ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/cvsroot/AnyEvent-MP/MP/Transport.pm
Revision: 1.67
Committed: Sat Mar 13 20:29:04 2010 UTC (14 years, 4 months ago) by root
Branch: MAIN
Changes since 1.66: +11 -7 lines
Log Message:
µopts

File Contents

# Content
1 =head1 NAME
2
3 AnyEvent::MP::Transport - actual transport protocol handler
4
5 =head1 SYNOPSIS
6
7 use AnyEvent::MP::Transport;
8
9 =head1 DESCRIPTION
10
11 This module implements (and documents) the actual transport protocol for
12 AEMP.
13
14 See the "PROTOCOL" section below if you want to write another client for
15 this protocol.
16
17 =head1 FUNCTIONS/METHODS
18
19 =over 4
20
21 =cut
22
23 package AnyEvent::MP::Transport;
24
25 use common::sense;
26
27 use Scalar::Util ();
28 use List::Util ();
29 use MIME::Base64 ();
30 use Storable ();
31 use JSON::XS ();
32
33 use Digest::MD6 ();
34 use Digest::HMAC_MD6 ();
35
36 use AE ();
37 use AnyEvent::Socket ();
38 use AnyEvent::Handle 4.92 ();
39
40 use AnyEvent::MP::Config ();
41
42 our $PROTOCOL_VERSION = 1;
43
44 our @HOOK_CONNECT; # called at connect/accept time
45 our @HOOK_GREETING; # called at greeting1 time
46 our @HOOK_CONNECTED; # called at data phase
47 our @HOOK_DESTROY; # called at destroy time
48 our %HOOK_PROTOCOL = (
49 "aemp-dataconn" => sub {
50 require AnyEvent::MP::DataConn;
51 &AnyEvent::MP::DataConn::_inject;
52 },
53 );
54
55 =item $listener = mp_listener $host, $port, <constructor-args>
56
57 Creates a listener on the given host/port using
58 C<AnyEvent::Socket::tcp_server>.
59
60 See C<new>, below, for constructor arguments.
61
62 Defaults for peerhost, peerport and fh are provided.
63
64 =cut
65
66 sub mp_server($$;%) {
67 my ($host, $port, %arg) = @_;
68
69 AnyEvent::Socket::tcp_server $host, $port, sub {
70 my ($fh, $host, $port) = @_;
71
72 my $tp = new AnyEvent::MP::Transport
73 fh => $fh,
74 peerhost => $host,
75 peerport => $port,
76 %arg,
77 ;
78 $tp->{keepalive} = $tp;
79 }, delete $arg{prepare}
80 }
81
82 =item $guard = mp_connect $host, $port, <constructor-args>, $cb->($transport)
83
84 =cut
85
86 sub mp_connect {
87 my $release = pop;
88 my ($host, $port, @args) = @_;
89
90 new AnyEvent::MP::Transport
91 connect => [$host, $port],
92 peerhost => $host,
93 peerport => $port,
94 release => $release,
95 @args,
96 ;
97 }
98
99 =item new AnyEvent::MP::Transport
100
101 # immediately starts negotiation
102 my $transport = new AnyEvent::MP::Transport
103 # mandatory
104 fh => $filehandle,
105 local_id => $identifier,
106 on_recv => sub { receive-callback },
107 on_error => sub { error-callback },
108
109 # optional
110 on_eof => sub { clean-close-callback },
111 on_connect => sub { successful-connect-callback },
112 greeting => { key => value },
113
114 # tls support
115 tls_ctx => AnyEvent::TLS,
116 peername => $peername, # for verification
117 ;
118
119 =cut
120
121 sub new {
122 my ($class, %arg) = @_;
123
124 my $self = bless \%arg, $class;
125
126 {
127 Scalar::Util::weaken (my $self = $self);
128
129 my $config = $AnyEvent::MP::Kernel::CONFIG;
130
131 my $timeout = $config->{monitor_timeout};
132 my $lframing = $config->{framing_format};
133 my $auth_snd = $config->{auth_offer};
134 my $auth_rcv = $config->{auth_accept};
135
136 $self->{secret} = $config->{secret}
137 unless exists $self->{secret};
138
139 my $secret = $self->{secret};
140
141 if (exists $config->{cert}) {
142 $self->{tls_ctx} = {
143 sslv2 => 0,
144 sslv3 => 0,
145 tlsv1 => 1,
146 verify => 1,
147 cert => $config->{cert},
148 ca_cert => $config->{cert},
149 verify_require_client_cert => 1,
150 };
151 }
152
153 $self->{hdl} = new AnyEvent::Handle
154 +($self->{fh} ? (fh => $self->{fh}) : (connect => $self->{connect})),
155 autocork => $config->{autocork},
156 no_delay => exists $config->{nodelay} ? $config->{nodelay} : 1,
157 keepalive => 1,
158 on_error => sub {
159 $self->error ($_[2]);
160 },
161 rtimeout => $timeout,
162 ;
163
164 my $greeting_kv = $self->{local_greeting} ||= {};
165
166 $greeting_kv->{tls} = "1.0" if $self->{tls_ctx};
167 $greeting_kv->{provider} = "AE-$AnyEvent::MP::VERSION"; # MP.pm might not be loaded, so best effort :(
168 $greeting_kv->{peeraddr} = AnyEvent::Socket::format_hostport $self->{peerhost}, $self->{peerport};
169
170 my $protocol = $self->{protocol} || "aemp";
171
172 # can modify greeting_kv
173 $_->($self) for $protocol eq "aemp" ? @HOOK_CONNECT : ();
174
175 # send greeting
176 my $lgreeting1 = "$protocol;$PROTOCOL_VERSION"
177 . ";$AnyEvent::MP::Kernel::NODE"
178 . ";" . (join ",", @$auth_rcv)
179 . ";" . (join ",", @$lframing)
180 . (join "", map ";$_=$greeting_kv->{$_}", keys %$greeting_kv);
181
182 my $lgreeting2 = MIME::Base64::encode_base64 AnyEvent::MP::Kernel::nonce (66), "";
183
184 $self->{hdl}->push_write ("$lgreeting1\012$lgreeting2\012");
185
186 # expect greeting
187 $self->{hdl}->rbuf_max (4 * 1024);
188 $self->{hdl}->push_read (line => sub {
189 my $rgreeting1 = $_[1];
190
191 my ($aemp, $version, $rnode, $auths, $framings, @kv) = split /;/, $rgreeting1;
192
193 $self->{remote_node} = $rnode;
194
195 $self->{remote_greeting} = {
196 map /^([^=]+)(?:=(.*))?/ ? ($1 => $2) : (),
197 @kv
198 };
199
200 # maybe upgrade the protocol
201 if ($protocol eq "aemp" and $aemp =~ /^aemp-\w+$/) {
202 # maybe check for existence of the protocol handler?
203 $self->{protocol} = $protocol = $aemp;
204 }
205
206 $_->($self) for $protocol eq "aemp" ? @HOOK_GREETING : ();
207
208 if ($aemp ne $protocol and $aemp ne "aemp") {
209 return $self->error ("unparsable greeting, expected '$protocol', got '$aemp'");
210 } elsif ($version != $PROTOCOL_VERSION) {
211 return $self->error ("version mismatch (we: $PROTOCOL_VERSION, they: $version)");
212 } elsif ($protocol eq "aemp") {
213 if ($rnode eq $AnyEvent::MP::Kernel::NODE) {
214 return $self->error ("I refuse to talk to myself");
215 } elsif ($AnyEvent::MP::Kernel::NODE{$rnode} && $AnyEvent::MP::Kernel::NODE{$rnode}{transport}) {
216 return $self->error ("$rnode already connected, not connecting again.");
217 }
218 }
219
220 # read nonce
221 $self->{hdl}->push_read (line => sub {
222 my $rgreeting2 = $_[1];
223
224 "$lgreeting1\012$lgreeting2" ne "$rgreeting1\012$rgreeting2" # echo attack?
225 or return $self->error ("authentication error, echo attack?");
226
227 my $tls = $self->{tls_ctx} && 1 == int $self->{remote_greeting}{tls};
228
229 my $s_auth;
230 for my $auth_ (split /,/, $auths) {
231 if (grep $auth_ eq $_, @$auth_snd and ($auth_ !~ /^tls_/ or $tls)) {
232 $s_auth = $auth_;
233 last;
234 }
235 }
236
237 defined $s_auth
238 or return $self->error ("$auths: no common auth type supported");
239
240 my $s_framing;
241 for my $framing_ (split /,/, $framings) {
242 if (grep $framing_ eq $_, @$lframing) {
243 $s_framing = $framing_;
244 last;
245 }
246 }
247
248 defined $s_framing
249 or return $self->error ("$framings: no common framing method supported");
250
251 my $key;
252 my $lauth;
253
254 if ($tls) {
255 $self->{tls} = $lgreeting2 lt $rgreeting2 ? "connect" : "accept";
256 $self->{hdl}->starttls ($self->{tls}, $self->{tls_ctx});
257 return unless $self->{hdl}; # starttls might destruct us
258
259 $lauth =
260 $s_auth eq "tls_anon" ? ""
261 : $s_auth eq "tls_md6_64_256" ? Digest::MD6::md6_hex "$lgreeting1\012$lgreeting2\012$rgreeting1\012$rgreeting2\012"
262 : return $self->error ("$s_auth: fatal, selected unsupported snd auth method");
263
264 } elsif (length $secret) {
265 return $self->error ("$s_auth: fatal, selected unsupported snd auth method")
266 unless $s_auth eq "hmac_md6_64_256"; # hardcoded atm.
267
268 $key = Digest::MD6::md6 $secret;
269 # we currently only support hmac_md6_64_256
270 $lauth = Digest::HMAC_MD6::hmac_md6_hex $key, "$lgreeting1\012$lgreeting2\012$rgreeting1\012$rgreeting2\012", 64, 256;
271
272 } else {
273 return $self->error ("unable to handshake TLS and no shared secret configured");
274 }
275
276 $self->{hdl}->push_write ("$s_auth;$lauth;$s_framing\012");
277
278 # read the authentication response
279 $self->{hdl}->push_read (line => sub {
280 my ($hdl, $rline) = @_;
281
282 my ($auth_method, $rauth2, $r_framing) = split /;/, $rline;
283
284 my $rauth =
285 $auth_method eq "hmac_md6_64_256" ? Digest::HMAC_MD6::hmac_md6_hex $key, "$rgreeting1\012$rgreeting2\012$lgreeting1\012$lgreeting2\012", 64, 256
286 : $auth_method eq "cleartext" ? unpack "H*", $secret
287 : $auth_method eq "tls_anon" ? ($tls ? "" : "\012\012") # \012\012 never matches
288 : $auth_method eq "tls_md6_64_256" ? ($tls ? Digest::MD6::md6_hex "$rgreeting1\012$rgreeting2\012$lgreeting1\012$lgreeting2\012" : "\012\012")
289 : return $self->error ("$auth_method: fatal, selected unsupported rcv auth method");
290
291 if ($rauth2 ne $rauth) {
292 return $self->error ("authentication failure/shared secret mismatch");
293 }
294
295 $self->{s_framing} = $s_framing;
296
297 $hdl->rbuf_max (undef);
298
299 # we rely on TCP retransmit timeouts and keepalives
300 $self->{hdl}->rtimeout (undef);
301
302 $self->{remote_greeting}{untrusted} = 1
303 if $auth_method eq "tls_anon";
304
305 my $push_write = $hdl->can ("push_write");
306
307 $self->{send} = sub {
308 $push_write->($hdl, $s_framing => $_[0]);
309 };
310
311 if ($protocol eq "aemp" and $self->{hdl}) {
312 # listener-less node need to continuously probe
313 unless (@$AnyEvent::MP::Kernel::LISTENER) {
314 $self->{hdl}->wtimeout ($timeout);
315 $self->{hdl}->on_wtimeout (sub { $self->send ([]) });
316 }
317
318 # receive handling
319 my $src_node = $self->{node};
320 Scalar::Util::weaken $src_node;
321
322 if ($r_framing eq "\njsonxyz") {#d#
323 } else {
324 my $push_read = $hdl->can ("push_read");
325
326 my $rmsg; $rmsg = $self->{rmsg} = sub {
327 $push_read->($_[0], $r_framing => $rmsg);
328
329 local $AnyEvent::MP::Kernel::SRCNODE = $src_node;
330 AnyEvent::MP::Kernel::_inject (@{ $_[1] });
331 };
332 eval {
333 $push_read->($_[0], $r_framing => $rmsg);
334 };
335 Scalar::Util::weaken $rmsg;
336 return $self->error ("$r_framing: unusable remote framing")
337 if $@;
338 }
339 }
340
341 $self->connected;
342 });
343 });
344 });
345 }
346
347 $self
348 }
349
350 sub error {
351 my ($self, $msg) = @_;
352
353 delete $self->{keepalive};
354
355 if ($self->{protocol}) {
356 $HOOK_PROTOCOL{$self->{protocol}}->($self, $msg);
357 } else {
358 $AnyEvent::MP::Kernel::WARN->(9, "$self->{peerhost}:$self->{peerport} $msg");#d#
359
360 $self->{node}->transport_error (transport_error => $self->{node}{id}, $msg)
361 if $self->{node} && $self->{node}{transport} == $self;
362 }
363
364 (delete $self->{release})->()
365 if exists $self->{release};
366
367 # $AnyEvent::MP::Kernel::WARN->(7, "$self->{peerhost}:$self->{peerport}: $msg");
368 $self->destroy;
369 }
370
371 sub connected {
372 my ($self) = @_;
373
374 delete $self->{keepalive};
375
376 if ($self->{protocol}) {
377 $self->{hdl}->on_error (undef);
378 $HOOK_PROTOCOL{$self->{protocol}}->($self, undef);
379 } else {
380 $AnyEvent::MP::Kernel::WARN->(9, "$self->{peerhost}:$self->{peerport} connected as $self->{remote_node}");
381
382 my $node = AnyEvent::MP::Kernel::add_node ($self->{remote_node});
383 Scalar::Util::weaken ($self->{node} = $node);
384 $node->transport_connect ($self);
385
386 $_->($self) for @HOOK_CONNECTED;
387 }
388
389 (delete $self->{release})->()
390 if exists $self->{release};
391 }
392
393 sub destroy {
394 my ($self) = @_;
395
396 (delete $self->{release})->()
397 if exists $self->{release};
398
399 $self->{hdl}->destroy
400 if $self->{hdl};
401
402 $_->($self) for $self->{protocol} ? () : @HOOK_DESTROY;
403 }
404
405 sub DESTROY {
406 my ($self) = @_;
407
408 $self->destroy;
409 }
410
411 =back
412
413 =head1 PROTOCOL
414
415 The AEMP protocol is comparatively simple, and consists of three phases
416 which are symmetrical for both sides: greeting (followed by optionally
417 switching to TLS mode), authentication and packet exchange.
418
419 The protocol is designed to allow both full-text and binary streams.
420
421 The greeting consists of two text lines that are ended by either an ASCII
422 CR LF pair, or a single ASCII LF (recommended).
423
424 =head2 GREETING
425
426 All the lines until after authentication must not exceed 4kb in length,
427 including line delimiter. Afterwards there is no limit on the packet size
428 that can be received.
429
430 =head3 First Greeting Line
431
432 Example:
433
434 aemp;0;rain;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;timeout=12;peeraddr=10.0.0.1:48082
435
436 The first line contains strings separated (not ended) by C<;>
437 characters. The first five strings are fixed by the protocol, the
438 remaining strings are C<KEY=VALUE> pairs. None of them may contain C<;>
439 characters themselves (when escaping is needed, use C<%3b> to represent
440 C<;> and C<%25> to represent C<%>)-
441
442 The fixed strings are:
443
444 =over 4
445
446 =item protocol identification
447
448 The constant C<aemp> to identify this protocol.
449
450 =item protocol version
451
452 The protocol version supported by this end, currently C<1>. If the
453 versions don't match then no communication is possible. Minor extensions
454 are supposed to be handled through additional key-value pairs.
455
456 =item the node ID
457
458 This is the node ID of the connecting node.
459
460 =item the acceptable authentication methods
461
462 A comma-separated list of authentication methods supported by the
463 node. Note that AnyEvent::MP supports a C<hex_secret> authentication
464 method that accepts a clear-text password (hex-encoded), but will not use
465 this authentication method itself.
466
467 The receiving side should choose the first authentication method it
468 supports.
469
470 =item the acceptable framing formats
471
472 A comma-separated list of packet encoding/framing formats understood. The
473 receiving side should choose the first framing format it supports for
474 sending packets (which might be different from the format it has to accept).
475
476 =back
477
478 The remaining arguments are C<KEY=VALUE> pairs. The following key-value
479 pairs are known at this time:
480
481 =over 4
482
483 =item provider=<module-version>
484
485 The software provider for this implementation. For AnyEvent::MP, this is
486 C<AE-0.0> or whatever version it currently is at.
487
488 =item peeraddr=<host>:<port>
489
490 The peer address (socket address of the other side) as seen locally.
491
492 =item tls=<major>.<minor>
493
494 Indicates that the other side supports TLS (version should be 1.0) and
495 wishes to do a TLS handshake.
496
497 =back
498
499 =head3 Second Greeting Line
500
501 After this greeting line there will be a second line containing a
502 cryptographic nonce, i.e. random data of high quality. To keep the
503 protocol text-only, these are usually 32 base64-encoded octets, but
504 it could be anything that doesn't contain any ASCII CR or ASCII LF
505 characters.
506
507 I<< The two nonces B<must> be different, and an aemp implementation
508 B<must> check and fail when they are identical >>.
509
510 Example of a nonce line (yes, it's random-looking because it is random
511 data):
512
513 2XYhdG7/O6epFa4wuP0ujAEx1rXYWRcOypjUYK7eF6yWAQr7gwIN9m/2+mVvBrTPXz5GJDgfGm9d8QRABAbmAP/s
514
515 =head2 TLS handshake
516
517 I<< If, after the handshake, both sides indicate interest in TLS, then the
518 connection B<must> use TLS, or fail to continue. >>
519
520 Both sides compare their nonces, and the side who sent the lower nonce
521 value ("string" comparison on the raw octet values) becomes the client,
522 and the one with the higher nonce the server.
523
524 =head2 AUTHENTICATION PHASE
525
526 After the greeting is received (and the optional TLS handshake),
527 the authentication phase begins, which consists of sending a single
528 C<;>-separated line with three fixed strings and any number of
529 C<KEY=VALUE> pairs.
530
531 The three fixed strings are:
532
533 =over 4
534
535 =item the authentication method chosen
536
537 This must be one of the methods offered by the other side in the greeting.
538
539 Note that all methods starting with C<tls_> are only valid I<iff> TLS was
540 successfully handshaked (and to be secure the implementation must enforce
541 this).
542
543 The currently supported authentication methods are:
544
545 =over 4
546
547 =item cleartext
548
549 This is simply the shared secret, lowercase-hex-encoded. This method is of
550 course very insecure if TLS is not used (and not completely secure even
551 if TLS is used), which is why this module will accept, but not generate,
552 cleartext auth replies.
553
554 =item hmac_md6_64_256
555
556 This method uses an MD6 HMAC with 64 bit blocksize and 256 bit hash, and
557 requires a shared secret. It is the preferred auth method when a shared
558 secret is available.
559
560 First, the shared secret is hashed with MD6:
561
562 key = MD6 (secret)
563
564 This secret is then used to generate the "local auth reply", by taking
565 the two local greeting lines and the two remote greeting lines (without
566 line endings), appending \012 to all of them, concatenating them and
567 calculating the MD6 HMAC with the key:
568
569 lauth = HMAC_MD6 key, "lgreeting1\012lgreeting2\012rgreeting1\012rgreeting2\012"
570
571 This authentication token is then lowercase-hex-encoded and sent to the
572 other side.
573
574 Then the remote auth reply is generated using the same method, but local
575 and remote greeting lines swapped:
576
577 rauth = HMAC_MD6 key, "rgreeting1\012rgreeting2\012lgreeting1\012lgreeting2\012"
578
579 This is the token that is expected from the other side.
580
581 =item tls_anon
582
583 This type is only valid I<iff> TLS was enabled and the TLS handshake
584 was successful. It has no authentication data, as the server/client
585 certificate was successfully verified.
586
587 This authentication type is somewhat insecure, as it allows a
588 man-in-the-middle attacker to change some of the connection parameters
589 (such as the framing format), although there is no known attack that
590 exploits this in a way that is worse than just denying the service.
591
592 By default, this implementation accepts but never generates this auth
593 reply.
594
595 =item tls_md6_64_256
596
597 This type is only valid I<iff> TLS was enabled and the TLS handshake was
598 successful.
599
600 This authentication type simply calculates:
601
602 lauth = MD6 "rgreeting1\012rgreeting2\012lgreeting1\012lgreeting2\012"
603
604 and lowercase-hex encodes the result and sends it as authentication
605 data. No shared secret is required (authentication is done by TLS). The
606 checksum exists only to make tinkering with the greeting hard.
607
608 =back
609
610 =item the authentication data
611
612 The authentication data itself, usually base64 or hex-encoded data, see
613 above.
614
615 =item the framing protocol chosen
616
617 This must be one of the framing protocols offered by the other side in the
618 greeting. Each side must accept the choice of the other side, and generate
619 packets in the format it chose itself.
620
621 =back
622
623 Example of an authentication reply:
624
625 hmac_md6_64_256;363d5175df38bd9eaddd3f6ca18aa1c0c4aa22f0da245ac638d048398c26b8d3;json
626
627 =head2 DATA PHASE
628
629 After this, packets get exchanged using the chosen framing protocol. It is
630 quite possible that both sides use a different framing protocol.
631
632 =head2 FULL EXAMPLE
633
634 This is an actual protocol dump of a handshake, followed by a single data
635 packet. The greater than/less than lines indicate the direction of the
636 transfer only.
637
638 > aemp;0;anon/57Cs1CggVJjzYaQp13XXg4;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;provider=AE-0.8;timeout=12;peeraddr=10.0.0.17:4040
639 > yLgdG1ov/02shVkVQer3wzeuywZK+oraTdEQBmIqWHaegxSGDG4g+HqogLQbvdypFOsoDWJ1Sh4ImV4DMhvUBwTK
640
641 < aemp;0;ruth;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;provider=AE-0.8;timeout=12;peeraddr=10.0.0.1:37108
642 < +xMQXP8ElfNmuvEhsmcp+s2wCJOuQAsPxSg3d2Ewhs6gBnJz+ypVdWJ/wAVrXqlIJfLeVS/CBy4gEGkyWHSuVb1L
643
644 > hmac_md6_64_256;5ad913855742ae5a03a5aeb7eafa4c78629de136bed6acd73eea36c9e98df44a;json
645
646 < hmac_md6_64_256;84cd590976f794914c2ca26dac3a207a57a6798b9171289c114de07cf0c20401;json
647 < ["","AnyEvent::MP::_spawn","57Cs1CggVJjzYaQp13XXg4.c","AnyEvent::MP::Global::connect",0,"anon/57Cs1CggVJjzYaQp13XXg4"]
648 ...
649
650 The shared secret in use was C<8ugxrtw6H5tKnfPWfaSr4HGhE8MoJXmzTT1BWq7sLutNcD0IbXprQlZjIbl7MBKoeklG3IEfY9GlJthC0pENzk>.
651
652 =head2 SIMPLE HANDSHAKE FOR NON-PERL NODES
653
654 Implementing the full set of options for handshaking can be a daunting
655 task.
656
657 If security is not so important (because you only connect locally and
658 control the host, a common case), and you want to interface with an AEMP
659 node from another programming language, then you can also implement a
660 simplified handshake.
661
662 For example, in a simple implementation you could decide to simply not
663 check the authenticity of the other side and use cleartext authentication
664 yourself. The the handshake is as simple as sending three lines of text,
665 reading three lines of text, and then you can exchange JSON-formatted
666 messages:
667
668 aemp;1;<nodename>;hmac_md6_64_256;json
669 <nonce>
670 cleartext;<hexencoded secret>;json
671
672 The nodename should be unique within the network, preferably unique with
673 every connection, the <nonce> could be empty or some random data, and the
674 hexencoded secret would be the shared secret, in lowercase hex (e.g. if
675 the secret is "geheim", the hex-encoded version would be "67656865696d").
676
677 Note that apart from the low-level handshake and framing protocol, there
678 is a high-level protocol, e.g. for monitoring, building the mesh or
679 spawning. All these messages are sent to the node port (the empty string)
680 and can safely be ignored if you do not need the relevant functionality.
681
682 =head3 USEFUL HINTS
683
684 Since taking part in the global protocol to find port groups is
685 nontrivial, hardcoding port names should be considered as well, i.e. the
686 non-Perl node could simply listen to messages for a few well-known ports.
687
688 Alternatively, the non-Perl node could call a (already loaded) function
689 in the Perl node by sending it a special message:
690
691 ["", "Some::Function::name", "myownport", 1, 2, 3]
692
693 This would call the function C<Some::Function::name> with the string
694 C<myownport> and some additional arguments.
695
696 =head2 MONITORING
697
698 Monitoring the connection itself is transport-specific. For TCP, all
699 connection monitoring is currently left to TCP retransmit time-outs
700 on a busy link, and TCP keepalive (which should be enabled) for idle
701 connections.
702
703 This is not sufficient for listener-less nodes, however: they need
704 to regularly send data (30 seconds, or the monitoring interval, is
705 recommended), so TCP actively probes.
706
707 Future implementations of AnyEvent::Transport might query the kernel TCP
708 buffer after a write timeout occurs, and if it is non-empty, shut down the
709 connections, but this is an area of future research :)
710
711 =head2 NODE PROTOCOL
712
713 The transport simply transfers messages, but to implement a full node, a
714 special node port must exist that understands a number of requests.
715
716 If you are interested in implementing this, drop us a note so we finish
717 the documentation.
718
719 =head1 SEE ALSO
720
721 L<AnyEvent::MP>.
722
723 =head1 AUTHOR
724
725 Marc Lehmann <schmorp@schmorp.de>
726 http://home.schmorp.de/
727
728 =cut
729
730 1
731