ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/cvsroot/AnyEvent-MP/MP/Transport.pm
Revision: 1.65
Committed: Sun Mar 7 19:29:07 2010 UTC (14 years, 4 months ago) by root
Branch: MAIN
Changes since 1.64: +60 -9 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.13 AnyEvent::MP::Transport - actual transport protocol handler
4 root 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent::MP::Transport;
8    
9     =head1 DESCRIPTION
10    
11 root 1.43 This module implements (and documents) the actual transport protocol for
12     AEMP.
13 root 1.1
14 root 1.7 See the "PROTOCOL" section below if you want to write another client for
15     this protocol.
16 root 1.1
17     =head1 FUNCTIONS/METHODS
18    
19     =over 4
20    
21     =cut
22    
23     package AnyEvent::MP::Transport;
24    
25     use common::sense;
26    
27 root 1.27 use Scalar::Util ();
28     use List::Util ();
29 root 1.1 use MIME::Base64 ();
30     use Storable ();
31 root 1.2 use JSON::XS ();
32 root 1.1
33 root 1.19 use Digest::MD6 ();
34     use Digest::HMAC_MD6 ();
35    
36 root 1.1 use AE ();
37     use AnyEvent::Socket ();
38 root 1.27 use AnyEvent::Handle 4.92 ();
39 root 1.2
40 root 1.30 use AnyEvent::MP::Config ();
41    
42 root 1.55 our $PROTOCOL_VERSION = 1;
43 root 1.1
44 root 1.52 our @HOOK_CONNECT; # called at connect/accept time
45     our @HOOK_GREETING; # called at greeting1 time
46     our @HOOK_CONNECTED; # called at data phase
47     our @HOOK_DESTROY; # called at destroy time
48 root 1.59 our %HOOK_PROTOCOL = (
49     "aemp-dataconn" => sub {
50     require AnyEvent::MP::DataConn;
51     &AnyEvent::MP::DataConn::_inject;
52     },
53     );
54 root 1.52
55 root 1.39 =item $listener = mp_listener $host, $port, <constructor-args>
56 root 1.1
57     Creates a listener on the given host/port using
58     C<AnyEvent::Socket::tcp_server>.
59    
60     See C<new>, below, for constructor arguments.
61    
62 root 1.10 Defaults for peerhost, peerport and fh are provided.
63 root 1.1
64     =cut
65    
66 root 1.46 sub mp_server($$;%) {
67     my ($host, $port, %arg) = @_;
68 root 1.1
69     AnyEvent::Socket::tcp_server $host, $port, sub {
70     my ($fh, $host, $port) = @_;
71    
72 root 1.39 my $tp = new AnyEvent::MP::Transport
73 root 1.1 fh => $fh,
74     peerhost => $host,
75     peerport => $port,
76 root 1.46 %arg,
77 root 1.39 ;
78     $tp->{keepalive} = $tp;
79 root 1.46 }, delete $arg{prepare}
80 root 1.1 }
81    
82 root 1.2 =item $guard = mp_connect $host, $port, <constructor-args>, $cb->($transport)
83    
84     =cut
85    
86     sub mp_connect {
87 root 1.31 my $release = pop;
88 root 1.2 my ($host, $port, @args) = @_;
89    
90 root 1.51 new AnyEvent::MP::Transport
91     connect => [$host, $port],
92 root 1.52 peerhost => $host,
93     peerport => $port,
94 root 1.51 release => $release,
95     @args,
96     ;
97 root 1.2 }
98    
99 root 1.1 =item new AnyEvent::MP::Transport
100    
101     # immediately starts negotiation
102     my $transport = new AnyEvent::MP::Transport
103 root 1.2 # mandatory
104 root 1.1 fh => $filehandle,
105 root 1.2 local_id => $identifier,
106 root 1.1 on_recv => sub { receive-callback },
107     on_error => sub { error-callback },
108    
109     # optional
110     on_eof => sub { clean-close-callback },
111     on_connect => sub { successful-connect-callback },
112 root 1.2 greeting => { key => value },
113 root 1.1
114     # tls support
115     tls_ctx => AnyEvent::TLS,
116     peername => $peername, # for verification
117     ;
118    
119     =cut
120    
121     sub new {
122     my ($class, %arg) = @_;
123    
124     my $self = bless \%arg, $class;
125    
126     {
127     Scalar::Util::weaken (my $self = $self);
128    
129 root 1.50 my $config = $AnyEvent::MP::Kernel::CONFIG;
130 root 1.30
131 root 1.50 my $timeout = $config->{monitor_timeout};
132 root 1.64 my $lframing = $config->{framing_format};
133 root 1.50 my $auth_snd = $config->{auth_offer};
134     my $auth_rcv = $config->{auth_accept};
135 root 1.31
136 root 1.42 $self->{secret} = $config->{secret}
137     unless exists $self->{secret};
138 root 1.2
139 root 1.42 my $secret = $self->{secret};
140 root 1.19
141 root 1.30 if (exists $config->{cert}) {
142 root 1.42 $self->{tls_ctx} = {
143 root 1.19 sslv2 => 0,
144     sslv3 => 0,
145     tlsv1 => 1,
146     verify => 1,
147 root 1.30 cert => $config->{cert},
148     ca_cert => $config->{cert},
149 root 1.19 verify_require_client_cert => 1,
150     };
151     }
152    
153 root 1.1 $self->{hdl} = new AnyEvent::Handle
154 root 1.52 +($self->{fh} ? (fh => $self->{fh}) : (connect => $self->{connect})),
155 root 1.63 autocork => $config->{autocork},
156     no_delay => exists $config->{nodelay} ? $config->{nodelay} : 1,
157 root 1.48 keepalive => 1,
158     on_error => sub {
159 root 1.1 $self->error ($_[2]);
160     },
161 root 1.49 rtimeout => $timeout,
162 root 1.1 ;
163    
164 root 1.52 my $greeting_kv = $self->{local_greeting} ||= {};
165 root 1.24
166 root 1.42 $greeting_kv->{tls} = "1.0" if $self->{tls_ctx};
167 root 1.62 $greeting_kv->{provider} = "AE-$AnyEvent::MP::VERSION"; # MP.pm might not be loaded, so best effort :(
168 root 1.7 $greeting_kv->{peeraddr} = AnyEvent::Socket::format_hostport $self->{peerhost}, $self->{peerport};
169 root 1.23
170 root 1.58 my $protocol = $self->{protocol} || "aemp";
171    
172 root 1.52 # can modify greeting_kv
173 root 1.58 $_->($self) for $protocol eq "aemp" ? @HOOK_CONNECT : ();
174 root 1.52
175 root 1.1 # send greeting
176 root 1.58 my $lgreeting1 = "$protocol;$PROTOCOL_VERSION"
177 root 1.52 . ";$AnyEvent::MP::Kernel::NODE"
178 root 1.50 . ";" . (join ",", @$auth_rcv)
179     . ";" . (join ",", @$lframing)
180 root 1.7 . (join "", map ";$_=$greeting_kv->{$_}", keys %$greeting_kv);
181 root 1.12
182 root 1.31 my $lgreeting2 = MIME::Base64::encode_base64 AnyEvent::MP::Kernel::nonce (66), "";
183 root 1.1
184 root 1.7 $self->{hdl}->push_write ("$lgreeting1\012$lgreeting2\012");
185 root 1.1
186     # expect greeting
187 root 1.12 $self->{hdl}->rbuf_max (4 * 1024);
188 root 1.1 $self->{hdl}->push_read (line => sub {
189 root 1.7 my $rgreeting1 = $_[1];
190 root 1.1
191 root 1.26 my ($aemp, $version, $rnode, $auths, $framings, @kv) = split /;/, $rgreeting1;
192 root 1.1
193 root 1.53 $self->{remote_node} = $rnode;
194    
195     $self->{remote_greeting} = {
196     map /^([^=]+)(?:=(.*))?/ ? ($1 => $2) : (),
197     @kv
198     };
199    
200 root 1.60 # maybe upgrade the protocol
201     if ($protocol eq "aemp" and $aemp =~ /^aemp-\w+$/) {
202     # maybe check for existence of the protocol handler?
203     $self->{protocol} = $protocol = $aemp;
204     }
205    
206 root 1.58 $_->($self) for $protocol eq "aemp" ? @HOOK_GREETING : ();
207 root 1.54
208 root 1.60 if ($aemp ne $protocol and $aemp ne "aemp") {
209 root 1.58 return $self->error ("unparsable greeting, expected '$protocol', got '$aemp'");
210 root 1.12 } elsif ($version != $PROTOCOL_VERSION) {
211     return $self->error ("version mismatch (we: $PROTOCOL_VERSION, they: $version)");
212 root 1.60 } elsif ($protocol eq "aemp") {
213     if ($rnode eq $AnyEvent::MP::Kernel::NODE) {
214     return $self->error ("I refuse to talk to myself");
215     } elsif ($AnyEvent::MP::Kernel::NODE{$rnode} && $AnyEvent::MP::Kernel::NODE{$rnode}{transport}) {
216     return $self->error ("$rnode already connected, not connecting again.");
217     }
218 root 1.1 }
219    
220 root 1.7 # read nonce
221     $self->{hdl}->push_read (line => sub {
222     my $rgreeting2 = $_[1];
223    
224 root 1.19 "$lgreeting1\012$lgreeting2" ne "$rgreeting1\012$rgreeting2" # echo attack?
225     or return $self->error ("authentication error, echo attack?");
226    
227 root 1.41 my $tls = $self->{tls_ctx} && 1 == int $self->{remote_greeting}{tls};
228    
229     my $s_auth;
230     for my $auth_ (split /,/, $auths) {
231 root 1.50 if (grep $auth_ eq $_, @$auth_snd and ($auth_ !~ /^tls_/ or $tls)) {
232 root 1.41 $s_auth = $auth_;
233     last;
234     }
235     }
236    
237     defined $s_auth
238     or return $self->error ("$auths: no common auth type supported");
239    
240     my $s_framing;
241     for my $framing_ (split /,/, $framings) {
242 root 1.50 if (grep $framing_ eq $_, @$lframing) {
243 root 1.41 $s_framing = $framing_;
244     last;
245     }
246     }
247    
248     defined $s_framing
249     or return $self->error ("$framings: no common framing method supported");
250    
251 root 1.30 my $key;
252 root 1.19 my $lauth;
253    
254 root 1.41 if ($tls) {
255 root 1.8 $self->{tls} = $lgreeting2 lt $rgreeting2 ? "connect" : "accept";
256     $self->{hdl}->starttls ($self->{tls}, $self->{tls_ctx});
257 root 1.41
258     $lauth =
259     $s_auth eq "tls_anon" ? ""
260     : $s_auth eq "tls_md6_64_256" ? Digest::MD6::md6_hex "$lgreeting1\012$lgreeting2\012$rgreeting1\012$rgreeting2\012"
261     : return $self->error ("$s_auth: fatal, selected unsupported snd auth method");
262    
263 root 1.30 } elsif (length $secret) {
264 root 1.41 return $self->error ("$s_auth: fatal, selected unsupported snd auth method")
265     unless $s_auth eq "hmac_md6_64_256"; # hardcoded atm.
266    
267 root 1.30 $key = Digest::MD6::md6 $secret;
268 root 1.19 # we currently only support hmac_md6_64_256
269     $lauth = Digest::HMAC_MD6::hmac_md6_hex $key, "$lgreeting1\012$lgreeting2\012$rgreeting1\012$rgreeting2\012", 64, 256;
270 root 1.41
271 root 1.30 } else {
272     return $self->error ("unable to handshake TLS and no shared secret configured");
273 root 1.8 }
274 root 1.2
275 root 1.7 $self->{hdl}->push_write ("$s_auth;$lauth;$s_framing\012");
276 root 1.2
277 root 1.19 # read the authentication response
278 root 1.7 $self->{hdl}->push_read (line => sub {
279     my ($hdl, $rline) = @_;
280 root 1.2
281 root 1.7 my ($auth_method, $rauth2, $r_framing) = split /;/, $rline;
282 root 1.1
283 root 1.19 my $rauth =
284     $auth_method eq "hmac_md6_64_256" ? Digest::HMAC_MD6::hmac_md6_hex $key, "$rgreeting1\012$rgreeting2\012$lgreeting1\012$lgreeting2\012", 64, 256
285     : $auth_method eq "cleartext" ? unpack "H*", $secret
286 root 1.41 : $auth_method eq "tls_anon" ? ($tls ? "" : "\012\012") # \012\012 never matches
287     : $auth_method eq "tls_md6_64_256" ? ($tls ? Digest::MD6::md6_hex "$rgreeting1\012$rgreeting2\012$lgreeting1\012$lgreeting2\012" : "\012\012")
288     : return $self->error ("$auth_method: fatal, selected unsupported rcv auth method");
289 root 1.19
290 root 1.7 if ($rauth2 ne $rauth) {
291     return $self->error ("authentication failure/shared secret mismatch");
292     }
293 root 1.1
294 root 1.7 $self->{s_framing} = $s_framing;
295 root 1.2
296 root 1.7 $hdl->rbuf_max (undef);
297 root 1.1
298 root 1.49 # we rely on TCP retransmit timeouts and keepalives
299     $self->{hdl}->rtimeout (undef);
300    
301     $self->{remote_greeting}{untrusted} = 1
302     if $auth_method eq "tls_anon";
303 root 1.24
304 root 1.7 $self->connected;
305 root 1.1
306 root 1.64 if ($protocol eq "aemp" and $self->{hdl}) {
307 root 1.59 # listener-less node need to continuously probe
308     unless (@$AnyEvent::MP::Kernel::LISTENER) {
309     $self->{hdl}->wtimeout ($timeout);
310     $self->{hdl}->on_wtimeout (sub { $self->send ([]) });
311     }
312 root 1.58
313     # receive handling
314     my $src_node = $self->{node};
315 root 1.65 Scalar::Util::weaken $src_node;
316 root 1.45
317 root 1.65 if ($r_framing eq "\njsonxyz") {#d#
318     } else {
319     my $rmsg; $rmsg = $self->{rmsg} = sub {
320     $_[0]->push_read ($r_framing => $rmsg);
321    
322     local $AnyEvent::MP::Kernel::SRCNODE = $src_node;
323     AnyEvent::MP::Kernel::_inject (@{ $_[1] });
324     };
325     eval {
326     $hdl->push_read ($r_framing => $rmsg);
327     };
328     Scalar::Util::weaken $rmsg;
329     return $self->error ("$r_framing: unusable remote framing")
330     if $@;
331     }
332 root 1.58 }
333 root 1.7 });
334 root 1.1 });
335     });
336     }
337    
338     $self
339     }
340    
341     sub error {
342     my ($self, $msg) = @_;
343    
344 root 1.39 delete $self->{keepalive};
345    
346 root 1.58 if ($self->{protocol}) {
347 root 1.59 $HOOK_PROTOCOL{$self->{protocol}}->($self, $msg);
348 root 1.58 } else {
349     $AnyEvent::MP::Kernel::WARN->(9, "$self->{peerhost}:$self->{peerport} $msg");#d#
350 root 1.39
351 root 1.58 $self->{node}->transport_error (transport_error => $self->{node}{id}, $msg)
352     if $self->{node} && $self->{node}{transport} == $self;
353     }
354 root 1.31
355     (delete $self->{release})->()
356     if exists $self->{release};
357    
358 root 1.37 # $AnyEvent::MP::Kernel::WARN->(7, "$self->{peerhost}:$self->{peerport}: $msg");
359 root 1.4 $self->destroy;
360 root 1.1 }
361    
362 root 1.2 sub connected {
363     my ($self) = @_;
364    
365 root 1.39 delete $self->{keepalive};
366    
367 root 1.58 if ($self->{protocol}) {
368 root 1.59 $self->{hdl}->on_error (undef);
369     $HOOK_PROTOCOL{$self->{protocol}}->($self, undef);
370 root 1.58 } else {
371     $AnyEvent::MP::Kernel::WARN->(9, "$self->{peerhost}:$self->{peerport} connected as $self->{remote_node}");
372    
373     my $node = AnyEvent::MP::Kernel::add_node ($self->{remote_node});
374     Scalar::Util::weaken ($self->{node} = $node);
375     $node->transport_connect ($self);
376 root 1.39
377 root 1.58 $_->($self) for @HOOK_CONNECTED;
378     }
379 root 1.61
380     (delete $self->{release})->()
381     if exists $self->{release};
382 root 1.2 }
383    
384 root 1.1 sub send {
385 root 1.2 $_[0]{hdl}->push_write ($_[0]{s_framing} => $_[1]);
386 root 1.1 }
387    
388     sub destroy {
389     my ($self) = @_;
390    
391 root 1.42 (delete $self->{release})->()
392     if exists $self->{release};
393    
394 root 1.2 $self->{hdl}->destroy
395     if $self->{hdl};
396 root 1.52
397 root 1.59 $_->($self) for $self->{protocol} ? () : @HOOK_DESTROY;
398 root 1.1 }
399    
400     sub DESTROY {
401     my ($self) = @_;
402    
403     $self->destroy;
404     }
405    
406     =back
407    
408 root 1.7 =head1 PROTOCOL
409    
410 root 1.59 The AEMP protocol is comparatively simple, and consists of three phases
411     which are symmetrical for both sides: greeting (followed by optionally
412     switching to TLS mode), authentication and packet exchange.
413 root 1.7
414 root 1.43 The protocol is designed to allow both full-text and binary streams.
415 root 1.7
416     The greeting consists of two text lines that are ended by either an ASCII
417     CR LF pair, or a single ASCII LF (recommended).
418    
419     =head2 GREETING
420    
421 root 1.15 All the lines until after authentication must not exceed 4kb in length,
422 root 1.43 including line delimiter. Afterwards there is no limit on the packet size
423     that can be received.
424 root 1.15
425     =head3 First Greeting Line
426 root 1.12
427 root 1.16 Example:
428    
429 root 1.43 aemp;0;rain;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;timeout=12;peeraddr=10.0.0.1:48082
430 root 1.16
431     The first line contains strings separated (not ended) by C<;>
432 root 1.43 characters. The first five strings are fixed by the protocol, the
433 root 1.16 remaining strings are C<KEY=VALUE> pairs. None of them may contain C<;>
434 root 1.43 characters themselves (when escaping is needed, use C<%3b> to represent
435     C<;> and C<%25> to represent C<%>)-
436 root 1.16
437 root 1.12 The fixed strings are:
438 root 1.7
439     =over 4
440    
441 root 1.18 =item protocol identification
442 root 1.7
443 root 1.43 The constant C<aemp> to identify this protocol.
444 root 1.7
445     =item protocol version
446    
447 root 1.55 The protocol version supported by this end, currently C<1>. If the
448 root 1.12 versions don't match then no communication is possible. Minor extensions
449 root 1.18 are supposed to be handled through additional key-value pairs.
450 root 1.7
451 root 1.43 =item the node ID
452 root 1.7
453 root 1.57 This is the node ID of the connecting node.
454 root 1.7
455     =item the acceptable authentication methods
456    
457     A comma-separated list of authentication methods supported by the
458     node. Note that AnyEvent::MP supports a C<hex_secret> authentication
459 root 1.43 method that accepts a clear-text password (hex-encoded), but will not use
460     this authentication method itself.
461 root 1.7
462 root 1.43 The receiving side should choose the first authentication method it
463     supports.
464 root 1.7
465     =item the acceptable framing formats
466    
467 root 1.43 A comma-separated list of packet encoding/framing formats understood. The
468 root 1.7 receiving side should choose the first framing format it supports for
469     sending packets (which might be different from the format it has to accept).
470    
471 root 1.10 =back
472 root 1.8
473     The remaining arguments are C<KEY=VALUE> pairs. The following key-value
474     pairs are known at this time:
475    
476     =over 4
477    
478     =item provider=<module-version>
479    
480     The software provider for this implementation. For AnyEvent::MP, this is
481     C<AE-0.0> or whatever version it currently is at.
482    
483     =item peeraddr=<host>:<port>
484    
485 root 1.39 The peer address (socket address of the other side) as seen locally.
486 root 1.8
487     =item tls=<major>.<minor>
488    
489     Indicates that the other side supports TLS (version should be 1.0) and
490     wishes to do a TLS handshake.
491    
492     =back
493    
494 root 1.15 =head3 Second Greeting Line
495    
496 root 1.8 After this greeting line there will be a second line containing a
497     cryptographic nonce, i.e. random data of high quality. To keep the
498     protocol text-only, these are usually 32 base64-encoded octets, but
499     it could be anything that doesn't contain any ASCII CR or ASCII LF
500     characters.
501    
502 root 1.14 I<< The two nonces B<must> be different, and an aemp implementation
503     B<must> check and fail when they are identical >>.
504    
505 root 1.43 Example of a nonce line (yes, it's random-looking because it is random
506     data):
507 root 1.8
508 root 1.43 2XYhdG7/O6epFa4wuP0ujAEx1rXYWRcOypjUYK7eF6yWAQr7gwIN9m/2+mVvBrTPXz5GJDgfGm9d8QRABAbmAP/s
509 root 1.8
510     =head2 TLS handshake
511    
512 root 1.14 I<< If, after the handshake, both sides indicate interest in TLS, then the
513 root 1.43 connection B<must> use TLS, or fail to continue. >>
514 root 1.8
515     Both sides compare their nonces, and the side who sent the lower nonce
516     value ("string" comparison on the raw octet values) becomes the client,
517     and the one with the higher nonce the server.
518    
519     =head2 AUTHENTICATION PHASE
520    
521     After the greeting is received (and the optional TLS handshake),
522     the authentication phase begins, which consists of sending a single
523     C<;>-separated line with three fixed strings and any number of
524     C<KEY=VALUE> pairs.
525    
526     The three fixed strings are:
527    
528     =over 4
529    
530     =item the authentication method chosen
531    
532     This must be one of the methods offered by the other side in the greeting.
533    
534 root 1.41 Note that all methods starting with C<tls_> are only valid I<iff> TLS was
535     successfully handshaked (and to be secure the implementation must enforce
536     this).
537    
538 root 1.13 The currently supported authentication methods are:
539    
540     =over 4
541    
542     =item cleartext
543    
544     This is simply the shared secret, lowercase-hex-encoded. This method is of
545 root 1.43 course very insecure if TLS is not used (and not completely secure even
546     if TLS is used), which is why this module will accept, but not generate,
547     cleartext auth replies.
548 root 1.13
549     =item hmac_md6_64_256
550    
551 root 1.43 This method uses an MD6 HMAC with 64 bit blocksize and 256 bit hash, and
552     requires a shared secret. It is the preferred auth method when a shared
553     secret is available.
554    
555     First, the shared secret is hashed with MD6:
556 root 1.13
557     key = MD6 (secret)
558    
559     This secret is then used to generate the "local auth reply", by taking
560     the two local greeting lines and the two remote greeting lines (without
561     line endings), appending \012 to all of them, concatenating them and
562 root 1.43 calculating the MD6 HMAC with the key:
563 root 1.13
564     lauth = HMAC_MD6 key, "lgreeting1\012lgreeting2\012rgreeting1\012rgreeting2\012"
565    
566     This authentication token is then lowercase-hex-encoded and sent to the
567     other side.
568    
569     Then the remote auth reply is generated using the same method, but local
570     and remote greeting lines swapped:
571    
572     rauth = HMAC_MD6 key, "rgreeting1\012rgreeting2\012lgreeting1\012lgreeting2\012"
573    
574     This is the token that is expected from the other side.
575    
576 root 1.41 =item tls_anon
577 root 1.19
578 root 1.43 This type is only valid I<iff> TLS was enabled and the TLS handshake
579 root 1.19 was successful. It has no authentication data, as the server/client
580     certificate was successfully verified.
581    
582 root 1.43 This authentication type is somewhat insecure, as it allows a
583     man-in-the-middle attacker to change some of the connection parameters
584     (such as the framing format), although there is no known attack that
585     exploits this in a way that is worse than just denying the service.
586 root 1.41
587 root 1.43 By default, this implementation accepts but never generates this auth
588     reply.
589 root 1.41
590     =item tls_md6_64_256
591    
592 root 1.43 This type is only valid I<iff> TLS was enabled and the TLS handshake was
593     successful.
594 root 1.41
595     This authentication type simply calculates:
596    
597     lauth = MD6 "rgreeting1\012rgreeting2\012lgreeting1\012lgreeting2\012"
598    
599     and lowercase-hex encodes the result and sends it as authentication
600     data. No shared secret is required (authentication is done by TLS). The
601 root 1.43 checksum exists only to make tinkering with the greeting hard.
602 root 1.19
603 root 1.13 =back
604    
605 root 1.8 =item the authentication data
606    
607 root 1.13 The authentication data itself, usually base64 or hex-encoded data, see
608     above.
609 root 1.8
610     =item the framing protocol chosen
611    
612     This must be one of the framing protocols offered by the other side in the
613 root 1.43 greeting. Each side must accept the choice of the other side, and generate
614     packets in the format it chose itself.
615 root 1.8
616     =back
617    
618 root 1.16 Example of an authentication reply:
619 root 1.9
620 root 1.13 hmac_md6_64_256;363d5175df38bd9eaddd3f6ca18aa1c0c4aa22f0da245ac638d048398c26b8d3;json
621 root 1.9
622 root 1.8 =head2 DATA PHASE
623    
624     After this, packets get exchanged using the chosen framing protocol. It is
625     quite possible that both sides use a different framing protocol.
626    
627 root 1.16 =head2 FULL EXAMPLE
628    
629 root 1.17 This is an actual protocol dump of a handshake, followed by a single data
630 root 1.16 packet. The greater than/less than lines indicate the direction of the
631     transfer only.
632    
633 root 1.43 > aemp;0;anon/57Cs1CggVJjzYaQp13XXg4;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;provider=AE-0.8;timeout=12;peeraddr=10.0.0.17:4040
634     > yLgdG1ov/02shVkVQer3wzeuywZK+oraTdEQBmIqWHaegxSGDG4g+HqogLQbvdypFOsoDWJ1Sh4ImV4DMhvUBwTK
635    
636     < aemp;0;ruth;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;provider=AE-0.8;timeout=12;peeraddr=10.0.0.1:37108
637     < +xMQXP8ElfNmuvEhsmcp+s2wCJOuQAsPxSg3d2Ewhs6gBnJz+ypVdWJ/wAVrXqlIJfLeVS/CBy4gEGkyWHSuVb1L
638    
639     > hmac_md6_64_256;5ad913855742ae5a03a5aeb7eafa4c78629de136bed6acd73eea36c9e98df44a;json
640    
641     < hmac_md6_64_256;84cd590976f794914c2ca26dac3a207a57a6798b9171289c114de07cf0c20401;json
642     < ["","AnyEvent::MP::_spawn","57Cs1CggVJjzYaQp13XXg4.c","AnyEvent::MP::Global::connect",0,"anon/57Cs1CggVJjzYaQp13XXg4"]
643     ...
644    
645     The shared secret in use was C<8ugxrtw6H5tKnfPWfaSr4HGhE8MoJXmzTT1BWq7sLutNcD0IbXprQlZjIbl7MBKoeklG3IEfY9GlJthC0pENzk>.
646 root 1.16
647 root 1.65 =head2 SIMPLE HANDSHAKE FOR NON-PERL NODES
648    
649     Implementing the full set of options for handshaking can be a daunting
650     task.
651    
652     If security is not so important (because you only connect locally and
653     control the host, a common case), and you want to interface with an AEMP
654     node from another programming language, then you can also implement a
655     simplified handshake.
656    
657     For example, in a simple implementation you could decide to simply not
658     check the authenticity of the other side and use cleartext authentication
659     yourself. The the handshake is as simple as sending three lines of text,
660     reading three lines of text, and then you can exchange JSON-formatted
661     messages:
662    
663     aemp;1;<nodename>;hmac_md6_64_256;json
664     <nonce>
665     cleartext;<hexencoded secret>;json
666    
667     The nodename should be unique within the network, preferably unique with
668     every connection, the <nonce> could be empty or some random data, and the
669     hexencoded secret would be the shared secret, in lowercase hex (e.g. if
670     the secret is "geheim", the hex-encoded version would be "67656865696d").
671    
672     Note that apart from the low-level handshake and framing protocol, there
673     is a high-level protocol, e.g. for monitoring, building the mesh or
674     spawning. All these messages are sent to the node port (the empty string)
675     and can safely be ignored if you do not need the relevant functionality.
676    
677     =head3 USEFUL HINTS
678    
679     Since taking part in the global protocol to find port groups is
680     nontrivial, hardcoding port names should be considered as well, i.e. the
681     non-Perl node could simply listen to messages for a few well-known ports.
682    
683     Alternatively, the non-Perl node could call a (already loaded) function
684     in the Perl node by sending it a special message:
685    
686     ["", "Some::Function::name", "myownport", 1, 2, 3]
687    
688     This would call the function C<Some::Function::name> with the string
689     C<myownport> and some additional arguments.
690    
691 root 1.49 =head2 MONITORING
692    
693     Monitoring the connection itself is transport-specific. For TCP, all
694     connection monitoring is currently left to TCP retransmit time-outs
695     on a busy link, and TCP keepalive (which should be enabled) for idle
696     connections.
697    
698     This is not sufficient for listener-less nodes, however: they need
699     to regularly send data (30 seconds, or the monitoring interval, is
700     recommended), so TCP actively probes.
701    
702     Future implementations of AnyEvent::Transport might query the kernel TCP
703     buffer after a write timeout occurs, and if it is non-empty, shut down the
704     connections, but this is an area of future research :)
705    
706     =head2 NODE PROTOCOL
707    
708     The transport simply transfers messages, but to implement a full node, a
709     special node port must exist that understands a number of requests.
710    
711     If you are interested in implementing this, drop us a note so we finish
712     the documentation.
713    
714 root 1.1 =head1 SEE ALSO
715    
716 root 1.29 L<AnyEvent::MP>.
717 root 1.1
718     =head1 AUTHOR
719    
720     Marc Lehmann <schmorp@schmorp.de>
721     http://home.schmorp.de/
722    
723     =cut
724    
725     1
726