname string, so you could write the following without
1653     causing any issues due to C<$path> getting reused:
1654    
1655     my $path = [$wd, undef];
1656    
1657     for my $name (qw(abc def ghi)) {
1658     $path->[1] = $name;
1659     aio_stat $path, sub {
1660     # ...
1661     };
1662     }
1663    
1664     There are some caveats: when directories get renamed (or deleted), the
1665     pathname string doesn't change, so will point to the new directory (or
1666     nowhere at all), while the directory fd, if available on the system,
1667     will still point to the original directory. Most functions accepting a
1668     pathname will use the directory fd on newer systems, and the string on
1669 root 1.277 older systems. Some functions (such as C<aio_realpath>) will always rely on
1670     the string form of the pathname.
1671 root 1.209
1672 root 1.239 So this functionality is mainly useful to get some protection against
1673 root 1.209 C<chdir>, to easily get an absolute path out of a relative path for future
1674     reference, and to speed up doing many operations in the same directory
1675     (e.g. when stat'ing all files in a directory).
1676    
1677     The following functions implement this working directory abstraction:
1678    
1679     =over 4
1680    
1681     =item aio_wd $pathname, $callback->($wd)
1682    
1683     Asynchonously canonicalise the given pathname and convert it to an
1684     IO::AIO::WD object representing it. If possible and supported on the
1685     system, also open a directory fd to speed up pathname resolution relative
1686     to this working directory.
1687    
1688     If something goes wrong, then C<undef> is passwd to the callback instead
1689     of a working directory object and C<$!> is set appropriately. Since
1690     passing C<undef> as working directory component of a pathname fails the
1691     request with C<ENOENT>, there is often no need for error checking in the
1692     C<aio_wd> callback, as future requests using the value will fail in the
1693     expected way.
1694    
1695     =item IO::AIO::CWD
1696    
1697 root 1.306 This is a compile time constant (object) that represents the process
1698 root 1.209 current working directory.
1699    
1700 root 1.239 Specifying this object as working directory object for a pathname is as if
1701     the pathname would be specified directly, without a directory object. For
1702     example, these calls are functionally identical:
1703 root 1.209
1704     aio_stat "somefile", sub { ... };
1705     aio_stat [IO::AIO::CWD, "somefile"], sub { ... };
1706    
1707     =back
1708    
1709 root 1.239 To recover the path associated with an IO::AIO::WD object, you can use
1710     C<aio_realpath>:
1711    
1712     aio_realpath $wd, sub {
1713     warn "path is $_[0]\n";
1714     };
1715    
1716 root 1.241 Currently, C<aio_statvfs> always, and C<aio_rename> and C<aio_rmdir>
1717     sometimes, fall back to using an absolue path.
1718 root 1.209
1719 root 1.53 =head2 IO::AIO::REQ CLASS
1720 root 1.52
1721     All non-aggregate C<aio_*> functions return an object of this class when
1722     called in non-void context.
1723    
1724     =over 4
1725    
1726 root 1.65 =item cancel $req
1727 root 1.52
1728     Cancels the request, if possible. Has the effect of skipping execution
1729     when entering the B<execute> state and skipping calling the callback when
1730     entering the the B<result> state, but will leave the request otherwise
1731 root 1.151 untouched (with the exception of readdir). That means that requests that
1732     currently execute will not be stopped and resources held by the request
1733     will not be freed prematurely.
1734 root 1.52
1735 root 1.65 =item cb $req $callback->(...)
1736    
1737     Replace (or simply set) the callback registered to the request.
1738    
1739 root 1.52 =back
1740    
1741 root 1.55 =head2 IO::AIO::GRP CLASS
1742    
1743     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1744     objects of this class, too.
1745    
1746     A IO::AIO::GRP object is a special request that can contain multiple other
1747     aio requests.
1748    
1749     You create one by calling the C<aio_group> constructing function with a
1750     callback that will be called when all contained requests have entered the
1751     C<done> state:
1752    
1753     my $grp = aio_group sub {
1754     print "all requests are done\n";
1755     };
1756    
1757     You add requests by calling the C<add> method with one or more
1758     C<IO::AIO::REQ> objects:
1759    
1760     $grp->add (aio_unlink "...");
1761    
1762 root 1.58 add $grp aio_stat "...", sub {
1763     $_[0] or return $grp->result ("error");
1764    
1765     # add another request dynamically, if first succeeded
1766     add $grp aio_open "...", sub {
1767     $grp->result ("ok");
1768     };
1769     };
1770 root 1.55
1771     This makes it very easy to create composite requests (see the source of
1772     C<aio_move> for an application) that work and feel like simple requests.
1773    
1774 root 1.62 =over 4
1775    
1776     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1777 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1778    
1779 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1780 root 1.59 only the request itself, but also all requests it contains.
1781 root 1.55
1782 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1783 root 1.55
1784 root 1.62 =item * You must not add requests to a group from within the group callback (or
1785 root 1.60 any later time).
1786    
1787 root 1.62 =back
1788    
1789 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1790     will finish very quickly. If they contain only requests that are in the
1791     C<done> state, they will also finish. Otherwise they will continue to
1792     exist.
1793    
1794 root 1.133 That means after creating a group you have some time to add requests
1795     (precisely before the callback has been invoked, which is only done within
1796     the C<poll_cb>). And in the callbacks of those requests, you can add
1797     further requests to the group. And only when all those requests have
1798     finished will the the group itself finish.
1799 root 1.57
1800 root 1.55 =over 4
1801    
1802 root 1.65 =item add $grp ...
1803    
1804 root 1.55 =item $grp->add (...)
1805    
1806 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1807     be added, including other groups, as long as you do not create circular
1808     dependencies.
1809    
1810     Returns all its arguments.
1811 root 1.55
1812 root 1.74 =item $grp->cancel_subs
1813    
1814     Cancel all subrequests and clears any feeder, but not the group request
1815     itself. Useful when you queued a lot of events but got a result early.
1816    
1817 root 1.168 The group request will finish normally (you cannot add requests to the
1818     group).
1819    
1820 root 1.58 =item $grp->result (...)
1821    
1822     Set the result value(s) that will be passed to the group callback when all
1823 root 1.120 subrequests have finished and set the groups errno to the current value
1824 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1825     no argument will be passed and errno is zero.
1826    
1827     =item $grp->errno ([$errno])
1828    
1829     Sets the group errno value to C<$errno>, or the current value of errno
1830     when the argument is missing.
1831    
1832     Every aio request has an associated errno value that is restored when
1833     the callback is invoked. This method lets you change this value from its
1834     default (0).
1835    
1836     Calling C<result> will also set errno, so make sure you either set C<$!>
1837     before the call to C<result>, or call c<errno> after it.
1838 root 1.58
1839 root 1.65 =item feed $grp $callback->($grp)
1840 root 1.60
1841     Sets a feeder/generator on this group: every group can have an attached
1842     generator that generates requests if idle. The idea behind this is that,
1843     although you could just queue as many requests as you want in a group,
1844 root 1.139 this might starve other requests for a potentially long time. For example,
1845 root 1.211 C<aio_scandir> might generate hundreds of thousands of C<aio_stat>
1846     requests, delaying any later requests for a long time.
1847 root 1.60
1848     To avoid this, and allow incremental generation of requests, you can
1849     instead a group and set a feeder on it that generates those requests. The
1850 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1851 root 1.60 below) requests active in the group itself and is expected to queue more
1852     requests.
1853    
1854 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1855     not impose any limits).
1856 root 1.60
1857 root 1.65 If the feed does not queue more requests when called, it will be
1858 root 1.60 automatically removed from the group.
1859    
1860 root 1.138 If the feed limit is C<0> when this method is called, it will be set to
1861     C<2> automatically.
1862 root 1.60
1863     Example:
1864    
1865     # stat all files in @files, but only ever use four aio requests concurrently:
1866    
1867     my $grp = aio_group sub { print "finished\n" };
1868 root 1.68 limit $grp 4;
1869 root 1.65 feed $grp sub {
1870 root 1.60 my $file = pop @files
1871     or return;
1872    
1873     add $grp aio_stat $file, sub { ... };
1874 root 1.65 };
1875 root 1.60
1876 root 1.68 =item limit $grp $num
1877 root 1.60
1878     Sets the feeder limit for the group: The feeder will be called whenever
1879     the group contains less than this many requests.
1880    
1881     Setting the limit to C<0> will pause the feeding process.
1882    
1883 root 1.138 The default value for the limit is C<0>, but note that setting a feeder
1884     automatically bumps it up to C<2>.
1885    
1886 root 1.55 =back
1887    
1888 root 1.294
1889 root 1.5 =head2 SUPPORT FUNCTIONS
1890    
1891 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1892    
1893 root 1.5 =over 4
1894    
1895     =item $fileno = IO::AIO::poll_fileno
1896    
1897 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1898 root 1.156 polled for reading by some mechanism outside this module (e.g. EV, Glib,
1899     select and so on, see below or the SYNOPSIS). If the pipe becomes readable
1900     you have to call C<poll_cb> to check the results.
1901 root 1.5
1902     See C<poll_cb> for an example.
1903    
1904     =item IO::AIO::poll_cb
1905    
1906 root 1.240 Process some requests that have reached the result phase (i.e. they have
1907     been executed but the results are not yet reported). You have to call
1908     this "regularly" to finish outstanding requests.
1909    
1910     Returns C<0> if all events could be processed (or there were no
1911     events to process), or C<-1> if it returned earlier for whatever
1912     reason. Returns immediately when no events are outstanding. The amount
1913     of events processed depends on the settings of C<IO::AIO::max_poll_req>,
1914     C<IO::AIO::max_poll_time> and C<IO::AIO::max_outstanding>.
1915    
1916     If not all requests were processed for whatever reason, the poll file
1917     descriptor will still be ready when C<poll_cb> returns, so normally you
1918     don't have to do anything special to have it called later.
1919 root 1.78
1920 root 1.192 Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes
1921     ready, it can be beneficial to call this function from loops which submit
1922     a lot of requests, to make sure the results get processed when they become
1923     available and not just when the loop is finished and the event loop takes
1924     over again. This function returns very fast when there are no outstanding
1925     requests.
1926    
1927 root 1.20 Example: Install an Event watcher that automatically calls
1928 root 1.156 IO::AIO::poll_cb with high priority (more examples can be found in the
1929     SYNOPSIS section, at the top of this document):
1930 root 1.5
1931     Event->io (fd => IO::AIO::poll_fileno,
1932     poll => 'r', async => 1,
1933     cb => \&IO::AIO::poll_cb);
1934    
1935 root 1.175 =item IO::AIO::poll_wait
1936    
1937 root 1.240 Wait until either at least one request is in the result phase or no
1938     requests are outstanding anymore.
1939    
1940     This is useful if you want to synchronously wait for some requests to
1941     become ready, without actually handling them.
1942 root 1.175
1943     See C<nreqs> for an example.
1944    
1945     =item IO::AIO::poll
1946    
1947     Waits until some requests have been handled.
1948    
1949     Returns the number of requests processed, but is otherwise strictly
1950     equivalent to:
1951    
1952     IO::AIO::poll_wait, IO::AIO::poll_cb
1953    
1954     =item IO::AIO::flush
1955    
1956     Wait till all outstanding AIO requests have been handled.
1957    
1958     Strictly equivalent to:
1959    
1960     IO::AIO::poll_wait, IO::AIO::poll_cb
1961     while IO::AIO::nreqs;
1962    
1963 root 1.294 This function can be useful at program aborts, to make sure outstanding
1964     I/O has been done (C<IO::AIO> uses an C<END> block which already calls
1965     this function on normal exits), or when you are merely using C<IO::AIO>
1966     for its more advanced functions, rather than for async I/O, e.g.:
1967    
1968     my ($dirs, $nondirs);
1969     IO::AIO::aio_scandir "/tmp", 0, sub { ($dirs, $nondirs) = @_ };
1970     IO::AIO::flush;
1971     # $dirs, $nondirs are now set
1972    
1973 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1974    
1975     =item IO::AIO::max_poll_time $seconds
1976    
1977     These set the maximum number of requests (default C<0>, meaning infinity)
1978     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1979     the maximum amount of time (default C<0>, meaning infinity) spent in
1980     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1981     of time C<poll_cb> is allowed to use).
1982 root 1.78
1983 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1984     syscall per request processed, which is not normally a problem unless your
1985     callbacks are really really fast or your OS is really really slow (I am
1986     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1987    
1988 root 1.86 Setting these is useful if you want to ensure some level of
1989     interactiveness when perl is not fast enough to process all requests in
1990     time.
1991 root 1.78
1992 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
1993 root 1.78
1994     Example: Install an Event watcher that automatically calls
1995 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
1996 root 1.78 program get the CPU sometimes even under high AIO load.
1997    
1998 root 1.86 # try not to spend much more than 0.1s in poll_cb
1999     IO::AIO::max_poll_time 0.1;
2000    
2001     # use a low priority so other tasks have priority
2002 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
2003     poll => 'r', nice => 1,
2004 root 1.86 cb => &IO::AIO::poll_cb);
2005 root 1.78
2006 root 1.104 =back
2007    
2008 root 1.294
2009 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
2010 root 1.13
2011 root 1.105 =over
2012    
2013 root 1.5 =item IO::AIO::min_parallel $nthreads
2014    
2015 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
2016     default is C<8>, which means eight asynchronous operations can execute
2017     concurrently at any one time (the number of outstanding requests,
2018     however, is unlimited).
2019 root 1.5
2020 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
2021 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
2022     create demand for a hundred threads, even if it turns out that everything
2023     is in the cache and could have been processed faster by a single thread.
2024 root 1.34
2025 root 1.61 It is recommended to keep the number of threads relatively low, as some
2026     Linux kernel versions will scale negatively with the number of threads
2027     (higher parallelity => MUCH higher latency). With current Linux 2.6
2028     versions, 4-32 threads should be fine.
2029 root 1.5
2030 root 1.34 Under most circumstances you don't need to call this function, as the
2031     module selects a default that is suitable for low to moderate load.
2032 root 1.5
2033     =item IO::AIO::max_parallel $nthreads
2034    
2035 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
2036     specified number of threads are currently running, this function kills
2037     them. This function blocks until the limit is reached.
2038    
2039     While C<$nthreads> are zero, aio requests get queued but not executed
2040     until the number of threads has been increased again.
2041 root 1.5
2042     This module automatically runs C<max_parallel 0> at program end, to ensure
2043     that all threads are killed and that there are no outstanding requests.
2044    
2045     Under normal circumstances you don't need to call this function.
2046    
2047 root 1.86 =item IO::AIO::max_idle $nthreads
2048    
2049 root 1.188 Limit the number of threads (default: 4) that are allowed to idle
2050     (i.e., threads that did not get a request to process within the idle
2051     timeout (default: 10 seconds). That means if a thread becomes idle while
2052     C<$nthreads> other threads are also idle, it will free its resources and
2053     exit.
2054 root 1.86
2055     This is useful when you allow a large number of threads (e.g. 100 or 1000)
2056     to allow for extremely high load situations, but want to free resources
2057     under normal circumstances (1000 threads can easily consume 30MB of RAM).
2058    
2059     The default is probably ok in most situations, especially if thread
2060     creation is fast. If thread creation is very slow on your system you might
2061     want to use larger values.
2062    
2063 root 1.188 =item IO::AIO::idle_timeout $seconds
2064    
2065     Sets the minimum idle timeout (default 10) after which worker threads are
2066     allowed to exit. SEe C<IO::AIO::max_idle>.
2067    
2068 root 1.123 =item IO::AIO::max_outstanding $maxreqs
2069 root 1.5
2070 root 1.195 Sets the maximum number of outstanding requests to C<$nreqs>. If
2071     you do queue up more than this number of requests, the next call to
2072     C<IO::AIO::poll_cb> (and other functions calling C<poll_cb>, such as
2073     C<IO::AIO::flush> or C<IO::AIO::poll>) will block until the limit is no
2074     longer exceeded.
2075    
2076     In other words, this setting does not enforce a queue limit, but can be
2077     used to make poll functions block if the limit is exceeded.
2078    
2079 root 1.313 This is a bad function to use in interactive programs because it blocks,
2080     and a bad way to reduce concurrency because it is inexact. If you need to
2081     issue many requests without being able to call a poll function on demand,
2082     it is better to use an C<aio_group> together with a feed callback.
2083 root 1.79
2084 root 1.313 Its main use is in scripts without an event loop - when you want to stat a
2085     lot of files, you can write something like this:
2086 root 1.195
2087     IO::AIO::max_outstanding 32;
2088    
2089     for my $path (...) {
2090     aio_stat $path , ...;
2091     IO::AIO::poll_cb;
2092     }
2093    
2094     IO::AIO::flush;
2095    
2096 root 1.313 The call to C<poll_cb> inside the loop will normally return instantly,
2097     allowing the loop to progress, but as soon as more than C<32> requests
2098     are in-flight, it will block until some requests have been handled. This
2099     keeps the loop from pushing a large number of C<aio_stat> requests onto
2100     the queue (which, with many paths to stat, can use up a lot of memory).
2101 root 1.195
2102     The default value for C<max_outstanding> is very large, so there is no
2103     practical limit on the number of outstanding requests.
2104 root 1.5
2105 root 1.104 =back
2106    
2107 root 1.294
2108 root 1.86 =head3 STATISTICAL INFORMATION
2109    
2110 root 1.104 =over
2111    
2112 root 1.86 =item IO::AIO::nreqs
2113    
2114     Returns the number of requests currently in the ready, execute or pending
2115     states (i.e. for which their callback has not been invoked yet).
2116    
2117     Example: wait till there are no outstanding requests anymore:
2118    
2119     IO::AIO::poll_wait, IO::AIO::poll_cb
2120     while IO::AIO::nreqs;
2121    
2122     =item IO::AIO::nready
2123    
2124     Returns the number of requests currently in the ready state (not yet
2125     executed).
2126    
2127     =item IO::AIO::npending
2128    
2129     Returns the number of requests currently in the pending state (executed,
2130     but not yet processed by poll_cb).
2131    
2132 root 1.5 =back
2133    
2134 root 1.294
2135 root 1.289 =head3 SUBSECOND STAT TIME ACCESS
2136    
2137     Both C<aio_stat>/C<aio_lstat> and perl's C<stat>/C<lstat> functions can
2138     generally find access/modification and change times with subsecond time
2139     accuracy of the system supports it, but perl's built-in functions only
2140     return the integer part.
2141    
2142     The following functions return the timestamps of the most recent
2143     stat with subsecond precision on most systems and work both after
2144     C<aio_stat>/C<aio_lstat> and perl's C<stat>/C<lstat> calls. Their return
2145     value is only meaningful after a successful C<stat>/C<lstat> call, or
2146     during/after a successful C<aio_stat>/C<aio_lstat> callback.
2147    
2148     This is similar to the L<Time::HiRes> C<stat> functions, but can return
2149     full resolution without rounding and work with standard perl C<stat>,
2150     alleviating the need to call the special C<Time::HiRes> functions, which
2151     do not act like their perl counterparts.
2152    
2153     On operating systems or file systems where subsecond time resolution is
2154     not supported or could not be detected, a fractional part of C<0> is
2155     returned, so it is always safe to call these functions.
2156    
2157     =over 4
2158    
2159 root 1.294 =item $seconds = IO::AIO::st_atime, IO::AIO::st_mtime, IO::AIO::st_ctime, IO::AIO::st_btime
2160 root 1.289
2161 root 1.294 Return the access, modication, change or birth time, respectively,
2162     including fractional part. Due to the limited precision of floating point,
2163     the accuracy on most platforms is only a bit better than milliseconds
2164     for times around now - see the I<nsec> function family, below, for full
2165 root 1.289 accuracy.
2166    
2167 root 1.294 File birth time is only available when the OS and perl support it (on
2168     FreeBSD and NetBSD at the time of this writing, although support is
2169 root 1.301 adaptive, so if your OS/perl gains support, IO::AIO can take advantage of
2170 root 1.294 it). On systems where it isn't available, C<0> is currently returned, but
2171     this might change to C<undef> in a future version.
2172 root 1.289
2173 root 1.294 =item ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtime
2174 root 1.289
2175 root 1.294 Returns access, modification, change and birth time all in one go, and
2176     maybe more times in the future version.
2177 root 1.289
2178 root 1.294 =item $nanoseconds = IO::AIO::st_atimensec, IO::AIO::st_mtimensec, IO::AIO::st_ctimensec, IO::AIO::st_btimensec
2179    
2180     Return the fractional access, modifcation, change or birth time, in nanoseconds,
2181 root 1.289 as an integer in the range C<0> to C<999999999>.
2182    
2183 root 1.294 Note that no accessors are provided for access, modification and
2184     change times - you need to get those from C<stat _> if required (C<int
2185     IO::AIO::st_atime> and so on will I<not> generally give you the correct
2186     value).
2187    
2188     =item $seconds = IO::AIO::st_btimesec
2189    
2190     The (integral) seconds part of the file birth time, if available.
2191    
2192     =item ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtimensec
2193 root 1.290
2194 root 1.294 Like the functions above, but returns all four times in one go (and maybe
2195 root 1.290 more in future versions).
2196    
2197 root 1.294 =item $counter = IO::AIO::st_gen
2198    
2199 root 1.296 Returns the generation counter (in practice this is just a random number)
2200     of the file. This is only available on platforms which have this member in
2201     their C<struct stat> (most BSDs at the time of this writing) and generally
2202     only to the root usert. If unsupported, C<0> is returned, but this might
2203     change to C<undef> in a future version.
2204 root 1.294
2205 root 1.289 =back
2206    
2207     Example: print the high resolution modification time of F</etc>, using
2208     C<stat>, and C<IO::AIO::aio_stat>.
2209    
2210     if (stat "/etc") {
2211 root 1.290 printf "stat(/etc) mtime: %f\n", IO::AIO::st_mtime;
2212 root 1.289 }
2213    
2214     IO::AIO::aio_stat "/etc", sub {
2215     $_[0]
2216     and return;
2217    
2218 root 1.290 printf "aio_stat(/etc) mtime: %d.%09d\n", (stat _)[9], IO::AIO::st_mtimensec;
2219 root 1.289 };
2220    
2221     IO::AIO::flush;
2222    
2223     Output of the awbove on my system, showing reduced and full accuracy:
2224    
2225     stat(/etc) mtime: 1534043702.020808
2226     aio_stat(/etc) mtime: 1534043702.020807792
2227    
2228 root 1.294
2229 root 1.157 =head3 MISCELLANEOUS FUNCTIONS
2230    
2231 root 1.248 IO::AIO implements some functions that are useful when you want to use
2232     some "Advanced I/O" function not available to in Perl, without going the
2233     "Asynchronous I/O" route. Many of these have an asynchronous C<aio_*>
2234     counterpart.
2235 root 1.157
2236     =over 4
2237    
2238 root 1.315 =item $retval = IO::AIO::fexecve $fh, $argv, $envp
2239    
2240     A more-or-less direct equivalent to the POSIX C<fexecve> functions, which
2241     allows you to specify the program to be executed via a file descriptor (or
2242     handle). Returns C<-1> and sets errno to C<ENOSYS> if not available.
2243    
2244 root 1.275 =item $numfd = IO::AIO::get_fdlimit
2245    
2246     Tries to find the current file descriptor limit and returns it, or
2247     C<undef> and sets C<$!> in case of an error. The limit is one larger than
2248     the highest valid file descriptor number.
2249    
2250     =item IO::AIO::min_fdlimit [$numfd]
2251    
2252     Try to increase the current file descriptor limit(s) to at least C<$numfd>
2253     by changing the soft or hard file descriptor resource limit. If C<$numfd>
2254     is missing, it will try to set a very high limit, although this is not
2255     recommended when you know the actual minimum that you require.
2256    
2257     If the limit cannot be raised enough, the function makes a best-effort
2258     attempt to increase the limit as much as possible, using various
2259     tricks, while still failing. You can query the resulting limit using
2260     C<IO::AIO::get_fdlimit>.
2261    
2262 root 1.276 If an error occurs, returns C<undef> and sets C<$!>, otherwise returns
2263     true.
2264 root 1.275
2265 root 1.157 =item IO::AIO::sendfile $ofh, $ifh, $offset, $count
2266    
2267     Calls the C<eio_sendfile_sync> function, which is like C<aio_sendfile>,
2268     but is blocking (this makes most sense if you know the input data is
2269     likely cached already and the output filehandle is set to non-blocking
2270     operations).
2271    
2272     Returns the number of bytes copied, or C<-1> on error.
2273    
2274     =item IO::AIO::fadvise $fh, $offset, $len, $advice
2275    
2276 root 1.184 Simply calls the C<posix_fadvise> function (see its
2277 root 1.157 manpage for details). The following advice constants are
2278 root 1.207 available: C<IO::AIO::FADV_NORMAL>, C<IO::AIO::FADV_SEQUENTIAL>,
2279 root 1.157 C<IO::AIO::FADV_RANDOM>, C<IO::AIO::FADV_NOREUSE>,
2280     C<IO::AIO::FADV_WILLNEED>, C<IO::AIO::FADV_DONTNEED>.
2281    
2282     On systems that do not implement C<posix_fadvise>, this function returns
2283     ENOSYS, otherwise the return value of C<posix_fadvise>.
2284    
2285 root 1.184 =item IO::AIO::madvise $scalar, $offset, $len, $advice
2286    
2287     Simply calls the C<posix_madvise> function (see its
2288     manpage for details). The following advice constants are
2289 root 1.207 available: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
2290 root 1.272 C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>,
2291     C<IO::AIO::MADV_DONTNEED>.
2292 root 1.184
2293 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2294     the remaining length of the C<$scalar> is used. If possible, C<$length>
2295     will be reduced to fit into the C<$scalar>.
2296    
2297 root 1.184 On systems that do not implement C<posix_madvise>, this function returns
2298     ENOSYS, otherwise the return value of C<posix_madvise>.
2299    
2300     =item IO::AIO::mprotect $scalar, $offset, $len, $protect
2301    
2302     Simply calls the C<mprotect> function on the preferably AIO::mmap'ed
2303     $scalar (see its manpage for details). The following protect
2304 root 1.207 constants are available: C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_READ>,
2305 root 1.184 C<IO::AIO::PROT_WRITE>, C<IO::AIO::PROT_EXEC>.
2306    
2307 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2308     the remaining length of the C<$scalar> is used. If possible, C<$length>
2309     will be reduced to fit into the C<$scalar>.
2310    
2311 root 1.184 On systems that do not implement C<mprotect>, this function returns
2312     ENOSYS, otherwise the return value of C<mprotect>.
2313    
2314 root 1.176 =item IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
2315    
2316     Memory-maps a file (or anonymous memory range) and attaches it to the
2317 root 1.228 given C<$scalar>, which will act like a string scalar. Returns true on
2318     success, and false otherwise.
2319 root 1.176
2320 root 1.268 The scalar must exist, but its contents do not matter - this means you
2321     cannot use a nonexistant array or hash element. When in doubt, C<undef>
2322     the scalar first.
2323    
2324     The only operations allowed on the mmapped scalar are C<substr>/C<vec>,
2325     which don't change the string length, and most read-only operations such
2326     as copying it or searching it with regexes and so on.
2327 root 1.176
2328     Anything else is unsafe and will, at best, result in memory leaks.
2329    
2330     The memory map associated with the C<$scalar> is automatically removed
2331 root 1.268 when the C<$scalar> is undef'd or destroyed, or when the C<IO::AIO::mmap>
2332     or C<IO::AIO::munmap> functions are called on it.
2333 root 1.176
2334     This calls the C<mmap>(2) function internally. See your system's manual
2335     page for details on the C<$length>, C<$prot> and C<$flags> parameters.
2336    
2337     The C<$length> must be larger than zero and smaller than the actual
2338     filesize.
2339    
2340     C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
2341     C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
2342    
2343 root 1.256 C<$flags> can be a combination of
2344     C<IO::AIO::MAP_SHARED> or
2345     C<IO::AIO::MAP_PRIVATE>,
2346     or a number of system-specific flags (when not available, the are C<0>):
2347     C<IO::AIO::MAP_ANONYMOUS> (which is set to C<MAP_ANON> if your system only provides this constant),
2348     C<IO::AIO::MAP_LOCKED>,
2349     C<IO::AIO::MAP_NORESERVE>,
2350     C<IO::AIO::MAP_POPULATE>,
2351     C<IO::AIO::MAP_NONBLOCK>,
2352     C<IO::AIO::MAP_FIXED>,
2353     C<IO::AIO::MAP_GROWSDOWN>,
2354     C<IO::AIO::MAP_32BIT>,
2355 root 1.311 C<IO::AIO::MAP_HUGETLB>,
2356     C<IO::AIO::MAP_STACK>,
2357     C<IO::AIO::MAP_FIXED_NOREPLACE>,
2358     C<IO::AIO::MAP_SHARED_VALIDATE>,
2359     C<IO::AIO::MAP_SYNC> or
2360     C<IO::AIO::MAP_UNINITIALIZED>.
2361 root 1.176
2362     If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
2363    
2364 root 1.179 C<$offset> is the offset from the start of the file - it generally must be
2365     a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
2366    
2367 root 1.177 Example:
2368    
2369     use Digest::MD5;
2370     use IO::AIO;
2371    
2372     open my $fh, "<verybigfile"
2373     or die "$!";
2374    
2375     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
2376     or die "verybigfile: $!";
2377    
2378     my $fast_md5 = md5 $data;
2379    
2380 root 1.176 =item IO::AIO::munmap $scalar
2381    
2382     Removes a previous mmap and undefines the C<$scalar>.
2383    
2384 root 1.287 =item IO::AIO::mremap $scalar, $new_length, $flags = MREMAP_MAYMOVE[, $new_address = 0]
2385 root 1.285
2386     Calls the Linux-specific mremap(2) system call. The C<$scalar> must have
2387     been mapped by C<IO::AIO::mmap>, and C<$flags> must currently either be
2388     C<0> or C<IO::AIO::MREMAP_MAYMOVE>.
2389    
2390     Returns true if successful, and false otherwise. If the underlying mmapped
2391     region has changed address, then the true value has the numerical value
2392     C<1>, otherwise it has the numerical value C<0>:
2393    
2394     my $success = IO::AIO::mremap $mmapped, 8192, IO::AIO::MREMAP_MAYMOVE
2395     or die "mremap: $!";
2396    
2397     if ($success*1) {
2398     warn "scalar has chanegd address in memory\n";
2399     }
2400    
2401     C<IO::AIO::MREMAP_FIXED> and the C<$new_address> argument are currently
2402     implemented, but not supported and might go away in a future version.
2403    
2404     On systems where this call is not supported or is not emulated, this call
2405     returns falls and sets C<$!> to C<ENOSYS>.
2406    
2407 root 1.298 =item IO::AIO::mlockall $flags
2408    
2409     Calls the C<eio_mlockall_sync> function, which is like C<aio_mlockall>,
2410     but is blocking.
2411    
2412 root 1.182 =item IO::AIO::munlock $scalar, $offset = 0, $length = undef
2413 root 1.174
2414 root 1.182 Calls the C<munlock> function, undoing the effects of a previous
2415     C<aio_mlock> call (see its description for details).
2416 root 1.174
2417     =item IO::AIO::munlockall
2418    
2419     Calls the C<munlockall> function.
2420    
2421     On systems that do not implement C<munlockall>, this function returns
2422     ENOSYS, otherwise the return value of C<munlockall>.
2423    
2424 root 1.305 =item $fh = IO::AIO::accept4 $r_fh, $sockaddr, $sockaddr_maxlen, $flags
2425    
2426     Uses the GNU/Linux C<accept4(2)> syscall, if available, to accept a socket
2427     and return the new file handle on success, or sets C<$!> and returns
2428     C<undef> on error.
2429    
2430     The remote name of the new socket will be stored in C<$sockaddr>, which
2431     will be extended to allow for at least C<$sockaddr_maxlen> octets. If the
2432     socket name does not fit into C<$sockaddr_maxlen> octets, this is signaled
2433     by returning a longer string in C<$sockaddr>, which might or might not be
2434     truncated.
2435    
2436     To accept name-less sockets, use C<undef> for C<$sockaddr> and C<0> for
2437     C<$sockaddr_maxlen>.
2438    
2439 root 1.308 The main reasons to use this syscall rather than portable C<accept(2)>
2440 root 1.305 are that you can specify C<SOCK_NONBLOCK> and/or C<SOCK_CLOEXEC>
2441     flags and you can accept name-less sockets by specifying C<0> for
2442     C<$sockaddr_maxlen>, which is sadly not possible with perl's interface to
2443     C<accept>.
2444    
2445 root 1.225 =item IO::AIO::splice $r_fh, $r_off, $w_fh, $w_off, $length, $flags
2446    
2447     Calls the GNU/Linux C<splice(2)> syscall, if available. If C<$r_off> or
2448     C<$w_off> are C<undef>, then C<NULL> is passed for these, otherwise they
2449     should be the file offset.
2450    
2451 root 1.227 C<$r_fh> and C<$w_fh> should not refer to the same file, as splice might
2452     silently corrupt the data in this case.
2453    
2454 root 1.225 The following symbol flag values are available: C<IO::AIO::SPLICE_F_MOVE>,
2455     C<IO::AIO::SPLICE_F_NONBLOCK>, C<IO::AIO::SPLICE_F_MORE> and
2456     C<IO::AIO::SPLICE_F_GIFT>.
2457    
2458     See the C<splice(2)> manpage for details.
2459    
2460     =item IO::AIO::tee $r_fh, $w_fh, $length, $flags
2461    
2462 root 1.248 Calls the GNU/Linux C<tee(2)> syscall, see its manpage and the
2463 root 1.225 description for C<IO::AIO::splice> above for details.
2464    
2465 root 1.243 =item $actual_size = IO::AIO::pipesize $r_fh[, $new_size]
2466    
2467     Attempts to query or change the pipe buffer size. Obviously works only
2468     on pipes, and currently works only on GNU/Linux systems, and fails with
2469     C<-1>/C<ENOSYS> everywhere else. If anybody knows how to influence pipe buffer
2470     size on other systems, drop me a note.
2471    
2472 root 1.253 =item ($rfh, $wfh) = IO::AIO::pipe2 [$flags]
2473    
2474     This is a direct interface to the Linux L<pipe2(2)> system call. If
2475     C<$flags> is missing or C<0>, then this should be the same as a call to
2476 root 1.254 perl's built-in C<pipe> function and create a new pipe, and works on
2477     systems that lack the pipe2 syscall. On win32, this case invokes C<_pipe
2478     (..., 4096, O_BINARY)>.
2479 root 1.253
2480     If C<$flags> is non-zero, it tries to invoke the pipe2 system call with
2481     the given flags (Linux 2.6.27, glibc 2.9).
2482    
2483     On success, the read and write file handles are returned.
2484    
2485     On error, nothing will be returned. If the pipe2 syscall is missing and
2486     C<$flags> is non-zero, fails with C<ENOSYS>.
2487    
2488     Please refer to L<pipe2(2)> for more info on the C<$flags>, but at the
2489     time of this writing, C<IO::AIO::O_CLOEXEC>, C<IO::AIO::O_NONBLOCK> and
2490     C<IO::AIO::O_DIRECT> (Linux 3.4, for packet-based pipes) were supported.
2491    
2492 root 1.281 Example: create a pipe race-free w.r.t. threads and fork:
2493    
2494     my ($rfh, $wfh) = IO::AIO::pipe2 IO::AIO::O_CLOEXEC
2495     or die "pipe2: $!\n";
2496    
2497 root 1.302 =item $fh = IO::AIO::memfd_create $pathname[, $flags]
2498    
2499     This is a direct interface to the Linux L<memfd_create(2)> system
2500     call. The (unhelpful) default for C<$flags> is C<0>, but your default
2501     should be C<IO::AIO::MFD_CLOEXEC>.
2502    
2503     On success, the new memfd filehandle is returned, otherwise returns
2504     C<undef>. If the memfd_create syscall is missing, fails with C<ENOSYS>.
2505    
2506     Please refer to L<memfd_create(2)> for more info on this call.
2507    
2508     The following C<$flags> values are available: C<IO::AIO::MFD_CLOEXEC>,
2509 root 1.314 C<IO::AIO::MFD_ALLOW_SEALING>, C<IO::AIO::MFD_HUGETLB>,
2510     C<IO::AIO::MFD_HUGETLB_2MB> and C<IO::AIO::MFD_HUGETLB_1GB>.
2511 root 1.302
2512     Example: create a new memfd.
2513    
2514     my $fh = IO::AIO::memfd_create "somenameforprocfd", IO::AIO::MFD_CLOEXEC
2515 root 1.308 or die "memfd_create: $!\n";
2516    
2517     =item $fh = IO::AIO::pidfd_open $pid[, $flags]
2518    
2519     This is an interface to the Linux L<pidfd_open(2)> system call. The
2520     default for C<$flags> is C<0>.
2521    
2522     On success, a new pidfd filehandle is returned (that is already set to
2523     close-on-exec), otherwise returns C<undef>. If the syscall is missing,
2524     fails with C<ENOSYS>.
2525    
2526     Example: open pid 6341 as pidfd.
2527    
2528     my $fh = IO::AIO::pidfd_open 6341
2529     or die "pidfd_open: $!\n";
2530    
2531     =item $status = IO::AIO::pidfd_send_signal $pidfh, $signal[, $siginfo[, $flags]]
2532    
2533     This is an interface to the Linux L<pidfd_send_signal> system call. The
2534     default for C<$siginfo> is C<undef> and the default for C<$flags> is C<0>.
2535    
2536     Returns the system call status. If the syscall is missing, fails with
2537     C<ENOSYS>.
2538    
2539     When specified, C<$siginfo> must be a reference to a hash with one or more
2540     of the following members:
2541    
2542     =over
2543    
2544     =item code - the C<si_code> member
2545    
2546     =item pid - the C<si_pid> member
2547    
2548     =item uid - the C<si_uid> member
2549    
2550     =item value_int - the C<si_value.sival_int> member
2551    
2552     =item value_ptr - the C<si_value.sival_ptr> member, specified as an integer
2553    
2554     =back
2555    
2556     Example: send a SIGKILL to the specified process.
2557    
2558     my $status = IO::AIO::pidfd_send_signal $pidfh, 9, undef
2559     and die "pidfd_send_signal: $!\n";
2560    
2561     Example: send a SIGKILL to the specified process with extra data.
2562    
2563     my $status = IO::AIO::pidfd_send_signal $pidfh, 9, { code => -1, value_int => 7 }
2564     and die "pidfd_send_signal: $!\n";
2565    
2566     =item $fh = IO::AIO::pidfd_getfd $pidfh, $targetfd[, $flags]
2567    
2568     This is an interface to the Linux L<pidfd_getfd> system call. The default
2569     for C<$flags> is C<0>.
2570    
2571     On success, returns a dup'ed copy of the target file descriptor (specified
2572     as an integer) returned (that is already set to close-on-exec), otherwise
2573     returns C<undef>. If the syscall is missing, fails with C<ENOSYS>.
2574    
2575     Example: get a copy of standard error of another process and print soemthing to it.
2576    
2577     my $errfh = IO::AIO::pidfd_getfd $pidfh, 2
2578     or die "pidfd_getfd: $!\n";
2579     print $errfh "stderr\n";
2580    
2581 root 1.282 =item $fh = IO::AIO::eventfd [$initval, [$flags]]
2582 root 1.281
2583     This is a direct interface to the Linux L<eventfd(2)> system call. The
2584     (unhelpful) defaults for C<$initval> and C<$flags> are C<0> for both.
2585    
2586     On success, the new eventfd filehandle is returned, otherwise returns
2587     C<undef>. If the eventfd syscall is missing, fails with C<ENOSYS>.
2588    
2589     Please refer to L<eventfd(2)> for more info on this call.
2590    
2591     The following symbol flag values are available: C<IO::AIO::EFD_CLOEXEC>,
2592     C<IO::AIO::EFD_NONBLOCK> and C<IO::AIO::EFD_SEMAPHORE> (Linux 2.6.30).
2593    
2594 root 1.282 Example: create a new eventfd filehandle:
2595    
2596 root 1.302 $fh = IO::AIO::eventfd 0, IO::AIO::EFD_CLOEXEC
2597 root 1.282 or die "eventfd: $!\n";
2598    
2599     =item $fh = IO::AIO::timerfd_create $clockid[, $flags]
2600    
2601 root 1.302 This is a direct interface to the Linux L<timerfd_create(2)> system
2602     call. The (unhelpful) default for C<$flags> is C<0>, but your default
2603     should be C<IO::AIO::TFD_CLOEXEC>.
2604 root 1.282
2605     On success, the new timerfd filehandle is returned, otherwise returns
2606 root 1.302 C<undef>. If the timerfd_create syscall is missing, fails with C<ENOSYS>.
2607 root 1.282
2608     Please refer to L<timerfd_create(2)> for more info on this call.
2609    
2610     The following C<$clockid> values are
2611     available: C<IO::AIO::CLOCK_REALTIME>, C<IO::AIO::CLOCK_MONOTONIC>
2612     C<IO::AIO::CLOCK_CLOCK_BOOTTIME> (Linux 3.15)
2613     C<IO::AIO::CLOCK_CLOCK_REALTIME_ALARM> (Linux 3.11) and
2614     C<IO::AIO::CLOCK_CLOCK_BOOTTIME_ALARM> (Linux 3.11).
2615    
2616     The following C<$flags> values are available (Linux
2617     2.6.27): C<IO::AIO::TFD_NONBLOCK> and C<IO::AIO::TFD_CLOEXEC>.
2618    
2619     Example: create a new timerfd and set it to one-second repeated alarms,
2620     then wait for two alarms:
2621    
2622     my $fh = IO::AIO::timerfd_create IO::AIO::CLOCK_BOOTTIME, IO::AIO::TFD_CLOEXEC
2623     or die "timerfd_create: $!\n";
2624    
2625     defined IO::AIO::timerfd_settime $fh, 0, 1, 1
2626     or die "timerfd_settime: $!\n";
2627    
2628     for (1..2) {
2629     8 == sysread $fh, my $buf, 8
2630     or die "timerfd read failure\n";
2631    
2632     printf "number of expirations (likely 1): %d\n",
2633     unpack "Q", $buf;
2634     }
2635    
2636     =item ($cur_interval, $cur_value) = IO::AIO::timerfd_settime $fh, $flags, $new_interval, $nbw_value
2637    
2638     This is a direct interface to the Linux L<timerfd_settime(2)> system
2639     call. Please refer to its manpage for more info on this call.
2640    
2641     The new itimerspec is specified using two (possibly fractional) second
2642     values, C<$new_interval> and C<$new_value>).
2643    
2644     On success, the current interval and value are returned (as per
2645     C<timerfd_gettime>). On failure, the empty list is returned.
2646    
2647     The following C<$flags> values are
2648     available: C<IO::AIO::TFD_TIMER_ABSTIME> and
2649     C<IO::AIO::TFD_TIMER_CANCEL_ON_SET>.
2650    
2651     See C<IO::AIO::timerfd_create> for a full example.
2652    
2653     =item ($cur_interval, $cur_value) = IO::AIO::timerfd_gettime $fh
2654    
2655     This is a direct interface to the Linux L<timerfd_gettime(2)> system
2656     call. Please refer to its manpage for more info on this call.
2657    
2658     On success, returns the current values of interval and value for the given
2659     timerfd (as potentially fractional second values). On failure, the empty
2660     list is returned.
2661    
2662 root 1.157 =back
2663    
2664 root 1.1 =cut
2665    
2666 root 1.61 min_parallel 8;
2667 root 1.1
2668 root 1.95 END { flush }
2669 root 1.82
2670 root 1.1 1;
2671    
2672 root 1.175 =head1 EVENT LOOP INTEGRATION
2673    
2674     It is recommended to use L<AnyEvent::AIO> to integrate IO::AIO
2675     automatically into many event loops:
2676    
2677     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
2678     use AnyEvent::AIO;
2679    
2680     You can also integrate IO::AIO manually into many event loops, here are
2681     some examples of how to do this:
2682    
2683     # EV integration
2684     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
2685    
2686     # Event integration
2687     Event->io (fd => IO::AIO::poll_fileno,
2688     poll => 'r',
2689     cb => \&IO::AIO::poll_cb);
2690    
2691     # Glib/Gtk2 integration
2692     add_watch Glib::IO IO::AIO::poll_fileno,
2693     in => sub { IO::AIO::poll_cb; 1 };
2694    
2695     # Tk integration
2696     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
2697     readable => \&IO::AIO::poll_cb);
2698    
2699     # Danga::Socket integration
2700     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
2701     \&IO::AIO::poll_cb);
2702    
2703 root 1.27 =head2 FORK BEHAVIOUR
2704    
2705 root 1.197 Usage of pthreads in a program changes the semantics of fork
2706     considerably. Specifically, only async-safe functions can be called after
2707     fork. Perl doesn't know about this, so in general, you cannot call fork
2708 root 1.204 with defined behaviour in perl if pthreads are involved. IO::AIO uses
2709     pthreads, so this applies, but many other extensions and (for inexplicable
2710     reasons) perl itself often is linked against pthreads, so this limitation
2711     applies to quite a lot of perls.
2712    
2713     This module no longer tries to fight your OS, or POSIX. That means IO::AIO
2714     only works in the process that loaded it. Forking is fully supported, but
2715     using IO::AIO in the child is not.
2716    
2717     You might get around by not I<using> IO::AIO before (or after)
2718     forking. You could also try to call the L<IO::AIO::reinit> function in the
2719     child:
2720    
2721     =over 4
2722    
2723     =item IO::AIO::reinit
2724    
2725 root 1.207 Abandons all current requests and I/O threads and simply reinitialises all
2726     data structures. This is not an operation supported by any standards, but
2727 root 1.204 happens to work on GNU/Linux and some newer BSD systems.
2728    
2729     The only reasonable use for this function is to call it after forking, if
2730     C<IO::AIO> was used in the parent. Calling it while IO::AIO is active in
2731     the process will result in undefined behaviour. Calling it at any time
2732     will also result in any undefined (by POSIX) behaviour.
2733    
2734     =back
2735 root 1.52
2736 root 1.282 =head2 LINUX-SPECIFIC CALLS
2737    
2738     When a call is documented as "linux-specific" then this means it
2739     originated on GNU/Linux. C<IO::AIO> will usually try to autodetect the
2740     availability and compatibility of such calls regardless of the platform
2741     it is compiled on, so platforms such as FreeBSD which often implement
2742     these calls will work. When in doubt, call them and see if they fail wth
2743     C<ENOSYS>.
2744    
2745 root 1.60 =head2 MEMORY USAGE
2746    
2747 root 1.72 Per-request usage:
2748    
2749     Each aio request uses - depending on your architecture - around 100-200
2750     bytes of memory. In addition, stat requests need a stat buffer (possibly
2751     a few hundred bytes), readdir requires a result buffer and so on. Perl
2752     scalars and other data passed into aio requests will also be locked and
2753     will consume memory till the request has entered the done state.
2754 root 1.60
2755 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
2756 root 1.60 problem.
2757    
2758 root 1.72 Per-thread usage:
2759    
2760     In the execution phase, some aio requests require more memory for
2761     temporary buffers, and each thread requires a stack and other data
2762     structures (usually around 16k-128k, depending on the OS).
2763    
2764     =head1 KNOWN BUGS
2765    
2766 root 1.283 Known bugs will be fixed in the next release :)
2767    
2768     =head1 KNOWN ISSUES
2769    
2770     Calls that try to "import" foreign memory areas (such as C<IO::AIO::mmap>
2771     or C<IO::AIO::aio_slurp>) do not work with generic lvalues, such as
2772     non-created hash slots or other scalars I didn't think of. It's best to
2773     avoid such and either use scalar variables or making sure that the scalar
2774     exists (e.g. by storing C<undef>) and isn't "funny" (e.g. tied).
2775    
2776     I am not sure anything can be done about this, so this is considered a
2777     known issue, rather than a bug.
2778 root 1.60
2779 root 1.1 =head1 SEE ALSO
2780    
2781 root 1.125 L<AnyEvent::AIO> for easy integration into event loops, L<Coro::AIO> for a
2782 root 1.304 more natural syntax and L<IO::FDPass> for file descriptor passing.
2783 root 1.1
2784     =head1 AUTHOR
2785    
2786     Marc Lehmann <schmorp@schmorp.de>
2787     http://home.schmorp.de/
2788    
2789     =cut
2790