ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/cvsroot/AnyEvent-MP/MP/Transport.pm
Revision: 1.69
Committed: Sat Mar 13 22:03:51 2010 UTC (14 years, 4 months ago) by root
Branch: MAIN
CVS Tags: rel-1_27
Changes since 1.68: +9 -7 lines
Log Message:
*** empty log message ***

File Contents

# Content
1 =head1 NAME
2
3 AnyEvent::MP::Transport - actual transport protocol handler
4
5 =head1 SYNOPSIS
6
7 use AnyEvent::MP::Transport;
8
9 =head1 DESCRIPTION
10
11 This module implements (and documents) the actual transport protocol for
12 AEMP.
13
14 See the "PROTOCOL" section below if you want to write another client for
15 this protocol.
16
17 =head1 FUNCTIONS/METHODS
18
19 =over 4
20
21 =cut
22
23 package AnyEvent::MP::Transport;
24
25 use common::sense;
26
27 use Scalar::Util ();
28 use List::Util ();
29 use MIME::Base64 ();
30 use Storable ();
31 use JSON::XS ();
32
33 use Digest::MD6 ();
34 use Digest::HMAC_MD6 ();
35
36 use AE ();
37 use AnyEvent::Socket ();
38 use AnyEvent::Handle 4.92 ();
39
40 use AnyEvent::MP::Config ();
41
42 our $PROTOCOL_VERSION = 1;
43
44 our @HOOK_CONNECT; # called at connect/accept time
45 our @HOOK_GREETING; # called at greeting1 time
46 our @HOOK_CONNECTED; # called at data phase
47 our @HOOK_DESTROY; # called at destroy time
48 our %HOOK_PROTOCOL = (
49 "aemp-dataconn" => sub {
50 require AnyEvent::MP::DataConn;
51 &AnyEvent::MP::DataConn::_inject;
52 },
53 );
54
55 =item $listener = mp_listener $host, $port, <constructor-args>
56
57 Creates a listener on the given host/port using
58 C<AnyEvent::Socket::tcp_server>.
59
60 See C<new>, below, for constructor arguments.
61
62 Defaults for peerhost, peerport and fh are provided.
63
64 =cut
65
66 sub mp_server($$;%) {
67 my ($host, $port, %arg) = @_;
68
69 AnyEvent::Socket::tcp_server $host, $port, sub {
70 my ($fh, $host, $port) = @_;
71
72 my $tp = new AnyEvent::MP::Transport
73 fh => $fh,
74 peerhost => $host,
75 peerport => $port,
76 %arg,
77 ;
78 $tp->{keepalive} = $tp;
79 }, delete $arg{prepare}
80 }
81
82 =item $guard = mp_connect $host, $port, <constructor-args>, $cb->($transport)
83
84 =cut
85
86 sub mp_connect {
87 my $release = pop;
88 my ($host, $port, @args) = @_;
89
90 new AnyEvent::MP::Transport
91 connect => [$host, $port],
92 peerhost => $host,
93 peerport => $port,
94 release => $release,
95 @args,
96 ;
97 }
98
99 =item new AnyEvent::MP::Transport
100
101 # immediately starts negotiation
102 my $transport = new AnyEvent::MP::Transport
103 # mandatory
104 fh => $filehandle,
105 local_id => $identifier,
106 on_recv => sub { receive-callback },
107 on_error => sub { error-callback },
108
109 # optional
110 on_eof => sub { clean-close-callback },
111 on_connect => sub { successful-connect-callback },
112 greeting => { key => value },
113
114 # tls support
115 tls_ctx => AnyEvent::TLS,
116 peername => $peername, # for verification
117 ;
118
119 =cut
120
121 sub new {
122 my ($class, %arg) = @_;
123
124 my $self = bless \%arg, $class;
125
126 {
127 Scalar::Util::weaken (my $self = $self);
128
129 my $config = $AnyEvent::MP::Kernel::CONFIG;
130
131 my $timeout = $config->{monitor_timeout};
132 my $lframing = $config->{framing_format};
133 my $auth_snd = $config->{auth_offer};
134 my $auth_rcv = $config->{auth_accept};
135
136 $self->{secret} = $config->{secret}
137 unless exists $self->{secret};
138
139 my $secret = $self->{secret};
140
141 if (exists $config->{cert}) {
142 $self->{tls_ctx} = {
143 sslv2 => 0,
144 sslv3 => 0,
145 tlsv1 => 1,
146 verify => 1,
147 cert => $config->{cert},
148 ca_cert => $config->{cert},
149 verify_require_client_cert => 1,
150 };
151 }
152
153 $self->{hdl} = new AnyEvent::Handle
154 +($self->{fh} ? (fh => $self->{fh}) : (connect => $self->{connect})),
155 autocork => $config->{autocork},
156 no_delay => exists $config->{nodelay} ? $config->{nodelay} : 1,
157 keepalive => 1,
158 on_error => sub {
159 $self->error ($_[2]);
160 },
161 rtimeout => $timeout,
162 ;
163
164 my $greeting_kv = $self->{local_greeting} ||= {};
165
166 $greeting_kv->{tls} = "1.0" if $self->{tls_ctx};
167 $greeting_kv->{provider} = "AE-$AnyEvent::MP::VERSION"; # MP.pm might not be loaded, so best effort :(
168 $greeting_kv->{peeraddr} = AnyEvent::Socket::format_hostport $self->{peerhost}, $self->{peerport};
169
170 my $protocol = $self->{protocol} || "aemp";
171
172 # can modify greeting_kv
173 $_->($self) for $protocol eq "aemp" ? @HOOK_CONNECT : ();
174
175 # send greeting
176 my $lgreeting1 = "$protocol;$PROTOCOL_VERSION"
177 . ";$AnyEvent::MP::Kernel::NODE"
178 . ";" . (join ",", @$auth_rcv)
179 . ";" . (join ",", @$lframing)
180 . (join "", map ";$_=$greeting_kv->{$_}", keys %$greeting_kv);
181
182 my $lgreeting2 = MIME::Base64::encode_base64 AnyEvent::MP::Kernel::nonce (66), "";
183
184 $self->{hdl}->push_write ("$lgreeting1\012$lgreeting2\012");
185
186 # expect greeting
187 $self->{hdl}->rbuf_max (4 * 1024);
188 $self->{hdl}->push_read (line => sub {
189 my $rgreeting1 = $_[1];
190
191 my ($aemp, $version, $rnode, $auths, $framings, @kv) = split /;/, $rgreeting1;
192
193 $self->{remote_node} = $rnode;
194
195 $self->{remote_greeting} = {
196 map /^([^=]+)(?:=(.*))?/ ? ($1 => $2) : (),
197 @kv
198 };
199
200 # maybe upgrade the protocol
201 if ($protocol eq "aemp" and $aemp =~ /^aemp-\w+$/) {
202 # maybe check for existence of the protocol handler?
203 $self->{protocol} = $protocol = $aemp;
204 }
205
206 $_->($self) for $protocol eq "aemp" ? @HOOK_GREETING : ();
207
208 if ($aemp ne $protocol and $aemp ne "aemp") {
209 return $self->error ("unparsable greeting, expected '$protocol', got '$aemp'");
210 } elsif ($version != $PROTOCOL_VERSION) {
211 return $self->error ("version mismatch (we: $PROTOCOL_VERSION, they: $version)");
212 } elsif ($protocol eq "aemp") {
213 if ($rnode eq $AnyEvent::MP::Kernel::NODE) {
214 return $self->error ("I refuse to talk to myself");
215 } elsif ($AnyEvent::MP::Kernel::NODE{$rnode} && $AnyEvent::MP::Kernel::NODE{$rnode}{transport}) {
216 return $self->error ("$rnode already connected, not connecting again.");
217 }
218 }
219
220 # read nonce
221 $self->{hdl}->push_read (line => sub {
222 my $rgreeting2 = $_[1];
223
224 "$lgreeting1\012$lgreeting2" ne "$rgreeting1\012$rgreeting2" # echo attack?
225 or return $self->error ("authentication error, echo attack?");
226
227 my $tls = $self->{tls_ctx} && 1 == int $self->{remote_greeting}{tls};
228
229 my $s_auth;
230 for my $auth_ (split /,/, $auths) {
231 if (grep $auth_ eq $_, @$auth_snd and ($auth_ !~ /^tls_/ or $tls)) {
232 $s_auth = $auth_;
233 last;
234 }
235 }
236
237 defined $s_auth
238 or return $self->error ("$auths: no common auth type supported");
239
240 my $s_framing;
241 for my $framing_ (split /,/, $framings) {
242 if (grep $framing_ eq $_, @$lframing) {
243 $s_framing = $framing_;
244 last;
245 }
246 }
247
248 defined $s_framing
249 or return $self->error ("$framings: no common framing method supported");
250
251 my $key;
252 my $lauth;
253
254 if ($tls) {
255 $self->{tls} = $lgreeting2 lt $rgreeting2 ? "connect" : "accept";
256 $self->{hdl}->starttls ($self->{tls}, $self->{tls_ctx});
257 return unless $self->{hdl}; # starttls might destruct us
258
259 $lauth =
260 $s_auth eq "tls_anon" ? ""
261 : $s_auth eq "tls_md6_64_256" ? Digest::MD6::md6_hex "$lgreeting1\012$lgreeting2\012$rgreeting1\012$rgreeting2\012"
262 : return $self->error ("$s_auth: fatal, selected unsupported snd auth method");
263
264 } elsif (length $secret) {
265 return $self->error ("$s_auth: fatal, selected unsupported snd auth method")
266 unless $s_auth eq "hmac_md6_64_256"; # hardcoded atm.
267
268 $key = Digest::MD6::md6 $secret;
269 # we currently only support hmac_md6_64_256
270 $lauth = Digest::HMAC_MD6::hmac_md6_hex $key, "$lgreeting1\012$lgreeting2\012$rgreeting1\012$rgreeting2\012", 64, 256;
271
272 } else {
273 return $self->error ("unable to handshake TLS and no shared secret configured");
274 }
275
276 $self->{hdl}->push_write ("$s_auth;$lauth;$s_framing\012");
277
278 # read the authentication response
279 $self->{hdl}->push_read (line => sub {
280 my ($hdl, $rline) = @_;
281
282 my ($auth_method, $rauth2, $r_framing) = split /;/, $rline;
283
284 my $rauth =
285 $auth_method eq "hmac_md6_64_256" ? Digest::HMAC_MD6::hmac_md6_hex $key, "$rgreeting1\012$rgreeting2\012$lgreeting1\012$lgreeting2\012", 64, 256
286 : $auth_method eq "cleartext" ? unpack "H*", $secret
287 : $auth_method eq "tls_anon" ? ($tls ? "" : "\012\012") # \012\012 never matches
288 : $auth_method eq "tls_md6_64_256" ? ($tls ? Digest::MD6::md6_hex "$rgreeting1\012$rgreeting2\012$lgreeting1\012$lgreeting2\012" : "\012\012")
289 : return $self->error ("$auth_method: fatal, selected unsupported rcv auth method");
290
291 if ($rauth2 ne $rauth) {
292 return $self->error ("authentication failure/shared secret mismatch");
293 }
294
295 $self->{s_framing} = $s_framing;
296
297 $hdl->rbuf_max (undef);
298
299 # we rely on TCP retransmit timeouts and keepalives
300 $self->{hdl}->rtimeout (undef);
301
302 $self->{remote_greeting}{untrusted} = 1
303 if $auth_method eq "tls_anon";
304
305 if ($protocol eq "aemp" and $self->{hdl}) {
306 # listener-less node need to continuously probe
307 unless (@$AnyEvent::MP::Kernel::LISTENER) {
308 $self->{hdl}->wtimeout ($timeout);
309 $self->{hdl}->on_wtimeout (sub { $self->send ([]) });
310 }
311
312 # receive handling
313 my $src_node = $self->{node};
314 Scalar::Util::weaken $src_node;
315
316 # optimisation
317 my $push_write = $hdl->can ("push_write");
318 my $push_read = $hdl->can ("push_read");
319
320 if ($s_framing eq "json") {
321 $self->{send} = sub {
322 $push_write->($hdl, JSON::XS::encode_json $_[0]);
323 };
324 } else {
325 $self->{send} = sub {
326 $push_write->($hdl, $s_framing => $_[0]);
327 };
328 }
329
330 if ($r_framing eq "json") {
331 my $coder = JSON::XS->new->utf8;
332
333 $hdl->on_read (sub {
334 local $AnyEvent::MP::Kernel::SRCNODE = $src_node;
335
336 AnyEvent::MP::Kernel::_inject (@$_)
337 for $coder->incr_parse (delete $_[0]{rbuf});
338
339 ()
340 });
341 } else {
342 my $rmsg; $rmsg = $self->{rmsg} = sub {
343 $push_read->($_[0], $r_framing => $rmsg);
344
345 local $AnyEvent::MP::Kernel::SRCNODE = $src_node;
346 AnyEvent::MP::Kernel::_inject (@{ $_[1] });
347 };
348 eval {
349 $push_read->($_[0], $r_framing => $rmsg);
350 };
351 Scalar::Util::weaken $rmsg;
352 return $self->error ("$r_framing: unusable remote framing")
353 if $@;
354 }
355 }
356
357 $self->connected;
358 });
359 });
360 });
361 }
362
363 $self
364 }
365
366 sub error {
367 my ($self, $msg) = @_;
368
369 delete $self->{keepalive};
370
371 if ($self->{protocol}) {
372 $HOOK_PROTOCOL{$self->{protocol}}->($self, $msg);
373 } else {
374 $AnyEvent::MP::Kernel::WARN->(9, "$self->{peerhost}:$self->{peerport} $msg");#d#
375
376 $self->{node}->transport_error (transport_error => $self->{node}{id}, $msg)
377 if $self->{node} && $self->{node}{transport} == $self;
378 }
379
380 (delete $self->{release})->()
381 if exists $self->{release};
382
383 # $AnyEvent::MP::Kernel::WARN->(7, "$self->{peerhost}:$self->{peerport}: $msg");
384 $self->destroy;
385 }
386
387 sub connected {
388 my ($self) = @_;
389
390 delete $self->{keepalive};
391
392 if ($self->{protocol}) {
393 $self->{hdl}->on_error (undef);
394 $HOOK_PROTOCOL{$self->{protocol}}->($self, undef);
395 } else {
396 $AnyEvent::MP::Kernel::WARN->(9, "$self->{peerhost}:$self->{peerport} connected as $self->{remote_node}");
397
398 my $node = AnyEvent::MP::Kernel::add_node ($self->{remote_node});
399 Scalar::Util::weaken ($self->{node} = $node);
400 $node->transport_connect ($self);
401
402 $_->($self) for @HOOK_CONNECTED;
403 }
404
405 (delete $self->{release})->()
406 if exists $self->{release};
407 }
408
409 sub destroy {
410 my ($self) = @_;
411
412 (delete $self->{release})->()
413 if exists $self->{release};
414
415 $self->{hdl}->destroy
416 if $self->{hdl};
417
418 $_->($self) for $self->{protocol} ? () : @HOOK_DESTROY;
419 }
420
421 sub DESTROY {
422 my ($self) = @_;
423
424 $self->destroy;
425 }
426
427 =back
428
429 =head1 PROTOCOL
430
431 The AEMP protocol is comparatively simple, and consists of three phases
432 which are symmetrical for both sides: greeting (followed by optionally
433 switching to TLS mode), authentication and packet exchange.
434
435 The protocol is designed to allow both full-text and binary streams.
436
437 The greeting consists of two text lines that are ended by either an ASCII
438 CR LF pair, or a single ASCII LF (recommended).
439
440 =head2 GREETING
441
442 All the lines until after authentication must not exceed 4kb in length,
443 including line delimiter. Afterwards there is no limit on the packet size
444 that can be received.
445
446 =head3 First Greeting Line
447
448 Example:
449
450 aemp;0;rain;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;timeout=12;peeraddr=10.0.0.1:48082
451
452 The first line contains strings separated (not ended) by C<;>
453 characters. The first five strings are fixed by the protocol, the
454 remaining strings are C<KEY=VALUE> pairs. None of them may contain C<;>
455 characters themselves (when escaping is needed, use C<%3b> to represent
456 C<;> and C<%25> to represent C<%>)-
457
458 The fixed strings are:
459
460 =over 4
461
462 =item protocol identification
463
464 The constant C<aemp> to identify this protocol.
465
466 =item protocol version
467
468 The protocol version supported by this end, currently C<1>. If the
469 versions don't match then no communication is possible. Minor extensions
470 are supposed to be handled through additional key-value pairs.
471
472 =item the node ID
473
474 This is the node ID of the connecting node.
475
476 =item the acceptable authentication methods
477
478 A comma-separated list of authentication methods supported by the
479 node. Note that AnyEvent::MP supports a C<hex_secret> authentication
480 method that accepts a clear-text password (hex-encoded), but will not use
481 this authentication method itself.
482
483 The receiving side should choose the first authentication method it
484 supports.
485
486 =item the acceptable framing formats
487
488 A comma-separated list of packet encoding/framing formats understood. The
489 receiving side should choose the first framing format it supports for
490 sending packets (which might be different from the format it has to accept).
491
492 =back
493
494 The remaining arguments are C<KEY=VALUE> pairs. The following key-value
495 pairs are known at this time:
496
497 =over 4
498
499 =item provider=<module-version>
500
501 The software provider for this implementation. For AnyEvent::MP, this is
502 C<AE-0.0> or whatever version it currently is at.
503
504 =item peeraddr=<host>:<port>
505
506 The peer address (socket address of the other side) as seen locally.
507
508 =item tls=<major>.<minor>
509
510 Indicates that the other side supports TLS (version should be 1.0) and
511 wishes to do a TLS handshake.
512
513 =back
514
515 =head3 Second Greeting Line
516
517 After this greeting line there will be a second line containing a
518 cryptographic nonce, i.e. random data of high quality. To keep the
519 protocol text-only, these are usually 32 base64-encoded octets, but
520 it could be anything that doesn't contain any ASCII CR or ASCII LF
521 characters.
522
523 I<< The two nonces B<must> be different, and an aemp implementation
524 B<must> check and fail when they are identical >>.
525
526 Example of a nonce line (yes, it's random-looking because it is random
527 data):
528
529 2XYhdG7/O6epFa4wuP0ujAEx1rXYWRcOypjUYK7eF6yWAQr7gwIN9m/2+mVvBrTPXz5GJDgfGm9d8QRABAbmAP/s
530
531 =head2 TLS handshake
532
533 I<< If, after the handshake, both sides indicate interest in TLS, then the
534 connection B<must> use TLS, or fail to continue. >>
535
536 Both sides compare their nonces, and the side who sent the lower nonce
537 value ("string" comparison on the raw octet values) becomes the client,
538 and the one with the higher nonce the server.
539
540 =head2 AUTHENTICATION PHASE
541
542 After the greeting is received (and the optional TLS handshake),
543 the authentication phase begins, which consists of sending a single
544 C<;>-separated line with three fixed strings and any number of
545 C<KEY=VALUE> pairs.
546
547 The three fixed strings are:
548
549 =over 4
550
551 =item the authentication method chosen
552
553 This must be one of the methods offered by the other side in the greeting.
554
555 Note that all methods starting with C<tls_> are only valid I<iff> TLS was
556 successfully handshaked (and to be secure the implementation must enforce
557 this).
558
559 The currently supported authentication methods are:
560
561 =over 4
562
563 =item cleartext
564
565 This is simply the shared secret, lowercase-hex-encoded. This method is of
566 course very insecure if TLS is not used (and not completely secure even
567 if TLS is used), which is why this module will accept, but not generate,
568 cleartext auth replies.
569
570 =item hmac_md6_64_256
571
572 This method uses an MD6 HMAC with 64 bit blocksize and 256 bit hash, and
573 requires a shared secret. It is the preferred auth method when a shared
574 secret is available.
575
576 First, the shared secret is hashed with MD6:
577
578 key = MD6 (secret)
579
580 This secret is then used to generate the "local auth reply", by taking
581 the two local greeting lines and the two remote greeting lines (without
582 line endings), appending \012 to all of them, concatenating them and
583 calculating the MD6 HMAC with the key:
584
585 lauth = HMAC_MD6 key, "lgreeting1\012lgreeting2\012rgreeting1\012rgreeting2\012"
586
587 This authentication token is then lowercase-hex-encoded and sent to the
588 other side.
589
590 Then the remote auth reply is generated using the same method, but local
591 and remote greeting lines swapped:
592
593 rauth = HMAC_MD6 key, "rgreeting1\012rgreeting2\012lgreeting1\012lgreeting2\012"
594
595 This is the token that is expected from the other side.
596
597 =item tls_anon
598
599 This type is only valid I<iff> TLS was enabled and the TLS handshake
600 was successful. It has no authentication data, as the server/client
601 certificate was successfully verified.
602
603 This authentication type is somewhat insecure, as it allows a
604 man-in-the-middle attacker to change some of the connection parameters
605 (such as the framing format), although there is no known attack that
606 exploits this in a way that is worse than just denying the service.
607
608 By default, this implementation accepts but never generates this auth
609 reply.
610
611 =item tls_md6_64_256
612
613 This type is only valid I<iff> TLS was enabled and the TLS handshake was
614 successful.
615
616 This authentication type simply calculates:
617
618 lauth = MD6 "rgreeting1\012rgreeting2\012lgreeting1\012lgreeting2\012"
619
620 and lowercase-hex encodes the result and sends it as authentication
621 data. No shared secret is required (authentication is done by TLS). The
622 checksum exists only to make tinkering with the greeting hard.
623
624 =back
625
626 =item the authentication data
627
628 The authentication data itself, usually base64 or hex-encoded data, see
629 above.
630
631 =item the framing protocol chosen
632
633 This must be one of the framing protocols offered by the other side in the
634 greeting. Each side must accept the choice of the other side, and generate
635 packets in the format it chose itself.
636
637 =back
638
639 Example of an authentication reply:
640
641 hmac_md6_64_256;363d5175df38bd9eaddd3f6ca18aa1c0c4aa22f0da245ac638d048398c26b8d3;json
642
643 =head2 DATA PHASE
644
645 After this, packets get exchanged using the chosen framing protocol. It is
646 quite possible that both sides use a different framing protocol.
647
648 =head2 FULL EXAMPLE
649
650 This is an actual protocol dump of a handshake, followed by a single data
651 packet. The greater than/less than lines indicate the direction of the
652 transfer only.
653
654 > aemp;0;anon/57Cs1CggVJjzYaQp13XXg4;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;provider=AE-0.8;timeout=12;peeraddr=10.0.0.17:4040
655 > yLgdG1ov/02shVkVQer3wzeuywZK+oraTdEQBmIqWHaegxSGDG4g+HqogLQbvdypFOsoDWJ1Sh4ImV4DMhvUBwTK
656
657 < aemp;0;ruth;tls_md6_64_256,hmac_md6_64_256,tls_anon,cleartext;json,storable;provider=AE-0.8;timeout=12;peeraddr=10.0.0.1:37108
658 < +xMQXP8ElfNmuvEhsmcp+s2wCJOuQAsPxSg3d2Ewhs6gBnJz+ypVdWJ/wAVrXqlIJfLeVS/CBy4gEGkyWHSuVb1L
659
660 > hmac_md6_64_256;5ad913855742ae5a03a5aeb7eafa4c78629de136bed6acd73eea36c9e98df44a;json
661
662 < hmac_md6_64_256;84cd590976f794914c2ca26dac3a207a57a6798b9171289c114de07cf0c20401;json
663 < ["","AnyEvent::MP::_spawn","57Cs1CggVJjzYaQp13XXg4.c","AnyEvent::MP::Global::connect",0,"anon/57Cs1CggVJjzYaQp13XXg4"]
664 ...
665
666 The shared secret in use was C<8ugxrtw6H5tKnfPWfaSr4HGhE8MoJXmzTT1BWq7sLutNcD0IbXprQlZjIbl7MBKoeklG3IEfY9GlJthC0pENzk>.
667
668 =head2 SIMPLE HANDSHAKE FOR NON-PERL NODES
669
670 Implementing the full set of options for handshaking can be a daunting
671 task.
672
673 If security is not so important (because you only connect locally and
674 control the host, a common case), and you want to interface with an AEMP
675 node from another programming language, then you can also implement a
676 simplified handshake.
677
678 For example, in a simple implementation you could decide to simply not
679 check the authenticity of the other side and use cleartext authentication
680 yourself. The the handshake is as simple as sending three lines of text,
681 reading three lines of text, and then you can exchange JSON-formatted
682 messages:
683
684 aemp;1;<nodename>;hmac_md6_64_256;json
685 <nonce>
686 cleartext;<hexencoded secret>;json
687
688 The nodename should be unique within the network, preferably unique with
689 every connection, the <nonce> could be empty or some random data, and the
690 hexencoded secret would be the shared secret, in lowercase hex (e.g. if
691 the secret is "geheim", the hex-encoded version would be "67656865696d").
692
693 Note that apart from the low-level handshake and framing protocol, there
694 is a high-level protocol, e.g. for monitoring, building the mesh or
695 spawning. All these messages are sent to the node port (the empty string)
696 and can safely be ignored if you do not need the relevant functionality.
697
698 =head3 USEFUL HINTS
699
700 Since taking part in the global protocol to find port groups is
701 nontrivial, hardcoding port names should be considered as well, i.e. the
702 non-Perl node could simply listen to messages for a few well-known ports.
703
704 Alternatively, the non-Perl node could call a (already loaded) function
705 in the Perl node by sending it a special message:
706
707 ["", "Some::Function::name", "myownport", 1, 2, 3]
708
709 This would call the function C<Some::Function::name> with the string
710 C<myownport> and some additional arguments.
711
712 =head2 MONITORING
713
714 Monitoring the connection itself is transport-specific. For TCP, all
715 connection monitoring is currently left to TCP retransmit time-outs
716 on a busy link, and TCP keepalive (which should be enabled) for idle
717 connections.
718
719 This is not sufficient for listener-less nodes, however: they need
720 to regularly send data (30 seconds, or the monitoring interval, is
721 recommended), so TCP actively probes.
722
723 Future implementations of AnyEvent::Transport might query the kernel TCP
724 buffer after a write timeout occurs, and if it is non-empty, shut down the
725 connections, but this is an area of future research :)
726
727 =head2 NODE PROTOCOL
728
729 The transport simply transfers messages, but to implement a full node, a
730 special node port must exist that understands a number of requests.
731
732 If you are interested in implementing this, drop us a note so we finish
733 the documentation.
734
735 =head1 SEE ALSO
736
737 L<AnyEvent::MP>.
738
739 =head1 AUTHOR
740
741 Marc Lehmann <schmorp@schmorp.de>
742 http://home.schmorp.de/
743
744 =cut
745
746 1
747