ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
Revision: 1.320
Committed: Tue Feb 20 06:40:23 2024 UTC (3 months, 2 weeks ago) by root
Branch: MAIN
CVS Tags: rel-4_81, HEAD
Changes since 1.319: +1 -1 lines
Log Message:
4.81

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.265 IO::AIO - Asynchronous/Advanced Input/Output
4 root 1.1
5     =head1 SYNOPSIS
6    
7     use IO::AIO;
8    
9 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
10 root 1.94 my $fh = shift
11     or die "/etc/passwd: $!";
12 root 1.6 ...
13     };
14    
15     aio_unlink "/tmp/file", sub { };
16    
17     aio_read $fh, 30000, 1024, $buffer, 0, sub {
18 root 1.8 $_[0] > 0 or die "read error: $!";
19 root 1.6 };
20    
21 root 1.56 # version 2+ has request and group objects
22     use IO::AIO 2;
23 root 1.52
24 root 1.68 aioreq_pri 4; # give next request a very high priority
25 root 1.52 my $req = aio_unlink "/tmp/file", sub { };
26     $req->cancel; # cancel request if still in queue
27    
28 root 1.56 my $grp = aio_group sub { print "all stats done\n" };
29     add $grp aio_stat "..." for ...;
30    
31 root 1.1 =head1 DESCRIPTION
32    
33     This module implements asynchronous I/O using whatever means your
34 root 1.156 operating system supports. It is implemented as an interface to C<libeio>
35     (L<http://software.schmorp.de/pkg/libeio.html>).
36 root 1.1
37 root 1.85 Asynchronous means that operations that can normally block your program
38     (e.g. reading from disk) will be done asynchronously: the operation
39     will still block, but you can do something else in the meantime. This
40     is extremely useful for programs that need to stay interactive even
41     when doing heavy I/O (GUI programs, high performance network servers
42     etc.), but can also be used to easily do operations in parallel that are
43     normally done sequentially, e.g. stat'ing many files, which is much faster
44     on a RAID volume or over NFS when you do a number of stat operations
45     concurrently.
46    
47 root 1.108 While most of this works on all types of file descriptors (for
48     example sockets), using these functions on file descriptors that
49 root 1.156 support nonblocking operation (again, sockets, pipes etc.) is
50     very inefficient. Use an event loop for that (such as the L<EV>
51 root 1.108 module): IO::AIO will naturally fit into such an event loop itself.
52 root 1.85
53 root 1.72 In this version, a number of threads are started that execute your
54     requests and signal their completion. You don't need thread support
55     in perl, and the threads created by this module will not be visible
56     to perl. In the future, this module might make use of the native aio
57     functions available on many operating systems. However, they are often
58 root 1.85 not well-supported or restricted (GNU/Linux doesn't allow them on normal
59 root 1.72 files currently, for example), and they would only support aio_read and
60     aio_write, so the remaining functionality would have to be implemented
61     using threads anyway.
62    
63 root 1.265 In addition to asynchronous I/O, this module also exports some rather
64     arcane interfaces, such as C<madvise> or linux's C<splice> system call,
65     which is why the C<A> in C<AIO> can also mean I<advanced>.
66    
67 root 1.108 Although the module will work in the presence of other (Perl-) threads,
68     it is currently not reentrant in any way, so use appropriate locking
69     yourself, always call C<poll_cb> from within the same thread, or never
70     call C<poll_cb> (or other C<aio_> functions) recursively.
71 root 1.72
72 root 1.86 =head2 EXAMPLE
73    
74 root 1.156 This is a simple example that uses the EV module and loads
75 root 1.86 F</etc/passwd> asynchronously:
76    
77 root 1.156 use EV;
78 root 1.86 use IO::AIO;
79    
80 root 1.156 # register the IO::AIO callback with EV
81     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
82 root 1.86
83     # queue the request to open /etc/passwd
84 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
85 root 1.94 my $fh = shift
86 root 1.86 or die "error while opening: $!";
87    
88     # stat'ing filehandles is generally non-blocking
89     my $size = -s $fh;
90    
91     # queue a request to read the file
92     my $contents;
93     aio_read $fh, 0, $size, $contents, 0, sub {
94     $_[0] == $size
95     or die "short read: $!";
96    
97     close $fh;
98    
99     # file contents now in $contents
100     print $contents;
101    
102     # exit event loop and program
103 root 1.257 EV::break;
104 root 1.86 };
105     };
106    
107     # possibly queue up other requests, or open GUI windows,
108     # check for sockets etc. etc.
109    
110     # process events as long as there are some:
111 root 1.257 EV::run;
112 root 1.86
113 root 1.72 =head1 REQUEST ANATOMY AND LIFETIME
114    
115     Every C<aio_*> function creates a request. which is a C data structure not
116     directly visible to Perl.
117    
118     If called in non-void context, every request function returns a Perl
119     object representing the request. In void context, nothing is returned,
120     which saves a bit of memory.
121    
122     The perl object is a fairly standard ref-to-hash object. The hash contents
123     are not used by IO::AIO so you are free to store anything you like in it.
124    
125     During their existance, aio requests travel through the following states,
126     in order:
127    
128     =over 4
129    
130     =item ready
131    
132     Immediately after a request is created it is put into the ready state,
133     waiting for a thread to execute it.
134    
135     =item execute
136    
137     A thread has accepted the request for processing and is currently
138     executing it (e.g. blocking in read).
139    
140     =item pending
141    
142     The request has been executed and is waiting for result processing.
143    
144     While request submission and execution is fully asynchronous, result
145     processing is not and relies on the perl interpreter calling C<poll_cb>
146     (or another function with the same effect).
147    
148     =item result
149    
150     The request results are processed synchronously by C<poll_cb>.
151    
152     The C<poll_cb> function will process all outstanding aio requests by
153     calling their callbacks, freeing memory associated with them and managing
154     any groups they are contained in.
155    
156     =item done
157    
158     Request has reached the end of its lifetime and holds no resources anymore
159     (except possibly for the Perl object, but its connection to the actual
160     aio request is severed and calling its methods will either do nothing or
161     result in a runtime error).
162 root 1.1
163 root 1.88 =back
164    
165 root 1.1 =cut
166    
167     package IO::AIO;
168    
169 root 1.117 use Carp ();
170    
171 root 1.161 use common::sense;
172 root 1.23
173 root 1.1 use base 'Exporter';
174    
175     BEGIN {
176 root 1.320 our $VERSION = 4.81;
177 root 1.1
178 root 1.220 our @AIO_REQ = qw(aio_sendfile aio_seek aio_read aio_write aio_open aio_close
179 root 1.148 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
180 root 1.259 aio_scandir aio_symlink aio_readlink aio_realpath aio_fcntl aio_ioctl
181     aio_sync aio_fsync aio_syncfs aio_fdatasync aio_sync_file_range
182     aio_pathsync aio_readahead aio_fiemap aio_allocate
183 root 1.270 aio_rename aio_rename2 aio_link aio_move aio_copy aio_group
184 root 1.120 aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
185 root 1.170 aio_chmod aio_utime aio_truncate
186 root 1.182 aio_msync aio_mtouch aio_mlock aio_mlockall
187 root 1.208 aio_statvfs
188 root 1.279 aio_slurp
189 root 1.208 aio_wd);
190 root 1.120
191 root 1.123 our @EXPORT = (@AIO_REQ, qw(aioreq_pri aioreq_nice));
192 root 1.67 our @EXPORT_OK = qw(poll_fileno poll_cb poll_wait flush
193 root 1.188 min_parallel max_parallel max_idle idle_timeout
194 root 1.86 nreqs nready npending nthreads
195 root 1.157 max_poll_time max_poll_reqs
196 root 1.182 sendfile fadvise madvise
197 root 1.315 mmap munmap mremap munlock munlockall
198    
199     accept4 tee splice pipe2 pipesize
200 root 1.316 fexecve mount umount memfd_create eventfd
201 root 1.315 timerfd_create timerfd_settime timerfd_gettime
202     pidfd_open pidfd_send_signal pidfd_getfd);
203 root 1.1
204 root 1.143 push @AIO_REQ, qw(aio_busy); # not exported
205    
206 root 1.54 @IO::AIO::GRP::ISA = 'IO::AIO::REQ';
207    
208 root 1.1 require XSLoader;
209 root 1.51 XSLoader::load ("IO::AIO", $VERSION);
210 root 1.1 }
211    
212 root 1.5 =head1 FUNCTIONS
213 root 1.1
214 root 1.175 =head2 QUICK OVERVIEW
215    
216 root 1.230 This section simply lists the prototypes most of the functions for
217     quick reference. See the following sections for function-by-function
218 root 1.175 documentation.
219    
220 root 1.208 aio_wd $pathname, $callback->($wd)
221 root 1.175 aio_open $pathname, $flags, $mode, $callback->($fh)
222     aio_close $fh, $callback->($status)
223 root 1.220 aio_seek $fh,$offset,$whence, $callback->($offs)
224 root 1.175 aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
225     aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
226     aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
227     aio_readahead $fh,$offset,$length, $callback->($retval)
228     aio_stat $fh_or_path, $callback->($status)
229     aio_lstat $fh, $callback->($status)
230     aio_statvfs $fh_or_path, $callback->($statvfs)
231     aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
232     aio_chown $fh_or_path, $uid, $gid, $callback->($status)
233 root 1.220 aio_chmod $fh_or_path, $mode, $callback->($status)
234 root 1.175 aio_truncate $fh_or_path, $offset, $callback->($status)
235 root 1.229 aio_allocate $fh, $mode, $offset, $len, $callback->($status)
236 root 1.230 aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
237 root 1.175 aio_unlink $pathname, $callback->($status)
238 root 1.209 aio_mknod $pathname, $mode, $dev, $callback->($status)
239 root 1.175 aio_link $srcpath, $dstpath, $callback->($status)
240     aio_symlink $srcpath, $dstpath, $callback->($status)
241 root 1.209 aio_readlink $pathname, $callback->($link)
242 root 1.249 aio_realpath $pathname, $callback->($path)
243 root 1.175 aio_rename $srcpath, $dstpath, $callback->($status)
244 root 1.270 aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
245 root 1.175 aio_mkdir $pathname, $mode, $callback->($status)
246     aio_rmdir $pathname, $callback->($status)
247     aio_readdir $pathname, $callback->($entries)
248     aio_readdirx $pathname, $flags, $callback->($entries, $flags)
249     IO::AIO::READDIR_DENTS IO::AIO::READDIR_DIRS_FIRST
250     IO::AIO::READDIR_STAT_ORDER IO::AIO::READDIR_FOUND_UNKNOWN
251 root 1.215 aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
252 root 1.209 aio_load $pathname, $data, $callback->($status)
253 root 1.175 aio_copy $srcpath, $dstpath, $callback->($status)
254     aio_move $srcpath, $dstpath, $callback->($status)
255 root 1.209 aio_rmtree $pathname, $callback->($status)
256 root 1.259 aio_fcntl $fh, $cmd, $arg, $callback->($status)
257     aio_ioctl $fh, $request, $buf, $callback->($status)
258 root 1.175 aio_sync $callback->($status)
259 root 1.206 aio_syncfs $fh, $callback->($status)
260 root 1.175 aio_fsync $fh, $callback->($status)
261     aio_fdatasync $fh, $callback->($status)
262     aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
263 root 1.209 aio_pathsync $pathname, $callback->($status)
264 root 1.268 aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
265 root 1.175 aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
266 root 1.182 aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
267     aio_mlockall $flags, $callback->($status)
268 root 1.175 aio_group $callback->(...)
269     aio_nop $callback->()
270    
271     $prev_pri = aioreq_pri [$pri]
272     aioreq_nice $pri_adjust
273    
274     IO::AIO::poll_wait
275     IO::AIO::poll_cb
276     IO::AIO::poll
277     IO::AIO::flush
278     IO::AIO::max_poll_reqs $nreqs
279     IO::AIO::max_poll_time $seconds
280     IO::AIO::min_parallel $nthreads
281     IO::AIO::max_parallel $nthreads
282     IO::AIO::max_idle $nthreads
283 root 1.188 IO::AIO::idle_timeout $seconds
284 root 1.175 IO::AIO::max_outstanding $maxreqs
285     IO::AIO::nreqs
286     IO::AIO::nready
287     IO::AIO::npending
288 root 1.302 IO::AIO::reinit
289    
290 root 1.307 $nfd = IO::AIO::get_fdlimit
291     IO::AIO::min_fdlimit $nfd
292 root 1.175
293     IO::AIO::sendfile $ofh, $ifh, $offset, $count
294     IO::AIO::fadvise $fh, $offset, $len, $advice
295 root 1.315 IO::AIO::fexecve $fh, $argv, $envp
296 root 1.302
297 root 1.226 IO::AIO::mmap $scalar, $length, $prot, $flags[, $fh[, $offset]]
298     IO::AIO::munmap $scalar
299 root 1.285 IO::AIO::mremap $scalar, $new_length, $flags[, $new_address]
300 root 1.184 IO::AIO::madvise $scalar, $offset, $length, $advice
301     IO::AIO::mprotect $scalar, $offset, $length, $protect
302 root 1.182 IO::AIO::munlock $scalar, $offset = 0, $length = undef
303 root 1.175 IO::AIO::munlockall
304    
305 root 1.302 # stat extensions
306     $counter = IO::AIO::st_gen
307     $seconds = IO::AIO::st_atime, IO::AIO::st_mtime, IO::AIO::st_ctime, IO::AIO::st_btime
308     ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtime
309     $nanoseconds = IO::AIO::st_atimensec, IO::AIO::st_mtimensec, IO::AIO::st_ctimensec, IO::AIO::st_btimensec
310     $seconds = IO::AIO::st_btimesec
311     ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtimensec
312    
313     # very much unportable syscalls
314 root 1.305 IO::AIO::accept4 $r_fh, $sockaddr, $sockaddr_len, $flags
315 root 1.302 IO::AIO::splice $r_fh, $r_off, $w_fh, $w_off, $length, $flags
316     IO::AIO::tee $r_fh, $w_fh, $length, $flags
317 root 1.315
318 root 1.302 $actual_size = IO::AIO::pipesize $r_fh[, $new_size]
319     ($rfh, $wfh) = IO::AIO::pipe2 [$flags]
320 root 1.315
321     $fh = IO::AIO::eventfd [$initval, [$flags]]
322 root 1.302 $fh = IO::AIO::memfd_create $pathname[, $flags]
323 root 1.315
324 root 1.302 $fh = IO::AIO::timerfd_create $clockid[, $flags]
325     ($cur_interval, $cur_value) = IO::AIO::timerfd_settime $fh, $flags, $new_interval, $nbw_value
326     ($cur_interval, $cur_value) = IO::AIO::timerfd_gettime $fh
327    
328 root 1.315 $fh = IO::AIO::pidfd_open $pid[, $flags]
329     $status = IO::AIO::pidfd_send_signal $pidfh, $signal[, $siginfo[, $flags]]
330     $fh = IO::AIO::pidfd_getfd $pidfh, $targetfd[, $flags]
331    
332 root 1.316 $retval = IO::AIO::mount $special, $path, $fstype, $flags = 0, $data = undef
333     $retval = IO::AIO::umount $path, $flags = 0
334    
335 root 1.219 =head2 API NOTES
336 root 1.1
337 root 1.5 All the C<aio_*> calls are more or less thin wrappers around the syscall
338     with the same name (sans C<aio_>). The arguments are similar or identical,
339 root 1.14 and they all accept an additional (and optional) C<$callback> argument
340 root 1.212 which must be a code reference. This code reference will be called after
341     the syscall has been executed in an asynchronous fashion. The results
342     of the request will be passed as arguments to the callback (and, if an
343     error occured, in C<$!>) - for most requests the syscall return code (e.g.
344     most syscalls return C<-1> on error, unlike perl, which usually delivers
345     "false").
346    
347     Some requests (such as C<aio_readdir>) pass the actual results and
348     communicate failures by passing C<undef>.
349 root 1.1
350 root 1.23 All functions expecting a filehandle keep a copy of the filehandle
351     internally until the request has finished.
352 root 1.1
353 root 1.87 All functions return request objects of type L<IO::AIO::REQ> that allow
354     further manipulation of those requests while they are in-flight.
355 root 1.52
356 root 1.209 The pathnames you pass to these routines I<should> be absolute. The
357     reason for this is that at the time the request is being executed, the
358 root 1.212 current working directory could have changed. Alternatively, you can
359     make sure that you never change the current working directory anywhere
360     in the program and then use relative paths. You can also take advantage
361     of IO::AIOs working directory abstraction, that lets you specify paths
362     relative to some previously-opened "working directory object" - see the
363     description of the C<IO::AIO::WD> class later in this document.
364 root 1.28
365 root 1.87 To encode pathnames as octets, either make sure you either: a) always pass
366     in filenames you got from outside (command line, readdir etc.) without
367 root 1.212 tinkering, b) are in your native filesystem encoding, c) use the Encode
368     module and encode your pathnames to the locale (or other) encoding in
369     effect in the user environment, d) use Glib::filename_from_unicode on
370     unicode filenames or e) use something else to ensure your scalar has the
371     correct contents.
372 root 1.87
373     This works, btw. independent of the internal UTF-8 bit, which IO::AIO
374 root 1.136 handles correctly whether it is set or not.
375 root 1.1
376 root 1.219 =head2 AIO REQUEST FUNCTIONS
377    
378 root 1.5 =over 4
379 root 1.1
380 root 1.80 =item $prev_pri = aioreq_pri [$pri]
381 root 1.68
382 root 1.80 Returns the priority value that would be used for the next request and, if
383     C<$pri> is given, sets the priority for the next aio request.
384 root 1.68
385 root 1.80 The default priority is C<0>, the minimum and maximum priorities are C<-4>
386     and C<4>, respectively. Requests with higher priority will be serviced
387     first.
388    
389     The priority will be reset to C<0> after each call to one of the C<aio_*>
390 root 1.68 functions.
391    
392 root 1.69 Example: open a file with low priority, then read something from it with
393     higher priority so the read request is serviced before other low priority
394     open requests (potentially spamming the cache):
395    
396     aioreq_pri -3;
397     aio_open ..., sub {
398     return unless $_[0];
399    
400     aioreq_pri -2;
401     aio_read $_[0], ..., sub {
402     ...
403     };
404     };
405    
406 root 1.106
407 root 1.69 =item aioreq_nice $pri_adjust
408    
409     Similar to C<aioreq_pri>, but subtracts the given value from the current
410 root 1.87 priority, so the effect is cumulative.
411 root 1.69
412 root 1.106
413 root 1.40 =item aio_open $pathname, $flags, $mode, $callback->($fh)
414 root 1.1
415 root 1.2 Asynchronously open or create a file and call the callback with a newly
416 root 1.233 created filehandle for the file (or C<undef> in case of an error).
417 root 1.1
418 root 1.20 The C<$flags> argument is a bitmask. See the C<Fcntl> module for a
419     list. They are the same as used by C<sysopen>.
420    
421     Likewise, C<$mode> specifies the mode of the newly created file, if it
422     didn't exist and C<O_CREAT> has been given, just like perl's C<sysopen>,
423     except that it is mandatory (i.e. use C<0> if you don't create new files,
424 root 1.101 and C<0666> or C<0777> if you do). Note that the C<$mode> will be modified
425     by the umask in effect then the request is being executed, so better never
426     change the umask.
427 root 1.1
428     Example:
429    
430 root 1.181 aio_open "/etc/passwd", IO::AIO::O_RDONLY, 0, sub {
431 root 1.2 if ($_[0]) {
432     print "open successful, fh is $_[0]\n";
433 root 1.1 ...
434     } else {
435     die "open failed: $!\n";
436     }
437     };
438    
439 root 1.194 In addition to all the common open modes/flags (C<O_RDONLY>, C<O_WRONLY>,
440     C<O_RDWR>, C<O_CREAT>, C<O_TRUNC>, C<O_EXCL> and C<O_APPEND>), the
441     following POSIX and non-POSIX constants are available (missing ones on
442     your system are, as usual, C<0>):
443    
444     C<O_ASYNC>, C<O_DIRECT>, C<O_NOATIME>, C<O_CLOEXEC>, C<O_NOCTTY>, C<O_NOFOLLOW>,
445     C<O_NONBLOCK>, C<O_EXEC>, C<O_SEARCH>, C<O_DIRECTORY>, C<O_DSYNC>,
446 root 1.286 C<O_RSYNC>, C<O_SYNC>, C<O_PATH>, C<O_TMPFILE>, C<O_TTY_INIT> and C<O_ACCMODE>.
447 root 1.194
448 root 1.106
449 root 1.40 =item aio_close $fh, $callback->($status)
450 root 1.1
451 root 1.2 Asynchronously close a file and call the callback with the result
452 root 1.116 code.
453    
454 root 1.117 Unfortunately, you can't do this to perl. Perl I<insists> very strongly on
455 root 1.121 closing the file descriptor associated with the filehandle itself.
456 root 1.117
457 root 1.121 Therefore, C<aio_close> will not close the filehandle - instead it will
458     use dup2 to overwrite the file descriptor with the write-end of a pipe
459     (the pipe fd will be created on demand and will be cached).
460 root 1.117
461 root 1.121 Or in other words: the file descriptor will be closed, but it will not be
462     free for reuse until the perl filehandle is closed.
463 root 1.117
464     =cut
465    
466 root 1.220 =item aio_seek $fh, $offset, $whence, $callback->($offs)
467    
468 root 1.221 Seeks the filehandle to the new C<$offset>, similarly to perl's
469 root 1.220 C<sysseek>. The C<$whence> can use the traditional values (C<0> for
470     C<IO::AIO::SEEK_SET>, C<1> for C<IO::AIO::SEEK_CUR> or C<2> for
471     C<IO::AIO::SEEK_END>).
472    
473     The resulting absolute offset will be passed to the callback, or C<-1> in
474     case of an error.
475    
476     In theory, the C<$whence> constants could be different than the
477     corresponding values from L<Fcntl>, but perl guarantees they are the same,
478     so don't panic.
479    
480 root 1.225 As a GNU/Linux (and maybe Solaris) extension, also the constants
481     C<IO::AIO::SEEK_DATA> and C<IO::AIO::SEEK_HOLE> are available, if they
482     could be found. No guarantees about suitability for use in C<aio_seek> or
483     Perl's C<sysseek> can be made though, although I would naively assume they
484     "just work".
485    
486 root 1.40 =item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
487 root 1.1
488 root 1.40 =item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
489 root 1.1
490 root 1.145 Reads or writes C<$length> bytes from or to the specified C<$fh> and
491 root 1.267 C<$offset> into the scalar given by C<$data> and offset C<$dataoffset> and
492     calls the callback with the actual number of bytes transferred (or -1 on
493 root 1.145 error, just like the syscall).
494 root 1.109
495 root 1.146 C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
496     offset plus the actual number of bytes read.
497    
498 root 1.112 If C<$offset> is undefined, then the current file descriptor offset will
499     be used (and updated), otherwise the file descriptor offset will not be
500     changed by these calls.
501 root 1.109
502 root 1.145 If C<$length> is undefined in C<aio_write>, use the remaining length of
503     C<$data>.
504 root 1.109
505     If C<$dataoffset> is less than zero, it will be counted from the end of
506     C<$data>.
507 root 1.1
508 root 1.31 The C<$data> scalar I<MUST NOT> be modified in any way while the request
509 root 1.108 is outstanding. Modifying it can result in segfaults or World War III (if
510     the necessary/optional hardware is installed).
511 root 1.31
512 root 1.17 Example: Read 15 bytes at offset 7 into scalar C<$buffer>, starting at
513 root 1.1 offset C<0> within the scalar:
514    
515     aio_read $fh, 7, 15, $buffer, 0, sub {
516 root 1.9 $_[0] > 0 or die "read error: $!";
517     print "read $_[0] bytes: <$buffer>\n";
518 root 1.1 };
519    
520 root 1.106
521 root 1.40 =item aio_sendfile $out_fh, $in_fh, $in_offset, $length, $callback->($retval)
522 root 1.35
523     Tries to copy C<$length> bytes from C<$in_fh> to C<$out_fh>. It starts
524     reading at byte offset C<$in_offset>, and starts writing at the current
525     file offset of C<$out_fh>. Because of that, it is not safe to issue more
526     than one C<aio_sendfile> per C<$out_fh>, as they will interfere with each
527 root 1.196 other. The same C<$in_fh> works fine though, as this function does not
528     move or use the file offset of C<$in_fh>.
529 root 1.35
530 root 1.185 Please note that C<aio_sendfile> can read more bytes from C<$in_fh> than
531 root 1.196 are written, and there is no way to find out how many more bytes have been
532     read from C<aio_sendfile> alone, as C<aio_sendfile> only provides the
533     number of bytes written to C<$out_fh>. Only if the result value equals
534     C<$length> one can assume that C<$length> bytes have been read.
535 root 1.185
536     Unlike with other C<aio_> functions, it makes a lot of sense to use
537     C<aio_sendfile> on non-blocking sockets, as long as one end (typically
538     the C<$in_fh>) is a file - the file I/O will then be asynchronous, while
539 root 1.196 the socket I/O will be non-blocking. Note, however, that you can run
540     into a trap where C<aio_sendfile> reads some data with readahead, then
541     fails to write all data, and when the socket is ready the next time, the
542     data in the cache is already lost, forcing C<aio_sendfile> to again hit
543     the disk. Explicit C<aio_read> + C<aio_write> let's you better control
544     resource usage.
545    
546     This call tries to make use of a native C<sendfile>-like syscall to
547     provide zero-copy operation. For this to work, C<$out_fh> should refer to
548     a socket, and C<$in_fh> should refer to an mmap'able file.
549 root 1.35
550 root 1.170 If a native sendfile cannot be found or it fails with C<ENOSYS>,
551 root 1.196 C<EINVAL>, C<ENOTSUP>, C<EOPNOTSUPP>, C<EAFNOSUPPORT>, C<EPROTOTYPE> or
552     C<ENOTSOCK>, it will be emulated, so you can call C<aio_sendfile> on any
553     type of filehandle regardless of the limitations of the operating system.
554    
555     As native sendfile syscalls (as practically any non-POSIX interface hacked
556     together in a hurry to improve benchmark numbers) tend to be rather buggy
557     on many systems, this implementation tries to work around some known bugs
558     in Linux and FreeBSD kernels (probably others, too), but that might fail,
559     so you really really should check the return value of C<aio_sendfile> -
560 root 1.262 fewer bytes than expected might have been transferred.
561 root 1.35
562 root 1.106
563 root 1.40 =item aio_readahead $fh,$offset,$length, $callback->($retval)
564 root 1.1
565 root 1.20 C<aio_readahead> populates the page cache with data from a file so that
566 root 1.1 subsequent reads from that file will not block on disk I/O. The C<$offset>
567     argument specifies the starting point from which data is to be read and
568     C<$length> specifies the number of bytes to be read. I/O is performed in
569     whole pages, so that offset is effectively rounded down to a page boundary
570     and bytes are read up to the next page boundary greater than or equal to
571 root 1.20 (off-set+length). C<aio_readahead> does not read beyond the end of the
572 root 1.1 file. The current file offset of the file is left unchanged.
573    
574 root 1.261 If that syscall doesn't exist (likely if your kernel isn't Linux) it will
575     be emulated by simply reading the data, which would have a similar effect.
576 root 1.26
577 root 1.106
578 root 1.40 =item aio_stat $fh_or_path, $callback->($status)
579 root 1.1
580 root 1.40 =item aio_lstat $fh, $callback->($status)
581 root 1.1
582 root 1.294 Works almost exactly like perl's C<stat> or C<lstat> in void context. The
583     callback will be called after the stat and the results will be available
584     using C<stat _> or C<-s _> and other tests (with the exception of C<-B>
585     and C<-T>).
586 root 1.1
587     Currently, the stats are always 64-bit-stats, i.e. instead of returning an
588     error when stat'ing a large file, the results will be silently truncated
589     unless perl itself is compiled with large file support.
590    
591 root 1.187 To help interpret the mode and dev/rdev stat values, IO::AIO offers the
592     following constants and functions (if not implemented, the constants will
593     be C<0> and the functions will either C<croak> or fall back on traditional
594     behaviour).
595    
596     C<S_IFMT>, C<S_IFIFO>, C<S_IFCHR>, C<S_IFBLK>, C<S_IFLNK>, C<S_IFREG>,
597     C<S_IFDIR>, C<S_IFWHT>, C<S_IFSOCK>, C<IO::AIO::major $dev_t>,
598     C<IO::AIO::minor $dev_t>, C<IO::AIO::makedev $major, $minor>.
599    
600 root 1.289 To access higher resolution stat timestamps, see L<SUBSECOND STAT TIME
601     ACCESS>.
602    
603 root 1.1 Example: Print the length of F</etc/passwd>:
604    
605     aio_stat "/etc/passwd", sub {
606     $_[0] and die "stat failed: $!";
607     print "size is ", -s _, "\n";
608     };
609    
610 root 1.106
611 root 1.175 =item aio_statvfs $fh_or_path, $callback->($statvfs)
612 root 1.172
613     Works like the POSIX C<statvfs> or C<fstatvfs> syscalls, depending on
614     whether a file handle or path was passed.
615    
616     On success, the callback is passed a hash reference with the following
617     members: C<bsize>, C<frsize>, C<blocks>, C<bfree>, C<bavail>, C<files>,
618     C<ffree>, C<favail>, C<fsid>, C<flag> and C<namemax>. On failure, C<undef>
619     is passed.
620    
621     The following POSIX IO::AIO::ST_* constants are defined: C<ST_RDONLY> and
622     C<ST_NOSUID>.
623    
624     The following non-POSIX IO::AIO::ST_* flag masks are defined to
625     their correct value when available, or to C<0> on systems that do
626     not support them: C<ST_NODEV>, C<ST_NOEXEC>, C<ST_SYNCHRONOUS>,
627     C<ST_MANDLOCK>, C<ST_WRITE>, C<ST_APPEND>, C<ST_IMMUTABLE>, C<ST_NOATIME>,
628     C<ST_NODIRATIME> and C<ST_RELATIME>.
629    
630     Example: stat C</wd> and dump out the data if successful.
631    
632     aio_statvfs "/wd", sub {
633     my $f = $_[0]
634     or die "statvfs: $!";
635    
636     use Data::Dumper;
637     say Dumper $f;
638     };
639    
640     # result:
641     {
642     bsize => 1024,
643     bfree => 4333064312,
644     blocks => 10253828096,
645     files => 2050765568,
646     flag => 4096,
647     favail => 2042092649,
648     bavail => 4333064312,
649     ffree => 2042092649,
650     namemax => 255,
651     frsize => 1024,
652     fsid => 1810
653     }
654    
655 root 1.106 =item aio_utime $fh_or_path, $atime, $mtime, $callback->($status)
656    
657     Works like perl's C<utime> function (including the special case of $atime
658     and $mtime being undef). Fractional times are supported if the underlying
659     syscalls support them.
660    
661 root 1.294 When called with a pathname, uses utimensat(2) or utimes(2) if available,
662     otherwise utime(2). If called on a file descriptor, uses futimens(2)
663     or futimes(2) if available, otherwise returns ENOSYS, so this is not
664     portable.
665 root 1.106
666     Examples:
667    
668 root 1.107 # set atime and mtime to current time (basically touch(1)):
669 root 1.106 aio_utime "path", undef, undef;
670     # set atime to current time and mtime to beginning of the epoch:
671     aio_utime "path", time, undef; # undef==0
672    
673    
674     =item aio_chown $fh_or_path, $uid, $gid, $callback->($status)
675    
676     Works like perl's C<chown> function, except that C<undef> for either $uid
677     or $gid is being interpreted as "do not change" (but -1 can also be used).
678    
679     Examples:
680    
681     # same as "chown root path" in the shell:
682     aio_chown "path", 0, -1;
683     # same as above:
684     aio_chown "path", 0, undef;
685    
686    
687 root 1.110 =item aio_truncate $fh_or_path, $offset, $callback->($status)
688    
689     Works like truncate(2) or ftruncate(2).
690    
691    
692 root 1.229 =item aio_allocate $fh, $mode, $offset, $len, $callback->($status)
693    
694 root 1.249 Allocates or frees disk space according to the C<$mode> argument. See the
695     linux C<fallocate> documentation for details.
696 root 1.229
697 root 1.252 C<$mode> is usually C<0> or C<IO::AIO::FALLOC_FL_KEEP_SIZE> to allocate
698     space, or C<IO::AIO::FALLOC_FL_PUNCH_HOLE | IO::AIO::FALLOC_FL_KEEP_SIZE>,
699     to deallocate a file range.
700    
701     IO::AIO also supports C<FALLOC_FL_COLLAPSE_RANGE>, to remove a range
702 root 1.273 (without leaving a hole), C<FALLOC_FL_ZERO_RANGE>, to zero a range,
703     C<FALLOC_FL_INSERT_RANGE> to insert a range and C<FALLOC_FL_UNSHARE_RANGE>
704     to unshare shared blocks (see your L<fallocate(2)> manpage).
705 root 1.229
706     The file system block size used by C<fallocate> is presumably the
707 root 1.273 C<f_bsize> returned by C<statvfs>, but different filesystems and filetypes
708     can dictate other limitations.
709 root 1.229
710     If C<fallocate> isn't available or cannot be emulated (currently no
711     emulation will be attempted), passes C<-1> and sets C<$!> to C<ENOSYS>.
712    
713    
714 root 1.106 =item aio_chmod $fh_or_path, $mode, $callback->($status)
715    
716     Works like perl's C<chmod> function.
717    
718    
719 root 1.40 =item aio_unlink $pathname, $callback->($status)
720 root 1.1
721     Asynchronously unlink (delete) a file and call the callback with the
722     result code.
723    
724 root 1.106
725 root 1.209 =item aio_mknod $pathname, $mode, $dev, $callback->($status)
726 root 1.82
727 root 1.86 [EXPERIMENTAL]
728    
729 root 1.83 Asynchronously create a device node (or fifo). See mknod(2).
730    
731 root 1.86 The only (POSIX-) portable way of calling this function is:
732 root 1.83
733 root 1.209 aio_mknod $pathname, IO::AIO::S_IFIFO | $mode, 0, sub { ...
734 root 1.82
735 root 1.187 See C<aio_stat> for info about some potentially helpful extra constants
736     and functions.
737 root 1.106
738 root 1.50 =item aio_link $srcpath, $dstpath, $callback->($status)
739    
740     Asynchronously create a new link to the existing object at C<$srcpath> at
741     the path C<$dstpath> and call the callback with the result code.
742    
743 root 1.106
744 root 1.50 =item aio_symlink $srcpath, $dstpath, $callback->($status)
745    
746     Asynchronously create a new symbolic link to the existing object at C<$srcpath> at
747     the path C<$dstpath> and call the callback with the result code.
748    
749 root 1.106
750 root 1.209 =item aio_readlink $pathname, $callback->($link)
751 root 1.90
752     Asynchronously read the symlink specified by C<$path> and pass it to
753     the callback. If an error occurs, nothing or undef gets passed to the
754     callback.
755    
756 root 1.106
757 root 1.209 =item aio_realpath $pathname, $callback->($path)
758 root 1.201
759     Asynchronously make the path absolute and resolve any symlinks in
760 root 1.239 C<$path>. The resulting path only consists of directories (same as
761 root 1.202 L<Cwd::realpath>).
762 root 1.201
763     This request can be used to get the absolute path of the current working
764     directory by passing it a path of F<.> (a single dot).
765    
766    
767 root 1.50 =item aio_rename $srcpath, $dstpath, $callback->($status)
768    
769     Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
770     rename(2) and call the callback with the result code.
771    
772 root 1.241 On systems that support the AIO::WD working directory abstraction
773     natively, the case C<[$wd, "."]> as C<$srcpath> is specialcased - instead
774     of failing, C<rename> is called on the absolute path of C<$wd>.
775    
776 root 1.106
777 root 1.270 =item aio_rename2 $srcpath, $dstpath, $flags, $callback->($status)
778    
779     Basically a version of C<aio_rename> with an additional C<$flags>
780     argument. Calling this with C<$flags=0> is the same as calling
781     C<aio_rename>.
782    
783     Non-zero flags are currently only supported on GNU/Linux systems that
784     support renameat2. Other systems fail with C<ENOSYS> in this case.
785    
786     The following constants are available (missing ones are, as usual C<0>),
787     see renameat2(2) for details:
788    
789     C<IO::AIO::RENAME_NOREPLACE>, C<IO::AIO::RENAME_EXCHANGE>
790     and C<IO::AIO::RENAME_WHITEOUT>.
791    
792    
793 root 1.101 =item aio_mkdir $pathname, $mode, $callback->($status)
794    
795     Asynchronously mkdir (create) a directory and call the callback with
796     the result code. C<$mode> will be modified by the umask at the time the
797     request is executed, so do not change your umask.
798    
799 root 1.106
800 root 1.40 =item aio_rmdir $pathname, $callback->($status)
801 root 1.27
802     Asynchronously rmdir (delete) a directory and call the callback with the
803     result code.
804    
805 root 1.241 On systems that support the AIO::WD working directory abstraction
806     natively, the case C<[$wd, "."]> is specialcased - instead of failing,
807     C<rmdir> is called on the absolute path of C<$wd>.
808    
809 root 1.106
810 root 1.46 =item aio_readdir $pathname, $callback->($entries)
811 root 1.37
812     Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
813     directory (i.e. opendir + readdir + closedir). The entries will not be
814     sorted, and will B<NOT> include the C<.> and C<..> entries.
815    
816 root 1.148 The callback is passed a single argument which is either C<undef> or an
817     array-ref with the filenames.
818    
819    
820     =item aio_readdirx $pathname, $flags, $callback->($entries, $flags)
821    
822 root 1.207 Quite similar to C<aio_readdir>, but the C<$flags> argument allows one to
823     tune behaviour and output format. In case of an error, C<$entries> will be
824 root 1.148 C<undef>.
825    
826     The flags are a combination of the following constants, ORed together (the
827     flags will also be passed to the callback, possibly modified):
828    
829     =over 4
830    
831 root 1.150 =item IO::AIO::READDIR_DENTS
832 root 1.148
833 root 1.284 Normally the callback gets an arrayref consisting of names only (as
834     with C<aio_readdir>). If this flag is set, then the callback gets an
835     arrayref with C<[$name, $type, $inode]> arrayrefs, each describing a
836     single directory entry in more detail:
837 root 1.148
838     C<$name> is the name of the entry.
839    
840 root 1.150 C<$type> is one of the C<IO::AIO::DT_xxx> constants:
841 root 1.148
842 root 1.150 C<IO::AIO::DT_UNKNOWN>, C<IO::AIO::DT_FIFO>, C<IO::AIO::DT_CHR>, C<IO::AIO::DT_DIR>,
843     C<IO::AIO::DT_BLK>, C<IO::AIO::DT_REG>, C<IO::AIO::DT_LNK>, C<IO::AIO::DT_SOCK>,
844     C<IO::AIO::DT_WHT>.
845 root 1.148
846 root 1.284 C<IO::AIO::DT_UNKNOWN> means just that: readdir does not know. If you need
847     to know, you have to run stat yourself. Also, for speed/memory reasons,
848     the C<$type> scalars are read-only: you must not modify them.
849 root 1.148
850 root 1.150 C<$inode> is the inode number (which might not be exact on systems with 64
851 root 1.155 bit inode numbers and 32 bit perls). This field has unspecified content on
852     systems that do not deliver the inode information.
853 root 1.150
854     =item IO::AIO::READDIR_DIRS_FIRST
855 root 1.148
856     When this flag is set, then the names will be returned in an order where
857 root 1.193 likely directories come first, in optimal stat order. This is useful when
858     you need to quickly find directories, or you want to find all directories
859     while avoiding to stat() each entry.
860 root 1.148
861 root 1.149 If the system returns type information in readdir, then this is used
862 root 1.193 to find directories directly. Otherwise, likely directories are names
863     beginning with ".", or otherwise names with no dots, of which names with
864 root 1.149 short names are tried first.
865    
866 root 1.150 =item IO::AIO::READDIR_STAT_ORDER
867 root 1.148
868     When this flag is set, then the names will be returned in an order
869 root 1.284 suitable for stat()'ing each one. That is, when you plan to stat() most or
870     all files in the given directory, then the returned order will likely be
871     faster.
872    
873     If both this flag and C<IO::AIO::READDIR_DIRS_FIRST> are specified,
874     then the likely dirs come first, resulting in a less optimal stat order
875     for stat'ing all entries, but likely a more optimal order for finding
876     subdirectories.
877 root 1.148
878 root 1.150 =item IO::AIO::READDIR_FOUND_UNKNOWN
879 root 1.148
880     This flag should not be set when calling C<aio_readdirx>. Instead, it
881     is being set by C<aio_readdirx>, when any of the C<$type>'s found were
882 root 1.207 C<IO::AIO::DT_UNKNOWN>. The absence of this flag therefore indicates that all
883 root 1.148 C<$type>'s are known, which can be used to speed up some algorithms.
884    
885     =back
886 root 1.37
887 root 1.106
888 root 1.279 =item aio_slurp $pathname, $offset, $length, $data, $callback->($status)
889    
890     Opens, reads and closes the given file. The data is put into C<$data>,
891     which is resized as required.
892    
893     If C<$offset> is negative, then it is counted from the end of the file.
894    
895     If C<$length> is zero, then the remaining length of the file is
896     used. Also, in this case, the same limitations to modifying C<$data> apply
897     as when IO::AIO::mmap is used, i.e. it must only be modified in-place
898     with C<substr>. If the size of the file is known, specifying a non-zero
899     C<$length> results in a performance advantage.
900    
901     This request is similar to the older C<aio_load> request, but since it is
902     a single request, it might be more efficient to use.
903    
904     Example: load F</etc/passwd> into C<$passwd>.
905    
906     my $passwd;
907     aio_slurp "/etc/passwd", 0, 0, $passwd, sub {
908     $_[0] >= 0
909     or die "/etc/passwd: $!\n";
910    
911     printf "/etc/passwd is %d bytes long, and contains:\n", length $passwd;
912     print $passwd;
913     };
914     IO::AIO::flush;
915    
916    
917 root 1.209 =item aio_load $pathname, $data, $callback->($status)
918 root 1.98
919     This is a composite request that tries to fully load the given file into
920     memory. Status is the same as with aio_read.
921    
922 root 1.279 Using C<aio_slurp> might be more efficient, as it is a single request.
923    
924 root 1.98 =cut
925    
926     sub aio_load($$;$) {
927 root 1.123 my ($path, undef, $cb) = @_;
928     my $data = \$_[1];
929 root 1.98
930 root 1.123 my $pri = aioreq_pri;
931     my $grp = aio_group $cb;
932    
933     aioreq_pri $pri;
934     add $grp aio_open $path, O_RDONLY, 0, sub {
935     my $fh = shift
936     or return $grp->result (-1);
937 root 1.98
938     aioreq_pri $pri;
939 root 1.123 add $grp aio_read $fh, 0, (-s $fh), $$data, 0, sub {
940     $grp->result ($_[0]);
941 root 1.98 };
942 root 1.123 };
943 root 1.98
944 root 1.123 $grp
945 root 1.98 }
946    
947 root 1.82 =item aio_copy $srcpath, $dstpath, $callback->($status)
948    
949     Try to copy the I<file> (directories not supported as either source or
950     destination) from C<$srcpath> to C<$dstpath> and call the callback with
951 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
952 root 1.82
953 root 1.275 Existing destination files will be truncated.
954    
955 root 1.134 This is a composite request that creates the destination file with
956 root 1.82 mode 0200 and copies the contents of the source file into it using
957     C<aio_sendfile>, followed by restoring atime, mtime, access mode and
958     uid/gid, in that order.
959    
960     If an error occurs, the partial destination file will be unlinked, if
961     possible, except when setting atime, mtime, access mode and uid/gid, where
962     errors are being ignored.
963    
964     =cut
965    
966     sub aio_copy($$;$) {
967 root 1.123 my ($src, $dst, $cb) = @_;
968 root 1.82
969 root 1.123 my $pri = aioreq_pri;
970     my $grp = aio_group $cb;
971 root 1.82
972 root 1.123 aioreq_pri $pri;
973     add $grp aio_open $src, O_RDONLY, 0, sub {
974     if (my $src_fh = $_[0]) {
975 root 1.166 my @stat = stat $src_fh; # hmm, might block over nfs?
976 root 1.95
977 root 1.123 aioreq_pri $pri;
978     add $grp aio_open $dst, O_CREAT | O_WRONLY | O_TRUNC, 0200, sub {
979     if (my $dst_fh = $_[0]) {
980 root 1.319
981     # best-effort preallocate
982     aioreq_pri $pri;
983     add $grp aio_allocate $dst_fh, IO::AIO::FALLOC_FL_KEEP_SIZE, 0, $stat[7], sub { };
984    
985 root 1.123 aioreq_pri $pri;
986     add $grp aio_sendfile $dst_fh, $src_fh, 0, $stat[7], sub {
987     if ($_[0] == $stat[7]) {
988     $grp->result (0);
989     close $src_fh;
990    
991 root 1.147 my $ch = sub {
992     aioreq_pri $pri;
993     add $grp aio_chmod $dst_fh, $stat[2] & 07777, sub {
994     aioreq_pri $pri;
995     add $grp aio_chown $dst_fh, $stat[4], $stat[5], sub {
996     aioreq_pri $pri;
997     add $grp aio_close $dst_fh;
998     }
999     };
1000     };
1001 root 1.123
1002     aioreq_pri $pri;
1003 root 1.147 add $grp aio_utime $dst_fh, $stat[8], $stat[9], sub {
1004     if ($_[0] < 0 && $! == ENOSYS) {
1005     aioreq_pri $pri;
1006     add $grp aio_utime $dst, $stat[8], $stat[9], $ch;
1007     } else {
1008     $ch->();
1009     }
1010     };
1011 root 1.123 } else {
1012     $grp->result (-1);
1013     close $src_fh;
1014     close $dst_fh;
1015    
1016     aioreq $pri;
1017     add $grp aio_unlink $dst;
1018     }
1019     };
1020     } else {
1021     $grp->result (-1);
1022     }
1023     },
1024 root 1.82
1025 root 1.123 } else {
1026     $grp->result (-1);
1027     }
1028     };
1029 root 1.82
1030 root 1.123 $grp
1031 root 1.82 }
1032    
1033     =item aio_move $srcpath, $dstpath, $callback->($status)
1034    
1035     Try to move the I<file> (directories not supported as either source or
1036     destination) from C<$srcpath> to C<$dstpath> and call the callback with
1037 root 1.165 a status of C<0> (ok) or C<-1> (error, see C<$!>).
1038 root 1.82
1039 root 1.137 This is a composite request that tries to rename(2) the file first; if
1040     rename fails with C<EXDEV>, it copies the file with C<aio_copy> and, if
1041     that is successful, unlinks the C<$srcpath>.
1042 root 1.82
1043     =cut
1044    
1045     sub aio_move($$;$) {
1046 root 1.123 my ($src, $dst, $cb) = @_;
1047 root 1.82
1048 root 1.123 my $pri = aioreq_pri;
1049     my $grp = aio_group $cb;
1050 root 1.82
1051 root 1.123 aioreq_pri $pri;
1052     add $grp aio_rename $src, $dst, sub {
1053     if ($_[0] && $! == EXDEV) {
1054     aioreq_pri $pri;
1055     add $grp aio_copy $src, $dst, sub {
1056     $grp->result ($_[0]);
1057 root 1.95
1058 root 1.196 unless ($_[0]) {
1059 root 1.123 aioreq_pri $pri;
1060     add $grp aio_unlink $src;
1061     }
1062     };
1063     } else {
1064     $grp->result ($_[0]);
1065     }
1066     };
1067 root 1.82
1068 root 1.123 $grp
1069 root 1.82 }
1070    
1071 root 1.209 =item aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
1072 root 1.40
1073 root 1.52 Scans a directory (similar to C<aio_readdir>) but additionally tries to
1074 root 1.76 efficiently separate the entries of directory C<$path> into two sets of
1075     names, directories you can recurse into (directories), and ones you cannot
1076     recurse into (everything else, including symlinks to directories).
1077 root 1.52
1078 root 1.277 C<aio_scandir> is a composite request that generates many sub requests.
1079 root 1.61 C<$maxreq> specifies the maximum number of outstanding aio requests that
1080     this function generates. If it is C<< <= 0 >>, then a suitable default
1081 root 1.81 will be chosen (currently 4).
1082 root 1.40
1083     On error, the callback is called without arguments, otherwise it receives
1084     two array-refs with path-relative entry names.
1085    
1086     Example:
1087    
1088     aio_scandir $dir, 0, sub {
1089     my ($dirs, $nondirs) = @_;
1090     print "real directories: @$dirs\n";
1091     print "everything else: @$nondirs\n";
1092     };
1093    
1094     Implementation notes.
1095    
1096     The C<aio_readdir> cannot be avoided, but C<stat()>'ing every entry can.
1097    
1098 root 1.149 If readdir returns file type information, then this is used directly to
1099     find directories.
1100    
1101     Otherwise, after reading the directory, the modification time, size etc.
1102     of the directory before and after the readdir is checked, and if they
1103     match (and isn't the current time), the link count will be used to decide
1104     how many entries are directories (if >= 2). Otherwise, no knowledge of the
1105     number of subdirectories will be assumed.
1106    
1107     Then entries will be sorted into likely directories a non-initial dot
1108     currently) and likely non-directories (see C<aio_readdirx>). Then every
1109     entry plus an appended C</.> will be C<stat>'ed, likely directories first,
1110     in order of their inode numbers. If that succeeds, it assumes that the
1111     entry is a directory or a symlink to directory (which will be checked
1112 root 1.207 separately). This is often faster than stat'ing the entry itself because
1113 root 1.52 filesystems might detect the type of the entry without reading the inode
1114 root 1.149 data (e.g. ext2fs filetype feature), even on systems that cannot return
1115     the filetype information on readdir.
1116 root 1.52
1117     If the known number of directories (link count - 2) has been reached, the
1118     rest of the entries is assumed to be non-directories.
1119    
1120     This only works with certainty on POSIX (= UNIX) filesystems, which
1121     fortunately are the vast majority of filesystems around.
1122    
1123     It will also likely work on non-POSIX filesystems with reduced efficiency
1124     as those tend to return 0 or 1 as link counts, which disables the
1125     directory counting heuristic.
1126 root 1.40
1127     =cut
1128    
1129 root 1.100 sub aio_scandir($$;$) {
1130 root 1.123 my ($path, $maxreq, $cb) = @_;
1131    
1132     my $pri = aioreq_pri;
1133 root 1.40
1134 root 1.123 my $grp = aio_group $cb;
1135 root 1.80
1136 root 1.123 $maxreq = 4 if $maxreq <= 0;
1137 root 1.55
1138 root 1.210 # get a wd object
1139 root 1.123 aioreq_pri $pri;
1140 root 1.210 add $grp aio_wd $path, sub {
1141 root 1.212 $_[0]
1142     or return $grp->result ();
1143    
1144 root 1.210 my $wd = [shift, "."];
1145 root 1.40
1146 root 1.210 # stat once
1147 root 1.80 aioreq_pri $pri;
1148 root 1.210 add $grp aio_stat $wd, sub {
1149     return $grp->result () if $_[0];
1150     my $now = time;
1151     my $hash1 = join ":", (stat _)[0,1,3,7,9];
1152 root 1.299 my $rdxflags = READDIR_DIRS_FIRST;
1153    
1154     if ((stat _)[3] < 2) {
1155     # at least one non-POSIX filesystem exists
1156     # that returns useful DT_type values: btrfs,
1157     # so optimise for this here by requesting dents
1158     $rdxflags |= READDIR_DENTS;
1159     }
1160 root 1.40
1161 root 1.210 # read the directory entries
1162 root 1.80 aioreq_pri $pri;
1163 root 1.299 add $grp aio_readdirx $wd, $rdxflags, sub {
1164     my ($entries, $flags) = @_
1165 root 1.210 or return $grp->result ();
1166    
1167 root 1.299 if ($rdxflags & READDIR_DENTS) {
1168     # if we requested type values, see if we can use them directly.
1169    
1170     # if there were any DT_UNKNOWN entries then we assume we
1171     # don't know. alternatively, we could assume that if we get
1172     # one DT_DIR, then all directories are indeed marked with
1173     # DT_DIR, but this seems not required for btrfs, and this
1174     # is basically the "btrfs can't get it's act together" code
1175     # branch.
1176     unless ($flags & READDIR_FOUND_UNKNOWN) {
1177     # now we have valid DT_ information for all entries,
1178     # so use it as an optimisation without further stat's.
1179     # they must also all be at the beginning of @$entries
1180     # by now.
1181    
1182     my $dirs;
1183    
1184     if (@$entries) {
1185     for (0 .. $#$entries) {
1186     if ($entries->[$_][1] != DT_DIR) {
1187     # splice out directories
1188     $dirs = [splice @$entries, 0, $_];
1189     last;
1190     }
1191     }
1192    
1193     # if we didn't find any non-dir, then all entries are dirs
1194     unless ($dirs) {
1195     ($dirs, $entries) = ($entries, []);
1196     }
1197     } else {
1198     # directory is empty, so there are no sbdirs
1199     $dirs = [];
1200     }
1201    
1202     # either splice'd the directories out or the dir was empty.
1203     # convert dents to filenames
1204     $_ = $_->[0] for @$dirs;
1205     $_ = $_->[0] for @$entries;
1206    
1207     return $grp->result ($dirs, $entries);
1208     }
1209    
1210     # cannot use, so return to our old ways
1211     # by pretending we only scanned for names.
1212     $_ = $_->[0] for @$entries;
1213     }
1214    
1215 root 1.210 # stat the dir another time
1216     aioreq_pri $pri;
1217     add $grp aio_stat $wd, sub {
1218     my $hash2 = join ":", (stat _)[0,1,3,7,9];
1219 root 1.95
1220 root 1.210 my $ndirs;
1221 root 1.95
1222 root 1.210 # take the slow route if anything looks fishy
1223     if ($hash1 ne $hash2 or (stat _)[9] == $now) {
1224     $ndirs = -1;
1225     } else {
1226     # if nlink == 2, we are finished
1227     # for non-posix-fs's, we rely on nlink < 2
1228     $ndirs = (stat _)[3] - 2
1229     or return $grp->result ([], $entries);
1230     }
1231 root 1.123
1232 root 1.210 my (@dirs, @nondirs);
1233 root 1.40
1234 root 1.210 my $statgrp = add $grp aio_group sub {
1235     $grp->result (\@dirs, \@nondirs);
1236     };
1237 root 1.40
1238 root 1.210 limit $statgrp $maxreq;
1239     feed $statgrp sub {
1240     return unless @$entries;
1241     my $entry = shift @$entries;
1242    
1243     aioreq_pri $pri;
1244     $wd->[1] = "$entry/.";
1245     add $statgrp aio_stat $wd, sub {
1246     if ($_[0] < 0) {
1247     push @nondirs, $entry;
1248     } else {
1249     # need to check for real directory
1250     aioreq_pri $pri;
1251     $wd->[1] = $entry;
1252     add $statgrp aio_lstat $wd, sub {
1253     if (-d _) {
1254     push @dirs, $entry;
1255    
1256     unless (--$ndirs) {
1257     push @nondirs, @$entries;
1258     feed $statgrp;
1259     }
1260     } else {
1261     push @nondirs, $entry;
1262 root 1.74 }
1263 root 1.40 }
1264     }
1265 root 1.210 };
1266 root 1.74 };
1267 root 1.40 };
1268     };
1269     };
1270 root 1.123 };
1271 root 1.55
1272 root 1.123 $grp
1273 root 1.40 }
1274    
1275 root 1.209 =item aio_rmtree $pathname, $callback->($status)
1276 root 1.99
1277 root 1.100 Delete a directory tree starting (and including) C<$path>, return the
1278 root 1.239 status of the final C<rmdir> only. This is a composite request that
1279 root 1.100 uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1280     everything else.
1281 root 1.99
1282     =cut
1283    
1284     sub aio_rmtree;
1285 root 1.100 sub aio_rmtree($;$) {
1286 root 1.123 my ($path, $cb) = @_;
1287 root 1.99
1288 root 1.123 my $pri = aioreq_pri;
1289     my $grp = aio_group $cb;
1290 root 1.99
1291 root 1.123 aioreq_pri $pri;
1292     add $grp aio_scandir $path, 0, sub {
1293     my ($dirs, $nondirs) = @_;
1294 root 1.99
1295 root 1.123 my $dirgrp = aio_group sub {
1296     add $grp aio_rmdir $path, sub {
1297     $grp->result ($_[0]);
1298 root 1.99 };
1299 root 1.123 };
1300 root 1.99
1301 root 1.123 (aioreq_pri $pri), add $dirgrp aio_rmtree "$path/$_" for @$dirs;
1302     (aioreq_pri $pri), add $dirgrp aio_unlink "$path/$_" for @$nondirs;
1303 root 1.99
1304 root 1.123 add $grp $dirgrp;
1305     };
1306 root 1.99
1307 root 1.123 $grp
1308 root 1.99 }
1309    
1310 root 1.259 =item aio_fcntl $fh, $cmd, $arg, $callback->($status)
1311    
1312     =item aio_ioctl $fh, $request, $buf, $callback->($status)
1313    
1314     These work just like the C<fcntl> and C<ioctl> built-in functions, except
1315     they execute asynchronously and pass the return value to the callback.
1316    
1317     Both calls can be used for a lot of things, some of which make more sense
1318     to run asynchronously in their own thread, while some others make less
1319     sense. For example, calls that block waiting for external events, such
1320     as locking, will also lock down an I/O thread while it is waiting, which
1321     can deadlock the whole I/O system. At the same time, there might be no
1322     alternative to using a thread to wait.
1323    
1324     So in general, you should only use these calls for things that do
1325     (filesystem) I/O, not for things that wait for other events (network,
1326     other processes), although if you are careful and know what you are doing,
1327     you still can.
1328    
1329 root 1.303 The following constants are available and can be used for normal C<ioctl>
1330     and C<fcntl> as well (missing ones are, as usual C<0>):
1331 root 1.264
1332 root 1.271 C<F_DUPFD_CLOEXEC>,
1333    
1334     C<F_OFD_GETLK>, C<F_OFD_SETLK>, C<F_OFD_GETLKW>,
1335    
1336 root 1.264 C<FIFREEZE>, C<FITHAW>, C<FITRIM>, C<FICLONE>, C<FICLONERANGE>, C<FIDEDUPERANGE>.
1337    
1338 root 1.303 C<F_ADD_SEALS>, C<F_GET_SEALS>, C<F_SEAL_SEAL>, C<F_SEAL_SHRINK>, C<F_SEAL_GROW> and
1339     C<F_SEAL_WRITE>.
1340    
1341 root 1.264 C<FS_IOC_GETFLAGS>, C<FS_IOC_SETFLAGS>, C<FS_IOC_GETVERSION>, C<FS_IOC_SETVERSION>,
1342     C<FS_IOC_FIEMAP>.
1343    
1344     C<FS_IOC_FSGETXATTR>, C<FS_IOC_FSSETXATTR>, C<FS_IOC_SET_ENCRYPTION_POLICY>,
1345     C<FS_IOC_GET_ENCRYPTION_PWSALT>, C<FS_IOC_GET_ENCRYPTION_POLICY>, C<FS_KEY_DESCRIPTOR_SIZE>.
1346    
1347     C<FS_SECRM_FL>, C<FS_UNRM_FL>, C<FS_COMPR_FL>, C<FS_SYNC_FL>, C<FS_IMMUTABLE_FL>,
1348     C<FS_APPEND_FL>, C<FS_NODUMP_FL>, C<FS_NOATIME_FL>, C<FS_DIRTY_FL>,
1349     C<FS_COMPRBLK_FL>, C<FS_NOCOMP_FL>, C<FS_ENCRYPT_FL>, C<FS_BTREE_FL>,
1350     C<FS_INDEX_FL>, C<FS_JOURNAL_DATA_FL>, C<FS_NOTAIL_FL>, C<FS_DIRSYNC_FL>, C<FS_TOPDIR_FL>,
1351     C<FS_FL_USER_MODIFIABLE>.
1352    
1353     C<FS_XFLAG_REALTIME>, C<FS_XFLAG_PREALLOC>, C<FS_XFLAG_IMMUTABLE>, C<FS_XFLAG_APPEND>,
1354     C<FS_XFLAG_SYNC>, C<FS_XFLAG_NOATIME>, C<FS_XFLAG_NODUMP>, C<FS_XFLAG_RTINHERIT>,
1355     C<FS_XFLAG_PROJINHERIT>, C<FS_XFLAG_NOSYMLINKS>, C<FS_XFLAG_EXTSIZE>, C<FS_XFLAG_EXTSZINHERIT>,
1356     C<FS_XFLAG_NODEFRAG>, C<FS_XFLAG_FILESTREAM>, C<FS_XFLAG_DAX>, C<FS_XFLAG_HASATTR>,
1357    
1358 root 1.316 C<BLKROSET>, C<BLKROGET>, C<BLKRRPART>, C<BLKGETSIZE>, C<BLKFLSBUF>, C<BLKRASET>,
1359     C<BLKRAGET>, C<BLKFRASET>, C<BLKFRAGET>, C<BLKSECTSET>, C<BLKSECTGET>, C<BLKSSZGET>,
1360     C<BLKBSZGET>, C<BLKBSZSET>, C<BLKGETSIZE64>,
1361    
1362    
1363 root 1.119 =item aio_sync $callback->($status)
1364    
1365     Asynchronously call sync and call the callback when finished.
1366    
1367 root 1.40 =item aio_fsync $fh, $callback->($status)
1368 root 1.1
1369     Asynchronously call fsync on the given filehandle and call the callback
1370     with the fsync result code.
1371    
1372 root 1.40 =item aio_fdatasync $fh, $callback->($status)
1373 root 1.1
1374     Asynchronously call fdatasync on the given filehandle and call the
1375 root 1.26 callback with the fdatasync result code.
1376    
1377     If this call isn't available because your OS lacks it or it couldn't be
1378     detected, it will be emulated by calling C<fsync> instead.
1379 root 1.1
1380 root 1.206 =item aio_syncfs $fh, $callback->($status)
1381    
1382     Asynchronously call the syncfs syscall to sync the filesystem associated
1383     to the given filehandle and call the callback with the syncfs result
1384     code. If syncfs is not available, calls sync(), but returns C<-1> and sets
1385     errno to C<ENOSYS> nevertheless.
1386    
1387 root 1.142 =item aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
1388    
1389     Sync the data portion of the file specified by C<$offset> and C<$length>
1390     to disk (but NOT the metadata), by calling the Linux-specific
1391     sync_file_range call. If sync_file_range is not available or it returns
1392     ENOSYS, then fdatasync or fsync is being substituted.
1393    
1394     C<$flags> can be a combination of C<IO::AIO::SYNC_FILE_RANGE_WAIT_BEFORE>,
1395     C<IO::AIO::SYNC_FILE_RANGE_WRITE> and
1396     C<IO::AIO::SYNC_FILE_RANGE_WAIT_AFTER>: refer to the sync_file_range
1397     manpage for details.
1398    
1399 root 1.209 =item aio_pathsync $pathname, $callback->($status)
1400 root 1.120
1401     This request tries to open, fsync and close the given path. This is a
1402 root 1.135 composite request intended to sync directories after directory operations
1403 root 1.120 (E.g. rename). This might not work on all operating systems or have any
1404     specific effect, but usually it makes sure that directory changes get
1405     written to disc. It works for anything that can be opened for read-only,
1406     not just directories.
1407    
1408 root 1.162 Future versions of this function might fall back to other methods when
1409     C<fsync> on the directory fails (such as calling C<sync>).
1410    
1411 root 1.120 Passes C<0> when everything went ok, and C<-1> on error.
1412    
1413     =cut
1414    
1415     sub aio_pathsync($;$) {
1416 root 1.123 my ($path, $cb) = @_;
1417    
1418     my $pri = aioreq_pri;
1419     my $grp = aio_group $cb;
1420 root 1.120
1421 root 1.123 aioreq_pri $pri;
1422     add $grp aio_open $path, O_RDONLY, 0, sub {
1423     my ($fh) = @_;
1424     if ($fh) {
1425     aioreq_pri $pri;
1426     add $grp aio_fsync $fh, sub {
1427     $grp->result ($_[0]);
1428 root 1.120
1429     aioreq_pri $pri;
1430 root 1.123 add $grp aio_close $fh;
1431     };
1432     } else {
1433     $grp->result (-1);
1434     }
1435     };
1436 root 1.120
1437 root 1.123 $grp
1438 root 1.120 }
1439    
1440 root 1.268 =item aio_msync $scalar, $offset = 0, $length = undef, flags = MS_SYNC, $callback->($status)
1441 root 1.170
1442     This is a rather advanced IO::AIO call, which only works on mmap(2)ed
1443 root 1.176 scalars (see the C<IO::AIO::mmap> function, although it also works on data
1444     scalars managed by the L<Sys::Mmap> or L<Mmap> modules, note that the
1445     scalar must only be modified in-place while an aio operation is pending on
1446     it).
1447 root 1.170
1448     It calls the C<msync> function of your OS, if available, with the memory
1449     area starting at C<$offset> in the string and ending C<$length> bytes
1450     later. If C<$length> is negative, counts from the end, and if C<$length>
1451     is C<undef>, then it goes till the end of the string. The flags can be
1452 root 1.268 either C<IO::AIO::MS_ASYNC> or C<IO::AIO::MS_SYNC>, plus an optional
1453     C<IO::AIO::MS_INVALIDATE>.
1454 root 1.170
1455     =item aio_mtouch $scalar, $offset = 0, $length = undef, flags = 0, $callback->($status)
1456    
1457     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1458     scalars.
1459    
1460     It touches (reads or writes) all memory pages in the specified
1461 root 1.239 range inside the scalar. All caveats and parameters are the same
1462 root 1.170 as for C<aio_msync>, above, except for flags, which must be either
1463     C<0> (which reads all pages and ensures they are instantiated) or
1464 root 1.239 C<IO::AIO::MT_MODIFY>, which modifies the memory pages (by reading and
1465 root 1.170 writing an octet from it, which dirties the page).
1466    
1467 root 1.182 =item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1468    
1469     This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1470     scalars.
1471    
1472     It reads in all the pages of the underlying storage into memory (if any)
1473     and locks them, so they are not getting swapped/paged out or removed.
1474    
1475     If C<$length> is undefined, then the scalar will be locked till the end.
1476    
1477     On systems that do not implement C<mlock>, this function returns C<-1>
1478     and sets errno to C<ENOSYS>.
1479    
1480     Note that the corresponding C<munlock> is synchronous and is
1481     documented under L<MISCELLANEOUS FUNCTIONS>.
1482    
1483 root 1.183 Example: open a file, mmap and mlock it - both will be undone when
1484     C<$data> gets destroyed.
1485    
1486     open my $fh, "<", $path or die "$path: $!";
1487     my $data;
1488     IO::AIO::mmap $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh;
1489     aio_mlock $data; # mlock in background
1490    
1491 root 1.182 =item aio_mlockall $flags, $callback->($status)
1492    
1493 root 1.297 Calls the C<mlockall> function with the given C<$flags> (a
1494     combination of C<IO::AIO::MCL_CURRENT>, C<IO::AIO::MCL_FUTURE> and
1495     C<IO::AIO::MCL_ONFAULT>).
1496 root 1.182
1497     On systems that do not implement C<mlockall>, this function returns C<-1>
1498 root 1.297 and sets errno to C<ENOSYS>. Similarly, flag combinations not supported
1499     by the system result in a return value of C<-1> with errno being set to
1500     C<EINVAL>.
1501 root 1.182
1502     Note that the corresponding C<munlockall> is synchronous and is
1503     documented under L<MISCELLANEOUS FUNCTIONS>.
1504    
1505 root 1.183 Example: asynchronously lock all current and future pages into memory.
1506    
1507     aio_mlockall IO::AIO::MCL_FUTURE;
1508    
1509 root 1.223 =item aio_fiemap $fh, $start, $length, $flags, $count, $cb->(\@extents)
1510    
1511 root 1.234 Queries the extents of the given file (by calling the Linux C<FIEMAP>
1512     ioctl, see L<http://cvs.schmorp.de/IO-AIO/doc/fiemap.txt> for details). If
1513     the ioctl is not available on your OS, then this request will fail with
1514 root 1.223 C<ENOSYS>.
1515    
1516     C<$start> is the starting offset to query extents for, C<$length> is the
1517     size of the range to query - if it is C<undef>, then the whole file will
1518     be queried.
1519    
1520     C<$flags> is a combination of flags (C<IO::AIO::FIEMAP_FLAG_SYNC> or
1521     C<IO::AIO::FIEMAP_FLAG_XATTR> - C<IO::AIO::FIEMAP_FLAGS_COMPAT> is also
1522     exported), and is normally C<0> or C<IO::AIO::FIEMAP_FLAG_SYNC> to query
1523     the data portion.
1524    
1525     C<$count> is the maximum number of extent records to return. If it is
1526 root 1.232 C<undef>, then IO::AIO queries all extents of the range. As a very special
1527 root 1.223 case, if it is C<0>, then the callback receives the number of extents
1528 root 1.232 instead of the extents themselves (which is unreliable, see below).
1529 root 1.223
1530     If an error occurs, the callback receives no arguments. The special
1531     C<errno> value C<IO::AIO::EBADR> is available to test for flag errors.
1532    
1533     Otherwise, the callback receives an array reference with extent
1534     structures. Each extent structure is an array reference itself, with the
1535     following members:
1536    
1537     [$logical, $physical, $length, $flags]
1538    
1539     Flags is any combination of the following flag values (typically either C<0>
1540 root 1.231 or C<IO::AIO::FIEMAP_EXTENT_LAST> (1)):
1541 root 1.223
1542     C<IO::AIO::FIEMAP_EXTENT_LAST>, C<IO::AIO::FIEMAP_EXTENT_UNKNOWN>,
1543     C<IO::AIO::FIEMAP_EXTENT_DELALLOC>, C<IO::AIO::FIEMAP_EXTENT_ENCODED>,
1544     C<IO::AIO::FIEMAP_EXTENT_DATA_ENCRYPTED>, C<IO::AIO::FIEMAP_EXTENT_NOT_ALIGNED>,
1545     C<IO::AIO::FIEMAP_EXTENT_DATA_INLINE>, C<IO::AIO::FIEMAP_EXTENT_DATA_TAIL>,
1546     C<IO::AIO::FIEMAP_EXTENT_UNWRITTEN>, C<IO::AIO::FIEMAP_EXTENT_MERGED> or
1547     C<IO::AIO::FIEMAP_EXTENT_SHARED>.
1548    
1549 root 1.278 At the time of this writing (Linux 3.2), this request is unreliable unless
1550 root 1.232 C<$count> is C<undef>, as the kernel has all sorts of bugs preventing
1551 root 1.278 it to return all extents of a range for files with a large number of
1552     extents. The code (only) works around all these issues if C<$count> is
1553     C<undef>.
1554 root 1.232
1555 root 1.58 =item aio_group $callback->(...)
1556 root 1.54
1557 root 1.55 This is a very special aio request: Instead of doing something, it is a
1558     container for other aio requests, which is useful if you want to bundle
1559 root 1.71 many requests into a single, composite, request with a definite callback
1560     and the ability to cancel the whole request with its subrequests.
1561 root 1.55
1562     Returns an object of class L<IO::AIO::GRP>. See its documentation below
1563     for more info.
1564    
1565     Example:
1566    
1567     my $grp = aio_group sub {
1568     print "all stats done\n";
1569     };
1570    
1571     add $grp
1572     (aio_stat ...),
1573     (aio_stat ...),
1574     ...;
1575    
1576 root 1.63 =item aio_nop $callback->()
1577    
1578     This is a special request - it does nothing in itself and is only used for
1579     side effects, such as when you want to add a dummy request to a group so
1580     that finishing the requests in the group depends on executing the given
1581     code.
1582    
1583 root 1.64 While this request does nothing, it still goes through the execution
1584     phase and still requires a worker thread. Thus, the callback will not
1585     be executed immediately but only after other requests in the queue have
1586     entered their execution phase. This can be used to measure request
1587     latency.
1588    
1589 root 1.71 =item IO::AIO::aio_busy $fractional_seconds, $callback->() *NOT EXPORTED*
1590 root 1.54
1591     Mainly used for debugging and benchmarking, this aio request puts one of
1592     the request workers to sleep for the given time.
1593    
1594 root 1.56 While it is theoretically handy to have simple I/O scheduling requests
1595 root 1.71 like sleep and file handle readable/writable, the overhead this creates is
1596     immense (it blocks a thread for a long time) so do not use this function
1597     except to put your application under artificial I/O pressure.
1598 root 1.56
1599 root 1.5 =back
1600    
1601 root 1.209
1602     =head2 IO::AIO::WD - multiple working directories
1603    
1604     Your process only has one current working directory, which is used by all
1605     threads. This makes it hard to use relative paths (some other component
1606     could call C<chdir> at any time, and it is hard to control when the path
1607     will be used by IO::AIO).
1608    
1609     One solution for this is to always use absolute paths. This usually works,
1610     but can be quite slow (the kernel has to walk the whole path on every
1611     access), and can also be a hassle to implement.
1612    
1613     Newer POSIX systems have a number of functions (openat, fdopendir,
1614     futimensat and so on) that make it possible to specify working directories
1615     per operation.
1616    
1617     For portability, and because the clowns who "designed", or shall I write,
1618     perpetrated this new interface were obviously half-drunk, this abstraction
1619     cannot be perfect, though.
1620    
1621     IO::AIO allows you to convert directory paths into a so-called IO::AIO::WD
1622     object. This object stores the canonicalised, absolute version of the
1623     path, and on systems that allow it, also a directory file descriptor.
1624    
1625     Everywhere where a pathname is accepted by IO::AIO (e.g. in C<aio_stat>
1626     or C<aio_unlink>), one can specify an array reference with an IO::AIO::WD
1627 root 1.214 object and a pathname instead (or the IO::AIO::WD object alone, which
1628     gets interpreted as C<[$wd, "."]>). If the pathname is absolute, the
1629 root 1.213 IO::AIO::WD object is ignored, otherwise the pathname is resolved relative
1630 root 1.209 to that IO::AIO::WD object.
1631    
1632     For example, to get a wd object for F</etc> and then stat F<passwd>
1633     inside, you would write:
1634    
1635     aio_wd "/etc", sub {
1636     my $etcdir = shift;
1637    
1638     # although $etcdir can be undef on error, there is generally no reason
1639     # to check for errors here, as aio_stat will fail with ENOENT
1640     # when $etcdir is undef.
1641    
1642     aio_stat [$etcdir, "passwd"], sub {
1643     # yay
1644     };
1645     };
1646    
1647 root 1.250 The fact that C<aio_wd> is a request and not a normal function shows that
1648     creating an IO::AIO::WD object is itself a potentially blocking operation,
1649     which is why it is done asynchronously.
1650 root 1.214
1651     To stat the directory obtained with C<aio_wd> above, one could write
1652     either of the following three request calls:
1653    
1654     aio_lstat "/etc" , sub { ... # pathname as normal string
1655     aio_lstat [$wd, "."], sub { ... # "." relative to $wd (i.e. $wd itself)
1656     aio_lstat $wd , sub { ... # shorthand for the previous
1657 root 1.209
1658     As with normal pathnames, IO::AIO keeps a copy of the working directory
1659     object and the pathname string, so you could write the following without
1660     causing any issues due to C<$path> getting reused:
1661    
1662     my $path = [$wd, undef];
1663    
1664     for my $name (qw(abc def ghi)) {
1665     $path->[1] = $name;
1666     aio_stat $path, sub {
1667     # ...
1668     };
1669     }
1670    
1671     There are some caveats: when directories get renamed (or deleted), the
1672     pathname string doesn't change, so will point to the new directory (or
1673     nowhere at all), while the directory fd, if available on the system,
1674     will still point to the original directory. Most functions accepting a
1675     pathname will use the directory fd on newer systems, and the string on
1676 root 1.277 older systems. Some functions (such as C<aio_realpath>) will always rely on
1677     the string form of the pathname.
1678 root 1.209
1679 root 1.239 So this functionality is mainly useful to get some protection against
1680 root 1.209 C<chdir>, to easily get an absolute path out of a relative path for future
1681     reference, and to speed up doing many operations in the same directory
1682     (e.g. when stat'ing all files in a directory).
1683    
1684     The following functions implement this working directory abstraction:
1685    
1686     =over 4
1687    
1688     =item aio_wd $pathname, $callback->($wd)
1689    
1690     Asynchonously canonicalise the given pathname and convert it to an
1691     IO::AIO::WD object representing it. If possible and supported on the
1692     system, also open a directory fd to speed up pathname resolution relative
1693     to this working directory.
1694    
1695     If something goes wrong, then C<undef> is passwd to the callback instead
1696     of a working directory object and C<$!> is set appropriately. Since
1697     passing C<undef> as working directory component of a pathname fails the
1698     request with C<ENOENT>, there is often no need for error checking in the
1699     C<aio_wd> callback, as future requests using the value will fail in the
1700     expected way.
1701    
1702     =item IO::AIO::CWD
1703    
1704 root 1.306 This is a compile time constant (object) that represents the process
1705 root 1.209 current working directory.
1706    
1707 root 1.239 Specifying this object as working directory object for a pathname is as if
1708     the pathname would be specified directly, without a directory object. For
1709     example, these calls are functionally identical:
1710 root 1.209
1711     aio_stat "somefile", sub { ... };
1712     aio_stat [IO::AIO::CWD, "somefile"], sub { ... };
1713    
1714     =back
1715    
1716 root 1.239 To recover the path associated with an IO::AIO::WD object, you can use
1717     C<aio_realpath>:
1718    
1719     aio_realpath $wd, sub {
1720     warn "path is $_[0]\n";
1721     };
1722    
1723 root 1.241 Currently, C<aio_statvfs> always, and C<aio_rename> and C<aio_rmdir>
1724     sometimes, fall back to using an absolue path.
1725 root 1.209
1726 root 1.53 =head2 IO::AIO::REQ CLASS
1727 root 1.52
1728     All non-aggregate C<aio_*> functions return an object of this class when
1729     called in non-void context.
1730    
1731     =over 4
1732    
1733 root 1.65 =item cancel $req
1734 root 1.52
1735     Cancels the request, if possible. Has the effect of skipping execution
1736     when entering the B<execute> state and skipping calling the callback when
1737     entering the the B<result> state, but will leave the request otherwise
1738 root 1.151 untouched (with the exception of readdir). That means that requests that
1739     currently execute will not be stopped and resources held by the request
1740     will not be freed prematurely.
1741 root 1.52
1742 root 1.65 =item cb $req $callback->(...)
1743    
1744     Replace (or simply set) the callback registered to the request.
1745    
1746 root 1.52 =back
1747    
1748 root 1.55 =head2 IO::AIO::GRP CLASS
1749    
1750     This class is a subclass of L<IO::AIO::REQ>, so all its methods apply to
1751     objects of this class, too.
1752    
1753     A IO::AIO::GRP object is a special request that can contain multiple other
1754     aio requests.
1755    
1756     You create one by calling the C<aio_group> constructing function with a
1757     callback that will be called when all contained requests have entered the
1758     C<done> state:
1759    
1760     my $grp = aio_group sub {
1761     print "all requests are done\n";
1762     };
1763    
1764     You add requests by calling the C<add> method with one or more
1765     C<IO::AIO::REQ> objects:
1766    
1767     $grp->add (aio_unlink "...");
1768    
1769 root 1.58 add $grp aio_stat "...", sub {
1770     $_[0] or return $grp->result ("error");
1771    
1772     # add another request dynamically, if first succeeded
1773     add $grp aio_open "...", sub {
1774     $grp->result ("ok");
1775     };
1776     };
1777 root 1.55
1778     This makes it very easy to create composite requests (see the source of
1779     C<aio_move> for an application) that work and feel like simple requests.
1780    
1781 root 1.62 =over 4
1782    
1783     =item * The IO::AIO::GRP objects will be cleaned up during calls to
1784 root 1.55 C<IO::AIO::poll_cb>, just like any other request.
1785    
1786 root 1.62 =item * They can be canceled like any other request. Canceling will cancel not
1787 root 1.59 only the request itself, but also all requests it contains.
1788 root 1.55
1789 root 1.62 =item * They can also can also be added to other IO::AIO::GRP objects.
1790 root 1.55
1791 root 1.62 =item * You must not add requests to a group from within the group callback (or
1792 root 1.60 any later time).
1793    
1794 root 1.62 =back
1795    
1796 root 1.55 Their lifetime, simplified, looks like this: when they are empty, they
1797     will finish very quickly. If they contain only requests that are in the
1798     C<done> state, they will also finish. Otherwise they will continue to
1799     exist.
1800    
1801 root 1.133 That means after creating a group you have some time to add requests
1802     (precisely before the callback has been invoked, which is only done within
1803     the C<poll_cb>). And in the callbacks of those requests, you can add
1804     further requests to the group. And only when all those requests have
1805     finished will the the group itself finish.
1806 root 1.57
1807 root 1.55 =over 4
1808    
1809 root 1.65 =item add $grp ...
1810    
1811 root 1.55 =item $grp->add (...)
1812    
1813 root 1.57 Add one or more requests to the group. Any type of L<IO::AIO::REQ> can
1814     be added, including other groups, as long as you do not create circular
1815     dependencies.
1816    
1817     Returns all its arguments.
1818 root 1.55
1819 root 1.74 =item $grp->cancel_subs
1820    
1821     Cancel all subrequests and clears any feeder, but not the group request
1822     itself. Useful when you queued a lot of events but got a result early.
1823    
1824 root 1.168 The group request will finish normally (you cannot add requests to the
1825     group).
1826    
1827 root 1.58 =item $grp->result (...)
1828    
1829     Set the result value(s) that will be passed to the group callback when all
1830 root 1.120 subrequests have finished and set the groups errno to the current value
1831 root 1.80 of errno (just like calling C<errno> without an error number). By default,
1832     no argument will be passed and errno is zero.
1833    
1834     =item $grp->errno ([$errno])
1835    
1836     Sets the group errno value to C<$errno>, or the current value of errno
1837     when the argument is missing.
1838    
1839     Every aio request has an associated errno value that is restored when
1840     the callback is invoked. This method lets you change this value from its
1841     default (0).
1842    
1843     Calling C<result> will also set errno, so make sure you either set C<$!>
1844     before the call to C<result>, or call c<errno> after it.
1845 root 1.58
1846 root 1.65 =item feed $grp $callback->($grp)
1847 root 1.60
1848     Sets a feeder/generator on this group: every group can have an attached
1849     generator that generates requests if idle. The idea behind this is that,
1850     although you could just queue as many requests as you want in a group,
1851 root 1.139 this might starve other requests for a potentially long time. For example,
1852 root 1.211 C<aio_scandir> might generate hundreds of thousands of C<aio_stat>
1853     requests, delaying any later requests for a long time.
1854 root 1.60
1855     To avoid this, and allow incremental generation of requests, you can
1856     instead a group and set a feeder on it that generates those requests. The
1857 root 1.68 feed callback will be called whenever there are few enough (see C<limit>,
1858 root 1.60 below) requests active in the group itself and is expected to queue more
1859     requests.
1860    
1861 root 1.68 The feed callback can queue as many requests as it likes (i.e. C<add> does
1862     not impose any limits).
1863 root 1.60
1864 root 1.65 If the feed does not queue more requests when called, it will be
1865 root 1.60 automatically removed from the group.
1866    
1867 root 1.138 If the feed limit is C<0> when this method is called, it will be set to
1868     C<2> automatically.
1869 root 1.60
1870     Example:
1871    
1872     # stat all files in @files, but only ever use four aio requests concurrently:
1873    
1874     my $grp = aio_group sub { print "finished\n" };
1875 root 1.68 limit $grp 4;
1876 root 1.65 feed $grp sub {
1877 root 1.60 my $file = pop @files
1878     or return;
1879    
1880     add $grp aio_stat $file, sub { ... };
1881 root 1.65 };
1882 root 1.60
1883 root 1.68 =item limit $grp $num
1884 root 1.60
1885     Sets the feeder limit for the group: The feeder will be called whenever
1886     the group contains less than this many requests.
1887    
1888     Setting the limit to C<0> will pause the feeding process.
1889    
1890 root 1.138 The default value for the limit is C<0>, but note that setting a feeder
1891     automatically bumps it up to C<2>.
1892    
1893 root 1.55 =back
1894    
1895 root 1.294
1896 root 1.5 =head2 SUPPORT FUNCTIONS
1897    
1898 root 1.86 =head3 EVENT PROCESSING AND EVENT LOOP INTEGRATION
1899    
1900 root 1.5 =over 4
1901    
1902     =item $fileno = IO::AIO::poll_fileno
1903    
1904 root 1.20 Return the I<request result pipe file descriptor>. This filehandle must be
1905 root 1.156 polled for reading by some mechanism outside this module (e.g. EV, Glib,
1906     select and so on, see below or the SYNOPSIS). If the pipe becomes readable
1907     you have to call C<poll_cb> to check the results.
1908 root 1.5
1909     See C<poll_cb> for an example.
1910    
1911     =item IO::AIO::poll_cb
1912    
1913 root 1.240 Process some requests that have reached the result phase (i.e. they have
1914     been executed but the results are not yet reported). You have to call
1915     this "regularly" to finish outstanding requests.
1916    
1917     Returns C<0> if all events could be processed (or there were no
1918     events to process), or C<-1> if it returned earlier for whatever
1919     reason. Returns immediately when no events are outstanding. The amount
1920     of events processed depends on the settings of C<IO::AIO::max_poll_req>,
1921     C<IO::AIO::max_poll_time> and C<IO::AIO::max_outstanding>.
1922    
1923     If not all requests were processed for whatever reason, the poll file
1924     descriptor will still be ready when C<poll_cb> returns, so normally you
1925     don't have to do anything special to have it called later.
1926 root 1.78
1927 root 1.192 Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes
1928     ready, it can be beneficial to call this function from loops which submit
1929     a lot of requests, to make sure the results get processed when they become
1930     available and not just when the loop is finished and the event loop takes
1931     over again. This function returns very fast when there are no outstanding
1932     requests.
1933    
1934 root 1.20 Example: Install an Event watcher that automatically calls
1935 root 1.156 IO::AIO::poll_cb with high priority (more examples can be found in the
1936     SYNOPSIS section, at the top of this document):
1937 root 1.5
1938     Event->io (fd => IO::AIO::poll_fileno,
1939     poll => 'r', async => 1,
1940     cb => \&IO::AIO::poll_cb);
1941    
1942 root 1.175 =item IO::AIO::poll_wait
1943    
1944 root 1.240 Wait until either at least one request is in the result phase or no
1945     requests are outstanding anymore.
1946    
1947     This is useful if you want to synchronously wait for some requests to
1948     become ready, without actually handling them.
1949 root 1.175
1950     See C<nreqs> for an example.
1951    
1952     =item IO::AIO::poll
1953    
1954     Waits until some requests have been handled.
1955    
1956     Returns the number of requests processed, but is otherwise strictly
1957     equivalent to:
1958    
1959     IO::AIO::poll_wait, IO::AIO::poll_cb
1960    
1961     =item IO::AIO::flush
1962    
1963     Wait till all outstanding AIO requests have been handled.
1964    
1965     Strictly equivalent to:
1966    
1967     IO::AIO::poll_wait, IO::AIO::poll_cb
1968     while IO::AIO::nreqs;
1969    
1970 root 1.294 This function can be useful at program aborts, to make sure outstanding
1971     I/O has been done (C<IO::AIO> uses an C<END> block which already calls
1972     this function on normal exits), or when you are merely using C<IO::AIO>
1973     for its more advanced functions, rather than for async I/O, e.g.:
1974    
1975     my ($dirs, $nondirs);
1976     IO::AIO::aio_scandir "/tmp", 0, sub { ($dirs, $nondirs) = @_ };
1977     IO::AIO::flush;
1978     # $dirs, $nondirs are now set
1979    
1980 root 1.86 =item IO::AIO::max_poll_reqs $nreqs
1981    
1982     =item IO::AIO::max_poll_time $seconds
1983    
1984     These set the maximum number of requests (default C<0>, meaning infinity)
1985     that are being processed by C<IO::AIO::poll_cb> in one call, respectively
1986     the maximum amount of time (default C<0>, meaning infinity) spent in
1987     C<IO::AIO::poll_cb> to process requests (more correctly the mininum amount
1988     of time C<poll_cb> is allowed to use).
1989 root 1.78
1990 root 1.89 Setting C<max_poll_time> to a non-zero value creates an overhead of one
1991     syscall per request processed, which is not normally a problem unless your
1992     callbacks are really really fast or your OS is really really slow (I am
1993     not mentioning Solaris here). Using C<max_poll_reqs> incurs no overhead.
1994    
1995 root 1.86 Setting these is useful if you want to ensure some level of
1996     interactiveness when perl is not fast enough to process all requests in
1997     time.
1998 root 1.78
1999 root 1.86 For interactive programs, values such as C<0.01> to C<0.1> should be fine.
2000 root 1.78
2001     Example: Install an Event watcher that automatically calls
2002 root 1.89 IO::AIO::poll_cb with low priority, to ensure that other parts of the
2003 root 1.78 program get the CPU sometimes even under high AIO load.
2004    
2005 root 1.86 # try not to spend much more than 0.1s in poll_cb
2006     IO::AIO::max_poll_time 0.1;
2007    
2008     # use a low priority so other tasks have priority
2009 root 1.78 Event->io (fd => IO::AIO::poll_fileno,
2010     poll => 'r', nice => 1,
2011 root 1.86 cb => &IO::AIO::poll_cb);
2012 root 1.78
2013 root 1.104 =back
2014    
2015 root 1.294
2016 root 1.86 =head3 CONTROLLING THE NUMBER OF THREADS
2017 root 1.13
2018 root 1.105 =over
2019    
2020 root 1.5 =item IO::AIO::min_parallel $nthreads
2021    
2022 root 1.61 Set the minimum number of AIO threads to C<$nthreads>. The current
2023     default is C<8>, which means eight asynchronous operations can execute
2024     concurrently at any one time (the number of outstanding requests,
2025     however, is unlimited).
2026 root 1.5
2027 root 1.34 IO::AIO starts threads only on demand, when an AIO request is queued and
2028 root 1.86 no free thread exists. Please note that queueing up a hundred requests can
2029     create demand for a hundred threads, even if it turns out that everything
2030     is in the cache and could have been processed faster by a single thread.
2031 root 1.34
2032 root 1.61 It is recommended to keep the number of threads relatively low, as some
2033     Linux kernel versions will scale negatively with the number of threads
2034     (higher parallelity => MUCH higher latency). With current Linux 2.6
2035     versions, 4-32 threads should be fine.
2036 root 1.5
2037 root 1.34 Under most circumstances you don't need to call this function, as the
2038     module selects a default that is suitable for low to moderate load.
2039 root 1.5
2040     =item IO::AIO::max_parallel $nthreads
2041    
2042 root 1.34 Sets the maximum number of AIO threads to C<$nthreads>. If more than the
2043     specified number of threads are currently running, this function kills
2044     them. This function blocks until the limit is reached.
2045    
2046     While C<$nthreads> are zero, aio requests get queued but not executed
2047     until the number of threads has been increased again.
2048 root 1.5
2049     This module automatically runs C<max_parallel 0> at program end, to ensure
2050     that all threads are killed and that there are no outstanding requests.
2051    
2052     Under normal circumstances you don't need to call this function.
2053    
2054 root 1.86 =item IO::AIO::max_idle $nthreads
2055    
2056 root 1.188 Limit the number of threads (default: 4) that are allowed to idle
2057     (i.e., threads that did not get a request to process within the idle
2058     timeout (default: 10 seconds). That means if a thread becomes idle while
2059     C<$nthreads> other threads are also idle, it will free its resources and
2060     exit.
2061 root 1.86
2062     This is useful when you allow a large number of threads (e.g. 100 or 1000)
2063     to allow for extremely high load situations, but want to free resources
2064     under normal circumstances (1000 threads can easily consume 30MB of RAM).
2065    
2066     The default is probably ok in most situations, especially if thread
2067     creation is fast. If thread creation is very slow on your system you might
2068     want to use larger values.
2069    
2070 root 1.188 =item IO::AIO::idle_timeout $seconds
2071    
2072     Sets the minimum idle timeout (default 10) after which worker threads are
2073     allowed to exit. SEe C<IO::AIO::max_idle>.
2074    
2075 root 1.123 =item IO::AIO::max_outstanding $maxreqs
2076 root 1.5
2077 root 1.195 Sets the maximum number of outstanding requests to C<$nreqs>. If
2078     you do queue up more than this number of requests, the next call to
2079     C<IO::AIO::poll_cb> (and other functions calling C<poll_cb>, such as
2080     C<IO::AIO::flush> or C<IO::AIO::poll>) will block until the limit is no
2081     longer exceeded.
2082    
2083     In other words, this setting does not enforce a queue limit, but can be
2084     used to make poll functions block if the limit is exceeded.
2085    
2086 root 1.313 This is a bad function to use in interactive programs because it blocks,
2087     and a bad way to reduce concurrency because it is inexact. If you need to
2088     issue many requests without being able to call a poll function on demand,
2089     it is better to use an C<aio_group> together with a feed callback.
2090 root 1.79
2091 root 1.313 Its main use is in scripts without an event loop - when you want to stat a
2092     lot of files, you can write something like this:
2093 root 1.195
2094     IO::AIO::max_outstanding 32;
2095    
2096     for my $path (...) {
2097     aio_stat $path , ...;
2098     IO::AIO::poll_cb;
2099     }
2100    
2101     IO::AIO::flush;
2102    
2103 root 1.313 The call to C<poll_cb> inside the loop will normally return instantly,
2104     allowing the loop to progress, but as soon as more than C<32> requests
2105     are in-flight, it will block until some requests have been handled. This
2106     keeps the loop from pushing a large number of C<aio_stat> requests onto
2107     the queue (which, with many paths to stat, can use up a lot of memory).
2108 root 1.195
2109     The default value for C<max_outstanding> is very large, so there is no
2110     practical limit on the number of outstanding requests.
2111 root 1.5
2112 root 1.104 =back
2113    
2114 root 1.294
2115 root 1.86 =head3 STATISTICAL INFORMATION
2116    
2117 root 1.104 =over
2118    
2119 root 1.86 =item IO::AIO::nreqs
2120    
2121     Returns the number of requests currently in the ready, execute or pending
2122     states (i.e. for which their callback has not been invoked yet).
2123    
2124     Example: wait till there are no outstanding requests anymore:
2125    
2126     IO::AIO::poll_wait, IO::AIO::poll_cb
2127     while IO::AIO::nreqs;
2128    
2129     =item IO::AIO::nready
2130    
2131     Returns the number of requests currently in the ready state (not yet
2132     executed).
2133    
2134     =item IO::AIO::npending
2135    
2136     Returns the number of requests currently in the pending state (executed,
2137     but not yet processed by poll_cb).
2138    
2139 root 1.5 =back
2140    
2141 root 1.294
2142 root 1.289 =head3 SUBSECOND STAT TIME ACCESS
2143    
2144     Both C<aio_stat>/C<aio_lstat> and perl's C<stat>/C<lstat> functions can
2145     generally find access/modification and change times with subsecond time
2146     accuracy of the system supports it, but perl's built-in functions only
2147     return the integer part.
2148    
2149     The following functions return the timestamps of the most recent
2150     stat with subsecond precision on most systems and work both after
2151     C<aio_stat>/C<aio_lstat> and perl's C<stat>/C<lstat> calls. Their return
2152     value is only meaningful after a successful C<stat>/C<lstat> call, or
2153     during/after a successful C<aio_stat>/C<aio_lstat> callback.
2154    
2155     This is similar to the L<Time::HiRes> C<stat> functions, but can return
2156     full resolution without rounding and work with standard perl C<stat>,
2157     alleviating the need to call the special C<Time::HiRes> functions, which
2158     do not act like their perl counterparts.
2159    
2160     On operating systems or file systems where subsecond time resolution is
2161     not supported or could not be detected, a fractional part of C<0> is
2162     returned, so it is always safe to call these functions.
2163    
2164     =over 4
2165    
2166 root 1.294 =item $seconds = IO::AIO::st_atime, IO::AIO::st_mtime, IO::AIO::st_ctime, IO::AIO::st_btime
2167 root 1.289
2168 root 1.294 Return the access, modication, change or birth time, respectively,
2169     including fractional part. Due to the limited precision of floating point,
2170     the accuracy on most platforms is only a bit better than milliseconds
2171     for times around now - see the I<nsec> function family, below, for full
2172 root 1.289 accuracy.
2173    
2174 root 1.294 File birth time is only available when the OS and perl support it (on
2175     FreeBSD and NetBSD at the time of this writing, although support is
2176 root 1.301 adaptive, so if your OS/perl gains support, IO::AIO can take advantage of
2177 root 1.294 it). On systems where it isn't available, C<0> is currently returned, but
2178     this might change to C<undef> in a future version.
2179 root 1.289
2180 root 1.294 =item ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtime
2181 root 1.289
2182 root 1.294 Returns access, modification, change and birth time all in one go, and
2183     maybe more times in the future version.
2184 root 1.289
2185 root 1.294 =item $nanoseconds = IO::AIO::st_atimensec, IO::AIO::st_mtimensec, IO::AIO::st_ctimensec, IO::AIO::st_btimensec
2186    
2187     Return the fractional access, modifcation, change or birth time, in nanoseconds,
2188 root 1.289 as an integer in the range C<0> to C<999999999>.
2189    
2190 root 1.294 Note that no accessors are provided for access, modification and
2191     change times - you need to get those from C<stat _> if required (C<int
2192     IO::AIO::st_atime> and so on will I<not> generally give you the correct
2193     value).
2194    
2195     =item $seconds = IO::AIO::st_btimesec
2196    
2197     The (integral) seconds part of the file birth time, if available.
2198    
2199     =item ($atime, $mtime, $ctime, $btime, ...) = IO::AIO::st_xtimensec
2200 root 1.290
2201 root 1.294 Like the functions above, but returns all four times in one go (and maybe
2202 root 1.290 more in future versions).
2203    
2204 root 1.294 =item $counter = IO::AIO::st_gen
2205    
2206 root 1.296 Returns the generation counter (in practice this is just a random number)
2207     of the file. This is only available on platforms which have this member in
2208     their C<struct stat> (most BSDs at the time of this writing) and generally
2209     only to the root usert. If unsupported, C<0> is returned, but this might
2210     change to C<undef> in a future version.
2211 root 1.294
2212 root 1.289 =back
2213    
2214     Example: print the high resolution modification time of F</etc>, using
2215     C<stat>, and C<IO::AIO::aio_stat>.
2216    
2217     if (stat "/etc") {
2218 root 1.290 printf "stat(/etc) mtime: %f\n", IO::AIO::st_mtime;
2219 root 1.289 }
2220    
2221     IO::AIO::aio_stat "/etc", sub {
2222     $_[0]
2223     and return;
2224    
2225 root 1.290 printf "aio_stat(/etc) mtime: %d.%09d\n", (stat _)[9], IO::AIO::st_mtimensec;
2226 root 1.289 };
2227    
2228     IO::AIO::flush;
2229    
2230     Output of the awbove on my system, showing reduced and full accuracy:
2231    
2232     stat(/etc) mtime: 1534043702.020808
2233     aio_stat(/etc) mtime: 1534043702.020807792
2234    
2235 root 1.294
2236 root 1.157 =head3 MISCELLANEOUS FUNCTIONS
2237    
2238 root 1.248 IO::AIO implements some functions that are useful when you want to use
2239     some "Advanced I/O" function not available to in Perl, without going the
2240     "Asynchronous I/O" route. Many of these have an asynchronous C<aio_*>
2241     counterpart.
2242 root 1.157
2243     =over 4
2244    
2245 root 1.315 =item $retval = IO::AIO::fexecve $fh, $argv, $envp
2246    
2247     A more-or-less direct equivalent to the POSIX C<fexecve> functions, which
2248     allows you to specify the program to be executed via a file descriptor (or
2249     handle). Returns C<-1> and sets errno to C<ENOSYS> if not available.
2250    
2251 root 1.316 =item $retval = IO::AIO::mount $special, $path, $fstype, $flags = 0, $data = undef
2252    
2253     Calls the GNU/Linux mount syscall with the given arguments. All except
2254     C<$flags> are strings, and if C<$data> is C<undef>, a C<NULL> will be
2255     passed.
2256    
2257     The following values for C<$flags> are available:
2258    
2259     C<IO::AIO::MS_RDONLY>, C<IO::AIO::MS_NOSUID>, C<IO::AIO::MS_NODEV>, C<IO::AIO::MS_NOEXEC>, C<IO::AIO::MS_SYNCHRONOUS>,
2260     C<IO::AIO::MS_REMOUNT>, C<IO::AIO::MS_MANDLOCK>, C<IO::AIO::MS_DIRSYNC>, C<IO::AIO::MS_NOATIME>,
2261     C<IO::AIO::MS_NODIRATIME>, C<IO::AIO::MS_BIND>, C<IO::AIO::MS_MOVE>, C<IO::AIO::MS_REC>, C<IO::AIO::MS_SILENT>,
2262     C<IO::AIO::MS_POSIXACL>, C<IO::AIO::MS_UNBINDABLE>, C<IO::AIO::MS_PRIVATE>, C<IO::AIO::MS_SLAVE>, C<IO::AIO::MS_SHARED>,
2263     C<IO::AIO::MS_RELATIME>, C<IO::AIO::MS_KERNMOUNT>, C<IO::AIO::MS_I_VERSION>, C<IO::AIO::MS_STRICTATIME>,
2264     C<IO::AIO::MS_LAZYTIME>, C<IO::AIO::MS_ACTIVE>, C<IO::AIO::MS_NOUSER>, C<IO::AIO::MS_RMT_MASK>, C<IO::AIO::MS_MGC_VAL> and
2265     C<IO::AIO::MS_MGC_MSK>.
2266    
2267     =item $retval = IO::AIO::umount $path, $flags = 0
2268    
2269     Invokes the GNU/Linux C<umount> or C<umount2> syscalls. Always calls
2270     C<umount> if C<$flags> is C<0>, otherwqise always tries to call
2271     C<umount2>.
2272    
2273     The following C<$flags> are available:
2274    
2275     C<IO::AIO::MNT_FORCE>, C<IO::AIO::MNT_DETACH>, C<IO::AIO::MNT_EXPIRE> and C<IO::AIO::UMOUNT_NOFOLLOW>.
2276    
2277 root 1.275 =item $numfd = IO::AIO::get_fdlimit
2278    
2279     Tries to find the current file descriptor limit and returns it, or
2280     C<undef> and sets C<$!> in case of an error. The limit is one larger than
2281     the highest valid file descriptor number.
2282    
2283     =item IO::AIO::min_fdlimit [$numfd]
2284    
2285     Try to increase the current file descriptor limit(s) to at least C<$numfd>
2286     by changing the soft or hard file descriptor resource limit. If C<$numfd>
2287     is missing, it will try to set a very high limit, although this is not
2288     recommended when you know the actual minimum that you require.
2289    
2290     If the limit cannot be raised enough, the function makes a best-effort
2291     attempt to increase the limit as much as possible, using various
2292     tricks, while still failing. You can query the resulting limit using
2293     C<IO::AIO::get_fdlimit>.
2294    
2295 root 1.276 If an error occurs, returns C<undef> and sets C<$!>, otherwise returns
2296     true.
2297 root 1.275
2298 root 1.157 =item IO::AIO::sendfile $ofh, $ifh, $offset, $count
2299    
2300     Calls the C<eio_sendfile_sync> function, which is like C<aio_sendfile>,
2301     but is blocking (this makes most sense if you know the input data is
2302     likely cached already and the output filehandle is set to non-blocking
2303     operations).
2304    
2305     Returns the number of bytes copied, or C<-1> on error.
2306    
2307     =item IO::AIO::fadvise $fh, $offset, $len, $advice
2308    
2309 root 1.184 Simply calls the C<posix_fadvise> function (see its
2310 root 1.157 manpage for details). The following advice constants are
2311 root 1.207 available: C<IO::AIO::FADV_NORMAL>, C<IO::AIO::FADV_SEQUENTIAL>,
2312 root 1.157 C<IO::AIO::FADV_RANDOM>, C<IO::AIO::FADV_NOREUSE>,
2313     C<IO::AIO::FADV_WILLNEED>, C<IO::AIO::FADV_DONTNEED>.
2314    
2315     On systems that do not implement C<posix_fadvise>, this function returns
2316     ENOSYS, otherwise the return value of C<posix_fadvise>.
2317    
2318 root 1.184 =item IO::AIO::madvise $scalar, $offset, $len, $advice
2319    
2320     Simply calls the C<posix_madvise> function (see its
2321     manpage for details). The following advice constants are
2322 root 1.207 available: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
2323 root 1.272 C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>,
2324     C<IO::AIO::MADV_DONTNEED>.
2325 root 1.184
2326 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2327     the remaining length of the C<$scalar> is used. If possible, C<$length>
2328     will be reduced to fit into the C<$scalar>.
2329    
2330 root 1.184 On systems that do not implement C<posix_madvise>, this function returns
2331     ENOSYS, otherwise the return value of C<posix_madvise>.
2332    
2333     =item IO::AIO::mprotect $scalar, $offset, $len, $protect
2334    
2335     Simply calls the C<mprotect> function on the preferably AIO::mmap'ed
2336     $scalar (see its manpage for details). The following protect
2337 root 1.207 constants are available: C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_READ>,
2338 root 1.184 C<IO::AIO::PROT_WRITE>, C<IO::AIO::PROT_EXEC>.
2339    
2340 root 1.269 If C<$offset> is negative, counts from the end. If C<$length> is negative,
2341     the remaining length of the C<$scalar> is used. If possible, C<$length>
2342     will be reduced to fit into the C<$scalar>.
2343    
2344 root 1.184 On systems that do not implement C<mprotect>, this function returns
2345     ENOSYS, otherwise the return value of C<mprotect>.
2346    
2347 root 1.176 =item IO::AIO::mmap $scalar, $length, $prot, $flags, $fh[, $offset]
2348    
2349     Memory-maps a file (or anonymous memory range) and attaches it to the
2350 root 1.228 given C<$scalar>, which will act like a string scalar. Returns true on
2351     success, and false otherwise.
2352 root 1.176
2353 root 1.268 The scalar must exist, but its contents do not matter - this means you
2354     cannot use a nonexistant array or hash element. When in doubt, C<undef>
2355     the scalar first.
2356    
2357     The only operations allowed on the mmapped scalar are C<substr>/C<vec>,
2358     which don't change the string length, and most read-only operations such
2359     as copying it or searching it with regexes and so on.
2360 root 1.176
2361     Anything else is unsafe and will, at best, result in memory leaks.
2362    
2363     The memory map associated with the C<$scalar> is automatically removed
2364 root 1.268 when the C<$scalar> is undef'd or destroyed, or when the C<IO::AIO::mmap>
2365     or C<IO::AIO::munmap> functions are called on it.
2366 root 1.176
2367     This calls the C<mmap>(2) function internally. See your system's manual
2368     page for details on the C<$length>, C<$prot> and C<$flags> parameters.
2369    
2370     The C<$length> must be larger than zero and smaller than the actual
2371     filesize.
2372    
2373     C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
2374     C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
2375    
2376 root 1.256 C<$flags> can be a combination of
2377     C<IO::AIO::MAP_SHARED> or
2378     C<IO::AIO::MAP_PRIVATE>,
2379     or a number of system-specific flags (when not available, the are C<0>):
2380     C<IO::AIO::MAP_ANONYMOUS> (which is set to C<MAP_ANON> if your system only provides this constant),
2381     C<IO::AIO::MAP_LOCKED>,
2382     C<IO::AIO::MAP_NORESERVE>,
2383     C<IO::AIO::MAP_POPULATE>,
2384     C<IO::AIO::MAP_NONBLOCK>,
2385     C<IO::AIO::MAP_FIXED>,
2386     C<IO::AIO::MAP_GROWSDOWN>,
2387     C<IO::AIO::MAP_32BIT>,
2388 root 1.311 C<IO::AIO::MAP_HUGETLB>,
2389     C<IO::AIO::MAP_STACK>,
2390     C<IO::AIO::MAP_FIXED_NOREPLACE>,
2391     C<IO::AIO::MAP_SHARED_VALIDATE>,
2392     C<IO::AIO::MAP_SYNC> or
2393     C<IO::AIO::MAP_UNINITIALIZED>.
2394 root 1.176
2395     If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
2396    
2397 root 1.179 C<$offset> is the offset from the start of the file - it generally must be
2398     a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
2399    
2400 root 1.177 Example:
2401    
2402     use Digest::MD5;
2403     use IO::AIO;
2404    
2405     open my $fh, "<verybigfile"
2406     or die "$!";
2407    
2408     IO::AIO::mmap my $data, -s $fh, IO::AIO::PROT_READ, IO::AIO::MAP_SHARED, $fh
2409     or die "verybigfile: $!";
2410    
2411     my $fast_md5 = md5 $data;
2412    
2413 root 1.176 =item IO::AIO::munmap $scalar
2414    
2415     Removes a previous mmap and undefines the C<$scalar>.
2416    
2417 root 1.287 =item IO::AIO::mremap $scalar, $new_length, $flags = MREMAP_MAYMOVE[, $new_address = 0]
2418 root 1.285
2419     Calls the Linux-specific mremap(2) system call. The C<$scalar> must have
2420     been mapped by C<IO::AIO::mmap>, and C<$flags> must currently either be
2421     C<0> or C<IO::AIO::MREMAP_MAYMOVE>.
2422    
2423     Returns true if successful, and false otherwise. If the underlying mmapped
2424     region has changed address, then the true value has the numerical value
2425     C<1>, otherwise it has the numerical value C<0>:
2426    
2427     my $success = IO::AIO::mremap $mmapped, 8192, IO::AIO::MREMAP_MAYMOVE
2428     or die "mremap: $!";
2429    
2430     if ($success*1) {
2431     warn "scalar has chanegd address in memory\n";
2432     }
2433    
2434     C<IO::AIO::MREMAP_FIXED> and the C<$new_address> argument are currently
2435     implemented, but not supported and might go away in a future version.
2436    
2437     On systems where this call is not supported or is not emulated, this call
2438     returns falls and sets C<$!> to C<ENOSYS>.
2439    
2440 root 1.298 =item IO::AIO::mlockall $flags
2441    
2442     Calls the C<eio_mlockall_sync> function, which is like C<aio_mlockall>,
2443     but is blocking.
2444    
2445 root 1.182 =item IO::AIO::munlock $scalar, $offset = 0, $length = undef
2446 root 1.174
2447 root 1.182 Calls the C<munlock> function, undoing the effects of a previous
2448     C<aio_mlock> call (see its description for details).
2449 root 1.174
2450     =item IO::AIO::munlockall
2451    
2452     Calls the C<munlockall> function.
2453    
2454     On systems that do not implement C<munlockall>, this function returns
2455     ENOSYS, otherwise the return value of C<munlockall>.
2456    
2457 root 1.305 =item $fh = IO::AIO::accept4 $r_fh, $sockaddr, $sockaddr_maxlen, $flags
2458    
2459     Uses the GNU/Linux C<accept4(2)> syscall, if available, to accept a socket
2460     and return the new file handle on success, or sets C<$!> and returns
2461     C<undef> on error.
2462    
2463     The remote name of the new socket will be stored in C<$sockaddr>, which
2464     will be extended to allow for at least C<$sockaddr_maxlen> octets. If the
2465     socket name does not fit into C<$sockaddr_maxlen> octets, this is signaled
2466     by returning a longer string in C<$sockaddr>, which might or might not be
2467     truncated.
2468    
2469     To accept name-less sockets, use C<undef> for C<$sockaddr> and C<0> for
2470     C<$sockaddr_maxlen>.
2471    
2472 root 1.308 The main reasons to use this syscall rather than portable C<accept(2)>
2473 root 1.305 are that you can specify C<SOCK_NONBLOCK> and/or C<SOCK_CLOEXEC>
2474     flags and you can accept name-less sockets by specifying C<0> for
2475     C<$sockaddr_maxlen>, which is sadly not possible with perl's interface to
2476     C<accept>.
2477    
2478 root 1.225 =item IO::AIO::splice $r_fh, $r_off, $w_fh, $w_off, $length, $flags
2479    
2480     Calls the GNU/Linux C<splice(2)> syscall, if available. If C<$r_off> or
2481     C<$w_off> are C<undef>, then C<NULL> is passed for these, otherwise they
2482     should be the file offset.
2483    
2484 root 1.227 C<$r_fh> and C<$w_fh> should not refer to the same file, as splice might
2485     silently corrupt the data in this case.
2486    
2487 root 1.225 The following symbol flag values are available: C<IO::AIO::SPLICE_F_MOVE>,
2488     C<IO::AIO::SPLICE_F_NONBLOCK>, C<IO::AIO::SPLICE_F_MORE> and
2489     C<IO::AIO::SPLICE_F_GIFT>.
2490    
2491     See the C<splice(2)> manpage for details.
2492    
2493     =item IO::AIO::tee $r_fh, $w_fh, $length, $flags
2494    
2495 root 1.248 Calls the GNU/Linux C<tee(2)> syscall, see its manpage and the
2496 root 1.225 description for C<IO::AIO::splice> above for details.
2497    
2498 root 1.243 =item $actual_size = IO::AIO::pipesize $r_fh[, $new_size]
2499    
2500     Attempts to query or change the pipe buffer size. Obviously works only
2501     on pipes, and currently works only on GNU/Linux systems, and fails with
2502     C<-1>/C<ENOSYS> everywhere else. If anybody knows how to influence pipe buffer
2503     size on other systems, drop me a note.
2504    
2505 root 1.253 =item ($rfh, $wfh) = IO::AIO::pipe2 [$flags]
2506    
2507     This is a direct interface to the Linux L<pipe2(2)> system call. If
2508     C<$flags> is missing or C<0>, then this should be the same as a call to
2509 root 1.254 perl's built-in C<pipe> function and create a new pipe, and works on
2510     systems that lack the pipe2 syscall. On win32, this case invokes C<_pipe
2511     (..., 4096, O_BINARY)>.
2512 root 1.253
2513     If C<$flags> is non-zero, it tries to invoke the pipe2 system call with
2514     the given flags (Linux 2.6.27, glibc 2.9).
2515    
2516     On success, the read and write file handles are returned.
2517    
2518     On error, nothing will be returned. If the pipe2 syscall is missing and
2519     C<$flags> is non-zero, fails with C<ENOSYS>.
2520    
2521     Please refer to L<pipe2(2)> for more info on the C<$flags>, but at the
2522     time of this writing, C<IO::AIO::O_CLOEXEC>, C<IO::AIO::O_NONBLOCK> and
2523     C<IO::AIO::O_DIRECT> (Linux 3.4, for packet-based pipes) were supported.
2524    
2525 root 1.281 Example: create a pipe race-free w.r.t. threads and fork:
2526    
2527     my ($rfh, $wfh) = IO::AIO::pipe2 IO::AIO::O_CLOEXEC
2528     or die "pipe2: $!\n";
2529    
2530 root 1.302 =item $fh = IO::AIO::memfd_create $pathname[, $flags]
2531    
2532     This is a direct interface to the Linux L<memfd_create(2)> system
2533     call. The (unhelpful) default for C<$flags> is C<0>, but your default
2534     should be C<IO::AIO::MFD_CLOEXEC>.
2535    
2536     On success, the new memfd filehandle is returned, otherwise returns
2537     C<undef>. If the memfd_create syscall is missing, fails with C<ENOSYS>.
2538    
2539     Please refer to L<memfd_create(2)> for more info on this call.
2540    
2541     The following C<$flags> values are available: C<IO::AIO::MFD_CLOEXEC>,
2542 root 1.314 C<IO::AIO::MFD_ALLOW_SEALING>, C<IO::AIO::MFD_HUGETLB>,
2543     C<IO::AIO::MFD_HUGETLB_2MB> and C<IO::AIO::MFD_HUGETLB_1GB>.
2544 root 1.302
2545     Example: create a new memfd.
2546    
2547     my $fh = IO::AIO::memfd_create "somenameforprocfd", IO::AIO::MFD_CLOEXEC
2548 root 1.308 or die "memfd_create: $!\n";
2549    
2550     =item $fh = IO::AIO::pidfd_open $pid[, $flags]
2551    
2552     This is an interface to the Linux L<pidfd_open(2)> system call. The
2553     default for C<$flags> is C<0>.
2554    
2555     On success, a new pidfd filehandle is returned (that is already set to
2556     close-on-exec), otherwise returns C<undef>. If the syscall is missing,
2557     fails with C<ENOSYS>.
2558    
2559     Example: open pid 6341 as pidfd.
2560    
2561     my $fh = IO::AIO::pidfd_open 6341
2562     or die "pidfd_open: $!\n";
2563    
2564     =item $status = IO::AIO::pidfd_send_signal $pidfh, $signal[, $siginfo[, $flags]]
2565    
2566     This is an interface to the Linux L<pidfd_send_signal> system call. The
2567     default for C<$siginfo> is C<undef> and the default for C<$flags> is C<0>.
2568    
2569     Returns the system call status. If the syscall is missing, fails with
2570     C<ENOSYS>.
2571    
2572     When specified, C<$siginfo> must be a reference to a hash with one or more
2573     of the following members:
2574    
2575     =over
2576    
2577     =item code - the C<si_code> member
2578    
2579     =item pid - the C<si_pid> member
2580    
2581     =item uid - the C<si_uid> member
2582    
2583     =item value_int - the C<si_value.sival_int> member
2584    
2585     =item value_ptr - the C<si_value.sival_ptr> member, specified as an integer
2586    
2587     =back
2588    
2589     Example: send a SIGKILL to the specified process.
2590    
2591     my $status = IO::AIO::pidfd_send_signal $pidfh, 9, undef
2592     and die "pidfd_send_signal: $!\n";
2593    
2594     Example: send a SIGKILL to the specified process with extra data.
2595    
2596     my $status = IO::AIO::pidfd_send_signal $pidfh, 9, { code => -1, value_int => 7 }
2597     and die "pidfd_send_signal: $!\n";
2598    
2599     =item $fh = IO::AIO::pidfd_getfd $pidfh, $targetfd[, $flags]
2600    
2601     This is an interface to the Linux L<pidfd_getfd> system call. The default
2602     for C<$flags> is C<0>.
2603    
2604     On success, returns a dup'ed copy of the target file descriptor (specified
2605     as an integer) returned (that is already set to close-on-exec), otherwise
2606     returns C<undef>. If the syscall is missing, fails with C<ENOSYS>.
2607    
2608     Example: get a copy of standard error of another process and print soemthing to it.
2609    
2610     my $errfh = IO::AIO::pidfd_getfd $pidfh, 2
2611     or die "pidfd_getfd: $!\n";
2612     print $errfh "stderr\n";
2613    
2614 root 1.282 =item $fh = IO::AIO::eventfd [$initval, [$flags]]
2615 root 1.281
2616     This is a direct interface to the Linux L<eventfd(2)> system call. The
2617     (unhelpful) defaults for C<$initval> and C<$flags> are C<0> for both.
2618    
2619     On success, the new eventfd filehandle is returned, otherwise returns
2620     C<undef>. If the eventfd syscall is missing, fails with C<ENOSYS>.
2621    
2622     Please refer to L<eventfd(2)> for more info on this call.
2623    
2624     The following symbol flag values are available: C<IO::AIO::EFD_CLOEXEC>,
2625     C<IO::AIO::EFD_NONBLOCK> and C<IO::AIO::EFD_SEMAPHORE> (Linux 2.6.30).
2626    
2627 root 1.282 Example: create a new eventfd filehandle:
2628    
2629 root 1.302 $fh = IO::AIO::eventfd 0, IO::AIO::EFD_CLOEXEC
2630 root 1.282 or die "eventfd: $!\n";
2631    
2632     =item $fh = IO::AIO::timerfd_create $clockid[, $flags]
2633    
2634 root 1.302 This is a direct interface to the Linux L<timerfd_create(2)> system
2635     call. The (unhelpful) default for C<$flags> is C<0>, but your default
2636     should be C<IO::AIO::TFD_CLOEXEC>.
2637 root 1.282
2638     On success, the new timerfd filehandle is returned, otherwise returns
2639 root 1.302 C<undef>. If the timerfd_create syscall is missing, fails with C<ENOSYS>.
2640 root 1.282
2641     Please refer to L<timerfd_create(2)> for more info on this call.
2642    
2643     The following C<$clockid> values are
2644     available: C<IO::AIO::CLOCK_REALTIME>, C<IO::AIO::CLOCK_MONOTONIC>
2645     C<IO::AIO::CLOCK_CLOCK_BOOTTIME> (Linux 3.15)
2646     C<IO::AIO::CLOCK_CLOCK_REALTIME_ALARM> (Linux 3.11) and
2647     C<IO::AIO::CLOCK_CLOCK_BOOTTIME_ALARM> (Linux 3.11).
2648    
2649     The following C<$flags> values are available (Linux
2650     2.6.27): C<IO::AIO::TFD_NONBLOCK> and C<IO::AIO::TFD_CLOEXEC>.
2651    
2652     Example: create a new timerfd and set it to one-second repeated alarms,
2653     then wait for two alarms:
2654    
2655     my $fh = IO::AIO::timerfd_create IO::AIO::CLOCK_BOOTTIME, IO::AIO::TFD_CLOEXEC
2656     or die "timerfd_create: $!\n";
2657    
2658     defined IO::AIO::timerfd_settime $fh, 0, 1, 1
2659     or die "timerfd_settime: $!\n";
2660    
2661     for (1..2) {
2662     8 == sysread $fh, my $buf, 8
2663     or die "timerfd read failure\n";
2664    
2665     printf "number of expirations (likely 1): %d\n",
2666     unpack "Q", $buf;
2667     }
2668    
2669     =item ($cur_interval, $cur_value) = IO::AIO::timerfd_settime $fh, $flags, $new_interval, $nbw_value
2670    
2671     This is a direct interface to the Linux L<timerfd_settime(2)> system
2672     call. Please refer to its manpage for more info on this call.
2673    
2674     The new itimerspec is specified using two (possibly fractional) second
2675     values, C<$new_interval> and C<$new_value>).
2676    
2677     On success, the current interval and value are returned (as per
2678     C<timerfd_gettime>). On failure, the empty list is returned.
2679    
2680     The following C<$flags> values are
2681     available: C<IO::AIO::TFD_TIMER_ABSTIME> and
2682     C<IO::AIO::TFD_TIMER_CANCEL_ON_SET>.
2683    
2684     See C<IO::AIO::timerfd_create> for a full example.
2685    
2686     =item ($cur_interval, $cur_value) = IO::AIO::timerfd_gettime $fh
2687    
2688     This is a direct interface to the Linux L<timerfd_gettime(2)> system
2689     call. Please refer to its manpage for more info on this call.
2690    
2691     On success, returns the current values of interval and value for the given
2692     timerfd (as potentially fractional second values). On failure, the empty
2693     list is returned.
2694    
2695 root 1.157 =back
2696    
2697 root 1.1 =cut
2698    
2699 root 1.61 min_parallel 8;
2700 root 1.1
2701 root 1.95 END { flush }
2702 root 1.82
2703 root 1.1 1;
2704    
2705 root 1.175 =head1 EVENT LOOP INTEGRATION
2706    
2707     It is recommended to use L<AnyEvent::AIO> to integrate IO::AIO
2708     automatically into many event loops:
2709    
2710     # AnyEvent integration (EV, Event, Glib, Tk, POE, urxvt, pureperl...)
2711     use AnyEvent::AIO;
2712    
2713     You can also integrate IO::AIO manually into many event loops, here are
2714     some examples of how to do this:
2715    
2716     # EV integration
2717     my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
2718    
2719     # Event integration
2720     Event->io (fd => IO::AIO::poll_fileno,
2721     poll => 'r',
2722     cb => \&IO::AIO::poll_cb);
2723    
2724     # Glib/Gtk2 integration
2725     add_watch Glib::IO IO::AIO::poll_fileno,
2726     in => sub { IO::AIO::poll_cb; 1 };
2727    
2728     # Tk integration
2729     Tk::Event::IO->fileevent (IO::AIO::poll_fileno, "",
2730     readable => \&IO::AIO::poll_cb);
2731    
2732     # Danga::Socket integration
2733     Danga::Socket->AddOtherFds (IO::AIO::poll_fileno =>
2734     \&IO::AIO::poll_cb);
2735    
2736 root 1.27 =head2 FORK BEHAVIOUR
2737    
2738 root 1.197 Usage of pthreads in a program changes the semantics of fork
2739     considerably. Specifically, only async-safe functions can be called after
2740     fork. Perl doesn't know about this, so in general, you cannot call fork
2741 root 1.204 with defined behaviour in perl if pthreads are involved. IO::AIO uses
2742     pthreads, so this applies, but many other extensions and (for inexplicable
2743     reasons) perl itself often is linked against pthreads, so this limitation
2744     applies to quite a lot of perls.
2745    
2746     This module no longer tries to fight your OS, or POSIX. That means IO::AIO
2747     only works in the process that loaded it. Forking is fully supported, but
2748     using IO::AIO in the child is not.
2749    
2750     You might get around by not I<using> IO::AIO before (or after)
2751     forking. You could also try to call the L<IO::AIO::reinit> function in the
2752     child:
2753    
2754     =over 4
2755    
2756     =item IO::AIO::reinit
2757    
2758 root 1.207 Abandons all current requests and I/O threads and simply reinitialises all
2759     data structures. This is not an operation supported by any standards, but
2760 root 1.204 happens to work on GNU/Linux and some newer BSD systems.
2761    
2762     The only reasonable use for this function is to call it after forking, if
2763     C<IO::AIO> was used in the parent. Calling it while IO::AIO is active in
2764     the process will result in undefined behaviour. Calling it at any time
2765     will also result in any undefined (by POSIX) behaviour.
2766    
2767     =back
2768 root 1.52
2769 root 1.282 =head2 LINUX-SPECIFIC CALLS
2770    
2771     When a call is documented as "linux-specific" then this means it
2772     originated on GNU/Linux. C<IO::AIO> will usually try to autodetect the
2773     availability and compatibility of such calls regardless of the platform
2774     it is compiled on, so platforms such as FreeBSD which often implement
2775     these calls will work. When in doubt, call them and see if they fail wth
2776     C<ENOSYS>.
2777    
2778 root 1.60 =head2 MEMORY USAGE
2779    
2780 root 1.72 Per-request usage:
2781    
2782     Each aio request uses - depending on your architecture - around 100-200
2783     bytes of memory. In addition, stat requests need a stat buffer (possibly
2784     a few hundred bytes), readdir requires a result buffer and so on. Perl
2785     scalars and other data passed into aio requests will also be locked and
2786     will consume memory till the request has entered the done state.
2787 root 1.60
2788 root 1.111 This is not awfully much, so queuing lots of requests is not usually a
2789 root 1.60 problem.
2790    
2791 root 1.72 Per-thread usage:
2792    
2793     In the execution phase, some aio requests require more memory for
2794     temporary buffers, and each thread requires a stack and other data
2795     structures (usually around 16k-128k, depending on the OS).
2796    
2797     =head1 KNOWN BUGS
2798    
2799 root 1.283 Known bugs will be fixed in the next release :)
2800    
2801     =head1 KNOWN ISSUES
2802    
2803     Calls that try to "import" foreign memory areas (such as C<IO::AIO::mmap>
2804     or C<IO::AIO::aio_slurp>) do not work with generic lvalues, such as
2805     non-created hash slots or other scalars I didn't think of. It's best to
2806     avoid such and either use scalar variables or making sure that the scalar
2807     exists (e.g. by storing C<undef>) and isn't "funny" (e.g. tied).
2808    
2809     I am not sure anything can be done about this, so this is considered a
2810     known issue, rather than a bug.
2811 root 1.60
2812 root 1.1 =head1 SEE ALSO
2813    
2814 root 1.125 L<AnyEvent::AIO> for easy integration into event loops, L<Coro::AIO> for a
2815 root 1.304 more natural syntax and L<IO::FDPass> for file descriptor passing.
2816 root 1.1
2817     =head1 AUTHOR
2818    
2819     Marc Lehmann <schmorp@schmorp.de>
2820     http://home.schmorp.de/
2821    
2822     =cut
2823