1 |
/************************************************************************** |
2 |
* Parks-McClellan algorithm for FIR filter design (C version) |
3 |
*------------------------------------------------- |
4 |
* Copyright (c) 1995,1998 Jake Janovetz (janovetz@uiuc.edu) |
5 |
* |
6 |
* This library is free software; you can redistribute it and/or |
7 |
* modify it under the terms of the GNU Library General Public |
8 |
* License as published by the Free Software Foundation; either |
9 |
* version 2 of the License, or (at your option) any later version. |
10 |
* |
11 |
* This library is distributed in the hope that it will be useful, |
12 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 |
* Library General Public License for more details. |
15 |
* |
16 |
* You should have received a copy of the GNU Library General Public |
17 |
* License along with this library; if not, write to the Free |
18 |
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA |
19 |
* |
20 |
*************************************************************************/ |
21 |
|
22 |
|
23 |
#include <stdio.h> |
24 |
#include <math.h> |
25 |
|
26 |
#include "xlib.h" |
27 |
#include "remez.h" |
28 |
|
29 |
/******************* |
30 |
* CreateDenseGrid |
31 |
*================= |
32 |
* Creates the dense grid of frequencies from the specified bands. |
33 |
* Also creates the Desired Frequency Response function (D[]) and |
34 |
* the Weight function (W[]) on that dense grid |
35 |
* |
36 |
* |
37 |
* INPUT: |
38 |
* ------ |
39 |
* int r - 1/2 the number of filter coefficients |
40 |
* int numtaps - Number of taps in the resulting filter |
41 |
* int numband - Number of bands in user specification |
42 |
* double bands[] - User-specified band edges [2*numband] |
43 |
* double des[] - Desired response per band [numband] |
44 |
* double weight[] - Weight per band [numband] |
45 |
* int symmetry - Symmetry of filter - used for grid check |
46 |
* |
47 |
* OUTPUT: |
48 |
* ------- |
49 |
* int gridsize - Number of elements in the dense frequency grid |
50 |
* double Grid[] - Frequencies (0 to 0.5) on the dense grid [gridsize] |
51 |
* double D[] - Desired response on the dense grid [gridsize] |
52 |
* double W[] - Weight function on the dense grid [gridsize] |
53 |
*******************/ |
54 |
|
55 |
static |
56 |
void CreateDenseGrid(int r, int numtaps, int numband, double bands[], |
57 |
double des[], double weight[], int *gridsize, |
58 |
double Grid[], double D[], double W[], |
59 |
int symmetry) |
60 |
{ |
61 |
int i, j, k, band; |
62 |
double delf, lowf, highf; |
63 |
|
64 |
delf = 0.5/(GRIDDENSITY*r); |
65 |
|
66 |
/* |
67 |
* For differentiator, hilbert, |
68 |
* symmetry is odd and Grid[0] = max(delf, band[0]) |
69 |
*/ |
70 |
|
71 |
if ((symmetry == NEGATIVE) && (delf > bands[0])) |
72 |
bands[0] = delf; |
73 |
|
74 |
j=0; |
75 |
for (band=0; band < numband; band++) |
76 |
{ |
77 |
Grid[j] = bands[2*band]; |
78 |
lowf = bands[2*band]; |
79 |
highf = bands[2*band + 1]; |
80 |
k = (int)((highf - lowf)/delf + 0.5); /* .5 for rounding */ |
81 |
for (i=0; i<k; i++) |
82 |
{ |
83 |
D[j] = des[band]; |
84 |
W[j] = weight[band]; |
85 |
Grid[j] = lowf; |
86 |
lowf += delf; |
87 |
j++; |
88 |
} |
89 |
Grid[j-1] = highf; |
90 |
} |
91 |
|
92 |
/* |
93 |
* Similar to above, if odd symmetry, last grid point can't be .5 |
94 |
* - but, if there are even taps, leave the last grid point at .5 |
95 |
*/ |
96 |
if ((symmetry == NEGATIVE) && |
97 |
(Grid[*gridsize-1] > (0.5 - delf)) && |
98 |
(numtaps % 2)) |
99 |
{ |
100 |
Grid[*gridsize-1] = 0.5-delf; |
101 |
} |
102 |
} |
103 |
|
104 |
|
105 |
/******************** |
106 |
* InitialGuess |
107 |
*============== |
108 |
* Places Extremal Frequencies evenly throughout the dense grid. |
109 |
* |
110 |
* |
111 |
* INPUT: |
112 |
* ------ |
113 |
* int r - 1/2 the number of filter coefficients |
114 |
* int gridsize - Number of elements in the dense frequency grid |
115 |
* |
116 |
* OUTPUT: |
117 |
* ------- |
118 |
* int Ext[] - Extremal indexes to dense frequency grid [r+1] |
119 |
********************/ |
120 |
|
121 |
static |
122 |
void InitialGuess(int r, int Ext[], int gridsize) |
123 |
{ |
124 |
int i; |
125 |
|
126 |
for (i=0; i<=r; i++) |
127 |
Ext[i] = i * (gridsize-1) / r; |
128 |
} |
129 |
|
130 |
|
131 |
/*********************** |
132 |
* CalcParms |
133 |
*=========== |
134 |
* |
135 |
* |
136 |
* INPUT: |
137 |
* ------ |
138 |
* int r - 1/2 the number of filter coefficients |
139 |
* int Ext[] - Extremal indexes to dense frequency grid [r+1] |
140 |
* double Grid[] - Frequencies (0 to 0.5) on the dense grid [gridsize] |
141 |
* double D[] - Desired response on the dense grid [gridsize] |
142 |
* double W[] - Weight function on the dense grid [gridsize] |
143 |
* |
144 |
* OUTPUT: |
145 |
* ------- |
146 |
* double ad[] - 'b' in Oppenheim & Schafer [r+1] |
147 |
* double x[] - [r+1] |
148 |
* double y[] - 'C' in Oppenheim & Schafer [r+1] |
149 |
***********************/ |
150 |
|
151 |
static |
152 |
void CalcParms(int r, int Ext[], double Grid[], double D[], double W[], |
153 |
double ad[], double x[], double y[]) |
154 |
{ |
155 |
int i, j, k, ld; |
156 |
double sign, xi, delta, denom, numer; |
157 |
|
158 |
/* |
159 |
* Find x[] |
160 |
*/ |
161 |
for (i=0; i<=r; i++) |
162 |
x[i] = cos(M_2PI * Grid[Ext[i]]); |
163 |
|
164 |
/* |
165 |
* Calculate ad[] - Oppenheim & Schafer eq 7.132 |
166 |
*/ |
167 |
ld = (r-1)/15 + 1; /* Skips around to avoid round errors */ |
168 |
for (i=0; i<=r; i++) |
169 |
{ |
170 |
denom = 1.0; |
171 |
xi = x[i]; |
172 |
for (j=0; j<ld; j++) |
173 |
{ |
174 |
for (k=j; k<=r; k+=ld) |
175 |
if (k != i) |
176 |
denom *= 2.0*(xi - x[k]); |
177 |
} |
178 |
if (fabs(denom)<0.00001) |
179 |
denom = 0.00001; |
180 |
ad[i] = 1.0/denom; |
181 |
} |
182 |
|
183 |
/* |
184 |
* Calculate delta - Oppenheim & Schafer eq 7.131 |
185 |
*/ |
186 |
numer = denom = 0; |
187 |
sign = 1; |
188 |
for (i=0; i<=r; i++) |
189 |
{ |
190 |
numer += ad[i] * D[Ext[i]]; |
191 |
denom += sign * ad[i]/W[Ext[i]]; |
192 |
sign = -sign; |
193 |
} |
194 |
delta = numer/denom; |
195 |
sign = 1; |
196 |
|
197 |
/* |
198 |
* Calculate y[] - Oppenheim & Schafer eq 7.133b |
199 |
*/ |
200 |
for (i=0; i<=r; i++) |
201 |
{ |
202 |
y[i] = D[Ext[i]] - sign * delta/W[Ext[i]]; |
203 |
sign = -sign; |
204 |
} |
205 |
} |
206 |
|
207 |
|
208 |
/********************* |
209 |
* ComputeA |
210 |
*========== |
211 |
* Using values calculated in CalcParms, ComputeA calculates the |
212 |
* actual filter response at a given frequency (freq). Uses |
213 |
* eq 7.133a from Oppenheim & Schafer. |
214 |
* |
215 |
* |
216 |
* INPUT: |
217 |
* ------ |
218 |
* double freq - Frequency (0 to 0.5) at which to calculate A |
219 |
* int r - 1/2 the number of filter coefficients |
220 |
* double ad[] - 'b' in Oppenheim & Schafer [r+1] |
221 |
* double x[] - [r+1] |
222 |
* double y[] - 'C' in Oppenheim & Schafer [r+1] |
223 |
* |
224 |
* OUTPUT: |
225 |
* ------- |
226 |
* Returns double value of A[freq] |
227 |
*********************/ |
228 |
|
229 |
static |
230 |
double ComputeA(double freq, int r, double ad[], double x[], double y[]) |
231 |
{ |
232 |
int i; |
233 |
double xc, c, denom, numer; |
234 |
|
235 |
denom = numer = 0; |
236 |
xc = cos(M_2PI * freq); |
237 |
for (i=0; i<=r; i++) |
238 |
{ |
239 |
c = xc - x[i]; |
240 |
if (fabs(c) < 1.0e-7) |
241 |
{ |
242 |
numer = y[i]; |
243 |
denom = 1; |
244 |
break; |
245 |
} |
246 |
c = ad[i]/c; |
247 |
denom += c; |
248 |
numer += c*y[i]; |
249 |
} |
250 |
return numer/denom; |
251 |
} |
252 |
|
253 |
|
254 |
/************************ |
255 |
* CalcError |
256 |
*=========== |
257 |
* Calculates the Error function from the desired frequency response |
258 |
* on the dense grid (D[]), the weight function on the dense grid (W[]), |
259 |
* and the present response calculation (A[]) |
260 |
* |
261 |
* |
262 |
* INPUT: |
263 |
* ------ |
264 |
* int r - 1/2 the number of filter coefficients |
265 |
* double ad[] - [r+1] |
266 |
* double x[] - [r+1] |
267 |
* double y[] - [r+1] |
268 |
* int gridsize - Number of elements in the dense frequency grid |
269 |
* double Grid[] - Frequencies on the dense grid [gridsize] |
270 |
* double D[] - Desired response on the dense grid [gridsize] |
271 |
* double W[] - Weight function on the desnse grid [gridsize] |
272 |
* |
273 |
* OUTPUT: |
274 |
* ------- |
275 |
* double E[] - Error function on dense grid [gridsize] |
276 |
************************/ |
277 |
|
278 |
static |
279 |
void CalcError(int r, double ad[], double x[], double y[], |
280 |
int gridsize, double Grid[], |
281 |
double D[], double W[], double E[]) |
282 |
{ |
283 |
int i; |
284 |
double A; |
285 |
|
286 |
for (i=0; i<gridsize; i++) |
287 |
{ |
288 |
A = ComputeA(Grid[i], r, ad, x, y); |
289 |
E[i] = W[i] * (D[i] - A); |
290 |
} |
291 |
} |
292 |
|
293 |
/************************ |
294 |
* Search |
295 |
*======== |
296 |
* Searches for the maxima/minima of the error curve. If more than |
297 |
* r+1 extrema are found, it uses the following heuristic (thanks |
298 |
* Chris Hanson): |
299 |
* 1) Adjacent non-alternating extrema deleted first. |
300 |
* 2) If there are more than one excess extrema, delete the |
301 |
* one with the smallest error. This will create a non-alternation |
302 |
* condition that is fixed by 1). |
303 |
* 3) If there is exactly one excess extremum, delete the smaller |
304 |
* of the first/last extremum |
305 |
* |
306 |
* |
307 |
* INPUT: |
308 |
* ------ |
309 |
* int r - 1/2 the number of filter coefficients |
310 |
* int Ext[] - Indexes to Grid[] of extremal frequencies [r+1] |
311 |
* int gridsize - Number of elements in the dense frequency grid |
312 |
* double E[] - Array of error values. [gridsize] |
313 |
* OUTPUT: |
314 |
* ------- |
315 |
* int Ext[] - New indexes to extremal frequencies [r+1] |
316 |
************************/ |
317 |
|
318 |
static |
319 |
void Search(int r, int Ext[], |
320 |
int gridsize, double E[]) |
321 |
{ |
322 |
int i, j, k, l, extra; /* Counters */ |
323 |
int up, alt; |
324 |
int *foundExt; /* Array of found extremals */ |
325 |
|
326 |
/* |
327 |
* Allocate enough space for found extremals. |
328 |
*/ |
329 |
foundExt = (int *)malloc((2*r) * sizeof(int)); |
330 |
k = 0; |
331 |
|
332 |
/* |
333 |
* Check for extremum at 0. |
334 |
*/ |
335 |
if (((E[0]>0.0) && (E[0]>E[1])) || |
336 |
((E[0]<0.0) && (E[0]<E[1]))) |
337 |
foundExt[k++] = 0; |
338 |
|
339 |
/* |
340 |
* Check for extrema inside dense grid |
341 |
*/ |
342 |
for (i=1; i<gridsize-1; i++) |
343 |
{ |
344 |
if (((E[i]>=E[i-1]) && (E[i]>E[i+1]) && (E[i]>0.0)) || |
345 |
((E[i]<=E[i-1]) && (E[i]<E[i+1]) && (E[i]<0.0))) |
346 |
foundExt[k++] = i; |
347 |
} |
348 |
|
349 |
/* |
350 |
* Check for extremum at 0.5 |
351 |
*/ |
352 |
j = gridsize-1; |
353 |
if (((E[j]>0.0) && (E[j]>E[j-1])) || |
354 |
((E[j]<0.0) && (E[j]<E[j-1]))) |
355 |
foundExt[k++] = j; |
356 |
|
357 |
|
358 |
/* |
359 |
* Remove extra extremals |
360 |
*/ |
361 |
extra = k - (r+1); |
362 |
|
363 |
while (extra > 0) |
364 |
{ |
365 |
if (E[foundExt[0]] > 0.0) |
366 |
up = 1; /* first one is a maxima */ |
367 |
else |
368 |
up = 0; /* first one is a minima */ |
369 |
|
370 |
l=0; |
371 |
alt = 1; |
372 |
for (j=1; j<k; j++) |
373 |
{ |
374 |
if (fabs(E[foundExt[j]]) < fabs(E[foundExt[l]])) |
375 |
l = j; /* new smallest error. */ |
376 |
if ((up) && (E[foundExt[j]] < 0.0)) |
377 |
up = 0; /* switch to a minima */ |
378 |
else if ((!up) && (E[foundExt[j]] > 0.0)) |
379 |
up = 1; /* switch to a maxima */ |
380 |
else |
381 |
{ |
382 |
alt = 0; |
383 |
break; /* Ooops, found two non-alternating */ |
384 |
} /* extrema. Delete smallest of them */ |
385 |
} /* if the loop finishes, all extrema are alternating */ |
386 |
|
387 |
/* |
388 |
* If there's only one extremal and all are alternating, |
389 |
* delete the smallest of the first/last extremals. |
390 |
*/ |
391 |
if ((alt) && (extra == 1)) |
392 |
{ |
393 |
if (fabs(E[foundExt[k-1]]) < fabs(E[foundExt[0]])) |
394 |
l = foundExt[k-1]; /* Delete last extremal */ |
395 |
else |
396 |
l = foundExt[0]; /* Delete first extremal */ |
397 |
} |
398 |
|
399 |
for (j=l; j<k; j++) /* Loop that does the deletion */ |
400 |
{ |
401 |
foundExt[j] = foundExt[j+1]; |
402 |
} |
403 |
k--; |
404 |
extra--; |
405 |
} |
406 |
|
407 |
for (i=0; i<=r; i++) |
408 |
{ |
409 |
Ext[i] = foundExt[i]; /* Copy found extremals to Ext[] */ |
410 |
} |
411 |
|
412 |
free(foundExt); |
413 |
} |
414 |
|
415 |
|
416 |
/********************* |
417 |
* FreqSample |
418 |
*============ |
419 |
* Simple frequency sampling algorithm to determine the impulse |
420 |
* response h[] from A's found in ComputeA |
421 |
* |
422 |
* |
423 |
* INPUT: |
424 |
* ------ |
425 |
* int N - Number of filter coefficients |
426 |
* double A[] - Sample points of desired response [N/2] |
427 |
* int symmetry - Symmetry of desired filter |
428 |
* |
429 |
* OUTPUT: |
430 |
* ------- |
431 |
* double h[] - Impulse Response of final filter [N] |
432 |
*********************/ |
433 |
static |
434 |
void FreqSample(int N, double A[], double h[], int symm) |
435 |
{ |
436 |
int n, k; |
437 |
double x, val, M; |
438 |
|
439 |
M = (N-1.0)/2.0; |
440 |
if (symm == POSITIVE) |
441 |
{ |
442 |
if (N%2) |
443 |
{ |
444 |
for (n=0; n<N; n++) |
445 |
{ |
446 |
val = A[0]; |
447 |
x = M_2PI * (n - M)/N; |
448 |
for (k=1; k<=M; k++) |
449 |
val += 2.0 * A[k] * cos(x*k); |
450 |
h[n] = val/N; |
451 |
} |
452 |
} |
453 |
else |
454 |
{ |
455 |
for (n=0; n<N; n++) |
456 |
{ |
457 |
val = A[0]; |
458 |
x = M_2PI * (n - M)/N; |
459 |
for (k=1; k<=(N/2-1); k++) |
460 |
val += 2.0 * A[k] * cos(x*k); |
461 |
h[n] = val/N; |
462 |
} |
463 |
} |
464 |
} |
465 |
else |
466 |
{ |
467 |
if (N%2) |
468 |
{ |
469 |
for (n=0; n<N; n++) |
470 |
{ |
471 |
val = 0; |
472 |
x = M_2PI * (n - M)/N; |
473 |
for (k=1; k<=M; k++) |
474 |
val += 2.0 * A[k] * sin(x*k); |
475 |
h[n] = val/N; |
476 |
} |
477 |
} |
478 |
else |
479 |
{ |
480 |
for (n=0; n<N; n++) |
481 |
{ |
482 |
val = A[N/2] * sin(M_PI * (n - M)); |
483 |
x = M_2PI * (n - M)/N; |
484 |
for (k=1; k<=(N/2-1); k++) |
485 |
val += 2.0 * A[k] * sin(x*k); |
486 |
h[n] = val/N; |
487 |
} |
488 |
} |
489 |
} |
490 |
} |
491 |
|
492 |
/******************* |
493 |
* isDone |
494 |
*======== |
495 |
* Checks to see if the error function is small enough to consider |
496 |
* the result to have converged. |
497 |
* |
498 |
* INPUT: |
499 |
* ------ |
500 |
* int r - 1/2 the number of filter coeffiecients |
501 |
* int Ext[] - Indexes to extremal frequencies [r+1] |
502 |
* double E[] - Error function on the dense grid [gridsize] |
503 |
* |
504 |
* OUTPUT: |
505 |
* ------- |
506 |
* Returns 1 if the result converged |
507 |
* Returns 0 if the result has not converged |
508 |
********************/ |
509 |
|
510 |
static |
511 |
short isDone(int r, int Ext[], double E[]) |
512 |
{ |
513 |
int i; |
514 |
double min, max, current; |
515 |
|
516 |
min = max = fabs(E[Ext[0]]); |
517 |
for (i=1; i<=r; i++) |
518 |
{ |
519 |
current = fabs(E[Ext[i]]); |
520 |
if (current < min) |
521 |
min = current; |
522 |
if (current > max) |
523 |
max = current; |
524 |
} |
525 |
if (((max-min)/max) < 0.0001) |
526 |
return 1; |
527 |
return 0; |
528 |
} |
529 |
|
530 |
/******************** |
531 |
* remez |
532 |
*======= |
533 |
* Calculates the optimal (in the Chebyshev/minimax sense) |
534 |
* FIR filter impulse response given a set of band edges, |
535 |
* the desired reponse on those bands, and the weight given to |
536 |
* the error in those bands. |
537 |
* |
538 |
* INPUT: |
539 |
* ------ |
540 |
* int numtaps - Number of filter coefficients |
541 |
* int numband - Number of bands in filter specification |
542 |
* double bands[] - User-specified band edges [2 * numband] |
543 |
* double des[] - User-specified band responses [numband] |
544 |
* double weight[] - User-specified error weights [numband] |
545 |
* int type - Type of filter |
546 |
* |
547 |
* OUTPUT: |
548 |
* ------- |
549 |
* double h[] - Impulse response of final filter [numtaps] |
550 |
********************/ |
551 |
|
552 |
void remez(double h[], int numtaps, |
553 |
int numband, double bands[], double des[], double weight[], |
554 |
int type) |
555 |
{ |
556 |
double *Grid, *W, *D, *E; |
557 |
int i, iter, gridsize, r, *Ext; |
558 |
double *taps, c; |
559 |
double *x, *y, *ad; |
560 |
int symmetry; |
561 |
|
562 |
if (type == BANDPASS) |
563 |
symmetry = POSITIVE; |
564 |
else |
565 |
symmetry = NEGATIVE; |
566 |
|
567 |
r = numtaps/2; /* number of extrema */ |
568 |
if ((numtaps%2) && (symmetry == POSITIVE)) |
569 |
r++; |
570 |
|
571 |
/* |
572 |
* Predict dense grid size in advance for memory allocation |
573 |
* .5 is so we round up, not truncate |
574 |
*/ |
575 |
gridsize = 0; |
576 |
for (i=0; i<numband; i++) |
577 |
{ |
578 |
gridsize += (int)(2*r*GRIDDENSITY*(bands[2*i+1] - bands[2*i]) + .5); |
579 |
} |
580 |
if (symmetry == NEGATIVE) |
581 |
{ |
582 |
gridsize--; |
583 |
} |
584 |
|
585 |
/* |
586 |
* Dynamically allocate memory for arrays with proper sizes |
587 |
*/ |
588 |
Grid = (double *)malloc(gridsize * sizeof(double)); |
589 |
D = (double *)malloc(gridsize * sizeof(double)); |
590 |
W = (double *)malloc(gridsize * sizeof(double)); |
591 |
E = (double *)malloc(gridsize * sizeof(double)); |
592 |
Ext = (int *)malloc((r+1) * sizeof(int)); |
593 |
taps = (double *)malloc((r+1) * sizeof(double)); |
594 |
x = (double *)malloc((r+1) * sizeof(double)); |
595 |
y = (double *)malloc((r+1) * sizeof(double)); |
596 |
ad = (double *)malloc((r+1) * sizeof(double)); |
597 |
|
598 |
/* |
599 |
* Create dense frequency grid |
600 |
*/ |
601 |
CreateDenseGrid(r, numtaps, numband, bands, des, weight, |
602 |
&gridsize, Grid, D, W, symmetry); |
603 |
InitialGuess(r, Ext, gridsize); |
604 |
|
605 |
/* |
606 |
* For Differentiator: (fix grid) |
607 |
*/ |
608 |
if (type == DIFFERENTIATOR) |
609 |
{ |
610 |
for (i=0; i<gridsize; i++) |
611 |
{ |
612 |
/* D[i] = D[i]*Grid[i]; */ |
613 |
if (D[i] > 0.0001) |
614 |
W[i] = W[i]/Grid[i]; |
615 |
} |
616 |
} |
617 |
|
618 |
/* |
619 |
* For odd or Negative symmetry filters, alter the |
620 |
* D[] and W[] according to Parks McClellan |
621 |
*/ |
622 |
if (symmetry == POSITIVE) |
623 |
{ |
624 |
if (numtaps % 2 == 0) |
625 |
{ |
626 |
for (i=0; i<gridsize; i++) |
627 |
{ |
628 |
c = cos(M_PI * Grid[i]); |
629 |
D[i] /= c; |
630 |
W[i] *= c; |
631 |
} |
632 |
} |
633 |
} |
634 |
else |
635 |
{ |
636 |
if (numtaps % 2) |
637 |
{ |
638 |
for (i=0; i<gridsize; i++) |
639 |
{ |
640 |
c = sin(M_2PI * Grid[i]); |
641 |
D[i] /= c; |
642 |
W[i] *= c; |
643 |
} |
644 |
} |
645 |
else |
646 |
{ |
647 |
for (i=0; i<gridsize; i++) |
648 |
{ |
649 |
c = sin(M_PI * Grid[i]); |
650 |
D[i] /= c; |
651 |
W[i] *= c; |
652 |
} |
653 |
} |
654 |
} |
655 |
|
656 |
/* |
657 |
* Perform the Remez Exchange algorithm |
658 |
*/ |
659 |
for (iter=0; iter<MAXITERATIONS; iter++) |
660 |
{ |
661 |
CalcParms(r, Ext, Grid, D, W, ad, x, y); |
662 |
CalcError(r, ad, x, y, gridsize, Grid, D, W, E); |
663 |
Search(r, Ext, gridsize, E); |
664 |
if (isDone(r, Ext, E)) |
665 |
break; |
666 |
} |
667 |
if (iter == MAXITERATIONS) |
668 |
{ |
669 |
fprintf(stderr, "design_remez_fir: reached maximum iteration count, results may be bad.\n"); |
670 |
} |
671 |
|
672 |
CalcParms(r, Ext, Grid, D, W, ad, x, y); |
673 |
|
674 |
/* |
675 |
* Find the 'taps' of the filter for use with Frequency |
676 |
* Sampling. If odd or Negative symmetry, fix the taps |
677 |
* according to Parks McClellan |
678 |
*/ |
679 |
for (i=0; i<=numtaps/2; i++) |
680 |
{ |
681 |
if (symmetry == POSITIVE) |
682 |
{ |
683 |
if (numtaps%2) |
684 |
c = 1; |
685 |
else |
686 |
c = cos(M_PI * (double)i/numtaps); |
687 |
} |
688 |
else |
689 |
{ |
690 |
if (numtaps%2) |
691 |
c = sin(M_2PI * (double)i/numtaps); |
692 |
else |
693 |
c = sin(M_PI * (double)i/numtaps); |
694 |
} |
695 |
taps[i] = ComputeA((double)i/numtaps, r, ad, x, y)*c; |
696 |
} |
697 |
|
698 |
/* |
699 |
* Frequency sampling design with calculated taps |
700 |
*/ |
701 |
FreqSample(numtaps, taps, h, symmetry); |
702 |
|
703 |
/* |
704 |
* Delete allocated memory |
705 |
*/ |
706 |
free(Grid); |
707 |
free(W); |
708 |
free(D); |
709 |
free(E); |
710 |
free(Ext); |
711 |
free(x); |
712 |
free(y); |
713 |
free(ad); |
714 |
} |
715 |
|