$VERSION = '1.2'; pp_setversion $VERSION; pp_beginwrap (); # force error with older PPs pp_addpm {At => Top}, <<'EOD'; =head1 NAME PDL::Audio - Some PDL functions intended for audio processing. =head1 SYNOPSIS use PDL; use PDL::Audio; =head1 DESCRIPTION Oh well ;) Not much "introductory documentation" has been written yet :( Installing this distribution also installs F, which showcases some of the oeprators, and C, which imites some bird calls with PDL::Audio. You should study them to get the hang of it. =head2 NOTATION Brackets around parameters indicate that the respective parameter is optional and will be replaced with some default value when absent (or C, which might be different in other packages). The sampling frequency and duration are by default (see individual descriptions) given in cycles/sample (or samples in case of a duration). That means if you want to specify a duration of two seconds, you have to multiply by the sampling frequency in HZ, and if you want to specify a frequency of 440 Hz, you have to divide by the sampling frequency: # Syntax: gen_oscil duration*, frequency/ $signal = gen_oscil 2*HZ, 440/HZ; # with a sampling frequency of 44100 Hertz: $signal = gen_oscil 2*44100, 440/44100; print describe_audio $signal, "\n"; playaudio $signal->scale2short; To help you, the required unit is given as a type suffix in the parameter name. A "/" means that you have to divide by the sampling frequency (to convert from Hertz) and a suffix of "*" indicates that a multiplication is required. Most parameters named "size", "duration" (or marked with "*") can be replaced by a piddle, which is then used to give length and from (mono/stereo). =head2 HEADER ATTRIBUTES The following header attributes are stored and evaluated by most functions. PDL::Audio provides mutator methods for all them (e.g. print "samplerate is ", $pdl->rate; $pdl->comment("set the comment to this string"); =over 4 =item rate The sampling rate in hz. =item filetype The filetype (wav, au etc..). Must be one of: FILE_NEXT FILE_AIFC FILE_RIFF FILE_BICSF FILE_NIST FILE_INRS FILE_ESPS FILE_SVX FILE_VOC FILE_SNDT FILE_RAW FILE_SMP FILE_SD2 FILE_AVR FILE_IRCAM FILE_SD1 FILE_SPPACK FILE_MUS10 FILE_HCOM FILE_PSION FILE_MAUD FILE_IEEE FILE_DESKMATE FILE_DESKMATE_2500 FILE_MATLAB FILE_ADC FILE_SOUNDEDIT FILE_SOUNDEDIT_16 FILE_DVSM FILE_MIDI FILE_ESIGNAL FILE_SOUNDFONT FILE_GRAVIS FILE_COMDISCO FILE_GOLDWAVE FILE_SRFS FILE_MIDI_SAMPLE_DUMP FILE_DIAMONDWARE FILE_REALAUDIO FILE_ADF FILE_SBSTUDIOII FILE_DELUSION FILE_FARANDOLE FILE_SAMPLE_DUMP FILE_ULTRATRACKER FILE_YAMAHA_SY85 FILE_YAMAHA_TX16 FILE_DIGIPLAYER FILE_COVOX FILE_SPL FILE_AVI FILE_OMF FILE_QUICKTIME FILE_ASF FILE_YAMAHA_SY99 FILE_KURZWEIL_2000 FILE_AIFF FILE_AU =item path The filename (or file specification) used to load or save a file. =item format Specifies the type the underlying file format uses. The samples will always be in short or long signed format. Must be one of FORMAT_NO_SND FORMAT_16_LINEAR FORMAT_8_MULAW FORMAT_8_LINEAR FORMAT_32_FLOAT FORMAT_32_LINEAR FORMAT_8_ALAW FORMAT_8_UNSIGNED FORMAT_24_LINEAR FORMAT_64_DOUBLE FORMAT_16_LINEAR_LITTLE_ENDIAN FORMAT_32_LINEAR_LITTLE_ENDIAN FORMAT_32_FLOAT_LITTLE_ENDIAN FORMAT_64_DOUBLE_LITTLE_ENDIAN FORMAT_16_UNSIGNED FORMAT_16_UNSIGNED_LITTLE_ENDIAN FORMAT_24_LINEAR_LITTLE_ENDIAN FORMAT_32_VAX_FLOAT FORMAT_12_LINEAR FORMAT_12_LINEAR_LITTLE_ENDIAN FORMAT_12_UNSIGNED FORMAT_12_UNSIGNED_LITTLE_ENDIAN COMPATIBLE_FORMAT PDL::Audio conviniently defines the following aliases for the following constants, that are already correct for the host byteorder: FORMAT_ULAW_BYTE FORMAT_ALAW_BYTE FORMAT_LINEAR_BYTE FORMAT_LINEAR_SHORT FORMAT_LINEAR_USHORT FORMAT_LINEAR_LONG FORMAT_LINEAR_FLOAT FORMAT_LINEAR_DOUBLE =item comment The file comment (if any). =item device The device to output audio. One of: DEV_DEFAULT DEV_READ_WRITE DEV_ADAT_IN DEV_AES_IN DEV_LINE_OUT DEV_LINE_IN DEV_MICROPHONE DEV_SPEAKERS DEV_DIGITAL_IN DEV_DIGITAL_OUT DEV_DAC_OUT DEV_ADAT_OUT DEV_AES_OUT DEV_DAC_FILTER DEV_MIXER DEV_LINE1 DEV_LINE2 DEV_LINE3 DEV_AUX_INPUT DEV_CD_IN DEV_AUX_OUTPUT DEV_SPDIF_IN DEV_SPDIF_OUT =back =head2 EXPORTED CONSTANTS In addition to the exported constants described above (and later in the function descriptions), this module also exports the mathematical constants M_PI and M_2PI, so watch out for clashes! =cut EOD @cconsts = qw( SNDLIB_DEFAULT_DEVICE SNDLIB_READ_WRITE_DEVICE SNDLIB_ADAT_IN_DEVICE SNDLIB_AES_IN_DEVICE SNDLIB_LINE_OUT_DEVICE SNDLIB_LINE_IN_DEVICE SNDLIB_MICROPHONE_DEVICE SNDLIB_SPEAKERS_DEVICE SNDLIB_DIGITAL_IN_DEVICE SNDLIB_DIGITAL_OUT_DEVICE SNDLIB_DAC_OUT_DEVICE SNDLIB_ADAT_OUT_DEVICE SNDLIB_AES_OUT_DEVICE SNDLIB_DAC_FILTER_DEVICE SNDLIB_MIXER_DEVICE SNDLIB_LINE1_DEVICE SNDLIB_LINE2_DEVICE SNDLIB_LINE3_DEVICE SNDLIB_AUX_INPUT_DEVICE SNDLIB_CD_IN_DEVICE SNDLIB_AUX_OUTPUT_DEVICE SNDLIB_SPDIF_IN_DEVICE SNDLIB_SPDIF_OUT_DEVICE SNDLIB_NO_SND SNDLIB_16_LINEAR SNDLIB_8_MULAW SNDLIB_8_LINEAR SNDLIB_32_FLOAT SNDLIB_32_LINEAR SNDLIB_8_ALAW SNDLIB_8_UNSIGNED SNDLIB_24_LINEAR SNDLIB_64_DOUBLE SNDLIB_16_LINEAR_LITTLE_ENDIAN SNDLIB_32_LINEAR_LITTLE_ENDIAN SNDLIB_32_FLOAT_LITTLE_ENDIAN SNDLIB_64_DOUBLE_LITTLE_ENDIAN SNDLIB_16_UNSIGNED SNDLIB_16_UNSIGNED_LITTLE_ENDIAN SNDLIB_24_LINEAR_LITTLE_ENDIAN SNDLIB_32_VAX_FLOAT SNDLIB_12_LINEAR SNDLIB_12_LINEAR_LITTLE_ENDIAN SNDLIB_12_UNSIGNED SNDLIB_12_UNSIGNED_LITTLE_ENDIAN SNDLIB_COMPATIBLE_FORMAT NeXT_sound_file AIFC_sound_file RIFF_sound_file BICSF_sound_file NIST_sound_file INRS_sound_file ESPS_sound_file SVX_sound_file VOC_sound_file SNDT_sound_file raw_sound_file SMP_sound_file SD2_sound_file AVR_sound_file IRCAM_sound_file SD1_sound_file SPPACK_sound_file MUS10_sound_file HCOM_sound_file PSION_sound_file MAUD_sound_file IEEE_sound_file DeskMate_sound_file DeskMate_2500_sound_file Matlab_sound_file ADC_sound_file SoundEdit_sound_file SoundEdit_16_sound_file DVSM_sound_file MIDI_file Esignal_file soundfont_sound_file gravis_sound_file comdisco_sound_file goldwave_sound_file srfs_sound_file MIDI_sample_dump DiamondWare_sound_file RealAudio_sound_file ADF_sound_file SBStudioII_sound_file Delusion_sound_file Farandole_sound_file Sample_dump_sound_file Ultratracker_sound_file Yamaha_SY85_sound_file Yamaha_TX16_sound_file digiplayer_sound_file Covox_sound_file SPL_sound_file AVI_sound_file OMF_sound_file Quicktime_sound_file asf_sound_file Yamaha_SY99_sound_file Kurzweil_2000_sound_file AIFF_sound_file BANDPASS DIFFERENTIATOR HILBERT ); for (@cconsts) { local $_ = $_; s/^SNDLIB_(.*)_DEVICE/DEV_$1/; s/^SNDLIB_/FORMAT_/; s/MIDI_file/FILE_MIDI/; s/MIDI_sample_dump/FILE_MIDI_sample_dump/; s/Esignal_file/FILE_Esignal/; s/(.*)_sound_file/FILE_$1/; push @pconsts, uc $_; } @METHODS = qw( waudio cut_leading_silence cut_trailing_silence cut_silence filter_zpolar partials2polynomial scale2short filter_fir filter_iir rfft irfft spectrum filter_comb filter_notch filter_allpass filter_src filter_granulate filter_contrast_enhance describe_audio filter_center ring_modulate amplitude_modulate filter_ppolar design_remez_fir concat gen_oscil gen_sawtooth gen_square gen_triangle gen_asymmetric_fm gen_rand_1f gen_env audiomix gen_sum_of_cosines gen_sine_summation gen_fft_window gen_pulse_train gen_rand gen_from_table gen_from_partials partials2waveshape ); @EXPORT = (qw( sound_format_name sound_type_name raudio FORMAT_ULAW_BYTE FORMAT_ALAW_BYTE FORMAT_LINEAR_BYTE FORMAT_LINEAR_SHORT FORMAT_LINEAR_USHORT FORMAT_LINEAR_LONG FORMAT_LINEAR_FLOAT FORMAT_LINEAR_DOUBLE M_PI M_2PI ), @METHODS, @pconsts); for (@EXPORT) { pp_add_exported "", $_; } pp_addpm "\@METHODS = qw(@METHODS);\n"; $addboot = "{\nHV *stash = gv_stashpvn(\"PDL::Audio\", 10, TRUE);"; for (0..$#cconsts) { $addboot .= " newCONSTSUB(stash, \"$pconsts[$_]\", newSViv($cconsts[$_]));\n"; } $addboot .= " newCONSTSUB(stash, \"M_PI\" , newSVnv(M_PI ));\n"; $addboot .= " newCONSTSUB(stash, \"M_2PI\", newSVnv(M_2PI));\n"; $addboot .= '} mus_set_error_handler (mus_barfer); '; pp_add_boot $addboot; pp_addpm <<'EOD'; use PDL::LiteF; use PDL::Complex; use Carp; $bigendian = 0x55 == unpack "S", "\0U"; sub FORMAT_ULAW_BYTE (){ FORMAT_8_MULAW } sub FORMAT_ALAW_BYTE (){ FORMAT_8_ALAW } sub FORMAT_LINEAR_BYTE (){ FORMAT_8_UNSIGNED } sub FORMAT_LINEAR_SHORT (){ $bigendian ? FORMAT_16_LINEAR : FORMAT_16_LINEAR_LITTLE_ENDIAN } sub FORMAT_LINEAR_USHORT(){ $bigendian ? FORMAT_16_UNSIGNED : FORMAT_16_UNSIGNED_LITTLE_ENDIAN } sub FORMAT_LINEAR_LONG (){ $bigendian ? FORMAT_32_LINEAR : FORMAT_32_LINEAR_LITTLE_ENDIAN } sub FORMAT_LINEAR_FLOAT (){ $bigendian ? FORMAT_32_FLOAT : FORMAT_32_FLOAT_LITTLE_ENDIAN } sub FORMAT_LINEAR_DOUBLE(){ $bigendian ? FORMAT_32_DOUBLE : FORMAT_32_DOUBLE_LITTLE_ENDIAN } sub FILE_AU (){ FILE_NEXT } # provide some accessor methods for my $field (qw(rate comment filetype path format)) { *{"PDL::$field"} = sub { my $pdl = shift; my $hdr = $pdl->gethdr; if (@_) { $hdr->{$field} = $_[0]; $pdl->sethdr($hdr); }; $hdr->{$field}; }; } =head2 sound_format_name format_code Return the human-readable name of the file format with code C. =head2 sound_type_name type_code Return the human-readable name of the sample type with code C. =head2 describe_audio piddle Describe the audio stream contained in piddle and return it as a string. A fresh piddle might return: mono sound with 27411 samples Whereas a freshly loaded soundfile might yield: stereo sound with 27411 samples, original name "kongas.wav", type 2 (RIFF), rate 11025/s (duration 2.49s), format 7 (8-bit unsigned) =cut sub describe_audio($) { my $pdl = shift; my ($channels, $samples) = $pdl->dims; ($channels, $samples) = (1, $channels) unless defined $samples; my $chan = $channels < 2 ? "mono" : $channels == 2 ? "stereo" : $channels == 4 ? "quad channel" : "$channels channel"; my $desc = "$chan sound with $samples samples"; $desc .= sprintf ", original name \"%s\"", $pdl->path if $pdl->path; $desc .= sprintf ", type %d (%s)", $pdl->filetype, sound_type_name($pdl->filetype) if $pdl->filetype; $desc .= sprintf ", rate %d/s (duration %.2fs)", $pdl->rate, $samples/$pdl->rate if $pdl->rate; $desc .= sprintf ", format %d (%s)", $pdl->format, sound_format_name($pdl->format) if $pdl->format; $desc } =head2 raudio path, [option-hash], option => value, ... Reads audio data into the piddle. Options can be anything, most useful values are C, C, C and C. The returned piddle is represents "time" in the outer dimension, and samples in the inner (i.e. scalars for mono files, 2-vectors for stereo files): [ [left0, right0], [left1, right1], [left2, right2], ...] # read any file $pdl = raudio "file.wav"; # read a file. if it is a raw file preset values $pdl = raudio "file.raw", filetype => FILE_RAW, rate => 44100, channels => 2; =head2 waudio pdl, [option-hash], option => value, ... Writes a pdl as a file. See L for options and format. The path and other metadata is taken from the header, whcih cna be overwritten using options, e.g.: # write a file, using the header of another piddle $pdl->waudio ($orig_file->gethdr); # write pdl as .au file, take rate from the header $pdl->waudio (path => "piddle.au", filetype => FILE_AU, format => FORMAT_16_LINEAR; =cut # read a sound file sub raudio { my $path = shift; my %hdr = (); %hdr = (%hdr, %{+shift}) if ref $_[0]; %hdr = (%hdr, @_) if @_; # for raw files this is necessary mus_set_raw_header_defaults $hdr{rate} || 44100, $hdr{channels}|| 1, $hdr{format} || FORMAT_LINEAR_SHORT; $hdr{path} = $path; $hdr{filetype} = sound_header_type $path; $hdr{filetype} >= 0 or barf "$path: ".audio_error_name audio_error; $hdr{rate} = sound_srate $path; $hdr{comment} = sound_comment $path if defined sound_comment $path; $hdr{format} = sound_data_format $path; my $channels = sound_chans $path; my $frames = sound_frames $path; my $fd = open_sound_input $path; $fd >= 0 or barf "$path: ".audio_error_name audio_error; my $pdl = zeroes long, $frames, $channels; $pdl->clump(-1)->read_sound ($fd, $channels, $frames) >= 0 or barf "$path: ".audio_error_name audio_error; (close_sound_input $fd) >= 0 or barf "$path: ".audio_error_name audio_error; $pdl = $pdl->short->xchg(0,1); $pdl = $pdl->clump(2) if $channels == 1; $pdl->sever; $pdl->sethdr(\%hdr); $pdl } sub _audio_make_plain { my $pdl = shift; if ($pdl->getndims == 1) { ($pdl, 1, $pdl->getdim(0)) } else { ($pdl->xchg(0,1)->clump(-1), $pdl->dims) } } sub waudio { my $pdl = shift; my %hdr = %{$pdl->gethdr || {}}; %hdr = (%hdr, %{+shift}) if ref $_[0]; %hdr = (%hdr, @_) if @_; my ($channels, $frames); $hdr{filetype} = FILE_NEXT unless exists $hdr{filetype}; $hdr{format} ||= FORMAT_16_LINEAR; $hdr{rate} ||= 44100; ($pdl, $channels, $frames) = _audio_make_plain $pdl->convert(long); 1 <= $channels && $channels <= 2 or croak "can only write mono or stereo (one or two channel) files, not $channels channel files"; my $fd = open_sound_output $hdr{path}, $hdr{rate}, $channels, $hdr{format}, $hdr{filetype}, $hdr{comment}; $fd >= 0 or barf "$hdr{$path}: ".audio_error_name audio_error; $pdl->clump(-1)->write_sound($fd, $channels, $frames) >= 0 or barf "$path: ".audio_error_name audio_error; (close_sound_output $fd, mus_samples2bytes $hdr{format}, $frames * $channels) >= 0 or barf "$hdr{$path}: ".audio_error_name audio_error; } =head2 cut_leading_silence pdl, level Cuts the leading silence (i.e. all samples with absolute value < level) and returns the resulting part. =head2 cut_trailing_silence pdl, level Cuts the trailing silence. =head2 cut_silence pdl, level Calls C and C and returns the result. =cut sub cut_leading_silence { my $pdl = shift; my $level = 1*shift; my $skip = which (abs($pdl) > $level); $skip = $skip->nelem ? $skip->at(0) : 0; $pdl->slice("$skip:-1") } sub cut_trailing_silence { my $pdl = shift; my $level = 1*shift; $level = 400000; my $skip = which (abs($pdl) > $level); $skip = $skip->nelem ? $skip->at(-1) : -1; $skip-- if $skip > 0; $pdl->slice("0:$skip") } sub cut_silence { $_[0]->cut_leading_silence($_[1]) ->cut_trailing_silence($_[1]) } # have we been a bad boy? for (@METHODS) { *{"PDL::$_"} = \&$_; } EOD for my $d (qw(read write)) { pp_def($d.'_sound', Pars => ($d eq "read" ? '[o]' : '') . 'sample(n)', OtherPars => "int fd; int chans; int frames", GenericTypes => [L], PMCode => '', Doc => undef, Code => q@ int chans = $COMP(chans); int frames = $COMP(frames); int **bufs = malloc (chans * sizeof (int *)); int i; dSP; /* hmm... */ assert (sizeof (PDL_long) == sizeof (int)); for (i = 0; i < chans; i++) bufs[i] = (int *)$P(sample) + i * frames; XPUSHs (sv_2mortal (newSViv (@.$d.q@_sound ($COMP(fd), 0, frames - 1, chans, bufs)))); free (bufs); @, ); } pp_addhdr <<'EOH'; #include "sndlib/sndlib.h" #include "xlib.h" static void mus_barfer (int err_type, char *err_msg) { barf ("%s [MUSERR]", err_msg); } EOH pp_addpm <<'EOP'; =head2 playaudio pdl, [option-hash], option => value ... Play the piddle as an audio file. Options can be supplied either through the option hash (a hash-reference), through the pdl header or the options: # play a piddle that has a valid header (e.g. from raudio) $pdl->playaudio; # play it with a different samplerate $pdl->playaudio(rate => 22050); =cut EOP pp_def('playaudio', Pars => 'sample(n)', OtherPars => "int srate; int chans; int format; int dev; int bufsize", GenericTypes => [B,U,S,L], Doc => undef, PMCode => q! sub PDL::playaudio { my $pdl = shift; my %hdr = %{$pdl->gethdr || {}}; %hdr = (%hdr, %{+shift}) if ref $_[0]; %hdr = (%hdr, @_) if @_; my $chans; $hdr{format} ||= FORMAT_LINEAR_SHORT; ($pdl, $chans) = _audio_make_plain $pdl; &PDL::_playaudio_int($pdl, $hdr{rate} || 44100, $chans, $hdr{format}, $hdr{device} || DEV_DEFAULT, $hdr{bufsize} || 32768); } !, Code => q@ int ns; int line; if (sizeof ($GENERIC ()) != mus_format2bytes ($COMP(format))) barf ("pdl datatype and selected audio format do not match"); if (initialize_audio () < 0) barf ("playaudio: %s", audio_error_name (audio_error ())); if ((line = open_audio_output ($COMP(dev), $COMP(srate), $COMP(chans), $COMP(format), $COMP(bufsize))) < 0) barf ("playaudio: %s", audio_error_name (audio_error ())); ns = $SIZE(n); threadloop %{ if (write_audio (line, (void *)$P(sample), ns * sizeof ($GENERIC()))) barf ("playaudio: %s", audio_error_name (audio_error ())); %} if (close_audio (line) < 0) barf ("playaudio: %s", audio_error_name (audio_error ())); @, ); pp_def 'ulaw2linear', Pars => 'byte u(n); short [o] s(n)', GenericTypes => [B], Doc => 'conversion from (m)u-law into signed, linear, 16 bit samples (rather slow)', Code => q! loop(n) %{ $s() = st_ulaw_to_linear ($u()); %} !, ; pp_def 'linear2ulaw', Pars => 'short s(n); byte [o] u(n)', GenericTypes => [S], Doc => 'conversion from signed, linear, 16 bit samples into (m)u-law (rather slow)', Code => q! loop(n) %{ $u() = st_linear_to_ulaw ($s()); %} !, ; pp_def 'alaw2linear', Pars => 'byte u(n); short [o] s(n)', GenericTypes => [B], Doc => 'conversion from A-law into signed, linear, 16 bit samples (rather slow)', Code => q! loop(n) %{ $s() = st_Alaw_to_linear ($u()); %} !, ; pp_def 'linear2alaw', Pars => 'short s(n); byte [o] u(n)', GenericTypes => [S], Doc => 'conversion from signed, linear, 16 bit samples into A-law (rather slow)', Code => q! loop(n) %{ $u() = st_linear_to_Alaw ($s()); %} !, ; pp_addpm <<'EOP'; =head2 gen_oscil duration*, freq/, phase-mod, [fm-mod/] =head2 gen_sawtooth duration*, freq/, phase-mod, [fm-mod/] =head2 gen_square duration*, freq/, phase-mod, duty, [fm-mod/] =head2 gen_triangle duration*, freq/, phase-mod, [fm-mod/] =head2 gen_pulse_train duration*, freq/, phase-mod, [fm-mod/] =head2 gen_rand duration*, freq/ =head2 gen_rand_1f duration* All of these functions generate appropriate waveforms with frequency C (cycles/sample) and phase C (0..1). The C might be either a piddle (which gives the form of the output) or the number of samples to generate. The output samples are between -1 and +1 (i.e. "-1 <= s <= +1"). The C parameter of the square generator influences the duty cycle of the signal. Zero means 50%-50%, 0.5 means 75% on, 25% off, -0.8 means 10% on, 90% off etc... Of course, the C parameter might also be a vector of size C. =cut # return the time offset for duration, freq, phase, fm_mod sub _dur2time($$;$$) { my ($dur, $freq, $phase, $fm_mod) = @_; zeroes($dur)->xvals*$freq+cumusumover($fm_mod)+$phase } sub gen_oscil($$;$$) { my ($dur, $freq, $phase, $fm_mod) = @_; sin M_2PI*_dur2time($dur,$freq,$phase,$fm_mod); } sub gen_sawtooth($$;$$) { my ($dur, $freq, $phase, $fm_mod) = @_; # maybe better use abs? $freq = $fm_mod * $freq if defined $fm_mod; (_dur2time($dur,$freq,$phase,$fm_mod) % 1 - 0.5) * 2; } sub gen_square($$;$$$) { my ($dur, $freq, $phase, $duty, $fm_mod) = @_; (gen_sawtooth($dur,$freq,$phase,$fm_mod) < $duty) * 2 - 1; } sub gen_triangle($$;$$) { my ($dur, $freq, $phase, $fm_mod) = @_; my $st = gen_sawtooth($dur,$freq,$phase,$fm_mod); $st * (($st < 0) * 2 - 1); } sub gen_pulse_train($$;$$) { my ($dur, $freq, $phase, $fm_mod) = @_; my $st = gen_sawtooth($dur,$freq,$phase,$fm_mod); $st < $st->rotate(1); } sub gen_rand($$) { my ($dur, $freq) = @_; my $z = zeroes $dur; my $r = (random zeroes $freq * $z->getdim(0) + 1) * 2 - 1; $r->index($freq * $z->xvals)->sever; } sub gen_rand_1f($) { my ($dur) = @_; $dur = zeroes $dur; _gen_noise_1f($dur); $dur; } =head2 gen_env duration*, xvals, yvals, [base] Generates an interpolated envelope between the points given by xvals and yvals. When base == 1 (the default) then the values will be linearly interpolated, otherwise they follow an exponential curve that is bend inwards (base < 1) or outwards (base > 1). # generate a linear envelope with attack in the first 10% gen_env 5000, [0 1 2 9 10], [0 1 0.6 0.6 0]; =cut sub gen_env($;@) { my ($dur, $x, $y, $base) = @_; my $pdl = zeroes $dur; $base ||= 1; $base == 1 or barf "base values != 1 are not yet implemented\n"; my @x = ref $x eq "ARRAY" ? @$x : $x->list; my @y = ref $y eq "ARRAY" ? @$y : $y->list; my $f = $pdl->getdim(0) / $x[-1]; @x == @y or barf "gen_env: x and y lists have different sizes"; my $x0 = 0; my $y0 = 0; for (0..$#x) { my ($x,$y) = (int($x[$_]*$f),$y[$_]); if ($x > $x0) { my $a = $pdl->slice("$x0:".($x-1)); if ($y0 != $y) { $a .= $a->xlinvals($y0,$y); } else { $a .= $y; } } ($x0,$y0)=($x,$y); } $pdl; } =head2 gen_adsr duration*, sustain-level, attack-time, decay-time, sustain-time, release-time Simple ADSR envelope generator. The C is the amplitude (0 to 1) of the sustain level. The other for parameters give the relative interval times, in any unit you like, only their relative ratios are important. Any of these times might be zero, in which case the corresponding part is omitted from the envelope. =cut sub gen_adsr($$$$$$) { my ($dur, $amp, $a, $d, $s, $r) = @_; my (@x, @y); my $t = 0; push @x, 0; push @y, 0; if ($a > 0) { push @x, $t += $a; push @y, 1 } else { $y[-1] = 1 } if ($d > 0) { push @x, $t += $d; push @y, $amp } else { $y[-1] = $amp } if ($s > 0) { push @x, $t += $s; push @y, $amp } else { $y[-1] = $amp } if ($r > 0) { push @x, $t += $r; push @y, 0 } else { $y[-1] = 0 } zeroes($dur)->xlinvals(0,$t)->linear_interpolate(pdl(@x), pdl(@y)); } =head2 gen_asymmetric_fm duration*, freq/, phase, [r , [ratio]] C provides a way around the symmetric spectra normally produced by FM. See Palamin and Palamin, "A Method of Generating and Controlling Asymmetrical Spectra" JAES vol 36, no 9, Sept 88, p671-685. =cut sub gen_asymmetric_fm($$;$$$) { my ($dur, $freq, $phase, $r, $ratio) = @_; $r ||= 1; $ratio ||= 1; my $cosr = 0.5 * ($r - 1/$r); my $sinr = 0.5 * ($r + 1/$r); $phase = zeroes($dur)->xvals*$freq + $phase; my $mth = $phase * $ratio; exp ($cosr * cos $mth) * sin ($phase + $sinr * sin $mth); } =head2 gen_sum_of_cosines duration*, freq/, phase, ncosines, [fm_mod/] Generates a sum of C cosines C<(1 + 2(cos(x) + cos(2x) + ... cos(nx)) = sin((n+.5)x) / sin(x/2))>. Other arguments are similar to to C. =head2 gen_sine_summation duration*, freq/, phase, [nsines, [a, [b_ratio, [fm_mod/]]]] C provides a kind of additive synthesis. See J.A.Moorer, "Signal Processing Aspects of Computer Music" and "The Synthesis of Complex Audio Spectra by means of Discrete Summation Formulae" (Stan-M-5). The basic idea is very similar to that used in gen_sum_of_cosines generator. The default value for C is 1 (but zero is a valid value), for C is 0.5 and for C is 1. (btw, either my formula is broken or the output indeed does not lie between -1 and +1, but rather -5 .. +5). =cut sub gen_sum_of_cosines { my ($dur, $freq, $phase, $cosines, $fm_mod) = @_; $cosines ||= 1; $dur = M_2PI*_dur2time($dur,$freq,$phase+1e-6,$fm_mod); sin ($dur * ($cosines+0.5)) / (sin ($dur * 0.5) * (1+2*$cosines)); } sub gen_sine_summation { my ($dur, $freq, $phase, $n, $a, $ratio, $fm_mod) = @_; $n = 1 unless defined $n; $a ||= 0.5; $ratio ||= 1; $dur = M_2PI*_dur2time($dur,$freq,$phase+1e-6,$fm_mod); my $an = $n ? $a**($n+1) : 0; my $B = $dur * $ratio; (sin ($dur) - $a * sin ($dur - $B) - $an * (sin ($dur + $B*($n+1)) - $a * sin ($dur + $B*$n))) / (1 + $a*$a - (2*$a*cos($B))); } =head2 gen_from_table duration*, frequency/, table, [phase], [fm_mod/] C generates a waveform by repeating a waveform given in C, linearly interpolating between successive points of the C. =head2 partials2waveshape size*, partials, amplitudes, [phase], [fm_mod/] Take a (perl or pdl) list of (integer) C and a list of C and generate a single wave shape that results by adding these partial sines. This could (and should) be used by the C generator. =head2 gen_from_partials duration*, frequency/, partials, amplitudes, [phase], [fm_mod/] Take a (perl list or pdl) list of (possibly noninteger) C and a list of C and generate the waveform resulting by summing up all these partial sines. =cut sub gen_from_table { my ($dur, $freq, $table, $phase, $fm_mod) = @_; my $r = _dur2time($dur,$freq,$phase,$fm_mod); my $tx = ($table->dims)[0]; $table = cat($table, $table->at(0))->clump(-1); $r %= 1; $r += 1; $r %= 1; $r *= $tx; $r->linear_interpolate($table->xvals, $table); } sub partials2waveshape { my $dur = zeroes $_[0]; my @idx = ref $_[1] eq "ARRAY" ? @{$_[1]} : $_[1]->list; my @amp = ref $_[2] eq "ARRAY" ? @{$_[2]} : $_[2]->list; my $angle = $dur->xvals * (M_2PI/$dur->getdim(0)); for (0..$#idx) { $dur += $amp[$_] * sin $idx[$_]*$angle; } $dur / max abs $dur; } sub gen_from_partials { my ($dur, $freq, $ti, $ta, $phase, $fm_mod) = @_; my @idx = ref $ti eq "ARRAY" ? @{$ti} : $ti->list; my @amp = ref $ta eq "ARRAY" ? @{$ta} : $ta->list; $dur = zeroes $dur; my $angle = _dur2time($dur,$freq,$phase,$fm_mod); for (0..$#idx) { $dur += $amp[$_] * fast_sin($idx[$_]*$angle); } $dur / max abs $dur; } EOP pp_def '_gen_noise_1f', Pars => '[o]f(n)', GenericTypes => [F,D], Doc => undef, PMCode => undef, Code => q^ static unsigned long ctz[64] = { 6, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 5, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, 4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, 0, 1, 0, }; static unsigned int dice[7]; static unsigned int total = 0; unsigned int n, prevrand, newrand, seed, k; threadloop %{ for (n = 0; n < $SIZE(n); n++) { k = ctz [n & 63]; prevrand = dice[k]; seed = 1664525 * seed + 1013904223; newrand = (seed >> 3); dice[k] = newrand; total += newrand - prevrand; seed = 1103515245 * seed + 12345; newrand = (seed >> 3); $f(n=>n) = ($GENERIC())(total + newrand) * (1./(3<<29)) - 1; } %} ^ ; pp_def 'filter_one_zero', Pars => 'in(n); [o] out(n)', OtherPars => 'double a0; double a1', GenericTypes => [F,D], Doc => 'apply a one zero filter, y(n) = a0 x(n) + a1 x(n-1)', Code => q! double a0 = $COMP(a0); double a1 = $COMP(a1); double x1 = 0.; threadloop %{ loop(n) %{ $out() = a0 * $in() + a1 * x1; x1 = $in(); %} %} ! ; pp_def 'filter_one_pole', Pars => 'in(n); [o] out(n)', OtherPars => 'double a0; double b1', GenericTypes => [F,D], Doc => 'apply a one pole filter, y(n) = a0 x(n) - b1 y(n-1)', Code => q! double a0 = $COMP(a0); double b1 = $COMP(b1); double y2 = 0.; threadloop %{ loop(n) %{ $out() = y2 = a0 * $in() - b1 * y2; %} %} ! ; pp_def 'filter_two_zero', Pars => 'in(n); [o] out(n)', OtherPars => 'double a0; double a1; double a2', GenericTypes => [F,D], Doc => 'apply a two zero filter, y(n) = a0 x(n) + a1 x(n-1) + a2 x(n-2)', Code => q! double a0 = $COMP(a0); double a1 = $COMP(a1); double a2 = $COMP(a2); double x1 = 0.; double x2 = 0.; threadloop %{ loop(n) %{ $out() = a0 * $in() + a1 * x1 + a2 * x2; x2 = x1; x1 = $in(); %} %} ! ; pp_def 'filter_two_pole', Pars => 'in(n); [o] out(n)', OtherPars => 'double a0; double b1; double b2', GenericTypes => [F,D], Doc => 'apply a two pole filter, y(n) = a0 x(n) - b1 y(n-1) - b2 y(n-2)', Code => q! double a0 = $COMP(a0); double b1 = $COMP(b1); double b2 = $COMP(b2); double y1 = 0.; double y2 = 0.; threadloop %{ loop(n) %{ $out() = a0 * $in() - b1 * y1 - b2 * y2; y2 = y1; y1 = $out(); %} %} ! ; pp_def 'filter_formant', Pars => 'in(n); [o] out(n)', OtherPars => 'double radius; double frequency; double gain', GenericTypes => [F,D], Doc => 'apply a formant filter, y(n) = x(n) - r*x(n-2) + 2*r*cos(2*pi*frequency)*y(n-1) - r*r*y(n-2). A good value for C is 1.', Code => q! threadloop %{ double radius = 1. - $COMP(radius); double a0 = $COMP(gain) * sin ($COMP(frequency) * M_2PI) * (1. - (radius * radius)); double a2 = -radius; double b1 = -2. * radius * cos ($COMP(frequency) * M_2PI); double b2 = radius * radius; double x1 = 0.; double x2 = 0.; double y1 = 0.; double y2 = 0.; loop(n) %{ double inval = a0 * $in(); $out() = inval + a2 * x2 - b1 * y1 - b2 * y2; y2 = y1; y1 = $out(); x2 = x1; x1 = inval; %} %} ! ; pp_addpm <<'EOP'; =head2 filter_ppolar pdl, radius/, frequency/ apply a two pole filter (given in polar form). The filter has two poles, one at (radius,frequency), the other at (radius,-frequency). Radius is between 0 and 1 (but less than 1), and frequency is between 0 and 0.5. This is the standard resonator form with poles specified by the polar coordinates of one pole. =head2 filter_zpolar pdl, radius/, frequency/ apply a two zero filter (given in polar form). See C. =cut sub filter_ppolar { my ($pdl, $radius, $freq) = @_; $pdl->filter_two_pole(1, -2*$radius*cos($freq*M_2PI), $radius**2); } sub filter_zpolar { my ($pdl, $radius, $freq) = @_; $pdl->filter_two_zero(1, -2*$radius*cos($freq*M_2PI), $radius**2); } =head2 partials2polynomial partials, [kind] C takes a list of harmonic amplitudes and returns a list of Chebychev polynomial coefficients. The argument C determines which kind of Chebychev polynomial we are interested in, 1st kind or 2nd kind. (default is 1). =cut sub partials2polynomial { my ($partials, $kind) = @_; $kind = 1 unless defined $kind; my $t0 = zeroes($partials->getdim(0)+1); my $t1 = $t0->copy; my $cc1 = $t0->copy; $t0->set(0,1); $t1->set(1,$kind); for my $amp ($partials->list) { $cc1 += $amp * $t1; $tn = 2 * $t1->rshift(1) - $t0; $t0 = $t1; $t1 = $tn; } $cc1; } =head2 ring_modulate in1, in2 ring modulates in1 with in2 (this is just a multiply). =head2 amplitude_modulate am_carrier, in1, in2 amplitude modulates am_carrier and in2 with in1 (this calculates in1 * (am_carrier + in2)). =cut sub ring_modulate { $_[0] * $_[1]; } sub amplitude_modulate { $_[1] * ($_[0] + $_[2]); } EOP pp_def 'filter_sir', Pars => 'x(n); a(an); b(bn); [o]y(n)', GenericTypes => [L,F,D], Doc => <<'EOD', Generic (short delay) impulse response filter. C is the input signal (which is supposed to be zero for negative indices). C contains the input (x) coefficients (a0, a1, .. an), whereas C contains the output (y) coefficients (b0, b1, ... bn), i.e.: y(n) = a0 x(n) - b1 y(n-1) + a1 x(n-1) - b2 y(n-2) + a2 x(n-2) - b3 ... This can be used to generate fir and iir filters of any length, or even more complicated constructs. C (then first element of C) is being ignored currently AND SHOULD BE SPECIFIED AS ONE FOR FUTURE COMPATIBILITY EOD Code => q^ int an = $SIZE(an); int bn = $SIZE(bn); int i, n, I; $GENERIC() v; threadloop %{ for (n = 0; n < $SIZE(n); n++) { v = 0; /* apply loop splitting manually later! */ for (i = 0; i < an; i++) { I = n-i; if (I >= 0) v += $a(an=>i) * $x(n=>I); } for (i = 0; i < bn; i++) { I = n-i; if (I >= 0) v -= $b(bn=>i) * $y(n=>I); } $y(n=>n) = v; } %} ^ ; pp_def 'filter_lir', Pars => 'x(n); int a_x(an); a_y(an); int b_x(bn); b_y(bn); [o]y(n)', GenericTypes => [L,F,D], Doc => <<'EOD', Generic (long delay) impulse response filter. The difference to C is that the filter coefficients need not be consecutive, but instead their indices are given by the C and C (integer) vectors, while the corresponding coefficients are in C and C. (All C must be >= 0, while all the C must be >= 1, as you should expect). See C for more info. EOD Code => q^ int i, n, I; $GENERIC() v; threadloop %{ for (n = 0; n < $SIZE(n); n++) { v = 0; loop(an) %{ I = n-$a_x(); if (I >= 0) v += $a_y() * $x(n=>I); %} loop(bn) %{ I = n-$b_x(); if (I >= 0) v -= $b_y() * $y(n=>I); %} $y(n=>n) = v; } %} ^ ; pp_addpm <<'EOP'; =head2 filter_fir input, xcoeffs Apply a fir (finite impulse response) filter to C. This is the same as calling: filter_sir input, xcoeffs, pdl() =head2 filter_iir input, ycoeffs Apply a iir (infinite impulse response) filter to C. This is just another way of saying: filter_sir input, pdl(1), ycoeffs That is, the first member of C is being ignored AND SHOULD BE SPECIFIED AS ONE FOR FUTURE COMPATIBILITY! =cut sub filter_fir($$) { filter_sir ($_[0], $_[1], PDL->pdl()); } sub filter_iir($$) { filter_sir ($_[0], PDL->pdl(1), $_[1]); } =head2 filter_comb input, delay*, scaler Apply a comb filter to the piddle C. This is implemented using a delay line of length C (which must be 1 or larger and can be non-integer) and a feedback scaler. y(n) = x(n-size-1) + scaler * y(n-size) cf. C and http://www.harmony-central.com/Effects/Articles/Reverb/comb.html =head2 filter_notch input, delay*, scaler Apply a comb filter to the piddle C. This is implemented using a delay line of length C (which must be 1 or larger and can be non-integer) and a feedforward scaler. y(n) = x(n-size-1) * scaler + y(n-size) As a rule of thumb, the decay time of the feedback part is C<7*delay/(1-scaler)> samples, so to get a decay of Dur seconds, C. The peak gain is C<1/(1-(abs scaler))>. The peaks (or valleys in notch's case) are evenly spaced at C. The height (or depth) thereof is determined by scaler -- the closer to 1.0, the more pronounced. See Julius Smith's "An Introduction to Digital Filter Theory" in Strawn "Digital Audio Signal Processing", or Smith's "Music Applications of Digital Waveguides" =head2 filter_allpass input, delay*, scaler-feedback, scaler-feedforward C or "moving average comb" is just like C but with an added feedforward term. If C, we get a moving average comb filter. If both scaler terms == 0, we get a pure delay line. y(n) = feedforward*x(n-1) + x(n-size-1) + feedback*y(n-size) cf. http://www.harmony-central.com/Effects/Articles/Reverb/allpass.html =cut sub _filter_combnotchall { my ($pdl, $size, $scalercomb, $scalernotch, $scalerall) = @_; my $D = int $size; my $F = $size - $D; my $a = zeroes $D+2; $a->set($D,1-$F); $a->set($D+1, $F); my $b = zeroes $D+2; $b->set($D,$F-1); $b->set($D+1,-$F); $a->set(1, $a->at(1) + $scalerall); $b->set(0, 1); $pdl->filter_sir($a*$scalernotch,$b*$scalercomb); } sub filter_comb { _filter_combnotchall $_[0], $_[1], $_[2], 1, 0; } sub filter_notch { _filter_combnotchall $_[0], $_[1], 1, $_[2], 0; } sub filter_allpass { _filter_combnotchall $_[0], $_[1], $_[2], 1, $_[3]; } =head2 design_remez_fir filter_size, bands(2,b), desired_gain(b), type, [weight(b)] Calculates the optimal (in the Chebyshev/minimax sense) FIR filter impulse response given a set of band edges, the desired reponse on those bands, and the weight given to the error in those bands, using the Parks-McClellan exchange algorithm. The first argument sets the filter size: C returns as many coefficients as specified by this parameter. C is a vector of band edge pairs (start - end), which specify the start and end of the bands in the filter specification. These must be non-overlapping and sorted in increasing order. Only values between C<0> (0 Hz) and C<0.5> (the Nyquist frequency) are allowed. C specifies the desired gain in these bands. C can be used to give each band a different weight. If absent, a vector of ones is used. C is any of the exported constants C, C or C and can be used to select various design types (use C until this is documented ;) =cut sub design_remez_fir { my ($size, $bands, $des, $type, $weight) = @_; $weight = ones $des unless defined $weight; $size = zeroes $size; _design_remez_fir($bands, $des, $weight, $size, $type); $size; } =head2 filter_src input, srate, [width], [sr-mod] Generic sampling rate conversion, implemented by convoluting C with a sinc function of size C (default when unspecified or zero: 5). C determines the input rate / output rate ratio, i.e. values > 1 speed up, values < 1 slow down. Values < 0 are allowed and reverse the signal. If C is omitted, the size of the output piddle is calculcated as C, e.g. it provides the full stretched or shrinked input signal. If C is specified it must be as large as the desired output, i.e. it's size determines the output size. Each value in C is added to C at the given point in "time", so it can be used to "modulate" the sampling rate change. # create a sound effect in the style of "Forbidden Planet" $osc = 0.3 * gen_oscil $osc, 30 / $pdl->rate; $output = filter_src($input, 1, 0, $osc); =cut sub filter_src($$;$$) { my ($input, $srate, $width, $sr_mod) = @_; $width ||= 5; $width*2 < $input->getdim(0) or barf "src width too large (> 0.5 * input size)"; my $output; if (defined $sr_mod) { $output = zeroes $sr_mod; } else { $output = zeroes ($input->getdim(0) / abs($srate)); $sr_mod = PDL->null; } _filter_src($input, $output, $sr_mod, $srate, $width); $output->rate($input->rate / abs($srate)) if $input->rate; $output; } =head2 filter_contrast_enhance input, enhancement Contrast-enhancement phase-modulates a sound file. It's like audio MSG. The actual algorithm is (applied to the normalised sound) C. The result is to brighten the sound, helping it cut through a huge mix. =cut sub filter_contrast_enhance { my ($pdl, $idx) = @_; $idx = 0.1 unless defined $idx; $pdl = $pdl - min $pdl; $pdl = ($pdl * (M_PI / max $pdl)) - M_PI * 0.5; sin $pdl + $idx * sin $pdl*4; } =head2 filter_granulate input, expansion, [option-hash], option => value... C "granulates" the sound file file. It is the poor man's way to change the speed at which things happen in a recorded sound without changing the pitches. It works by slicing the input file into short pieces, then overlapping these slices to lengthen (or shorten) the result; this process is sometimes known as granular synthesis, and is similar to the "freeze" function. The duration of each slice is C -- the longer, the more like reverb the effect. The portion of the length (on a scale from 0 to 1.0) spent on each ramp (up or down) is C. This can control the smoothness of the result of the overlaps. The more-or-less average time between successive segments is C. The accuracy at which we handle this hopping is set by the float C -- if C is very small, you may get an annoying tremolo. The overall amplitude scaler on each segment is C -- this is used to try to to avoid overflows as we add all these zillions of segments together. C determines the input hop in relation to the output hop; an expansion-amount of C<2.0> should more or less double the length of the original, whereas an expansion-amount of C<1.0> should return something close to the original speed. The defaults for the arguments/options are: expansion 1.0 length(*) 0.15 scaler 0.6 hop(*) 0.05 ramp 0.4 jitter(*) 0.5 maxsize infinity The parameters/options marked with (*) actually depend on the sampling rate, and are always multiplied by the C attribute of the piddle internally. If the piddle lacks that attribute, 44100 is assumed. NOTE: This is different to most other filters, but should be ok since C only makes sense for audiofiles. =cut sub filter_granulate { my $input = shift; my $expansion = shift || 1; my %hdr = (); %hdr = (%hdr, %{+shift}) if ref $_[0]; %hdr = (%hdr, @_) if @_; my $rate = $hdr{rate} || 44100; my $length = ($hdr{length} || 0.15) * $rate; my $scaler = $hdr{scaler} || 0.6; my $hop = ($hdr{hop} || 0.05) * $rate; my $ramp = $hdr{ramp} || 0.4; my $jitter = ($hdr{jitter} || 0.5) * $rate; my $maxsize = $hdr{maxsize}|| 0; $output = zeroes $expansion * $input->getdim(0); _filter_granulate($input, $output, $expansion, $length, $scaler, $hop, $ramp, $jitter, $maxsize); $output; } EOP pp_def '_design_remez_fir', Pars => 'bands(2,b); des(b); weight(b); [o]h(n)', OtherPars => 'int type', GenericTypes => [D], Doc => undef, PMCode => undef, Code => q^ int type = $COMP(type); if (type != BANDPASS && type != DIFFERENTIATOR && type != HILBERT) barf ("design_remez_fir: illegal type specified (none of BANDPASS, DIFFERENTIATOR, HILBERT)"); remez ($P(h), $SIZE(n), $SIZE(b), $P(bands), $P(des), $P(weight), type); ^ ; pp_def '_filter_src', Pars => 'input(n); [o]output(m); sr_mod(m2)', OtherPars => 'double srate; int width', GenericTypes => [D], Doc => undef, PMCode => undef, Code => q! mus_src ($P(input), $SIZE(n), $P(output), $SIZE(m), $COMP(srate), $SIZE(m) == $SIZE(m2) ? $P(sr_mod) : 0, $COMP(width)); ! ; pp_def '_filter_granulate', Pars => 'input(n); [o]output(m)', OtherPars => 'double expansion; double length; double scaler; double hop; double ramp; double jitter; int max_size', GenericTypes => [D], Doc => undef, PMCode => undef, Code => q! mus_granulate ($P(input), $SIZE(n), $P(output), $SIZE(m), $COMP(expansion), $COMP(length), $COMP(scaler), $COMP(hop), $COMP(ramp), $COMP(jitter), $COMP(max_size)); ! ; pp_addpm <<'EOP'; =head2 audiomix pos1, data1, pos2, data2, ... Generate a mix of all given piddles. The resulting piddle will contain the sum of all data-piddles at their respective positions, so some scaling will be necessary before or after the mixing operation (e.g. scale2short). # mix the sound gong1 at position 0, the sound bass5 at position 22100 # and gong2 at position 44100. The resulting piddle will be large enough # to accomodate all the sounds: $mix = audiomix 0, $gong1, 44100, $gong2, 22100, $gong2 =cut sub audiomix { my(@x,@p); my($dur,$i,$end,$s,$p); for ($i = 0; $i < @_; $i += 2) { $end = $_[$i] + $_[$i+1]->getdim(0); $dur = $end if $end > $dur; } my $pdl = zeroes $dur; for ($i = 0; $i < @_; $i += 2) { ($s,$p) = (int($_[$i]), $_[$i+1]); ($end = $pdl->slice("$s:".($s+$p->getdim(0)-1))) += $p; } $pdl; } =head2 filter_center piddle Normalize the piddle so that it is centered around C and has maximal amplitude of 1. =cut sub filter_center($) { my $piddle = shift; $piddle = $piddle - min $piddle; $piddle * (2 / max $piddle) - 1; } =head2 scale2short piddle This method takes a sound in any format (preferably float or double) and scales it to fit into a signed short value, suitable for playback using C or similar functions. =cut sub scale2short { my $pdl = shift->float; ($pdl * (1 / max abs $pdl) * 32767.5 - 0.5)->short; } =head2 gen_fft_window size*, type, [$beta] Creates and returns a specific fft window. The C is any of the following. These are (case-insensitive) strings, so you might need to quote them. RECTANGULAR just ones (the identity window) HANNING 0.50 - 0.50 * cos (0 .. 2pi) HAMMING 0.54 - 0.46 * cos (0 .. 2pi) WELCH 1 - (-1 .. 1) ** 2 PARZEN the triangle window BARTLETT the symmetric triangle window BLACKMAN2 blackman-harris window of order 2 BLACKMAN3 blackman-harris window of order 3 BLACKMAN4 blackman-harris window of order 4 EXPONENTIAL the exponential window KAISER the kaiser/bessel window (using the parameter C) CAUCHY the cauchy window (using the parameter ) POISSON the poisson window (exponential using parameter C) RIEMANN the riemann window (sinc) GAUSSIAN the gaussian window of order C) TUKEY the tukey window (C specifies how much of the window consists of ones). COSCOS the cosine-squared window (a partition of unity) SINC same as RIEMANN HANN same as HANNING (his name was Hann, not Hanning) LIST this "type" is special in that it returns a list of all types =cut sub gen_fft_window { my ($size, $type, $beta) = @_; $beta = 2.5 unless defined $beta; $size = $size->getdim(0) if ref $size; $size > 2 or barf "fft window size too small"; my $midn = $size >> 1; my $midm1 = ($size-1) >> 1; my $midp1 = ($size+1) >> 1; my $dur = zeroes $size; my $sf = ($size-1)/$size; %fft_window = ( RECTANGULAR => sub { $dur->ones }, HANNING => sub { 0.5 - 0.5 * cos $dur->xlinvals(0,M_2PI*$sf) }, HAMMING => sub { 0.53836 - 0.46164 * cos $dur->xlinvals(0,M_2PI*$sf) }, WELCH => sub { 1 - $dur->xlinvals(-1,$sf)**2; }, PARZEN => sub { 1 - abs $dur->xlinvals(-$sf,$sf); }, BARTLETT => sub { 1 - abs $dur->xlinvals(-1,1); }, BLACKMAN2 => sub { my $cx = cos $dur->xlinvals(0,M_2PI*$sf); 0.34401 + ($cx * (-0.49755 + ($cx * 0.15844))); }, BLACKMAN3 => sub { my $cx = cos $dur->xlinvals(0,M_2PI*$sf); 0.21747 + ($cx * (-0.45325 + ($cx * (0.28256 - ($cx * 0.04672))))); }, BLACKMAN4 => sub { my $cx = cos $dur->xlinvals(0,M_2PI*$sf); 0.084037 + ($cx * (-0.29145 + ($cx * (0.375696 + ($cx * (-0.20762 + ($cx * 0.041194))))))); }, EXPONENTIAL => sub { 2 ** (1 - abs $dur->xlinvals(-1,$sf)) - 1; }, KAISER => sub { bessi0 ($beta * sqrt(1 - $dur->xlinvals(-1,$sf)**2)) / bessi0 ($beta); }, CAUCHY => sub { 1 / (1 + ($dur->xlinvals(-1,$sf)*$beta)**2); }, POISSON => sub { exp (-$beta * abs $dur->xlinvals(-1,$sf)); }, RIEMANN => sub { my $dur1 = $dur->slice("0:$midm1"); my $dur2 = $dur->slice("-1:$midp1:-1"); my $cx; $cx = $dur1->xlinvals(M_PI,M_2PI/$size); $dur1 .= sin ($cx) / $cx; $cx = $dur2->xlinvals(M_PI,M_2PI/$size); $dur2 .= sin ($cx) / $cx; ($cx = $dur->slice("$midm1:$midp1")) .= 1; $dur; }, GAUSSIAN => sub { exp (-0.5 * ($beta * abs $dur->xlinvals(-1,$sf))**2); }, TUKEY => sub { $beta >= 0 && $beta <= 1 or barf "beta must be between 0 and 1 for the tukey window"; my $cx = int ($midn * (1 - $beta)); my $cX = $size-$cx-1; my $dur1 = $dur->slice("0:".($cx-1)); my $dur2 = $dur->slice("-1:".($cX+1).":-1"); my $dur3 = $dur->slice("$cx:$cX"); $dur1 .= 0.5 * (1 - cos $dur1->xlinvals(0, M_PI)); $dur2 .= 0.5 * (1 - cos $dur2->xlinvals(0, M_PI)); $dur3 .= 1; $dur; }, COSCOS => sub { (cos $dur->xlinvals(M_PI/-2,M_PI/2))**2; }, LIST => sub { grep $_ ne "LIST", keys %fft_window; }, ); $fft_window{SINC} = $fft_window{RIEMANN}; $fft_window{HANN} = $fft_window{HANNING}; $type = uc $type; $fft_window{$type} or barf "$type: no such window"; $fft_window{$type}->(); } =head2 cplx(2,n) = rfft real(n) Do a (complex fft) of C (extended to complex so that the imaginary part is zero), and return the complex fft result. This function tries to use L (which is faster for large vectors) when available, and falls back to L, which is likely to return different phase signs (due to different kernel functions), so beware! In fact, since C has to shuffle the data when using PDL::FFT, the fallback is always slower. When using PDL::FFTW, a wisdom file ~/.pdl_wisdom is used and updated, if possible. =head2 real(n) = irfft cplx(2,n) The inverse transformation (see C). C always holds. =cut my $fftw_loaded; sub _fftw { defined $fftw_loaded or eval { $fftw_loaded = 0; require PDL::FFTW; PDL::FFTW::load_wisdom("$ENV{HOME}/.pdl_wisdom") if -r "$ENV{HOME}/.pdl_wisdom"; $fftw_loaded = 1; }; $fftw_loaded; } sub rfft { my $data = $_[0]; if (_fftw) { my $x = $data->r2C; $x = PDL::FFTW::fftw $x; $x; } else { require PDL::FFT; my @fft = ($data->copy, $data->zeroes); PDL::FFT::fft(@fft); cat(@fft)->xchg(0,1); } } sub irfft { if (_fftw) { $x = $_[0]->copy; $x = PDL::FFTW::ifftw $x; re $x / $x->getdim(1); } else { require PDL::FFT; my @fft = $_[0]->xchg(0,1)->dog({Break => 1}); PDL::FFT::ifft(@fft); $fft[0]; } } =head2 spectrum data, [norm], [window], [beta] Returns the spectrum of a given pdl. If C is absent (or C), it returns the magnitude of the fft of C. When C == 1 (or C, case-insensitive), it returns the magnitude, normalized to be between zero and one. If C == 0 (or C, case-insensitive), then it returns the magnitude in dB. C is multiplied with C (if not C) before calculating the fft, and usually contains a window created with C (using C). If C is a string, it is handed over to C (together with the beta parameter) to create a window of suitable size. This function could be slightly faster. =cut sub spectrum { my ($data, $norm, $window, $beta) = @_; my $len; if (defined $window) { $window = gen_fft_window ($data->getdim (0), $window, $beta) unless ref $window; $data = $data * $window; $len = $window->getdim (0); } else { $len = $data->getdim (0); } $data = rfft ( $data->slice ("0:" . ($len - 1)) ->sever ) ->slice (",0:" . int ($len / 2)) ->PDL::Complex::Cr2p ->slice ("(0)"); if ($norm == 1 || lc $norm eq "norm") { $data / max $data; } elsif (($norm =~ /^[.0]+$/) || (lc $norm eq "db")) { log (1e-37 + $data / max $data) * (20 / log 10); } else { $data; } } =head2 concat pdl, pdl... This is not really an audio-related function. It simply takes all piddles and concats them into a larger one. At the moment it only supports single-dimensional piddles and is implemented quite slowly using perl and data-copying, but that might change... =cut sub concat { my $len = sum pdl map $_->getdim(0), @_; my $r = zeroes $len; my $o = 0; for (@_) { my $e = $o + $_->getdim(0) - 1; (my $t = $r->slice("$o:$e")) .= $_; $o = $e + 1; } $r; } EOP # TODO: document! pp_def 'filter_convolve', Pars => 'input(n); kernel(m); int fftsize(); [o]output(n)', GenericTypes => [D], Code => q! mus_convolve ($P(input), $P(output), $SIZE(n), $P(kernel), $fftsize(), $SIZE(m)); ! ; pp_def 'rshift', Doc => <<'EOD', =for ref Shift vector elements without wrap and fill the free space with a constant. Flows data back & forth, for values that overlap. Positive values shift right, negative values shift left. EOD Pars => 'x(n); int shift(); c(); [oca]y(n)', DefaultFlow => 1, Reversible => 1, PMCode => ' sub PDL::rshift { my @a = @_; if($#a == 3) { &PDL::_rshift_int(@a);@a=(); } elsif($#a == 1 || $#a == 2) { $a[3] = PDL->nullcreate($a[0]); &PDL::_rshift_int(@a); $a[3]; } else { barf "Invalid number of arguments for shiftin"; } } ', Code=>' int i,j; int n_size = $SIZE(n); for(i = -$shift(), j=0; j < n_size; i++, j++) $y(n=>j) = i >= 0 && i < n_size ? $x(n=>i) : $c(); ', BackCode=>' int i,j; int n_size = $SIZE(n); for(i = -$shift(), j=0; j < n_size; i++, j++) if (i >= 0 && i < n_size) $x(n=>i) = $y(n=>j); ' ; pp_def 'polynomial', Pars => 'coeffs(n); x(m); [o]out(m)', Doc => 'evaluate the polynomial with coefficients C at the position(s) C. C is the constant term.', Code => q! loop(m) %{ $GENERIC() x = 1; $GENERIC() o = 0; loop(n) %{ o += $coeffs() * x; x *= $x(); %} $out() = o; %} ! ; pp_def 'linear_interpolate', Pars => 'x(); fx(n); fy(n); [o]y()', GenericTypes => [L,F,D], Doc => ' Look up the ordinate C in the function given by C and C and return a linearly interpolated value (somewhat optimized for many lookups). C specifies the ordinates (x-coordinates) of the function and most be sorted in increasing order. C are the y-coordinates of the function in these points. ', Code => q! int d = 0; int D = $SIZE(n) - 1; /* a tribute to PP's stupidity */ $GENERIC() xmin =$fx(n=>0); $GENERIC() xmax =$fx(n=>D); threadloop %{ $GENERIC() x = $x(); $GENERIC() x1, x2, y1, y2; if (x <= xmin) $y() = $fy(n=>0); else if (x >= xmax) $y() = $fy(n=>D); else { while ($fx(n=>d) > x) d--; while ($fx(n=>d) <= x) d++; /* 0 < d <= D */ /* fx(d-1) < x <= fx(d) */ x2 = $fx(n=>d); y2 = $fy(n=>d); d--; x1 = $fx(n=>d); y1 = $fy(n=>d); $y() = y1 + (x-x1)*(y2-y1)/(x2-x1); } %} ! ; pp_def 'bessi0', Pars => 'a(); [o]b()', Doc => 'calculate the (approximate) modified bessel function of the first kind', GenericTypes => [F,D], Code => q! $GENERIC() x = $a(); if (x > -3.75 && x < 3.75) { $GENERIC() y = (x / 3.75); y *= y; $b() = 1 + (y * (3.5156229 + (y * (3.0899424 + (y * (1.2067492 + (y * (0.2659732 + (y * (0.360768e-1 + (y * 0.45813e-2))))))))))); } else { $GENERIC() ax = x < 0 ? -x : x; $GENERIC() y = ax / 3.75; $b() = ((exp(ax) / sqrt(ax)) * (0.39894228 + (y * (0.1328592e-1 + (y * (0.225319e-2 + (y * (-0.157565e-2 + (y * (0.916281e-2 + (y * (-0.2057706e-1 + (y * (0.2635537e-1 + (y * (-0.1647633e-1 + (y * 0.392377e-2))))))))))))))))); } !, ; pp_def 'fast_sin', Pars => 'r(n); [o]s(n)', GenericTypes => [F,D], Doc => 'fast sine function (inaccurate table lookup with ~12 bits precision)', Code => q^ # define SINE_SIZE 16384 static float *sine_table = 0; if (!sine_table) { int i; Float phase, incr; sine_table = (float *) calloc (SINE_SIZE + 1, sizeof (float)); incr = M_2PI / (Float) SINE_SIZE; for (i = 0, phase = 0.0; i < SINE_SIZE + 1; i++, phase += incr) sine_table[i] = (float) sin (phase); } threadloop %{ loop(n) %{ $s() = sine_table[((int)($r() * (SINE_SIZE / M_2PI)) % SINE_SIZE + SINE_SIZE) % SINE_SIZE]; %} %}^ ; pp_addpm {At => Bot}, <<'EOD'; =head1 AUTHOR Marc Lehmann . The ideas were mostly taken from common lisp music (CLM), by Bill Schottstaedt C. I also borrowed many explanations (and references) from the clm docs and some code from clm.c. Highly inspiring! =head1 SEE ALSO perl(1), L. =cut EOD pp_addxs "\nINCLUDE: xlib.xs\n"; pp_done;