ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/Tree-M/M.pm
Revision: 1.3
Committed: Wed May 23 02:11:14 2001 UTC (23 years, 4 months ago) by root
Branch: MAIN
CVS Tags: HEAD
Changes since 1.2: +34 -10 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 package Tree::M;
2    
3     use Carp;
4     use DynaLoader;
5    
6     BEGIN {
7 root 1.3 $VERSION = 0.02;
8 root 1.1 @ISA = qw(DynaLoader);
9     bootstrap Tree::M, $VERSION;
10     }
11    
12     =head1 NAME
13    
14 root 1.3 Tree::M - implement M-trees for efficient "metric/multimedia-searches"
15 root 1.1
16     =head1 SYNOPSIS
17    
18     use Tree::M;
19    
20 root 1.2 $M = new Tree::M
21    
22 root 1.1 =head1 DESCRIPTION
23    
24     (not yet)
25    
26     Ever had the problem of managing multi-dimensional (spatial) data but your
27     database only had one-dimensional indices (b-tree etc.)? Queries like
28    
29     select data from table where latitude > 40 and latitude < 50
30 root 1.2 and longitude> 50 and longitude< 60;
31 root 1.1
32     are quite inefficient, unless longitude and latitude are part of the same
33 root 1.2 spatial index (e.g. an R-tree).
34 root 1.1
35 root 1.2 An M-tree is an index tree that does not directly look at the stored keys
36     but rather requires a I<distance> (a metric, e.g. a vector norm) function
37     to be defined that sorts keys according to their distance. In the example
38     above the distance function could be the maximum norm (C<max(x1-x2,
39     y1-y2)>). The lookup above would then be something like this:
40    
41     my $res = $M->range([45,55], 5);
42    
43     This module implements an M-tree. Although the data structure and the
44     distance function is arbitrary, the current version only implements
45     n-dimensional discrete vectors and hardwires the distance function to the
46     suared euclidean metric (i.e. C<(x1-x2)**2 + (y1-y2)**2 + (z1-z2)**2 +
47     ...>). Evolution towards more freedom is expected ;)
48 root 1.1
49     =head2 THE Tree::M CLASS
50    
51     =over 4
52    
53 root 1.3 =item $M = new Tree::M arg => value, ...
54 root 1.2
55     Creates a new M-Tree. Before it can be used you have to call one of the
56 root 1.3 C<create> or C<open> methods below.
57 root 1.2
58 root 1.3 ndims => integer
59     the number of dimensions each vector has
60    
61     range => [min, max, steps]
62     min the lowest allowable scalar value in each dimension
63     max the maximum allowable number
64     steps the number of discrete steps (used when stored externally)
65    
66     pagesize => integer
67     the size of one page on underlying storage. usually 4096, but
68     large objects (ndims > 20 or so) might want to increase this
69 root 1.2
70     Example: create an M-Tree that stores 8-bit rgb-values:
71    
72 root 1.3 $M = new Tree::M ndims => 3, range => [0, 255, 256];
73 root 1.2
74     Example: create an M-Tree that stores coordinates from -1..1 with 100 different steps:
75    
76 root 1.3 $M = new Tree::M ndims => 2, range => [-1, 1, 100];
77 root 1.2
78     =item $M->open(path)
79    
80     =item $M->create($path)
81    
82     Open or create the external storage file C<$path> and associate it with the tree.
83    
84     [this braindamaged API will go away ;)]
85    
86     =item $M->insert(\@v, $data)
87 root 1.1
88 root 1.2 Insert a vector (given by an array reference) into the index and associate
89     it with the value C<$data> (a 32-bit integer).
90 root 1.1
91 root 1.3 =item $M->sync
92    
93     Synchronize the data file with memory. Useful after calling C<insert> to
94     ensure the data actually reaches stable storage.
95    
96 root 1.2 =item $res = $M->range(\@v, $radius)
97    
98     Search all entries not farther away from C<@v> then C<$radius> and return
99     an arrayref containing the searchresults.
100    
101     Each result is again anarrayref composed like this:
102    
103     [\@v, $data]
104    
105     e.g. the same as given to the C<insert> method.
106    
107     =item $res = $M->top(\@v, $n)
108    
109     Return the C<$n> "nearest neighbours". The results arrayref (see C<range>)
110     contains the C<$n> index values nearest to C<@v>, sorted for distance.
111    
112     =item $distance = $M->distance(\@v1, \@v2)
113    
114     Calculcate the distance between two vectors, just as they databse engine
115     would do it.
116    
117     =item $depth = $M->maxlevel
118    
119     Return the maximum height of the tree (usually a small integer specifying
120     the length of the path from the root to the farthest leaf)
121 root 1.1
122     =cut
123 root 1.3
124     sub new {
125     my $class = shift;
126     my %a = @_;
127     $class->_new(
128     $a{ndims},
129     $a{range}[0],
130     $a{range}[1],
131     $a{range}[2],
132     $a{pagesize},
133     );
134     }
135 root 1.1
136     =back
137 root 1.2
138     =head1 BUGS
139    
140     Inserting too many duplicate keys into the tree cause the C++ library to
141     die, so don't do that.
142 root 1.1
143     =head1 AUTHOR
144    
145     Marc Lehmann <pcg@goof.com>.
146    
147     =head1 SEE ALSO
148    
149     perl(1), L<DBIx::SpatialKeys>.
150    
151     =cut
152    
153     1;
154