ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/IO-AIO/AIO.pm
(Generate patch)

Comparing IO-AIO/AIO.pm (file contents):
Revision 1.235 by root, Wed Aug 22 22:28:03 2012 UTC vs.
Revision 1.267 by root, Tue Aug 9 11:39:17 2016 UTC

1=head1 NAME 1=head1 NAME
2 2
3IO::AIO - Asynchronous Input/Output 3IO::AIO - Asynchronous/Advanced Input/Output
4 4
5=head1 SYNOPSIS 5=head1 SYNOPSIS
6 6
7 use IO::AIO; 7 use IO::AIO;
8 8
58not well-supported or restricted (GNU/Linux doesn't allow them on normal 58not well-supported or restricted (GNU/Linux doesn't allow them on normal
59files currently, for example), and they would only support aio_read and 59files currently, for example), and they would only support aio_read and
60aio_write, so the remaining functionality would have to be implemented 60aio_write, so the remaining functionality would have to be implemented
61using threads anyway. 61using threads anyway.
62 62
63In addition to asynchronous I/O, this module also exports some rather
64arcane interfaces, such as C<madvise> or linux's C<splice> system call,
65which is why the C<A> in C<AIO> can also mean I<advanced>.
66
63Although the module will work in the presence of other (Perl-) threads, 67Although the module will work in the presence of other (Perl-) threads,
64it is currently not reentrant in any way, so use appropriate locking 68it is currently not reentrant in any way, so use appropriate locking
65yourself, always call C<poll_cb> from within the same thread, or never 69yourself, always call C<poll_cb> from within the same thread, or never
66call C<poll_cb> (or other C<aio_> functions) recursively. 70call C<poll_cb> (or other C<aio_> functions) recursively.
67 71
68=head2 EXAMPLE 72=head2 EXAMPLE
69 73
70This is a simple example that uses the EV module and loads 74This is a simple example that uses the EV module and loads
71F</etc/passwd> asynchronously: 75F</etc/passwd> asynchronously:
72 76
73 use Fcntl;
74 use EV; 77 use EV;
75 use IO::AIO; 78 use IO::AIO;
76 79
77 # register the IO::AIO callback with EV 80 # register the IO::AIO callback with EV
78 my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb; 81 my $aio_w = EV::io IO::AIO::poll_fileno, EV::READ, \&IO::AIO::poll_cb;
95 98
96 # file contents now in $contents 99 # file contents now in $contents
97 print $contents; 100 print $contents;
98 101
99 # exit event loop and program 102 # exit event loop and program
100 EV::unloop; 103 EV::break;
101 }; 104 };
102 }; 105 };
103 106
104 # possibly queue up other requests, or open GUI windows, 107 # possibly queue up other requests, or open GUI windows,
105 # check for sockets etc. etc. 108 # check for sockets etc. etc.
106 109
107 # process events as long as there are some: 110 # process events as long as there are some:
108 EV::loop; 111 EV::run;
109 112
110=head1 REQUEST ANATOMY AND LIFETIME 113=head1 REQUEST ANATOMY AND LIFETIME
111 114
112Every C<aio_*> function creates a request. which is a C data structure not 115Every C<aio_*> function creates a request. which is a C data structure not
113directly visible to Perl. 116directly visible to Perl.
168use common::sense; 171use common::sense;
169 172
170use base 'Exporter'; 173use base 'Exporter';
171 174
172BEGIN { 175BEGIN {
173 our $VERSION = '4.16'; 176 our $VERSION = 4.34;
174 177
175 our @AIO_REQ = qw(aio_sendfile aio_seek aio_read aio_write aio_open aio_close 178 our @AIO_REQ = qw(aio_sendfile aio_seek aio_read aio_write aio_open aio_close
176 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx 179 aio_stat aio_lstat aio_unlink aio_rmdir aio_readdir aio_readdirx
177 aio_scandir aio_symlink aio_readlink aio_realpath aio_sync 180 aio_scandir aio_symlink aio_readlink aio_realpath aio_fcntl aio_ioctl
178 aio_fsync aio_syncfs aio_fdatasync aio_sync_file_range aio_fallocate 181 aio_sync aio_fsync aio_syncfs aio_fdatasync aio_sync_file_range
179 aio_pathsync aio_readahead aio_fiemap 182 aio_pathsync aio_readahead aio_fiemap aio_allocate
180 aio_rename aio_link aio_move aio_copy aio_group 183 aio_rename aio_link aio_move aio_copy aio_group
181 aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown 184 aio_nop aio_mknod aio_load aio_rmtree aio_mkdir aio_chown
182 aio_chmod aio_utime aio_truncate 185 aio_chmod aio_utime aio_truncate
183 aio_msync aio_mtouch aio_mlock aio_mlockall 186 aio_msync aio_mtouch aio_mlock aio_mlockall
184 aio_statvfs 187 aio_statvfs
228 aio_unlink $pathname, $callback->($status) 231 aio_unlink $pathname, $callback->($status)
229 aio_mknod $pathname, $mode, $dev, $callback->($status) 232 aio_mknod $pathname, $mode, $dev, $callback->($status)
230 aio_link $srcpath, $dstpath, $callback->($status) 233 aio_link $srcpath, $dstpath, $callback->($status)
231 aio_symlink $srcpath, $dstpath, $callback->($status) 234 aio_symlink $srcpath, $dstpath, $callback->($status)
232 aio_readlink $pathname, $callback->($link) 235 aio_readlink $pathname, $callback->($link)
233 aio_realpath $pathname, $callback->($link) 236 aio_realpath $pathname, $callback->($path)
234 aio_rename $srcpath, $dstpath, $callback->($status) 237 aio_rename $srcpath, $dstpath, $callback->($status)
235 aio_mkdir $pathname, $mode, $callback->($status) 238 aio_mkdir $pathname, $mode, $callback->($status)
236 aio_rmdir $pathname, $callback->($status) 239 aio_rmdir $pathname, $callback->($status)
237 aio_readdir $pathname, $callback->($entries) 240 aio_readdir $pathname, $callback->($entries)
238 aio_readdirx $pathname, $flags, $callback->($entries, $flags) 241 aio_readdirx $pathname, $flags, $callback->($entries, $flags)
241 aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs) 244 aio_scandir $pathname, $maxreq, $callback->($dirs, $nondirs)
242 aio_load $pathname, $data, $callback->($status) 245 aio_load $pathname, $data, $callback->($status)
243 aio_copy $srcpath, $dstpath, $callback->($status) 246 aio_copy $srcpath, $dstpath, $callback->($status)
244 aio_move $srcpath, $dstpath, $callback->($status) 247 aio_move $srcpath, $dstpath, $callback->($status)
245 aio_rmtree $pathname, $callback->($status) 248 aio_rmtree $pathname, $callback->($status)
249 aio_fcntl $fh, $cmd, $arg, $callback->($status)
250 aio_ioctl $fh, $request, $buf, $callback->($status)
246 aio_sync $callback->($status) 251 aio_sync $callback->($status)
247 aio_syncfs $fh, $callback->($status) 252 aio_syncfs $fh, $callback->($status)
248 aio_fsync $fh, $callback->($status) 253 aio_fsync $fh, $callback->($status)
249 aio_fdatasync $fh, $callback->($status) 254 aio_fdatasync $fh, $callback->($status)
250 aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status) 255 aio_sync_file_range $fh, $offset, $nbytes, $flags, $callback->($status)
395following POSIX and non-POSIX constants are available (missing ones on 400following POSIX and non-POSIX constants are available (missing ones on
396your system are, as usual, C<0>): 401your system are, as usual, C<0>):
397 402
398C<O_ASYNC>, C<O_DIRECT>, C<O_NOATIME>, C<O_CLOEXEC>, C<O_NOCTTY>, C<O_NOFOLLOW>, 403C<O_ASYNC>, C<O_DIRECT>, C<O_NOATIME>, C<O_CLOEXEC>, C<O_NOCTTY>, C<O_NOFOLLOW>,
399C<O_NONBLOCK>, C<O_EXEC>, C<O_SEARCH>, C<O_DIRECTORY>, C<O_DSYNC>, 404C<O_NONBLOCK>, C<O_EXEC>, C<O_SEARCH>, C<O_DIRECTORY>, C<O_DSYNC>,
400C<O_RSYNC>, C<O_SYNC> and C<O_TTY_INIT>. 405C<O_RSYNC>, C<O_SYNC>, C<O_PATH>, C<O_TMPFILE>, and C<O_TTY_INIT>.
401 406
402 407
403=item aio_close $fh, $callback->($status) 408=item aio_close $fh, $callback->($status)
404 409
405Asynchronously close a file and call the callback with the result 410Asynchronously close a file and call the callback with the result
440=item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval) 445=item aio_read $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
441 446
442=item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval) 447=item aio_write $fh,$offset,$length, $data,$dataoffset, $callback->($retval)
443 448
444Reads or writes C<$length> bytes from or to the specified C<$fh> and 449Reads or writes C<$length> bytes from or to the specified C<$fh> and
445C<$offset> into the scalar given by C<$data> and offset C<$dataoffset> 450C<$offset> into the scalar given by C<$data> and offset C<$dataoffset> and
446and calls the callback without the actual number of bytes read (or -1 on 451calls the callback with the actual number of bytes transferred (or -1 on
447error, just like the syscall). 452error, just like the syscall).
448 453
449C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to 454C<aio_read> will, like C<sysread>, shrink or grow the C<$data> scalar to
450offset plus the actual number of bytes read. 455offset plus the actual number of bytes read.
451 456
509As native sendfile syscalls (as practically any non-POSIX interface hacked 514As native sendfile syscalls (as practically any non-POSIX interface hacked
510together in a hurry to improve benchmark numbers) tend to be rather buggy 515together in a hurry to improve benchmark numbers) tend to be rather buggy
511on many systems, this implementation tries to work around some known bugs 516on many systems, this implementation tries to work around some known bugs
512in Linux and FreeBSD kernels (probably others, too), but that might fail, 517in Linux and FreeBSD kernels (probably others, too), but that might fail,
513so you really really should check the return value of C<aio_sendfile> - 518so you really really should check the return value of C<aio_sendfile> -
514fewre bytes than expected might have been transferred. 519fewer bytes than expected might have been transferred.
515 520
516 521
517=item aio_readahead $fh,$offset,$length, $callback->($retval) 522=item aio_readahead $fh,$offset,$length, $callback->($retval)
518 523
519C<aio_readahead> populates the page cache with data from a file so that 524C<aio_readahead> populates the page cache with data from a file so that
523whole pages, so that offset is effectively rounded down to a page boundary 528whole pages, so that offset is effectively rounded down to a page boundary
524and bytes are read up to the next page boundary greater than or equal to 529and bytes are read up to the next page boundary greater than or equal to
525(off-set+length). C<aio_readahead> does not read beyond the end of the 530(off-set+length). C<aio_readahead> does not read beyond the end of the
526file. The current file offset of the file is left unchanged. 531file. The current file offset of the file is left unchanged.
527 532
528If that syscall doesn't exist (likely if your OS isn't Linux) it will be 533If that syscall doesn't exist (likely if your kernel isn't Linux) it will
529emulated by simply reading the data, which would have a similar effect. 534be emulated by simply reading the data, which would have a similar effect.
530 535
531 536
532=item aio_stat $fh_or_path, $callback->($status) 537=item aio_stat $fh_or_path, $callback->($status)
533 538
534=item aio_lstat $fh, $callback->($status) 539=item aio_lstat $fh, $callback->($status)
603 namemax => 255, 608 namemax => 255,
604 frsize => 1024, 609 frsize => 1024,
605 fsid => 1810 610 fsid => 1810
606 } 611 }
607 612
608Here is a (likely partial) list of fsid values used by Linux - it is safe 613Here is a (likely partial - send me updates!) list of fsid values used by
609to hardcode these when the $^O is C<linux>: 614Linux - it is safe to hardcode these when C<$^O> is C<linux>:
610 615
611 0x0000adf5 adfs 616 0x0000adf5 adfs
612 0x0000adff affs 617 0x0000adff affs
613 0x5346414f afs 618 0x5346414f afs
614 0x09041934 anon-inode filesystem 619 0x09041934 anon-inode filesystem
627 0x00001373 devfs 632 0x00001373 devfs
628 0x00001cd1 devpts 633 0x00001cd1 devpts
629 0x0000f15f ecryptfs 634 0x0000f15f ecryptfs
630 0x00414a53 efs 635 0x00414a53 efs
631 0x0000137d ext 636 0x0000137d ext
632 0x0000ef53 ext2/ext3 637 0x0000ef53 ext2/ext3/ext4
633 0x0000ef51 ext2 638 0x0000ef51 ext2
639 0xf2f52010 f2fs
634 0x00004006 fat 640 0x00004006 fat
635 0x65735546 fuseblk 641 0x65735546 fuseblk
636 0x65735543 fusectl 642 0x65735543 fusectl
637 0x0bad1dea futexfs 643 0x0bad1dea futexfs
638 0x01161970 gfs2 644 0x01161970 gfs2
639 0x47504653 gpfs 645 0x47504653 gpfs
640 0x00004244 hfs 646 0x00004244 hfs
641 0xf995e849 hpfs 647 0xf995e849 hpfs
648 0x00c0ffee hostfs
642 0x958458f6 hugetlbfs 649 0x958458f6 hugetlbfs
643 0x2bad1dea inotifyfs 650 0x2bad1dea inotifyfs
644 0x00009660 isofs 651 0x00009660 isofs
645 0x000072b6 jffs2 652 0x000072b6 jffs2
646 0x3153464a jfs 653 0x3153464a jfs
661 0x00009fa1 openprom 668 0x00009fa1 openprom
662 0x7461636F ocfs2 669 0x7461636F ocfs2
663 0x00009fa0 proc 670 0x00009fa0 proc
664 0x6165676c pstorefs 671 0x6165676c pstorefs
665 0x0000002f qnx4 672 0x0000002f qnx4
673 0x68191122 qnx6
666 0x858458f6 ramfs 674 0x858458f6 ramfs
667 0x52654973 reiserfs 675 0x52654973 reiserfs
668 0x00007275 romfs 676 0x00007275 romfs
669 0x67596969 rpc_pipefs 677 0x67596969 rpc_pipefs
670 0x73636673 securityfs 678 0x73636673 securityfs
723Works like truncate(2) or ftruncate(2). 731Works like truncate(2) or ftruncate(2).
724 732
725 733
726=item aio_allocate $fh, $mode, $offset, $len, $callback->($status) 734=item aio_allocate $fh, $mode, $offset, $len, $callback->($status)
727 735
728Allocates or freed disk space according to the C<$mode> argument. See the 736Allocates or frees disk space according to the C<$mode> argument. See the
729linux C<fallocate> docuemntation for details. 737linux C<fallocate> documentation for details.
730 738
731C<$mode> can currently be C<0> or C<IO::AIO::FALLOC_FL_KEEP_SIZE> 739C<$mode> is usually C<0> or C<IO::AIO::FALLOC_FL_KEEP_SIZE> to allocate
732to allocate space, or C<IO::AIO::FALLOC_FL_PUNCH_HOLE | 740space, or C<IO::AIO::FALLOC_FL_PUNCH_HOLE | IO::AIO::FALLOC_FL_KEEP_SIZE>,
733IO::AIO::FALLOC_FL_KEEP_SIZE>, to deallocate a file range. 741to deallocate a file range.
742
743IO::AIO also supports C<FALLOC_FL_COLLAPSE_RANGE>, to remove a range
744(without leaving a hole) and C<FALLOC_FL_ZERO_RANGE>, to zero a range (see
745your L<fallocate(2)> manpage).
734 746
735The file system block size used by C<fallocate> is presumably the 747The file system block size used by C<fallocate> is presumably the
736C<f_bsize> returned by C<statvfs>. 748C<f_bsize> returned by C<statvfs>.
737 749
738If C<fallocate> isn't available or cannot be emulated (currently no 750If C<fallocate> isn't available or cannot be emulated (currently no
783 795
784 796
785=item aio_realpath $pathname, $callback->($path) 797=item aio_realpath $pathname, $callback->($path)
786 798
787Asynchronously make the path absolute and resolve any symlinks in 799Asynchronously make the path absolute and resolve any symlinks in
788C<$path>. The resulting path only consists of directories (Same as 800C<$path>. The resulting path only consists of directories (same as
789L<Cwd::realpath>). 801L<Cwd::realpath>).
790 802
791This request can be used to get the absolute path of the current working 803This request can be used to get the absolute path of the current working
792directory by passing it a path of F<.> (a single dot). 804directory by passing it a path of F<.> (a single dot).
793 805
794 806
795=item aio_rename $srcpath, $dstpath, $callback->($status) 807=item aio_rename $srcpath, $dstpath, $callback->($status)
796 808
797Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as 809Asynchronously rename the object at C<$srcpath> to C<$dstpath>, just as
798rename(2) and call the callback with the result code. 810rename(2) and call the callback with the result code.
811
812On systems that support the AIO::WD working directory abstraction
813natively, the case C<[$wd, "."]> as C<$srcpath> is specialcased - instead
814of failing, C<rename> is called on the absolute path of C<$wd>.
799 815
800 816
801=item aio_mkdir $pathname, $mode, $callback->($status) 817=item aio_mkdir $pathname, $mode, $callback->($status)
802 818
803Asynchronously mkdir (create) a directory and call the callback with 819Asynchronously mkdir (create) a directory and call the callback with
807 823
808=item aio_rmdir $pathname, $callback->($status) 824=item aio_rmdir $pathname, $callback->($status)
809 825
810Asynchronously rmdir (delete) a directory and call the callback with the 826Asynchronously rmdir (delete) a directory and call the callback with the
811result code. 827result code.
828
829On systems that support the AIO::WD working directory abstraction
830natively, the case C<[$wd, "."]> is specialcased - instead of failing,
831C<rmdir> is called on the absolute path of C<$wd>.
812 832
813 833
814=item aio_readdir $pathname, $callback->($entries) 834=item aio_readdir $pathname, $callback->($entries)
815 835
816Unlike the POSIX call of the same name, C<aio_readdir> reads an entire 836Unlike the POSIX call of the same name, C<aio_readdir> reads an entire
1181} 1201}
1182 1202
1183=item aio_rmtree $pathname, $callback->($status) 1203=item aio_rmtree $pathname, $callback->($status)
1184 1204
1185Delete a directory tree starting (and including) C<$path>, return the 1205Delete a directory tree starting (and including) C<$path>, return the
1186status of the final C<rmdir> only. This is a composite request that 1206status of the final C<rmdir> only. This is a composite request that
1187uses C<aio_scandir> to recurse into and rmdir directories, and unlink 1207uses C<aio_scandir> to recurse into and rmdir directories, and unlink
1188everything else. 1208everything else.
1189 1209
1190=cut 1210=cut
1191 1211
1212 add $grp $dirgrp; 1232 add $grp $dirgrp;
1213 }; 1233 };
1214 1234
1215 $grp 1235 $grp
1216} 1236}
1237
1238=item aio_fcntl $fh, $cmd, $arg, $callback->($status)
1239
1240=item aio_ioctl $fh, $request, $buf, $callback->($status)
1241
1242These work just like the C<fcntl> and C<ioctl> built-in functions, except
1243they execute asynchronously and pass the return value to the callback.
1244
1245Both calls can be used for a lot of things, some of which make more sense
1246to run asynchronously in their own thread, while some others make less
1247sense. For example, calls that block waiting for external events, such
1248as locking, will also lock down an I/O thread while it is waiting, which
1249can deadlock the whole I/O system. At the same time, there might be no
1250alternative to using a thread to wait.
1251
1252So in general, you should only use these calls for things that do
1253(filesystem) I/O, not for things that wait for other events (network,
1254other processes), although if you are careful and know what you are doing,
1255you still can.
1256
1257The following constants are available (missing ones are, as usual C<0>):
1258
1259C<FIFREEZE>, C<FITHAW>, C<FITRIM>, C<FICLONE>, C<FICLONERANGE>, C<FIDEDUPERANGE>.
1260
1261C<FS_IOC_GETFLAGS>, C<FS_IOC_SETFLAGS>, C<FS_IOC_GETVERSION>, C<FS_IOC_SETVERSION>,
1262C<FS_IOC_FIEMAP>.
1263
1264C<FS_IOC_FSGETXATTR>, C<FS_IOC_FSSETXATTR>, C<FS_IOC_SET_ENCRYPTION_POLICY>,
1265C<FS_IOC_GET_ENCRYPTION_PWSALT>, C<FS_IOC_GET_ENCRYPTION_POLICY>, C<FS_KEY_DESCRIPTOR_SIZE>.
1266
1267C<FS_SECRM_FL>, C<FS_UNRM_FL>, C<FS_COMPR_FL>, C<FS_SYNC_FL>, C<FS_IMMUTABLE_FL>,
1268C<FS_APPEND_FL>, C<FS_NODUMP_FL>, C<FS_NOATIME_FL>, C<FS_DIRTY_FL>,
1269C<FS_COMPRBLK_FL>, C<FS_NOCOMP_FL>, C<FS_ENCRYPT_FL>, C<FS_BTREE_FL>,
1270C<FS_INDEX_FL>, C<FS_JOURNAL_DATA_FL>, C<FS_NOTAIL_FL>, C<FS_DIRSYNC_FL>, C<FS_TOPDIR_FL>,
1271C<FS_FL_USER_MODIFIABLE>.
1272
1273C<FS_XFLAG_REALTIME>, C<FS_XFLAG_PREALLOC>, C<FS_XFLAG_IMMUTABLE>, C<FS_XFLAG_APPEND>,
1274C<FS_XFLAG_SYNC>, C<FS_XFLAG_NOATIME>, C<FS_XFLAG_NODUMP>, C<FS_XFLAG_RTINHERIT>,
1275C<FS_XFLAG_PROJINHERIT>, C<FS_XFLAG_NOSYMLINKS>, C<FS_XFLAG_EXTSIZE>, C<FS_XFLAG_EXTSZINHERIT>,
1276C<FS_XFLAG_NODEFRAG>, C<FS_XFLAG_FILESTREAM>, C<FS_XFLAG_DAX>, C<FS_XFLAG_HASATTR>,
1217 1277
1218=item aio_sync $callback->($status) 1278=item aio_sync $callback->($status)
1219 1279
1220Asynchronously call sync and call the callback when finished. 1280Asynchronously call sync and call the callback when finished.
1221 1281
1311 1371
1312This is a rather advanced IO::AIO call, which works best on mmap(2)ed 1372This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1313scalars. 1373scalars.
1314 1374
1315It touches (reads or writes) all memory pages in the specified 1375It touches (reads or writes) all memory pages in the specified
1316range inside the scalar. All caveats and parameters are the same 1376range inside the scalar. All caveats and parameters are the same
1317as for C<aio_msync>, above, except for flags, which must be either 1377as for C<aio_msync>, above, except for flags, which must be either
1318C<0> (which reads all pages and ensures they are instantiated) or 1378C<0> (which reads all pages and ensures they are instantiated) or
1319C<IO::AIO::MT_MODIFY>, which modifies the memory page s(by reading and 1379C<IO::AIO::MT_MODIFY>, which modifies the memory pages (by reading and
1320writing an octet from it, which dirties the page). 1380writing an octet from it, which dirties the page).
1321 1381
1322=item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status) 1382=item aio_mlock $scalar, $offset = 0, $length = undef, $callback->($status)
1323 1383
1324This is a rather advanced IO::AIO call, which works best on mmap(2)ed 1384This is a rather advanced IO::AIO call, which works best on mmap(2)ed
1493 aio_stat [$etcdir, "passwd"], sub { 1553 aio_stat [$etcdir, "passwd"], sub {
1494 # yay 1554 # yay
1495 }; 1555 };
1496 }; 1556 };
1497 1557
1498That C<aio_wd> is a request and not a normal function shows that creating 1558The fact that C<aio_wd> is a request and not a normal function shows that
1499an IO::AIO::WD object is itself a potentially blocking operation, which is 1559creating an IO::AIO::WD object is itself a potentially blocking operation,
1500why it is done asynchronously. 1560which is why it is done asynchronously.
1501 1561
1502To stat the directory obtained with C<aio_wd> above, one could write 1562To stat the directory obtained with C<aio_wd> above, one could write
1503either of the following three request calls: 1563either of the following three request calls:
1504 1564
1505 aio_lstat "/etc" , sub { ... # pathname as normal string 1565 aio_lstat "/etc" , sub { ... # pathname as normal string
1525will still point to the original directory. Most functions accepting a 1585will still point to the original directory. Most functions accepting a
1526pathname will use the directory fd on newer systems, and the string on 1586pathname will use the directory fd on newer systems, and the string on
1527older systems. Some functions (such as realpath) will always rely on the 1587older systems. Some functions (such as realpath) will always rely on the
1528string form of the pathname. 1588string form of the pathname.
1529 1589
1530So this fucntionality is mainly useful to get some protection against 1590So this functionality is mainly useful to get some protection against
1531C<chdir>, to easily get an absolute path out of a relative path for future 1591C<chdir>, to easily get an absolute path out of a relative path for future
1532reference, and to speed up doing many operations in the same directory 1592reference, and to speed up doing many operations in the same directory
1533(e.g. when stat'ing all files in a directory). 1593(e.g. when stat'ing all files in a directory).
1534 1594
1535The following functions implement this working directory abstraction: 1595The following functions implement this working directory abstraction:
1548passing C<undef> as working directory component of a pathname fails the 1608passing C<undef> as working directory component of a pathname fails the
1549request with C<ENOENT>, there is often no need for error checking in the 1609request with C<ENOENT>, there is often no need for error checking in the
1550C<aio_wd> callback, as future requests using the value will fail in the 1610C<aio_wd> callback, as future requests using the value will fail in the
1551expected way. 1611expected way.
1552 1612
1553If this call isn't available because your OS lacks it or it couldn't be
1554detected, it will be emulated by calling C<fsync> instead.
1555
1556=item IO::AIO::CWD 1613=item IO::AIO::CWD
1557 1614
1558This is a compiletime constant (object) that represents the process 1615This is a compiletime constant (object) that represents the process
1559current working directory. 1616current working directory.
1560 1617
1561Specifying this object as working directory object for a pathname is as 1618Specifying this object as working directory object for a pathname is as if
1562if the pathname would be specified directly, without a directory object, 1619the pathname would be specified directly, without a directory object. For
1563e.g., these calls are functionally identical: 1620example, these calls are functionally identical:
1564 1621
1565 aio_stat "somefile", sub { ... }; 1622 aio_stat "somefile", sub { ... };
1566 aio_stat [IO::AIO::CWD, "somefile"], sub { ... }; 1623 aio_stat [IO::AIO::CWD, "somefile"], sub { ... };
1567 1624
1568=back 1625=back
1569 1626
1627To recover the path associated with an IO::AIO::WD object, you can use
1628C<aio_realpath>:
1629
1630 aio_realpath $wd, sub {
1631 warn "path is $_[0]\n";
1632 };
1633
1634Currently, C<aio_statvfs> always, and C<aio_rename> and C<aio_rmdir>
1635sometimes, fall back to using an absolue path.
1570 1636
1571=head2 IO::AIO::REQ CLASS 1637=head2 IO::AIO::REQ CLASS
1572 1638
1573All non-aggregate C<aio_*> functions return an object of this class when 1639All non-aggregate C<aio_*> functions return an object of this class when
1574called in non-void context. 1640called in non-void context.
1752 1818
1753See C<poll_cb> for an example. 1819See C<poll_cb> for an example.
1754 1820
1755=item IO::AIO::poll_cb 1821=item IO::AIO::poll_cb
1756 1822
1757Process some outstanding events on the result pipe. You have to call 1823Process some requests that have reached the result phase (i.e. they have
1824been executed but the results are not yet reported). You have to call
1825this "regularly" to finish outstanding requests.
1826
1758this regularly. Returns C<0> if all events could be processed (or there 1827Returns C<0> if all events could be processed (or there were no
1759were no events to process), or C<-1> if it returned earlier for whatever 1828events to process), or C<-1> if it returned earlier for whatever
1760reason. Returns immediately when no events are outstanding. The amount of 1829reason. Returns immediately when no events are outstanding. The amount
1761events processed depends on the settings of C<IO::AIO::max_poll_req> and 1830of events processed depends on the settings of C<IO::AIO::max_poll_req>,
1762C<IO::AIO::max_poll_time>. 1831C<IO::AIO::max_poll_time> and C<IO::AIO::max_outstanding>.
1763 1832
1764If not all requests were processed for whatever reason, the filehandle 1833If not all requests were processed for whatever reason, the poll file
1765will still be ready when C<poll_cb> returns, so normally you don't have to 1834descriptor will still be ready when C<poll_cb> returns, so normally you
1766do anything special to have it called later. 1835don't have to do anything special to have it called later.
1767 1836
1768Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes 1837Apart from calling C<IO::AIO::poll_cb> when the event filehandle becomes
1769ready, it can be beneficial to call this function from loops which submit 1838ready, it can be beneficial to call this function from loops which submit
1770a lot of requests, to make sure the results get processed when they become 1839a lot of requests, to make sure the results get processed when they become
1771available and not just when the loop is finished and the event loop takes 1840available and not just when the loop is finished and the event loop takes
1780 poll => 'r', async => 1, 1849 poll => 'r', async => 1,
1781 cb => \&IO::AIO::poll_cb); 1850 cb => \&IO::AIO::poll_cb);
1782 1851
1783=item IO::AIO::poll_wait 1852=item IO::AIO::poll_wait
1784 1853
1785If there are any outstanding requests and none of them in the result 1854Wait until either at least one request is in the result phase or no
1786phase, wait till the result filehandle becomes ready for reading (simply 1855requests are outstanding anymore.
1787does a C<select> on the filehandle. This is useful if you want to 1856
1788synchronously wait for some requests to finish). 1857This is useful if you want to synchronously wait for some requests to
1858become ready, without actually handling them.
1789 1859
1790See C<nreqs> for an example. 1860See C<nreqs> for an example.
1791 1861
1792=item IO::AIO::poll 1862=item IO::AIO::poll
1793 1863
1914 1984
1915This is a very bad function to use in interactive programs because it 1985This is a very bad function to use in interactive programs because it
1916blocks, and a bad way to reduce concurrency because it is inexact: Better 1986blocks, and a bad way to reduce concurrency because it is inexact: Better
1917use an C<aio_group> together with a feed callback. 1987use an C<aio_group> together with a feed callback.
1918 1988
1919It's main use is in scripts without an event loop - when you want to stat 1989Its main use is in scripts without an event loop - when you want to stat
1920a lot of files, you can write somehting like this: 1990a lot of files, you can write somehting like this:
1921 1991
1922 IO::AIO::max_outstanding 32; 1992 IO::AIO::max_outstanding 32;
1923 1993
1924 for my $path (...) { 1994 for my $path (...) {
1964 2034
1965=back 2035=back
1966 2036
1967=head3 MISCELLANEOUS FUNCTIONS 2037=head3 MISCELLANEOUS FUNCTIONS
1968 2038
1969IO::AIO implements some functions that might be useful, but are not 2039IO::AIO implements some functions that are useful when you want to use
1970asynchronous. 2040some "Advanced I/O" function not available to in Perl, without going the
2041"Asynchronous I/O" route. Many of these have an asynchronous C<aio_*>
2042counterpart.
1971 2043
1972=over 4 2044=over 4
1973 2045
1974=item IO::AIO::sendfile $ofh, $ifh, $offset, $count 2046=item IO::AIO::sendfile $ofh, $ifh, $offset, $count
1975 2047
1994=item IO::AIO::madvise $scalar, $offset, $len, $advice 2066=item IO::AIO::madvise $scalar, $offset, $len, $advice
1995 2067
1996Simply calls the C<posix_madvise> function (see its 2068Simply calls the C<posix_madvise> function (see its
1997manpage for details). The following advice constants are 2069manpage for details). The following advice constants are
1998available: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>, 2070available: C<IO::AIO::MADV_NORMAL>, C<IO::AIO::MADV_SEQUENTIAL>,
1999C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>, C<IO::AIO::MADV_DONTNEED>. 2071C<IO::AIO::MADV_RANDOM>, C<IO::AIO::MADV_WILLNEED>, C<IO::AIO::MADV_DONTNEED>,
2072C<IO::AIO::MADV_FREE>.
2000 2073
2001On systems that do not implement C<posix_madvise>, this function returns 2074On systems that do not implement C<posix_madvise>, this function returns
2002ENOSYS, otherwise the return value of C<posix_madvise>. 2075ENOSYS, otherwise the return value of C<posix_madvise>.
2003 2076
2004=item IO::AIO::mprotect $scalar, $offset, $len, $protect 2077=item IO::AIO::mprotect $scalar, $offset, $len, $protect
2034filesize. 2107filesize.
2035 2108
2036C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>, 2109C<$prot> is a combination of C<IO::AIO::PROT_NONE>, C<IO::AIO::PROT_EXEC>,
2037C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>, 2110C<IO::AIO::PROT_READ> and/or C<IO::AIO::PROT_WRITE>,
2038 2111
2039C<$flags> can be a combination of C<IO::AIO::MAP_SHARED> or 2112C<$flags> can be a combination of
2040C<IO::AIO::MAP_PRIVATE>, or a number of system-specific flags (when 2113C<IO::AIO::MAP_SHARED> or
2041not available, the are defined as 0): C<IO::AIO::MAP_ANONYMOUS> 2114C<IO::AIO::MAP_PRIVATE>,
2115or a number of system-specific flags (when not available, the are C<0>):
2042(which is set to C<MAP_ANON> if your system only provides this 2116C<IO::AIO::MAP_ANONYMOUS> (which is set to C<MAP_ANON> if your system only provides this constant),
2043constant), C<IO::AIO::MAP_HUGETLB>, C<IO::AIO::MAP_LOCKED>, 2117C<IO::AIO::MAP_LOCKED>,
2044C<IO::AIO::MAP_NORESERVE>, C<IO::AIO::MAP_POPULATE> or 2118C<IO::AIO::MAP_NORESERVE>,
2119C<IO::AIO::MAP_POPULATE>,
2045C<IO::AIO::MAP_NONBLOCK> 2120C<IO::AIO::MAP_NONBLOCK>,
2121C<IO::AIO::MAP_FIXED>,
2122C<IO::AIO::MAP_GROWSDOWN>,
2123C<IO::AIO::MAP_32BIT>,
2124C<IO::AIO::MAP_HUGETLB> or
2125C<IO::AIO::MAP_STACK>.
2046 2126
2047If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed. 2127If C<$fh> is C<undef>, then a file descriptor of C<-1> is passed.
2048 2128
2049C<$offset> is the offset from the start of the file - it generally must be 2129C<$offset> is the offset from the start of the file - it generally must be
2050a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>. 2130a multiple of C<IO::AIO::PAGESIZE> and defaults to C<0>.
2093 2173
2094See the C<splice(2)> manpage for details. 2174See the C<splice(2)> manpage for details.
2095 2175
2096=item IO::AIO::tee $r_fh, $w_fh, $length, $flags 2176=item IO::AIO::tee $r_fh, $w_fh, $length, $flags
2097 2177
2098Calls the GNU/Linux C<tee(2)> syscall, see it's manpage and the 2178Calls the GNU/Linux C<tee(2)> syscall, see its manpage and the
2099description for C<IO::AIO::splice> above for details. 2179description for C<IO::AIO::splice> above for details.
2180
2181=item $actual_size = IO::AIO::pipesize $r_fh[, $new_size]
2182
2183Attempts to query or change the pipe buffer size. Obviously works only
2184on pipes, and currently works only on GNU/Linux systems, and fails with
2185C<-1>/C<ENOSYS> everywhere else. If anybody knows how to influence pipe buffer
2186size on other systems, drop me a note.
2187
2188=item ($rfh, $wfh) = IO::AIO::pipe2 [$flags]
2189
2190This is a direct interface to the Linux L<pipe2(2)> system call. If
2191C<$flags> is missing or C<0>, then this should be the same as a call to
2192perl's built-in C<pipe> function and create a new pipe, and works on
2193systems that lack the pipe2 syscall. On win32, this case invokes C<_pipe
2194(..., 4096, O_BINARY)>.
2195
2196If C<$flags> is non-zero, it tries to invoke the pipe2 system call with
2197the given flags (Linux 2.6.27, glibc 2.9).
2198
2199On success, the read and write file handles are returned.
2200
2201On error, nothing will be returned. If the pipe2 syscall is missing and
2202C<$flags> is non-zero, fails with C<ENOSYS>.
2203
2204Please refer to L<pipe2(2)> for more info on the C<$flags>, but at the
2205time of this writing, C<IO::AIO::O_CLOEXEC>, C<IO::AIO::O_NONBLOCK> and
2206C<IO::AIO::O_DIRECT> (Linux 3.4, for packet-based pipes) were supported.
2100 2207
2101=back 2208=back
2102 2209
2103=cut 2210=cut
2104 2211

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines