#include "EXTERN.h" #include "perl.h" #include "XSUB.h" #include "assert.h" #include "string.h" #include "stdlib.h" #include "stdio.h" #if defined(__BORLANDC__) || defined(_MSC_VER) # define snprintf _snprintf // C compilers have this in stdio.h #endif // some old perls do not have this, try to make it work, no // guarentees, though. if it breaks, you get to keep the pieces. #ifndef UTF8_MAXBYTES # define UTF8_MAXBYTES 13 #endif #define F_ASCII 0x00000001UL #define F_LATIN1 0x00000002UL #define F_UTF8 0x00000004UL #define F_INDENT 0x00000008UL #define F_CANONICAL 0x00000010UL #define F_SPACE_BEFORE 0x00000020UL #define F_SPACE_AFTER 0x00000040UL #define F_ALLOW_NONREF 0x00000100UL #define F_SHRINK 0x00000200UL #define F_MAXDEPTH 0xf8000000UL #define S_MAXDEPTH 27 #define DEC_DEPTH(flags) (1UL << ((flags & F_MAXDEPTH) >> S_MAXDEPTH)) // F_SELFCONVERT? <=> to_json/toJson // F_BLESSED? <=> { $__class__$ => } #define F_PRETTY F_INDENT | F_SPACE_BEFORE | F_SPACE_AFTER #define F_DEFAULT (9UL << S_MAXDEPTH) #define INIT_SIZE 32 // initial scalar size to be allocated #define INDENT_STEP 3 // spaces per indentation level #define SHORT_STRING_LEN 16384 // special-case strings of up to this size #define SB do { #define SE } while (0) #if __GNUC__ >= 3 # define expect(expr,value) __builtin_expect ((expr),(value)) # define inline inline #else # define expect(expr,value) (expr) # define inline static #endif #define expect_false(expr) expect ((expr) != 0, 0) #define expect_true(expr) expect ((expr) != 0, 1) static HV *json_stash; // JSON::XS:: static SV *json_true, *json_false; ///////////////////////////////////////////////////////////////////////////// // utility functions static UV * SvJSON (SV *sv) { if (!(SvROK (sv) && SvOBJECT (SvRV (sv)) && SvSTASH (SvRV (sv)) == json_stash)) croak ("object is not of type JSON::XS"); return &SvUVX (SvRV (sv)); } static void shrink (SV *sv) { sv_utf8_downgrade (sv, 1); if (SvLEN (sv) > SvCUR (sv) + 1) { #ifdef SvPV_shrink_to_cur SvPV_shrink_to_cur (sv); #elif defined (SvPV_renew) SvPV_renew (sv, SvCUR (sv) + 1); #endif } } // decode an utf-8 character and return it, or (UV)-1 in // case of an error. // we special-case "safe" characters from U+80 .. U+7FF, // but use the very good perl function to parse anything else. // note that we never call this function for a ascii codepoints inline UV decode_utf8 (unsigned char *s, STRLEN len, STRLEN *clen) { if (expect_false (s[0] > 0xdf || s[0] < 0xc2)) return utf8n_to_uvuni (s, len, clen, UTF8_CHECK_ONLY); else if (len > 1 && s[1] >= 0x80 && s[1] <= 0xbf) { *clen = 2; return ((s[0] & 0x1f) << 6) | (s[1] & 0x3f); } else { *clen = (STRLEN)-1; return (UV)-1; } } ///////////////////////////////////////////////////////////////////////////// // encoder // structure used for encoding JSON typedef struct { char *cur; // SvPVX (sv) + current output position char *end; // SvEND (sv) SV *sv; // result scalar U32 flags; // F_* U32 indent; // indentation level U32 maxdepth; // max. indentation/recursion level } enc_t; inline void need (enc_t *enc, STRLEN len) { if (expect_false (enc->cur + len >= enc->end)) { STRLEN cur = enc->cur - SvPVX (enc->sv); SvGROW (enc->sv, cur + len + 1); enc->cur = SvPVX (enc->sv) + cur; enc->end = SvPVX (enc->sv) + SvLEN (enc->sv) - 1; } } inline void encode_ch (enc_t *enc, char ch) { need (enc, 1); *enc->cur++ = ch; } static void encode_str (enc_t *enc, char *str, STRLEN len, int is_utf8) { char *end = str + len; need (enc, len); while (str < end) { unsigned char ch = *(unsigned char *)str; if (expect_true (ch >= 0x20 && ch < 0x80)) // most common case { if (expect_false (ch == '"')) // but with slow exceptions { need (enc, len += 1); *enc->cur++ = '\\'; *enc->cur++ = '"'; } else if (expect_false (ch == '\\')) { need (enc, len += 1); *enc->cur++ = '\\'; *enc->cur++ = '\\'; } else *enc->cur++ = ch; ++str; } else { switch (ch) { case '\010': need (enc, len += 1); *enc->cur++ = '\\'; *enc->cur++ = 'b'; ++str; break; case '\011': need (enc, len += 1); *enc->cur++ = '\\'; *enc->cur++ = 't'; ++str; break; case '\012': need (enc, len += 1); *enc->cur++ = '\\'; *enc->cur++ = 'n'; ++str; break; case '\014': need (enc, len += 1); *enc->cur++ = '\\'; *enc->cur++ = 'f'; ++str; break; case '\015': need (enc, len += 1); *enc->cur++ = '\\'; *enc->cur++ = 'r'; ++str; break; default: { STRLEN clen; UV uch; if (is_utf8) { uch = decode_utf8 (str, end - str, &clen); if (clen == (STRLEN)-1) croak ("malformed or illegal unicode character in string [%.11s], cannot convert to JSON", str); } else { uch = ch; clen = 1; } if (uch > 0x10FFFFUL) croak ("out of range codepoint (0x%lx) encountered, unrepresentable in JSON", (unsigned long)uch); if (uch < 0x80 || enc->flags & F_ASCII || (enc->flags & F_LATIN1 && uch > 0xFF)) { if (uch > 0xFFFFUL) { need (enc, len += 11); sprintf (enc->cur, "\\u%04x\\u%04x", (int)((uch - 0x10000) / 0x400 + 0xD800), (int)((uch - 0x10000) % 0x400 + 0xDC00)); enc->cur += 12; } else { static char hexdigit [16] = "0123456789abcdef"; need (enc, len += 5); *enc->cur++ = '\\'; *enc->cur++ = 'u'; *enc->cur++ = hexdigit [ uch >> 12 ]; *enc->cur++ = hexdigit [(uch >> 8) & 15]; *enc->cur++ = hexdigit [(uch >> 4) & 15]; *enc->cur++ = hexdigit [(uch >> 0) & 15]; } str += clen; } else if (enc->flags & F_LATIN1) { *enc->cur++ = uch; str += clen; } else if (is_utf8) { need (enc, len += clen); do { *enc->cur++ = *str++; } while (--clen); } else { need (enc, len += UTF8_MAXBYTES - 1); // never more than 11 bytes needed enc->cur = uvuni_to_utf8_flags (enc->cur, uch, 0); ++str; } } } } --len; } } inline void encode_indent (enc_t *enc) { if (enc->flags & F_INDENT) { int spaces = enc->indent * INDENT_STEP; need (enc, spaces); memset (enc->cur, ' ', spaces); enc->cur += spaces; } } inline void encode_space (enc_t *enc) { need (enc, 1); encode_ch (enc, ' '); } inline void encode_nl (enc_t *enc) { if (enc->flags & F_INDENT) { need (enc, 1); encode_ch (enc, '\n'); } } inline void encode_comma (enc_t *enc) { encode_ch (enc, ','); if (enc->flags & F_INDENT) encode_nl (enc); else if (enc->flags & F_SPACE_AFTER) encode_space (enc); } static void encode_sv (enc_t *enc, SV *sv); static void encode_av (enc_t *enc, AV *av) { int i, len = av_len (av); if (enc->indent >= enc->maxdepth) croak ("data structure too deep (hit recursion limit)"); encode_ch (enc, '['); encode_nl (enc); ++enc->indent; for (i = 0; i <= len; ++i) { encode_indent (enc); encode_sv (enc, *av_fetch (av, i, 0)); if (i < len) encode_comma (enc); } encode_nl (enc); --enc->indent; encode_indent (enc); encode_ch (enc, ']'); } static void encode_he (enc_t *enc, HE *he) { encode_ch (enc, '"'); if (HeKLEN (he) == HEf_SVKEY) { SV *sv = HeSVKEY (he); STRLEN len; char *str; SvGETMAGIC (sv); str = SvPV (sv, len); encode_str (enc, str, len, SvUTF8 (sv)); } else encode_str (enc, HeKEY (he), HeKLEN (he), HeKUTF8 (he)); encode_ch (enc, '"'); if (enc->flags & F_SPACE_BEFORE) encode_space (enc); encode_ch (enc, ':'); if (enc->flags & F_SPACE_AFTER ) encode_space (enc); encode_sv (enc, HeVAL (he)); } // compare hash entries, used when all keys are bytestrings static int he_cmp_fast (const void *a_, const void *b_) { int cmp; HE *a = *(HE **)a_; HE *b = *(HE **)b_; STRLEN la = HeKLEN (a); STRLEN lb = HeKLEN (b); if (!(cmp = memcmp (HeKEY (a), HeKEY (b), la < lb ? la : lb))) cmp = la - lb; return cmp; } // compare hash entries, used when some keys are sv's or utf-x static int he_cmp_slow (const void *a, const void *b) { return sv_cmp (HeSVKEY_force (*(HE **)a), HeSVKEY_force (*(HE **)b)); } static void encode_hv (enc_t *enc, HV *hv) { int count, i; if (enc->indent >= enc->maxdepth) croak ("data structure too deep (hit recursion limit)"); encode_ch (enc, '{'); encode_nl (enc); ++enc->indent; if ((count = hv_iterinit (hv))) { // for canonical output we have to sort by keys first // actually, this is mostly due to the stupid so-called // security workaround added somewhere in 5.8.x. // that randomises hash orderings if (enc->flags & F_CANONICAL) { int fast = 1; HE *he; #if defined(__BORLANDC__) || defined(_MSC_VER) HE **hes = _alloca (count * sizeof (HE)); #else HE *hes [count]; // if your compiler dies here, you need to enable C99 mode #endif i = 0; while ((he = hv_iternext (hv))) { hes [i++] = he; if (HeKLEN (he) < 0 || HeKUTF8 (he)) fast = 0; } assert (i == count); if (fast) qsort (hes, count, sizeof (HE *), he_cmp_fast); else { // hack to forcefully disable "use bytes" COP cop = *PL_curcop; cop.op_private = 0; ENTER; SAVETMPS; SAVEVPTR (PL_curcop); PL_curcop = &cop; qsort (hes, count, sizeof (HE *), he_cmp_slow); FREETMPS; LEAVE; } for (i = 0; i < count; ++i) { encode_indent (enc); encode_he (enc, hes [i]); if (i < count - 1) encode_comma (enc); } encode_nl (enc); } else { HE *he = hv_iternext (hv); for (;;) { encode_indent (enc); encode_he (enc, he); if (!(he = hv_iternext (hv))) break; encode_comma (enc); } encode_nl (enc); } } --enc->indent; encode_indent (enc); encode_ch (enc, '}'); } // encode objects, arrays and special \0=false and \1=true values. static void encode_rv (enc_t *enc, SV *sv) { svtype svt; SvGETMAGIC (sv); svt = SvTYPE (sv); if (svt == SVt_PVHV) encode_hv (enc, (HV *)sv); else if (svt == SVt_PVAV) encode_av (enc, (AV *)sv); else if (svt < SVt_PVAV) { if (SvNIOK (sv) && SvIV (sv) == 0) encode_str (enc, "false", 5, 0); else if (SvNIOK (sv) && SvIV (sv) == 1) encode_str (enc, "true", 4, 0); else croak ("cannot encode reference to scalar '%s' unless the scalar is 0 or 1", SvPV_nolen (sv_2mortal (newRV_inc (sv)))); } else croak ("encountered %s, but JSON can only represent references to arrays or hashes", SvPV_nolen (sv_2mortal (newRV_inc (sv)))); } static void encode_sv (enc_t *enc, SV *sv) { SvGETMAGIC (sv); if (SvPOKp (sv)) { STRLEN len; char *str = SvPV (sv, len); encode_ch (enc, '"'); encode_str (enc, str, len, SvUTF8 (sv)); encode_ch (enc, '"'); } else if (SvNOKp (sv)) { // trust that perl will do the right thing w.r.t. JSON syntax. need (enc, NV_DIG + 32); Gconvert (SvNVX (sv), NV_DIG, 0, enc->cur); enc->cur += strlen (enc->cur); } else if (SvIOKp (sv)) { // we assume we can always read an IV as a UV if (SvUV (sv) & ~(UV)0x7fff) { // large integer, use the (rather slow) snprintf way. need (enc, sizeof (UV) * 3); enc->cur += SvIsUV(sv) ? snprintf (enc->cur, sizeof (UV) * 3, "%"UVuf, (UV)SvUVX (sv)) : snprintf (enc->cur, sizeof (UV) * 3, "%"IVdf, (IV)SvIVX (sv)); } else { // optimise the "small number case" // code will likely be branchless and use only a single multiplication I32 i = SvIV (sv); U32 u; char digit, nz = 0; need (enc, 6); *enc->cur = '-'; enc->cur += i < 0 ? 1 : 0; u = i < 0 ? -i : i; // convert to 4.28 fixed-point representation u = u * ((0xfffffff + 10000) / 10000); // 10**5, 5 fractional digits // now output digit by digit, each time masking out the integer part // and multiplying by 5 while moving the decimal point one to the right, // resulting in a net multiplication by 10. // we always write the digit to memory but conditionally increment // the pointer, to ease the usage of conditional move instructions. digit = u >> 28; *enc->cur = digit + '0'; enc->cur += (nz = nz || digit); u = (u & 0xfffffff) * 5; digit = u >> 27; *enc->cur = digit + '0'; enc->cur += (nz = nz || digit); u = (u & 0x7ffffff) * 5; digit = u >> 26; *enc->cur = digit + '0'; enc->cur += (nz = nz || digit); u = (u & 0x3ffffff) * 5; digit = u >> 25; *enc->cur = digit + '0'; enc->cur += (nz = nz || digit); u = (u & 0x1ffffff) * 5; digit = u >> 24; *enc->cur = digit + '0'; enc->cur += 1; // correctly generate '0' } } else if (SvROK (sv)) encode_rv (enc, SvRV (sv)); else if (!SvOK (sv)) encode_str (enc, "null", 4, 0); else croak ("encountered perl type (%s,0x%x) that JSON cannot handle, you might want to report this", SvPV_nolen (sv), SvFLAGS (sv)); } static SV * encode_json (SV *scalar, U32 flags) { enc_t enc; if (!(flags & F_ALLOW_NONREF) && !SvROK (scalar)) croak ("hash- or arrayref expected (not a simple scalar, use allow_nonref to allow this)"); enc.flags = flags; enc.sv = sv_2mortal (NEWSV (0, INIT_SIZE)); enc.cur = SvPVX (enc.sv); enc.end = SvEND (enc.sv); enc.indent = 0; enc.maxdepth = DEC_DEPTH (flags); SvPOK_only (enc.sv); encode_sv (&enc, scalar); SvCUR_set (enc.sv, enc.cur - SvPVX (enc.sv)); *SvEND (enc.sv) = 0; // many xs functions expect a trailing 0 for text strings if (!(flags & (F_ASCII | F_LATIN1 | F_UTF8))) SvUTF8_on (enc.sv); if (enc.flags & F_SHRINK) shrink (enc.sv); return enc.sv; } ///////////////////////////////////////////////////////////////////////////// // decoder // structure used for decoding JSON typedef struct { char *cur; // current parser pointer char *end; // end of input string const char *err; // parse error, if != 0 U32 flags; // F_* U32 depth; // recursion depth U32 maxdepth; // recursion depth limit } dec_t; inline void decode_ws (dec_t *dec) { for (;;) { char ch = *dec->cur; if (ch > 0x20 || (ch != 0x20 && ch != 0x0a && ch != 0x0d && ch != 0x09)) break; ++dec->cur; } } #define ERR(reason) SB dec->err = reason; goto fail; SE #define EXPECT_CH(ch) SB \ if (*dec->cur != ch) \ ERR (# ch " expected"); \ ++dec->cur; \ SE #define DEC_INC_DEPTH if (++dec->depth > dec->maxdepth) ERR ("json datastructure exceeds maximum nesting level (set a higher max_depth)") #define DEC_DEC_DEPTH --dec->depth static SV *decode_sv (dec_t *dec); static signed char decode_hexdigit[256]; static UV decode_4hex (dec_t *dec) { signed char d1, d2, d3, d4; unsigned char *cur = (unsigned char *)dec->cur; d1 = decode_hexdigit [cur [0]]; if (expect_false (d1 < 0)) ERR ("exactly four hexadecimal digits expected"); d2 = decode_hexdigit [cur [1]]; if (expect_false (d2 < 0)) ERR ("exactly four hexadecimal digits expected"); d3 = decode_hexdigit [cur [2]]; if (expect_false (d3 < 0)) ERR ("exactly four hexadecimal digits expected"); d4 = decode_hexdigit [cur [3]]; if (expect_false (d4 < 0)) ERR ("exactly four hexadecimal digits expected"); dec->cur += 4; return ((UV)d1) << 12 | ((UV)d2) << 8 | ((UV)d3) << 4 | ((UV)d4); fail: return (UV)-1; } static SV * decode_str (dec_t *dec) { SV *sv = 0; int utf8 = 0; char *dec_cur = dec->cur; do { char buf [SHORT_STRING_LEN + UTF8_MAXBYTES]; char *cur = buf; do { unsigned char ch = *(unsigned char *)dec_cur++; if (expect_false (ch == '"')) { --dec_cur; break; } else if (expect_false (ch == '\\')) { switch (*dec_cur) { case '\\': case '/': case '"': *cur++ = *dec_cur++; break; case 'b': ++dec_cur; *cur++ = '\010'; break; case 't': ++dec_cur; *cur++ = '\011'; break; case 'n': ++dec_cur; *cur++ = '\012'; break; case 'f': ++dec_cur; *cur++ = '\014'; break; case 'r': ++dec_cur; *cur++ = '\015'; break; case 'u': { UV lo, hi; ++dec_cur; dec->cur = dec_cur; hi = decode_4hex (dec); dec_cur = dec->cur; if (hi == (UV)-1) goto fail; // possibly a surrogate pair if (hi >= 0xd800) if (hi < 0xdc00) { if (dec_cur [0] != '\\' || dec_cur [1] != 'u') ERR ("missing low surrogate character in surrogate pair"); dec_cur += 2; dec->cur = dec_cur; lo = decode_4hex (dec); dec_cur = dec->cur; if (lo == (UV)-1) goto fail; if (lo < 0xdc00 || lo >= 0xe000) ERR ("surrogate pair expected"); hi = (hi - 0xD800) * 0x400 + (lo - 0xDC00) + 0x10000; } else if (hi < 0xe000) ERR ("missing high surrogate character in surrogate pair"); if (hi >= 0x80) { utf8 = 1; cur = (char *)uvuni_to_utf8_flags (cur, hi, 0); } else *cur++ = hi; } break; default: --dec_cur; ERR ("illegal backslash escape sequence in string"); } } else if (expect_true (ch >= 0x20 && ch <= 0x7f)) *cur++ = ch; else if (ch >= 0x80) { STRLEN clen; UV uch; --dec_cur; uch = decode_utf8 (dec_cur, dec->end - dec_cur, &clen); if (clen == (STRLEN)-1) ERR ("malformed UTF-8 character in JSON string"); do *cur++ = *dec_cur++; while (--clen); utf8 = 1; } else { --dec_cur; if (!ch) ERR ("unexpected end of string while parsing JSON string"); else ERR ("invalid character encountered while parsing JSON string"); } } while (cur < buf + SHORT_STRING_LEN); { STRLEN len = cur - buf; if (sv) { SvGROW (sv, SvCUR (sv) + len + 1); memcpy (SvPVX (sv) + SvCUR (sv), buf, len); SvCUR_set (sv, SvCUR (sv) + len); } else sv = newSVpvn (buf, len); } } while (*dec_cur != '"'); ++dec_cur; if (sv) { SvPOK_only (sv); *SvEND (sv) = 0; if (utf8) SvUTF8_on (sv); } else sv = newSVpvn ("", 0); dec->cur = dec_cur; return sv; fail: dec->cur = dec_cur; return 0; } static SV * decode_num (dec_t *dec) { int is_nv = 0; char *start = dec->cur; // [minus] if (*dec->cur == '-') ++dec->cur; if (*dec->cur == '0') { ++dec->cur; if (*dec->cur >= '0' && *dec->cur <= '9') ERR ("malformed number (leading zero must not be followed by another digit)"); } else if (*dec->cur < '0' || *dec->cur > '9') ERR ("malformed number (no digits after initial minus)"); else do { ++dec->cur; } while (*dec->cur >= '0' && *dec->cur <= '9'); // [frac] if (*dec->cur == '.') { ++dec->cur; if (*dec->cur < '0' || *dec->cur > '9') ERR ("malformed number (no digits after decimal point)"); do { ++dec->cur; } while (*dec->cur >= '0' && *dec->cur <= '9'); is_nv = 1; } // [exp] if (*dec->cur == 'e' || *dec->cur == 'E') { ++dec->cur; if (*dec->cur == '-' || *dec->cur == '+') ++dec->cur; if (*dec->cur < '0' || *dec->cur > '9') ERR ("malformed number (no digits after exp sign)"); do { ++dec->cur; } while (*dec->cur >= '0' && *dec->cur <= '9'); is_nv = 1; } if (!is_nv) { // special case the rather common 1..4-digit-int case, assumes 32 bit ints or so if (*start == '-') switch (dec->cur - start) { case 2: return newSViv (-( start [1] - '0' * 1)); case 3: return newSViv (-( start [1] * 10 + start [2] - '0' * 11)); case 4: return newSViv (-( start [1] * 100 + start [2] * 10 + start [3] - '0' * 111)); case 5: return newSViv (-(start [1] * 1000 + start [2] * 100 + start [3] * 10 + start [4] - '0' * 1111)); } else switch (dec->cur - start) { case 1: return newSViv ( start [0] - '0' * 1); case 2: return newSViv ( start [0] * 10 + start [1] - '0' * 11); case 3: return newSViv ( start [0] * 100 + start [1] * 10 + start [2] - '0' * 111); case 4: return newSViv ( start [0] * 1000 + start [1] * 100 + start [2] * 10 + start [3] - '0' * 1111); } { UV uv; int numtype = grok_number (start, dec->cur - start, &uv); if (numtype & IS_NUMBER_IN_UV) if (numtype & IS_NUMBER_NEG) { if (uv < (UV)IV_MIN) return newSViv (-(IV)uv); } else return newSVuv (uv); // here would likely be the place for bigint support } } // if we ever support bigint or bigfloat, this is the place for bigfloat return newSVnv (Atof (start)); fail: return 0; } static SV * decode_av (dec_t *dec) { AV *av = newAV (); DEC_INC_DEPTH; decode_ws (dec); if (*dec->cur == ']') ++dec->cur; else for (;;) { SV *value; value = decode_sv (dec); if (!value) goto fail; av_push (av, value); decode_ws (dec); if (*dec->cur == ']') { ++dec->cur; break; } if (*dec->cur != ',') ERR (", or ] expected while parsing array"); ++dec->cur; } DEC_DEC_DEPTH; return newRV_noinc ((SV *)av); fail: SvREFCNT_dec (av); DEC_DEC_DEPTH; return 0; } static SV * decode_hv (dec_t *dec) { HV *hv = newHV (); DEC_INC_DEPTH; decode_ws (dec); if (*dec->cur == '}') ++dec->cur; else for (;;) { SV *key, *value; decode_ws (dec); EXPECT_CH ('"'); key = decode_str (dec); if (!key) goto fail; decode_ws (dec); EXPECT_CH (':'); value = decode_sv (dec); if (!value) { SvREFCNT_dec (key); goto fail; } hv_store_ent (hv, key, value, 0); SvREFCNT_dec (key); decode_ws (dec); if (*dec->cur == '}') { ++dec->cur; break; } if (*dec->cur != ',') ERR (", or } expected while parsing object/hash"); ++dec->cur; } DEC_DEC_DEPTH; return newRV_noinc ((SV *)hv); fail: SvREFCNT_dec (hv); DEC_DEC_DEPTH; return 0; } static SV * decode_sv (dec_t *dec) { decode_ws (dec); // the beauty of JSON: you need exactly one character lookahead // to parse anything. switch (*dec->cur) { case '"': ++dec->cur; return decode_str (dec); case '[': ++dec->cur; return decode_av (dec); case '{': ++dec->cur; return decode_hv (dec); case '-': case '0': case '1': case '2': case '3': case '4': case '5': case '6': case '7': case '8': case '9': return decode_num (dec); case 't': if (dec->end - dec->cur >= 4 && !memcmp (dec->cur, "true", 4)) { dec->cur += 4; return SvREFCNT_inc (json_true); } else ERR ("'true' expected"); break; case 'f': if (dec->end - dec->cur >= 5 && !memcmp (dec->cur, "false", 5)) { dec->cur += 5; return SvREFCNT_inc (json_false); } else ERR ("'false' expected"); break; case 'n': if (dec->end - dec->cur >= 4 && !memcmp (dec->cur, "null", 4)) { dec->cur += 4; return newSVsv (&PL_sv_undef); } else ERR ("'null' expected"); break; default: ERR ("malformed JSON string, neither array, object, number, string or atom"); break; } fail: return 0; } static SV * decode_json (SV *string, U32 flags, UV *offset_return) { dec_t dec; UV offset; SV *sv; SvGETMAGIC (string); SvUPGRADE (string, SVt_PV); if (flags & F_UTF8) sv_utf8_downgrade (string, 0); else sv_utf8_upgrade (string); SvGROW (string, SvCUR (string) + 1); // should basically be a NOP dec.flags = flags; dec.cur = SvPVX (string); dec.end = SvEND (string); dec.err = 0; dec.depth = 0; dec.maxdepth = DEC_DEPTH (dec.flags); *dec.end = 0; // this should basically be a nop, too, but make sure it's there sv = decode_sv (&dec); if (!(offset_return || !sv)) { // check for trailing garbage decode_ws (&dec); if (*dec.cur) { dec.err = "garbage after JSON object"; SvREFCNT_dec (sv); sv = 0; } } if (offset_return || !sv) { offset = dec.flags & F_UTF8 ? dec.cur - SvPVX (string) : utf8_distance (dec.cur, SvPVX (string)); if (offset_return) *offset_return = offset; } if (!sv) { SV *uni = sv_newmortal (); // horrible hack to silence warning inside pv_uni_display COP cop = *PL_curcop; cop.cop_warnings = pWARN_NONE; ENTER; SAVEVPTR (PL_curcop); PL_curcop = &cop; pv_uni_display (uni, dec.cur, dec.end - dec.cur, 20, UNI_DISPLAY_QQ); LEAVE; croak ("%s, at character offset %d [\"%s\"]", dec.err, (int)offset, dec.cur != dec.end ? SvPV_nolen (uni) : "(end of string)"); } sv = sv_2mortal (sv); if (!(dec.flags & F_ALLOW_NONREF) && !SvROK (sv)) croak ("JSON text must be an object or array (but found number, string, true, false or null, use allow_nonref to allow this)"); return sv; } ///////////////////////////////////////////////////////////////////////////// // XS interface functions MODULE = JSON::XS PACKAGE = JSON::XS BOOT: { int i; for (i = 0; i < 256; ++i) decode_hexdigit [i] = i >= '0' && i <= '9' ? i - '0' : i >= 'a' && i <= 'f' ? i - 'a' + 10 : i >= 'A' && i <= 'F' ? i - 'A' + 10 : -1; json_stash = gv_stashpv ("JSON::XS", 1); json_true = get_sv ("JSON::XS::true" , 1); SvREADONLY_on (json_true ); json_false = get_sv ("JSON::XS::false", 1); SvREADONLY_on (json_false); } PROTOTYPES: DISABLE SV *new (char *dummy) CODE: RETVAL = sv_bless (newRV_noinc (newSVuv (F_DEFAULT)), json_stash); OUTPUT: RETVAL SV *ascii (SV *self, int enable = 1) ALIAS: ascii = F_ASCII latin1 = F_LATIN1 utf8 = F_UTF8 indent = F_INDENT canonical = F_CANONICAL space_before = F_SPACE_BEFORE space_after = F_SPACE_AFTER pretty = F_PRETTY allow_nonref = F_ALLOW_NONREF shrink = F_SHRINK CODE: { UV *uv = SvJSON (self); if (enable) *uv |= ix; else *uv &= ~ix; RETVAL = newSVsv (self); } OUTPUT: RETVAL SV *max_depth (SV *self, UV max_depth = 0x80000000UL) CODE: { UV *uv = SvJSON (self); UV log2 = 0; if (max_depth > 0x80000000UL) max_depth = 0x80000000UL; while ((1UL << log2) < max_depth) ++log2; *uv = *uv & ~F_MAXDEPTH | (log2 << S_MAXDEPTH); RETVAL = newSVsv (self); } OUTPUT: RETVAL void encode (SV *self, SV *scalar) PPCODE: XPUSHs (encode_json (scalar, *SvJSON (self))); void decode (SV *self, SV *jsonstr) PPCODE: XPUSHs (decode_json (jsonstr, *SvJSON (self), 0)); void decode_prefix (SV *self, SV *jsonstr) PPCODE: { UV offset; EXTEND (SP, 2); PUSHs (decode_json (jsonstr, *SvJSON (self), &offset)); PUSHs (sv_2mortal (newSVuv (offset))); } PROTOTYPES: ENABLE void to_json (SV *scalar) ALIAS: objToJson = 0 PPCODE: XPUSHs (encode_json (scalar, F_DEFAULT | F_UTF8)); void from_json (SV *jsonstr) ALIAS: jsonToObj = 0 PPCODE: XPUSHs (decode_json (jsonstr, F_DEFAULT | F_UTF8, 0));