ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/cvsroot/AnyEvent-MP/MP/Transport.pm
Revision: 1.68
Committed: Sat Mar 13 21:15:31 2010 UTC (14 years, 4 months ago) by root
Branch: MAIN
Changes since 1.67: +22 -8 lines
Log Message:
*** empty log message ***

File Contents

# User Rev Content
1 root 1.1 =head1 NAME
2    
3 root 1.13 AnyEvent::MP::Transport - actual transport protocol handler
4 root 1.1
5     =head1 SYNOPSIS
6    
7     use AnyEvent::MP::Transport;
8    
9     =head1 DESCRIPTION
10    
11 root 1.43 This module implements (and documents) the actual transport protocol for
12     AEMP.
13 root 1.1
14 root 1.7 See the "PROTOCOL" section below if you want to write another client for
15     this protocol.
16 root 1.1
17     =head1 FUNCTIONS/METHODS
18    
19     =over 4
20    
21     =cut
22    
23     package AnyEvent::MP::Transport;
24    
25     use common::sense;
26    
27 root 1.27 use Scalar::Util ();
28     use List::Util ();
29 root 1.1 use MIME::Base64 ();
30     use Storable ();
31 root 1.2 use JSON::XS ();
32 root 1.1
33 root 1.19 use Digest::MD6 ();
34     use Digest::HMAC_MD6 ();
35    
36 root 1.1 use AE ();
37     use AnyEvent::Socket ();
38 root 1.27 use AnyEvent::Handle 4.92 ();
39 root 1.2
40 root 1.30 use AnyEvent::MP::Config ();
41    
42 root 1.55 our $PROTOCOL_VERSION = 1;
43 root 1.1
44 root 1.52 our @HOOK_CONNECT; # called at connect/accept time
45     our @HOOK_GREETING; # called at greeting1 time
46     our @HOOK_CONNECTED; # called at data phase
47     our @HOOK_DESTROY; # called at destroy time
48 root 1.59 our %HOOK_PROTOCOL = (
49     "aemp-dataconn" => sub {
50     require AnyEvent::MP::DataConn;
51     &AnyEvent::MP::DataConn::_inject;
52     },
53     );
54 root 1.52
55 root 1.39 =item $listener = mp_listener $host, $port, <constructor-args>
56 root 1.1
57     Creates a listener on the given host/port using
58     C<AnyEvent::Socket::tcp_server>.
59    
60     See C<new>, below, for constructor arguments.
61    
62 root 1.10 Defaults for peerhost, peerport and fh are provided.
63 root 1.1
64     =cut
65    
66 root 1.46 sub mp_server($$;%) {
67     my ($host, $port, %arg) = @_;
68 root 1.1
69     AnyEvent::Socket::tcp_server $host, $port, sub {
70     my ($fh, $host, $port) = @_;
71    
72 root 1.39 my $tp = new AnyEvent::MP::Transport
73 root 1.1 fh => $fh,
74     peerhost => $host,
75     peerport => $port,
76 root 1.46 %arg,
77 root 1.39 ;
78     $tp->{keepalive} = $tp;
79 root 1.46 }, delete $arg{prepare}
80 root 1.1 }
81    
82 root 1.2 =item $guard = mp_connect $host, $port, <constructor-args>, $cb->($transport)
83    
84     =cut
85    
86     sub mp_connect {
87 root 1.31 my $release = pop;
88 root 1.2 my ($host, $port, @args) = @_;
89    
90 root 1.51 new AnyEvent::MP::Transport
91     connect => [$host, $port],
92 root 1.52 peerhost => $host,
93     peerport => $port,
94 root 1.51 release => $release,
95     @args,
96     ;
97 root 1.2 }
98    
99 root 1.1 =item new AnyEvent::MP::Transport
100    
101     # immediately starts negotiation
102     my $transport = new AnyEvent::MP::Transport
103 root 1.2 # mandatory
104 root 1.1 fh => $filehandle,
105 root 1.2 local_id => $identifier,
106 root 1.1 on_recv => sub { receive-callback },
107     on_error => sub { error-callback },
108    
109     # optional
110     on_eof => sub { clean-close-callback },
111     on_connect => sub { successful-connect-callback },
112 root 1.2 greeting => { key => value },
113 root 1.1
114     # tls support
115     tls_ctx => AnyEvent::TLS,
116     peername => $peername, # for verification
117     ;
118    
119     =cut
120    
121     sub new {
122     my ($class, %arg) = @_;
123    
124     my $self = bless \%arg, $class;
125    
126     {
127     Scalar::Util::weaken (my $self = $self);
128    
129 root 1.50 my $config = $AnyEvent::MP::Kernel::CONFIG;
130 root 1.30
131 root 1.50 my $timeout = $config->{monitor_timeout};
132 root 1.64 my $lframing = $config->{framing_format};
133 root 1.50 my $auth_snd = $config->{auth_offer};
134     my $auth_rcv = $config->{auth_accept};
135 root 1.31
136 root 1.42 $self->{secret} = $config->{secret}
137     unless exists $self->{secret};
138 root 1.2
139 root 1.42 my $secret = $self->{secret};
140 root 1.19
141 root 1.30 if (exists $config->{cert}) {
142 root 1.42 $self->{tls_ctx} = {
143 root 1.19 sslv2 => 0,
144     sslv3 => 0,
145     tlsv1 => 1,
146     verify => 1,
147 root 1.30 cert => $config->{cert},
148     ca_cert => $config->{cert},
149 root 1.19 verify_require_client_cert => 1,
150     };
151     }
152    
153 root 1.1 $self->{hdl} = new AnyEvent::Handle
154 root 1.52 +($self->{fh} ? (fh => $self->{fh}) : (connect => $self->{connect})),
155 root 1.63 autocork => $config->{autocork},
156     no_delay => exists $config->{nodelay} ? $config->{nodelay} : 1,
157 root 1.48 keepalive => 1,
158     on_error => sub {
159 root 1.1 $self->error ($_[2]);
160     },
161 root 1.49 rtimeout => $timeout,
162 root 1.1 ;
163    
164 root 1.52 my $greeting_kv = $self->{local_greeting} ||= {};
165 root 1.24
166 root 1.42 $greeting_kv->{tls} = "1.0" if $self->{tls_ctx};
167 root 1.62 $greeting_kv->{provider} = "AE-$AnyEvent::MP::VERSION"; # MP.pm might not be loaded, so best effort :(
168 root 1.7 $greeting_kv->{peeraddr} = AnyEvent::Socket::format_hostport $self->{peerhost}, $self->{peerport};
169 root 1.23
170 root 1.58 my $protocol = $self->{protocol} || "aemp";
171    
172 root 1.52 # can modify greeting_kv
173 root 1.58 $_->($self) for $protocol eq "aemp" ? @HOOK_CONNECT : ();
174 root 1.52
175 root 1.1 # send greeting
176 root 1.58 my $lgreeting1 = "$protocol;$PROTOCOL_VERSION"
177 root 1.52 . ";$AnyEvent::MP::Kernel::NODE"
178 root 1.50 . ";" . (join ",", @$auth_rcv)
179     . ";" . (join ",", @$lframing)
180 root 1.7 . (join "", map ";$_=$greeting_kv->{$_}", keys %$greeting_kv);
181 root 1.12
182 root 1.31 my $lgreeting2 = MIME::Base64::encode_base64 AnyEvent::MP::Kernel::nonce (66), "";
183 root 1.1
184 root 1.7 $self->{hdl}->push_write ("$lgreeting1\012$lgreeting2\012");
185 root 1.1
186     # expect greeting
187 root 1.12 $self->{hdl}->rbuf_max (4 * 1024);
188 root 1.1 $self->{hdl}->push_read (line => sub {
189 root 1.7 my $rgreeting1 = $_[1];
190 root 1.1
191 root 1.26 my ($aemp, $version, $rnode, $auths, $framings, @kv) = split /;/, $rgreeting1;
192 root 1.1
193 root 1.53 $self->{remote_node} = $rnode;
194    
195     $self->{remote_greeting} = {
196     map /^([^=]+)(?:=(.*))?/ ? ($1 => $2) : (),
197     @kv
198     };
199    
200 root 1.60 # maybe upgrade the protocol
201     if ($protocol eq "aemp" and $aemp =~ /^aemp-\w+$/) {
202     # maybe check for existence of the protocol handler?
203     $self->{protocol} = $protocol = $aemp;
204     }
205    
206 root 1.58 $_->($self) for $protocol eq "aemp" ? @HOOK_GREETING : ();
207 root 1.54
208 root 1.60 if ($aemp ne $protocol and $aemp ne "aemp") {
209 root 1.58 return $self->error ("unparsable greeting, expected '$protocol', got '$aemp'");
210 root 1.12 } elsif ($version != $PROTOCOL_VERSION) {
211     return $self->error ("version mismatch (we: $PROTOCOL_VERSION, they: $version)");
212 root 1.60 } elsif ($protocol eq "aemp") {
213     if ($rnode eq $AnyEvent::MP::Kernel::NODE) {
214     return $self->error ("I refuse to talk to myself");
215     } elsif ($AnyEvent::MP::Kernel::NODE{$rnode} && $AnyEvent::MP::Kernel::NODE{$rnode}{transport}) {
216     return $self->error ("$rnode already connected, not connecting again.");
217     }
218 root 1.1 }
219    
220 root 1.7 # read nonce
221     $self->{hdl}->push_read (line => sub {
222     my $rgreeting2 = $_[1];
223    
224 root 1.19 "$lgreeting1\012$lgreeting2" ne "$rgreeting1\012$rgreeting2" # echo attack?
225     or return $self->error ("authentication error, echo attack?");
226    
227 root 1.41 my $tls = $self->{tls_ctx} && 1 == int $self->{remote_greeting}{tls};
228    
229     my $s_auth;
230     for my $auth_ (split /,/, $auths) {
231 root 1.50 if (grep $auth_ eq $_, @$auth_snd and ($auth_ !~ /^tls_/ or $tls)) {
232 root 1.41 $s_auth = $auth_;
233     last;
234     }
235     }
236    
237     defined $s_auth
238     or return $self->error ("$auths: no common auth type supported");
239    
240     my $s_framing;
241     for my $framing_ (split /,/, $framings) {
242 root 1.50 if (grep $framing_ eq $_, @$lframing) {
243 root 1.41 $s_framing = $framing_;
244     last;
245     }
246     }
247    
248     defined $s_framing
249     or return $self->error ("$framings: no common framing method supported");
250    
251 root 1.30 my $key;
252 root 1.19 my $lauth;
253    
254 root 1.41 if ($tls) {
255 root 1.8 $self->{tls} = $lgreeting2 lt $rgreeting2 ? "connect" : "accept";
256     $self->{hdl}->starttls ($self->{tls}, $self->{tls_ctx});
257 root 1.66 return unless $self->{hdl}; # starttls might destruct us
258 root 1.41
259     $lauth =
260     $s_auth eq "tls_anon" ? ""
261     : $s_auth eq "tls_md6_64_256" ? Digest::MD6::md6_hex "$lgreeting1\012$lgreeting2\012$rgreeting1\012$rgreeting2\012"
262     : return $self->error ("$s_auth: fatal, selected unsupported snd auth method");
263    
264 root 1.30 } elsif (length $secret) {
265 root 1.41 return $self->error ("$s_auth: fatal, selected unsupported snd auth method")
266     unless $s_auth eq "hmac_md6_64_256"; # hardcoded atm.
267    
268 root 1.30 $key = Digest::MD6::md6 $secret;
269 root 1.19 # we currently only support hmac_md6_64_256
270     $lauth = Digest::HMAC_MD6::hmac_md6_hex $key, "$lgreeting1\012$lgreeting2\012$rgreeting1\012$rgreeting2\012", 64, 256;
271 root 1.41
272 root 1.30 } else {
273     return $self->error ("unable to handshake TLS and no shared secret configured");
274 root 1.8 }
275 root 1.2
276 root 1.7 $self->{hdl}->push_write ("$s_auth;$lauth;$s_framing\012");
277 root 1.2
278 root 1.19 # read the authentication response
279 root 1.7 $self->{hdl}->push_read (line => sub {
280     my ($hdl, $rline) = @_;
281 root 1.2
282 root 1.7 my ($auth_method, $rauth2, $r_framing) = split /;/, $rline;
283 root 1.1
284 root 1.19 my $rauth =
285     $auth_method eq "hmac_md6_64_256" ? Digest::HMAC_MD6::hmac_md6_hex $key, "$rgreeting1\012$rgreeting2\012$lgreeting1\012$lgreeting2\012", 64, 256
286     : $auth_method eq "cleartext" ? unpack "H*", $secret
287 root 1.41 : $auth_method eq "tls_anon" ? ($tls ? "" : "\012\012") # \012\012 never matches
288     : $auth_method eq "tls_md6_64_256" ? ($tls ? Digest::MD6::md6_hex "$rgreeting1\012$rgreeting2\012$lgreeting1\012$lgreeting2\012" : "\012\012")
289     : return $self->error ("$auth_method: fatal, selected unsupported rcv auth method");
290 root 1.19
291 root 1.7 if ($rauth2 ne $rauth) {
292     return $self->error ("authentication failure/shared secret mismatch");
293     }
294 root 1.1
295 root 1.7 $self->{s_framing} = $s_framing;
296 root 1.2
297 root 1.7 $hdl->rbuf_max (undef);
298 root 1.1
299 root 1.49 # we rely on TCP retransmit timeouts and keepalives
300     $self->{hdl}->rtimeout (undef);
301    
302     $self->{remote_greeting}{untrusted} = 1
303     if $auth_method eq "tls_anon";
304 root 1.24
305 root 1.64 if ($protocol eq "aemp" and $self->{hdl}) {
306 root 1.59 # listener-less node need to continuously probe
307     unless (@$AnyEvent::MP::Kernel::LISTENER) {
308     $self->{hdl}->wtimeout ($timeout);
309     $self->{hdl}->on_wtimeout (sub { $self->send ([]) });
310     }
311 root 1.58
312     # receive handling
313     my $src_node = $self->{node};
314 root 1.65 Scalar::Util::weaken $src_node;
315 root 1.45
316 root 1.68 # optimisation
317     my $push_write = $hdl->can ("push_write");
318     my $push_read = $hdl->can ("push_read");
319    
320     if ($r_framing eq "json") {
321     my $coder = JSON::XS->new->utf8;
322    
323     $self->{send} = sub {
324     $push_write->($hdl, JSON::XS::encode_json $_[0]);
325     };
326    
327     $hdl->on_read (sub {
328     local $AnyEvent::MP::Kernel::SRCNODE = $src_node;
329    
330     AnyEvent::MP::Kernel::_inject (@$_)
331     for $coder->incr_parse (delete $_[0]{rbuf});
332    
333     ()
334     });
335 root 1.65 } else {
336 root 1.68 $self->{send} = sub {
337     $push_write->($hdl, $s_framing => $_[0]);
338     };
339 root 1.67
340 root 1.65 my $rmsg; $rmsg = $self->{rmsg} = sub {
341 root 1.67 $push_read->($_[0], $r_framing => $rmsg);
342 root 1.65
343     local $AnyEvent::MP::Kernel::SRCNODE = $src_node;
344     AnyEvent::MP::Kernel::_inject (@{ $_[1] });
345     };
346     eval {
347 root 1.67 $push_read->($_[0], $r_framing => $rmsg);
348 root 1.65 };
349     Scalar::Util::weaken $rmsg;
350     return $self->error ("$r_framing: unusable remote framing")
351     if $@;
352     }
353 root 1.58 }
354 root 1.67
355     $self->connected;
356 root 1.7 });
357 root 1.1 });
358     });
359     }
360    
361     $self
362     }
363    
364     sub error {
365     my ($self, $msg) = @_;
366    
367 root 1.39 delete $self->{keepalive};
368    
369 root 1.58 if ($self->{protocol}) {
370 root 1.59 $HOOK_PROTOCOL{$self->{protocol}}->($self, $msg);
371 root 1.58 } else {
372     $AnyEvent::MP::Kernel::WARN->(9, "$self->{peerhost}:$self->{peerport} $msg");#d#
373 root 1.39
374 root 1.58 $self->{node}->transport_error (transport_error => $self->{node}{id}, $msg)
375     if $self->{node} && $self->{node}{transport} == $self;
376     }
377 root 1.31
378     (delete $self->{release})->()
379     if exists $self->{release};
380    
381 root 1.37 # $AnyEvent::MP::Kernel::WARN->(7, "$self->{peerhost}:$self->{peerport}: $msg");
382 root 1.4 $self->destroy;
383 root 1.1 }
384    
385 root 1.2 sub connected {
386     my ($self) = @_;
387    
388 root 1.39 delete $self->{keepalive};
389    
390 root 1.58 if ($self->{protocol}) {
391 root 1.59 $self->{hdl}->on_error (undef);
392     $HOOK_PROTOCOL{$self->{protocol}}->($self, undef);
393 root 1.58 } else {
394     $AnyEvent::MP::Kernel::WARN->(9, "$self->{peerhost}:$self->{peerport} connected as $self->{remote_node}");
395    
396     my $node = AnyEvent::MP::Kernel::add_node ($self->{remote_node});
397     Scalar::Util::weaken ($self->{node} = $node);
398     $node->transport_connect ($self);
399 root 1.39
400 root 1.58 $_->($self) for @HOOK_CONNECTED;
401     }
402 root 1.61
403     (delete $self->{release})->()
404     if exists $self->{release};
405 root 1.2 }
406    
407 root 1.1 sub destroy {
408     my ($self) = @_;
409    
410 root 1.42 (delete $self->{release})->()
411     if exists $self->{release};
412    
413 root 1.2 $self->{hdl}->destroy
414     if $self->{hdl};
415 root 1.52
416 root 1.59 $_->($self) for $self->{protocol} ? () : @HOOK_DESTROY;
417 root 1.1 }
418    
419     sub DESTROY {
420     my ($self) = @_;
421    
422     $self->destroy;
423     }
424    
425     =back
426    
427 root 1.7 =head1 PROTOCOL
428    
429 root 1.59 The AEMP protocol is comparatively simple, and consists of three phases
430     which are symmetrical for both sides: greeting (followed by optionally
431     switching to TLS mode), authentication and packet exchange.
432 root 1.7
433 root 1.43 The protocol is designed to allow both full-text and binary streams.
434 root 1.7
435     The greeting consists of two text lines that are ended by either an ASCII
436     CR LF pair, or a single ASCII LF (recommended).
437    
438     =head2 GREETING
439    
440 root 1.15 All the lines until after authentication must not exceed 4kb in length,
441 root 1.43 including line delimiter. Afterwards there is no limit on the packet size
442     that can be received.
443 root 1.15
444     =head3 First Greeting Line
445 root 1.12
446 root 1.16 Example:
447    
448 root 1.43 aemp;0;rain;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;timeout=12;peeraddr=10.0.0.1:48082
449 root 1.16
450     The first line contains strings separated (not ended) by C<;>
451 root 1.43 characters. The first five strings are fixed by the protocol, the
452 root 1.16 remaining strings are C<KEY=VALUE> pairs. None of them may contain C<;>
453 root 1.43 characters themselves (when escaping is needed, use C<%3b> to represent
454     C<;> and C<%25> to represent C<%>)-
455 root 1.16
456 root 1.12 The fixed strings are:
457 root 1.7
458     =over 4
459    
460 root 1.18 =item protocol identification
461 root 1.7
462 root 1.43 The constant C<aemp> to identify this protocol.
463 root 1.7
464     =item protocol version
465    
466 root 1.55 The protocol version supported by this end, currently C<1>. If the
467 root 1.12 versions don't match then no communication is possible. Minor extensions
468 root 1.18 are supposed to be handled through additional key-value pairs.
469 root 1.7
470 root 1.43 =item the node ID
471 root 1.7
472 root 1.57 This is the node ID of the connecting node.
473 root 1.7
474     =item the acceptable authentication methods
475    
476     A comma-separated list of authentication methods supported by the
477     node. Note that AnyEvent::MP supports a C<hex_secret> authentication
478 root 1.43 method that accepts a clear-text password (hex-encoded), but will not use
479     this authentication method itself.
480 root 1.7
481 root 1.43 The receiving side should choose the first authentication method it
482     supports.
483 root 1.7
484     =item the acceptable framing formats
485    
486 root 1.43 A comma-separated list of packet encoding/framing formats understood. The
487 root 1.7 receiving side should choose the first framing format it supports for
488     sending packets (which might be different from the format it has to accept).
489    
490 root 1.10 =back
491 root 1.8
492     The remaining arguments are C<KEY=VALUE> pairs. The following key-value
493     pairs are known at this time:
494    
495     =over 4
496    
497     =item provider=<module-version>
498    
499     The software provider for this implementation. For AnyEvent::MP, this is
500     C<AE-0.0> or whatever version it currently is at.
501    
502     =item peeraddr=<host>:<port>
503    
504 root 1.39 The peer address (socket address of the other side) as seen locally.
505 root 1.8
506     =item tls=<major>.<minor>
507    
508     Indicates that the other side supports TLS (version should be 1.0) and
509     wishes to do a TLS handshake.
510    
511     =back
512    
513 root 1.15 =head3 Second Greeting Line
514    
515 root 1.8 After this greeting line there will be a second line containing a
516     cryptographic nonce, i.e. random data of high quality. To keep the
517     protocol text-only, these are usually 32 base64-encoded octets, but
518     it could be anything that doesn't contain any ASCII CR or ASCII LF
519     characters.
520    
521 root 1.14 I<< The two nonces B<must> be different, and an aemp implementation
522     B<must> check and fail when they are identical >>.
523    
524 root 1.43 Example of a nonce line (yes, it's random-looking because it is random
525     data):
526 root 1.8
527 root 1.43 2XYhdG7/O6epFa4wuP0ujAEx1rXYWRcOypjUYK7eF6yWAQr7gwIN9m/2+mVvBrTPXz5GJDgfGm9d8QRABAbmAP/s
528 root 1.8
529     =head2 TLS handshake
530    
531 root 1.14 I<< If, after the handshake, both sides indicate interest in TLS, then the
532 root 1.43 connection B<must> use TLS, or fail to continue. >>
533 root 1.8
534     Both sides compare their nonces, and the side who sent the lower nonce
535     value ("string" comparison on the raw octet values) becomes the client,
536     and the one with the higher nonce the server.
537    
538     =head2 AUTHENTICATION PHASE
539    
540     After the greeting is received (and the optional TLS handshake),
541     the authentication phase begins, which consists of sending a single
542     C<;>-separated line with three fixed strings and any number of
543     C<KEY=VALUE> pairs.
544    
545     The three fixed strings are:
546    
547     =over 4
548    
549     =item the authentication method chosen
550    
551     This must be one of the methods offered by the other side in the greeting.
552    
553 root 1.41 Note that all methods starting with C<tls_> are only valid I<iff> TLS was
554     successfully handshaked (and to be secure the implementation must enforce
555     this).
556    
557 root 1.13 The currently supported authentication methods are:
558    
559     =over 4
560    
561     =item cleartext
562    
563     This is simply the shared secret, lowercase-hex-encoded. This method is of
564 root 1.43 course very insecure if TLS is not used (and not completely secure even
565     if TLS is used), which is why this module will accept, but not generate,
566     cleartext auth replies.
567 root 1.13
568     =item hmac_md6_64_256
569    
570 root 1.43 This method uses an MD6 HMAC with 64 bit blocksize and 256 bit hash, and
571     requires a shared secret. It is the preferred auth method when a shared
572     secret is available.
573    
574     First, the shared secret is hashed with MD6:
575 root 1.13
576     key = MD6 (secret)
577    
578     This secret is then used to generate the "local auth reply", by taking
579     the two local greeting lines and the two remote greeting lines (without
580     line endings), appending \012 to all of them, concatenating them and
581 root 1.43 calculating the MD6 HMAC with the key:
582 root 1.13
583     lauth = HMAC_MD6 key, "lgreeting1\012lgreeting2\012rgreeting1\012rgreeting2\012"
584    
585     This authentication token is then lowercase-hex-encoded and sent to the
586     other side.
587    
588     Then the remote auth reply is generated using the same method, but local
589     and remote greeting lines swapped:
590    
591     rauth = HMAC_MD6 key, "rgreeting1\012rgreeting2\012lgreeting1\012lgreeting2\012"
592    
593     This is the token that is expected from the other side.
594    
595 root 1.41 =item tls_anon
596 root 1.19
597 root 1.43 This type is only valid I<iff> TLS was enabled and the TLS handshake
598 root 1.19 was successful. It has no authentication data, as the server/client
599     certificate was successfully verified.
600    
601 root 1.43 This authentication type is somewhat insecure, as it allows a
602     man-in-the-middle attacker to change some of the connection parameters
603     (such as the framing format), although there is no known attack that
604     exploits this in a way that is worse than just denying the service.
605 root 1.41
606 root 1.43 By default, this implementation accepts but never generates this auth
607     reply.
608 root 1.41
609     =item tls_md6_64_256
610    
611 root 1.43 This type is only valid I<iff> TLS was enabled and the TLS handshake was
612     successful.
613 root 1.41
614     This authentication type simply calculates:
615    
616     lauth = MD6 "rgreeting1\012rgreeting2\012lgreeting1\012lgreeting2\012"
617    
618     and lowercase-hex encodes the result and sends it as authentication
619     data. No shared secret is required (authentication is done by TLS). The
620 root 1.43 checksum exists only to make tinkering with the greeting hard.
621 root 1.19
622 root 1.13 =back
623    
624 root 1.8 =item the authentication data
625    
626 root 1.13 The authentication data itself, usually base64 or hex-encoded data, see
627     above.
628 root 1.8
629     =item the framing protocol chosen
630    
631     This must be one of the framing protocols offered by the other side in the
632 root 1.43 greeting. Each side must accept the choice of the other side, and generate
633     packets in the format it chose itself.
634 root 1.8
635     =back
636    
637 root 1.16 Example of an authentication reply:
638 root 1.9
639 root 1.13 hmac_md6_64_256;363d5175df38bd9eaddd3f6ca18aa1c0c4aa22f0da245ac638d048398c26b8d3;json
640 root 1.9
641 root 1.8 =head2 DATA PHASE
642    
643     After this, packets get exchanged using the chosen framing protocol. It is
644     quite possible that both sides use a different framing protocol.
645    
646 root 1.16 =head2 FULL EXAMPLE
647    
648 root 1.17 This is an actual protocol dump of a handshake, followed by a single data
649 root 1.16 packet. The greater than/less than lines indicate the direction of the
650     transfer only.
651    
652 root 1.43 > aemp;0;anon/57Cs1CggVJjzYaQp13XXg4;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;provider=AE-0.8;timeout=12;peeraddr=10.0.0.17:4040
653     > yLgdG1ov/02shVkVQer3wzeuywZK+oraTdEQBmIqWHaegxSGDG4g+HqogLQbvdypFOsoDWJ1Sh4ImV4DMhvUBwTK
654    
655     < aemp;0;ruth;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;provider=AE-0.8;timeout=12;peeraddr=10.0.0.1:37108
656     < +xMQXP8ElfNmuvEhsmcp+s2wCJOuQAsPxSg3d2Ewhs6gBnJz+ypVdWJ/wAVrXqlIJfLeVS/CBy4gEGkyWHSuVb1L
657    
658     > hmac_md6_64_256;5ad913855742ae5a03a5aeb7eafa4c78629de136bed6acd73eea36c9e98df44a;json
659    
660     < hmac_md6_64_256;84cd590976f794914c2ca26dac3a207a57a6798b9171289c114de07cf0c20401;json
661     < ["","AnyEvent::MP::_spawn","57Cs1CggVJjzYaQp13XXg4.c","AnyEvent::MP::Global::connect",0,"anon/57Cs1CggVJjzYaQp13XXg4"]
662     ...
663    
664     The shared secret in use was C<8ugxrtw6H5tKnfPWfaSr4HGhE8MoJXmzTT1BWq7sLutNcD0IbXprQlZjIbl7MBKoeklG3IEfY9GlJthC0pENzk>.
665 root 1.16
666 root 1.65 =head2 SIMPLE HANDSHAKE FOR NON-PERL NODES
667    
668     Implementing the full set of options for handshaking can be a daunting
669     task.
670    
671     If security is not so important (because you only connect locally and
672     control the host, a common case), and you want to interface with an AEMP
673     node from another programming language, then you can also implement a
674     simplified handshake.
675    
676     For example, in a simple implementation you could decide to simply not
677     check the authenticity of the other side and use cleartext authentication
678     yourself. The the handshake is as simple as sending three lines of text,
679     reading three lines of text, and then you can exchange JSON-formatted
680     messages:
681    
682     aemp;1;<nodename>;hmac_md6_64_256;json
683     <nonce>
684     cleartext;<hexencoded secret>;json
685    
686     The nodename should be unique within the network, preferably unique with
687     every connection, the <nonce> could be empty or some random data, and the
688     hexencoded secret would be the shared secret, in lowercase hex (e.g. if
689     the secret is "geheim", the hex-encoded version would be "67656865696d").
690    
691     Note that apart from the low-level handshake and framing protocol, there
692     is a high-level protocol, e.g. for monitoring, building the mesh or
693     spawning. All these messages are sent to the node port (the empty string)
694     and can safely be ignored if you do not need the relevant functionality.
695    
696     =head3 USEFUL HINTS
697    
698     Since taking part in the global protocol to find port groups is
699     nontrivial, hardcoding port names should be considered as well, i.e. the
700     non-Perl node could simply listen to messages for a few well-known ports.
701    
702     Alternatively, the non-Perl node could call a (already loaded) function
703     in the Perl node by sending it a special message:
704    
705     ["", "Some::Function::name", "myownport", 1, 2, 3]
706    
707     This would call the function C<Some::Function::name> with the string
708     C<myownport> and some additional arguments.
709    
710 root 1.49 =head2 MONITORING
711    
712     Monitoring the connection itself is transport-specific. For TCP, all
713     connection monitoring is currently left to TCP retransmit time-outs
714     on a busy link, and TCP keepalive (which should be enabled) for idle
715     connections.
716    
717     This is not sufficient for listener-less nodes, however: they need
718     to regularly send data (30 seconds, or the monitoring interval, is
719     recommended), so TCP actively probes.
720    
721     Future implementations of AnyEvent::Transport might query the kernel TCP
722     buffer after a write timeout occurs, and if it is non-empty, shut down the
723     connections, but this is an area of future research :)
724    
725     =head2 NODE PROTOCOL
726    
727     The transport simply transfers messages, but to implement a full node, a
728     special node port must exist that understands a number of requests.
729    
730     If you are interested in implementing this, drop us a note so we finish
731     the documentation.
732    
733 root 1.1 =head1 SEE ALSO
734    
735 root 1.29 L<AnyEvent::MP>.
736 root 1.1
737     =head1 AUTHOR
738    
739     Marc Lehmann <schmorp@schmorp.de>
740     http://home.schmorp.de/
741    
742     =cut
743    
744     1
745