ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/String-Similarity/fstrcmp.c
Revision: 1.1
Committed: Sat Jun 25 09:55:53 2005 UTC (19 years ago) by root
Content type: text/plain
Branch: MAIN
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 /* Functions to make fuzzy comparisons between strings
2     Copyright (C) 1988, 1989, 1992, 1993, 1995 Free Software Foundation, Inc.
3    
4     This program is free software; you can redistribute it and/or modify
5     it under the terms of the GNU General Public License as published by
6     the Free Software Foundation; either version 2 of the License, or (at
7     your option) any later version.
8    
9     This program is distributed in the hope that it will be useful, but
10     WITHOUT ANY WARRANTY; without even the implied warranty of
11     MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12     General Public License for more details.
13    
14     You should have received a copy of the GNU General Public License
15     along with this program; if not, write to the Free Software
16     Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
17    
18    
19     Derived from GNU diff 2.7, analyze.c et al.
20    
21     The basic algorithm is described in:
22     "An O(ND) Difference Algorithm and its Variations", Eugene Myers,
23     Algorithmica Vol. 1 No. 2, 1986, pp. 251-266;
24     see especially section 4.2, which describes the variation used below.
25    
26     The basic algorithm was independently discovered as described in:
27     "Algorithms for Approximate String Matching", E. Ukkonen,
28     Information and Control Vol. 64, 1985, pp. 100-118.
29    
30     Modified to work on strings rather than files
31     by Peter Miller <pmiller@agso.gov.au>, October 1995
32    
33     Modified to accept a "minimum similarity limit" to stop analyzing the
34     string when the similarity drops below the given limit by Marc Lehmann
35     <schmorp@schmorp.de>.
36    
37     Modified to work on unicode (actually 31 bit are allowed) by Marc Lehmann
38     <schmorp@schmorp.de>.
39     */
40    
41     #include <string.h>
42     #include <stdio.h>
43     #include <stdlib.h>
44     #include <limits.h>
45    
46     #include "fstrcmp.h"
47    
48     /* moved here from fstrcmp.h to avoid problems on lose32 machines */
49     #define PARAMS(proto) proto
50     typedef UV CHAR;
51    
52     /*
53     * Data on one input string being compared.
54     */
55     struct string_data
56     {
57     /* The string to be compared. */
58     const CHAR *data;
59    
60     /* The length of the string to be compared. */
61     int data_length;
62    
63     /* The number of characters inserted or deleted. */
64     int edit_count;
65     };
66    
67     static struct string_data string[2];
68    
69     static int max_edits; /* compareseq stops when edits > max_edits */
70    
71     #ifdef MINUS_H_FLAG
72    
73     /* This corresponds to the diff -H flag. With this heuristic, for
74     strings with a constant small density of changes, the algorithm is
75     linear in the strings size. This is unlikely in typical uses of
76     fstrcmp, and so is usually compiled out. Besides, there is no
77     interface to set it true. */
78     static int heuristic;
79    
80     #endif
81    
82    
83     /* Vector, indexed by diagonal, containing 1 + the X coordinate of the
84     point furthest along the given diagonal in the forward search of the
85     edit matrix. */
86     static int *fdiag;
87    
88     /* Vector, indexed by diagonal, containing the X coordinate of the point
89     furthest along the given diagonal in the backward search of the edit
90     matrix. */
91     static int *bdiag;
92    
93     /* Edit scripts longer than this are too expensive to compute. */
94     static int too_expensive;
95    
96     /* Snakes bigger than this are considered `big'. */
97     #define SNAKE_LIMIT 20
98    
99     struct partition
100     {
101     /* Midpoints of this partition. */
102     int xmid, ymid;
103    
104     /* Nonzero if low half will be analyzed minimally. */
105     int lo_minimal;
106    
107     /* Likewise for high half. */
108     int hi_minimal;
109     };
110    
111    
112     /* NAME
113     diag - find diagonal path
114    
115     SYNOPSIS
116     int diag(int xoff, int xlim, int yoff, int ylim, int minimal,
117     struct partition *part);
118    
119     DESCRIPTION
120     Find the midpoint of the shortest edit script for a specified
121     portion of the two strings.
122    
123     Scan from the beginnings of the strings, and simultaneously from
124     the ends, doing a breadth-first search through the space of
125     edit-sequence. When the two searches meet, we have found the
126     midpoint of the shortest edit sequence.
127    
128     If MINIMAL is nonzero, find the minimal edit script regardless
129     of expense. Otherwise, if the search is too expensive, use
130     heuristics to stop the search and report a suboptimal answer.
131    
132     RETURNS
133     Set PART->(XMID,YMID) to the midpoint (XMID,YMID). The diagonal
134     number XMID - YMID equals the number of inserted characters
135     minus the number of deleted characters (counting only characters
136     before the midpoint). Return the approximate edit cost; this is
137     the total number of characters inserted or deleted (counting
138     only characters before the midpoint), unless a heuristic is used
139     to terminate the search prematurely.
140    
141     Set PART->LEFT_MINIMAL to nonzero iff the minimal edit script
142     for the left half of the partition is known; similarly for
143     PART->RIGHT_MINIMAL.
144    
145     CAVEAT
146     This function assumes that the first characters of the specified
147     portions of the two strings do not match, and likewise that the
148     last characters do not match. The caller must trim matching
149     characters from the beginning and end of the portions it is
150     going to specify.
151    
152     If we return the "wrong" partitions, the worst this can do is
153     cause suboptimal diff output. It cannot cause incorrect diff
154     output. */
155    
156     static int diag PARAMS ((int, int, int, int, int, struct partition *));
157    
158     static int
159     diag (xoff, xlim, yoff, ylim, minimal, part)
160     int xoff;
161     int xlim;
162     int yoff;
163     int ylim;
164     int minimal;
165     struct partition *part;
166     {
167     int *const fd = fdiag; /* Give the compiler a chance. */
168     int *const bd = bdiag; /* Additional help for the compiler. */
169     const CHAR *const xv = string[0].data; /* Still more help for the compiler. */
170     const CHAR *const yv = string[1].data; /* And more and more . . . */
171     const int dmin = xoff - ylim; /* Minimum valid diagonal. */
172     const int dmax = xlim - yoff; /* Maximum valid diagonal. */
173     const int fmid = xoff - yoff; /* Center diagonal of top-down search. */
174     const int bmid = xlim - ylim; /* Center diagonal of bottom-up search. */
175     int fmin = fmid;
176     int fmax = fmid; /* Limits of top-down search. */
177     int bmin = bmid;
178     int bmax = bmid; /* Limits of bottom-up search. */
179     int c; /* Cost. */
180     int odd = (fmid - bmid) & 1;
181    
182     /*
183     * True if southeast corner is on an odd diagonal with respect
184     * to the northwest.
185     */
186     fd[fmid] = xoff;
187     bd[bmid] = xlim;
188     for (c = 1;; ++c)
189     {
190     int d; /* Active diagonal. */
191     int big_snake;
192    
193     big_snake = 0;
194     /* Extend the top-down search by an edit step in each diagonal. */
195     if (fmin > dmin)
196     fd[--fmin - 1] = -1;
197     else
198     ++fmin;
199     if (fmax < dmax)
200     fd[++fmax + 1] = -1;
201     else
202     --fmax;
203     for (d = fmax; d >= fmin; d -= 2)
204     {
205     int x;
206     int y;
207     int oldx;
208     int tlo;
209     int thi;
210    
211     tlo = fd[d - 1],
212     thi = fd[d + 1];
213    
214     if (tlo >= thi)
215     x = tlo + 1;
216     else
217     x = thi;
218     oldx = x;
219     y = x - d;
220     while (x < xlim && y < ylim && xv[x] == yv[y])
221     {
222     ++x;
223     ++y;
224     }
225     if (x - oldx > SNAKE_LIMIT)
226     big_snake = 1;
227     fd[d] = x;
228     if (odd && bmin <= d && d <= bmax && bd[d] <= x)
229     {
230     part->xmid = x;
231     part->ymid = y;
232     part->lo_minimal = part->hi_minimal = 1;
233     return 2 * c - 1;
234     }
235     }
236     /* Similarly extend the bottom-up search. */
237     if (bmin > dmin)
238     bd[--bmin - 1] = INT_MAX;
239     else
240     ++bmin;
241     if (bmax < dmax)
242     bd[++bmax + 1] = INT_MAX;
243     else
244     --bmax;
245     for (d = bmax; d >= bmin; d -= 2)
246     {
247     int x;
248     int y;
249     int oldx;
250     int tlo;
251     int thi;
252    
253     tlo = bd[d - 1],
254     thi = bd[d + 1];
255     if (tlo < thi)
256     x = tlo;
257     else
258     x = thi - 1;
259     oldx = x;
260     y = x - d;
261     while (x > xoff && y > yoff && xv[x - 1] == yv[y - 1])
262     {
263     --x;
264     --y;
265     }
266     if (oldx - x > SNAKE_LIMIT)
267     big_snake = 1;
268     bd[d] = x;
269     if (!odd && fmin <= d && d <= fmax && x <= fd[d])
270     {
271     part->xmid = x;
272     part->ymid = y;
273     part->lo_minimal = part->hi_minimal = 1;
274     return 2 * c;
275     }
276     }
277    
278     if (minimal)
279     continue;
280    
281     #ifdef MINUS_H_FLAG
282     /* Heuristic: check occasionally for a diagonal that has made lots
283     of progress compared with the edit distance. If we have any
284     such, find the one that has made the most progress and return
285     it as if it had succeeded.
286    
287     With this heuristic, for strings with a constant small density
288     of changes, the algorithm is linear in the strings size. */
289     if (c > 200 && big_snake && heuristic)
290     {
291     int best;
292    
293     best = 0;
294     for (d = fmax; d >= fmin; d -= 2)
295     {
296     int dd;
297     int x;
298     int y;
299     int v;
300    
301     dd = d - fmid;
302     x = fd[d];
303     y = x - d;
304     v = (x - xoff) * 2 - dd;
305    
306     if (v > 12 * (c + (dd < 0 ? -dd : dd)))
307     {
308     if
309     (
310     v > best
311     &&
312     xoff + SNAKE_LIMIT <= x
313     &&
314     x < xlim
315     &&
316     yoff + SNAKE_LIMIT <= y
317     &&
318     y < ylim
319     )
320     {
321     /* We have a good enough best diagonal; now insist
322     that it end with a significant snake. */
323     int k;
324    
325     for (k = 1; xv[x - k] == yv[y - k]; k++)
326     {
327     if (k == SNAKE_LIMIT)
328     {
329     best = v;
330     part->xmid = x;
331     part->ymid = y;
332     break;
333     }
334     }
335     }
336     }
337     }
338     if (best > 0)
339     {
340     part->lo_minimal = 1;
341     part->hi_minimal = 0;
342     return 2 * c - 1;
343     }
344     best = 0;
345     for (d = bmax; d >= bmin; d -= 2)
346     {
347     int dd;
348     int x;
349     int y;
350     int v;
351    
352     dd = d - bmid;
353     x = bd[d];
354     y = x - d;
355     v = (xlim - x) * 2 + dd;
356    
357     if (v > 12 * (c + (dd < 0 ? -dd : dd)))
358     {
359     if (v > best && xoff < x && x <= xlim - SNAKE_LIMIT &&
360     yoff < y && y <= ylim - SNAKE_LIMIT)
361     {
362     /* We have a good enough best diagonal; now insist
363     that it end with a significant snake. */
364     int k;
365    
366     for (k = 0; xv[x + k] == yv[y + k]; k++)
367     {
368     if (k == SNAKE_LIMIT - 1)
369     {
370     best = v;
371     part->xmid = x;
372     part->ymid = y;
373     break;
374     }
375     }
376     }
377     }
378     }
379     if (best > 0)
380     {
381     part->lo_minimal = 0;
382     part->hi_minimal = 1;
383     return 2 * c - 1;
384     }
385     }
386     #endif /* MINUS_H_FLAG */
387    
388     /* Heuristic: if we've gone well beyond the call of duty, give up
389     and report halfway between our best results so far. */
390     if (c >= too_expensive)
391     {
392     int fxybest;
393     int fxbest;
394     int bxybest;
395     int bxbest;
396    
397     /* Pacify `gcc -Wall'. */
398     fxbest = 0;
399     bxbest = 0;
400    
401     /* Find forward diagonal that maximizes X + Y. */
402     fxybest = -1;
403     for (d = fmax; d >= fmin; d -= 2)
404     {
405     int x;
406     int y;
407    
408     x = fd[d] < xlim ? fd[d] : xlim;
409     y = x - d;
410    
411     if (ylim < y)
412     {
413     x = ylim + d;
414     y = ylim;
415     }
416     if (fxybest < x + y)
417     {
418     fxybest = x + y;
419     fxbest = x;
420     }
421     }
422     /* Find backward diagonal that minimizes X + Y. */
423     bxybest = INT_MAX;
424     for (d = bmax; d >= bmin; d -= 2)
425     {
426     int x;
427     int y;
428    
429     x = xoff > bd[d] ? xoff : bd[d];
430     y = x - d;
431    
432     if (y < yoff)
433     {
434     x = yoff + d;
435     y = yoff;
436     }
437     if (x + y < bxybest)
438     {
439     bxybest = x + y;
440     bxbest = x;
441     }
442     }
443     /* Use the better of the two diagonals. */
444     if ((xlim + ylim) - bxybest < fxybest - (xoff + yoff))
445     {
446     part->xmid = fxbest;
447     part->ymid = fxybest - fxbest;
448     part->lo_minimal = 1;
449     part->hi_minimal = 0;
450     }
451     else
452     {
453     part->xmid = bxbest;
454     part->ymid = bxybest - bxbest;
455     part->lo_minimal = 0;
456     part->hi_minimal = 1;
457     }
458     return 2 * c - 1;
459     }
460     }
461     }
462    
463    
464     /* NAME
465     compareseq - find edit sequence
466    
467     SYNOPSIS
468     void compareseq(int xoff, int xlim, int yoff, int ylim, int minimal);
469    
470     DESCRIPTION
471     Compare in detail contiguous subsequences of the two strings
472     which are known, as a whole, to match each other.
473    
474     The subsequence of string 0 is [XOFF, XLIM) and likewise for
475     string 1.
476    
477     Note that XLIM, YLIM are exclusive bounds. All character
478     numbers are origin-0.
479    
480     If MINIMAL is nonzero, find a minimal difference no matter how
481     expensive it is. */
482    
483     static void compareseq PARAMS ((int, int, int, int, int));
484    
485     static void
486     compareseq (xoff, xlim, yoff, ylim, minimal)
487     int xoff;
488     int xlim;
489     int yoff;
490     int ylim;
491     int minimal;
492     {
493     const CHAR *const xv = string[0].data; /* Help the compiler. */
494     const CHAR *const yv = string[1].data;
495    
496     if (string[1].edit_count + string[0].edit_count > max_edits)
497     return;
498    
499     /* Slide down the bottom initial diagonal. */
500     while (xoff < xlim && yoff < ylim && xv[xoff] == yv[yoff])
501     {
502     ++xoff;
503     ++yoff;
504     }
505    
506     /* Slide up the top initial diagonal. */
507     while (xlim > xoff && ylim > yoff && xv[xlim - 1] == yv[ylim - 1])
508     {
509     --xlim;
510     --ylim;
511     }
512    
513     /* Handle simple cases. */
514     if (xoff == xlim)
515     {
516     while (yoff < ylim)
517     {
518     ++string[1].edit_count;
519     ++yoff;
520     }
521     }
522     else if (yoff == ylim)
523     {
524     while (xoff < xlim)
525     {
526     ++string[0].edit_count;
527     ++xoff;
528     }
529     }
530     else
531     {
532     int c;
533     struct partition part;
534    
535     /* Find a point of correspondence in the middle of the strings. */
536     c = diag (xoff, xlim, yoff, ylim, minimal, &part);
537     if (c == 1)
538     {
539     #if 0
540     /* This should be impossible, because it implies that one of
541     the two subsequences is empty, and that case was handled
542     above without calling `diag'. Let's verify that this is
543     true. */
544     abort ();
545     #else
546     /* The two subsequences differ by a single insert or delete;
547     record it and we are done. */
548     if (part.xmid - part.ymid < xoff - yoff)
549     ++string[1].edit_count;
550     else
551     ++string[0].edit_count;
552     #endif
553     }
554     else
555     {
556     /* Use the partitions to split this problem into subproblems. */
557     compareseq (xoff, part.xmid, yoff, part.ymid, part.lo_minimal);
558     compareseq (part.xmid, xlim, part.ymid, ylim, part.hi_minimal);
559     }
560     }
561     }
562    
563    
564     /* NAME
565     fstrcmp - fuzzy string compare
566    
567     SYNOPSIS
568     double fstrcmp(const CHAR *s1, int l1, const CHAR *s2, int l2, double);
569    
570     DESCRIPTION
571     The fstrcmp function may be used to compare two string for
572     similarity. It is very useful in reducing "cascade" or
573     "secondary" errors in compilers or other situations where
574     symbol tables occur.
575    
576     RETURNS
577     double; 0 if the strings are entirly dissimilar, 1 if the
578     strings are identical, and a number in between if they are
579     similar. */
580    
581     double
582     fstrcmp (const CHAR *string1, int length1,
583     const CHAR *string2, int length2,
584     double minimum)
585     {
586     int i;
587    
588     size_t fdiag_len;
589     static int *fdiag_buf;
590     static size_t fdiag_max;
591    
592     /* set the info for each string. */
593     string[0].data = string1;
594     string[0].data_length = length1;
595     string[1].data = string2;
596     string[1].data_length = length2;
597    
598     /* short-circuit obvious comparisons */
599     if (string[0].data_length == 0 && string[1].data_length == 0)
600     return 1.0;
601     if (string[0].data_length == 0 || string[1].data_length == 0)
602     return 0.0;
603    
604     /* Set TOO_EXPENSIVE to be approximate square root of input size,
605     bounded below by 256. */
606     too_expensive = 1;
607     for (i = string[0].data_length + string[1].data_length; i != 0; i >>= 2)
608     too_expensive <<= 1;
609     if (too_expensive < 256)
610     too_expensive = 256;
611    
612     /* Because fstrcmp is typically called multiple times, while scanning
613     symbol tables, etc, attempt to minimize the number of memory
614     allocations performed. Thus, we use a static buffer for the
615     diagonal vectors, and never free them. */
616     fdiag_len = string[0].data_length + string[1].data_length + 3;
617     if (fdiag_len > fdiag_max)
618     {
619     fdiag_max = fdiag_len;
620     fdiag_buf = realloc (fdiag_buf, fdiag_max * (2 * sizeof (int)));
621     }
622     fdiag = fdiag_buf + string[1].data_length + 1;
623     bdiag = fdiag + fdiag_len;
624    
625     max_edits = 1 + (string[0].data_length + string[1].data_length) * (1. - minimum);
626    
627     /* Now do the main comparison algorithm */
628     string[0].edit_count = 0;
629     string[1].edit_count = 0;
630     compareseq (0, string[0].data_length, 0, string[1].data_length, 0);
631    
632     /* The result is
633     ((number of chars in common) / (average length of the strings)).
634     This is admittedly biased towards finding that the strings are
635     similar, however it does produce meaningful results. */
636     return ((double)
637     (string[0].data_length + string[1].data_length - string[1].edit_count - string[0].edit_count)
638     / (string[0].data_length + string[1].data_length));
639    
640     }