ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/cvsroot/libecb/ecb.pod
(Generate patch)

Comparing cvsroot/libecb/ecb.pod (file contents):
Revision 1.62 by root, Wed Feb 18 20:29:27 2015 UTC vs.
Revision 1.83 by root, Mon Jan 20 21:08:19 2020 UTC

58 58
59=head2 TYPES / TYPE SUPPORT 59=head2 TYPES / TYPE SUPPORT
60 60
61ecb.h makes sure that the following types are defined (in the expected way): 61ecb.h makes sure that the following types are defined (in the expected way):
62 62
63 int8_t uint8_t int16_t uint16_t 63 int8_t uint8_
64 int32_t uint32_t int64_t uint64_t 64 int16_t uint16_t
65 int32_t uint32_
66 int64_t uint64_t
67 int_fast8_t uint_fast8_t
68 int_fast16_t uint_fast16_t
69 int_fast32_t uint_fast32_t
70 int_fast64_t uint_fast64_t
65 intptr_t uintptr_t 71 intptr_t uintptr_t
66 72
67The macro C<ECB_PTRSIZE> is defined to the size of a pointer on this 73The macro C<ECB_PTRSIZE> is defined to the size of a pointer on this
68platform (currently C<4> or C<8>) and can be used in preprocessor 74platform (currently C<4> or C<8>) and can be used in preprocessor
69expressions. 75expressions.
70 76
71For C<ptrdiff_t> and C<size_t> use C<stddef.h>. 77For C<ptrdiff_t> and C<size_t> use C<stddef.h>/C<cstddef>.
72 78
73=head2 LANGUAGE/ENVIRONMENT/COMPILER VERSIONS 79=head2 LANGUAGE/ENVIRONMENT/COMPILER VERSIONS
74 80
75All the following symbols expand to an expression that can be tested in 81All the following symbols expand to an expression that can be tested in
76preprocessor instructions as well as treated as a boolean (use C<!!> to 82preprocessor instructions as well as treated as a boolean (use C<!!> to
79=over 4 85=over 4
80 86
81=item ECB_C 87=item ECB_C
82 88
83True if the implementation defines the C<__STDC__> macro to a true value, 89True if the implementation defines the C<__STDC__> macro to a true value,
84while not claiming to be C++. 90while not claiming to be C++, i..e C, but not C++.
85 91
86=item ECB_C99 92=item ECB_C99
87 93
88True if the implementation claims to be compliant to C99 (ISO/IEC 94True if the implementation claims to be compliant to C99 (ISO/IEC
899899:1999) or any later version, while not claiming to be C++. 959899:1999) or any later version, while not claiming to be C++.
90 96
91Note that later versions (ECB_C11) remove core features again (for 97Note that later versions (ECB_C11) remove core features again (for
92example, variable length arrays). 98example, variable length arrays).
93 99
94=item ECB_C11 100=item ECB_C11, ECB_C17
95 101
96True if the implementation claims to be compliant to C11 (ISO/IEC 102True if the implementation claims to be compliant to C11/C17 (ISO/IEC
979899:2011) or any later version, while not claiming to be C++. 1039899:2011, :20187) or any later version, while not claiming to be C++.
98 104
99=item ECB_CPP 105=item ECB_CPP
100 106
101True if the implementation defines the C<__cplusplus__> macro to a true 107True if the implementation defines the C<__cplusplus__> macro to a true
102value, which is typically true for C++ compilers. 108value, which is typically true for C++ compilers.
103 109
104=item ECB_CPP11 110=item ECB_CPP11, ECB_CPP14, ECB_CPP17
105 111
106True if the implementation claims to be compliant to ISO/IEC 14882:2011 112True if the implementation claims to be compliant to C++11/C++14/C++17
107(C++11) or any later version. 113(ISO/IEC 14882:2011, :2014, :2017) or any later version.
114
115Note that many C++20 features will likely have their own feature test
116macros (see e.g. L<http://eel.is/c++draft/cpp.predefined#1.8>).
117
118=item ECB_OPTIMIZE_SIZE
119
120Is C<1> when the compiler optimizes for size, C<0> otherwise. This symbol
121can also be defined before including F<ecb.h>, in which case it will be
122unchanged.
108 123
109=item ECB_GCC_VERSION (major, minor) 124=item ECB_GCC_VERSION (major, minor)
110 125
111Expands to a true value (suitable for testing in by the preprocessor) 126Expands to a true value (suitable for testing in by the preprocessor)
112if the compiler used is GNU C and the version is the given version, or 127if the compiler used is GNU C and the version is the given version, or
186it. This is mainly useful to get the contents of a macro in string form, 201it. This is mainly useful to get the contents of a macro in string form,
187e.g.: 202e.g.:
188 203
189 #define SQL_LIMIT 100 204 #define SQL_LIMIT 100
190 sql_exec ("select * from table limit " ECB_STRINGIFY (SQL_LIMIT)); 205 sql_exec ("select * from table limit " ECB_STRINGIFY (SQL_LIMIT));
206
207=item ECB_STRINGIFY_EXPR (expr)
208
209Like C<ECB_STRINGIFY>, but additionally evaluates C<expr> to make sure it
210is a valid expression. This is useful to catch typos or cases where the
211macro isn't available:
212
213 #include <errno.h>
214
215 ECB_STRINGIFY (EDOM); // "33" (on my system at least)
216 ECB_STRINGIFY_EXPR (EDOM); // "33"
217
218 // now imagine we had a typo:
219
220 ECB_STRINGIFY (EDAM); // "EDAM"
221 ECB_STRINGIFY_EXPR (EDAM); // error: EDAM undefined
191 222
192=back 223=back
193 224
194=head2 ATTRIBUTES 225=head2 ATTRIBUTES
195 226
226Similar to C<ecb_unused>, but marks a function, variable or type as 257Similar to C<ecb_unused>, but marks a function, variable or type as
227deprecated. This makes some compilers warn when the type is used. 258deprecated. This makes some compilers warn when the type is used.
228 259
229=item ecb_deprecated_message (message) 260=item ecb_deprecated_message (message)
230 261
231Same as C<ecb_deprecated>, but if possible, supply a diagnostic that is 262Same as C<ecb_deprecated>, but if possible, the specified diagnostic is
232used instead of a generic depreciation message when the object is being 263used instead of a generic depreciation message when the object is being
233used. 264used.
234 265
235=item ecb_inline 266=item ecb_inline
236 267
237Expands either to C<static inline> or to just C<static>, if inline 268Expands either to (a compiler-specific equivalent of) C<static inline> or
238isn't supported. It should be used to declare functions that should be 269to just C<static>, if inline isn't supported. It should be used to declare
239inlined, for code size or speed reasons. 270functions that should be inlined, for code size or speed reasons.
240 271
241Example: inline this function, it surely will reduce codesize. 272Example: inline this function, it surely will reduce codesize.
242 273
243 ecb_inline int 274 ecb_inline int
244 negmul (int a, int b) 275 negmul (int a, int b)
246 return - (a * b); 277 return - (a * b);
247 } 278 }
248 279
249=item ecb_noinline 280=item ecb_noinline
250 281
251Prevent a function from being inlined - it might be optimised away, but 282Prevents a function from being inlined - it might be optimised away, but
252not inlined into other functions. This is useful if you know your function 283not inlined into other functions. This is useful if you know your function
253is rarely called and large enough for inlining not to be helpful. 284is rarely called and large enough for inlining not to be helpful.
254 285
255=item ecb_noreturn 286=item ecb_noreturn
256 287
473 real_reserve_method (size); /* presumably noinline */ 504 real_reserve_method (size); /* presumably noinline */
474 } 505 }
475 506
476=item ecb_assume (cond) 507=item ecb_assume (cond)
477 508
478Try to tell the compiler that some condition is true, even if it's not 509Tries to tell the compiler that some condition is true, even if it's not
479obvious. 510obvious. This is not a function, but a statement: it cannot be used in
511another expression.
480 512
481This can be used to teach the compiler about invariants or other 513This can be used to teach the compiler about invariants or other
482conditions that might improve code generation, but which are impossible to 514conditions that might improve code generation, but which are impossible to
483deduce form the code itself. 515deduce form the code itself.
484 516
505 537
506=item ecb_unreachable () 538=item ecb_unreachable ()
507 539
508This function does nothing itself, except tell the compiler that it will 540This function does nothing itself, except tell the compiler that it will
509never be executed. Apart from suppressing a warning in some cases, this 541never be executed. Apart from suppressing a warning in some cases, this
510function can be used to implement C<ecb_assume> or similar functions. 542function can be used to implement C<ecb_assume> or similar functionality.
511 543
512=item ecb_prefetch (addr, rw, locality) 544=item ecb_prefetch (addr, rw, locality)
513 545
514Tells the compiler to try to prefetch memory at the given C<addr>ess 546Tells the compiler to try to prefetch memory at the given C<addr>ess
515for either reading (C<rw> = 0) or writing (C<rw> = 1). A C<locality> of 547for either reading (C<rw> = 0) or writing (C<rw> = 1). A C<locality> of
517the data will likely be accessed very often, and values in between mean 549the data will likely be accessed very often, and values in between mean
518something... in between. The memory pointed to by the address does not 550something... in between. The memory pointed to by the address does not
519need to be accessible (it could be a null pointer for example), but C<rw> 551need to be accessible (it could be a null pointer for example), but C<rw>
520and C<locality> must be compile-time constants. 552and C<locality> must be compile-time constants.
521 553
554This is a statement, not a function: you cannot use it as part of an
555expression.
556
522An obvious way to use this is to prefetch some data far away, in a big 557An obvious way to use this is to prefetch some data far away, in a big
523array you loop over. This prefetches memory some 128 array elements later, 558array you loop over. This prefetches memory some 128 array elements later,
524in the hope that it will be ready when the CPU arrives at that location. 559in the hope that it will be ready when the CPU arrives at that location.
525 560
526 int sum = 0; 561 int sum = 0;
563 598
564=item int ecb_ctz32 (uint32_t x) 599=item int ecb_ctz32 (uint32_t x)
565 600
566=item int ecb_ctz64 (uint64_t x) 601=item int ecb_ctz64 (uint64_t x)
567 602
603=item int ecb_ctz (T x) [C++]
604
568Returns the index of the least significant bit set in C<x> (or 605Returns the index of the least significant bit set in C<x> (or
569equivalently the number of bits set to 0 before the least significant bit 606equivalently the number of bits set to 0 before the least significant bit
570set), starting from 0. If C<x> is 0 the result is undefined. 607set), starting from 0. If C<x> is 0 the result is undefined.
571 608
572For smaller types than C<uint32_t> you can safely use C<ecb_ctz32>. 609For smaller types than C<uint32_t> you can safely use C<ecb_ctz32>.
573 610
611The overloaded C++ C<ecb_ctz> function supports C<uint8_t>, C<uint16_t>,
612C<uint32_t> and C<uint64_t> types.
613
574For example: 614For example:
575 615
576 ecb_ctz32 (3) = 0 616 ecb_ctz32 (3) = 0
577 ecb_ctz32 (6) = 1 617 ecb_ctz32 (6) = 1
578 618
579=item bool ecb_is_pot32 (uint32_t x) 619=item bool ecb_is_pot32 (uint32_t x)
580 620
581=item bool ecb_is_pot64 (uint32_t x) 621=item bool ecb_is_pot64 (uint32_t x)
582 622
623=item bool ecb_is_pot (T x) [C++]
624
583Return true iff C<x> is a power of two or C<x == 0>. 625Returns true iff C<x> is a power of two or C<x == 0>.
584 626
585For smaller types then C<uint32_t> you can safely use C<ecb_is_pot32>. 627For smaller types than C<uint32_t> you can safely use C<ecb_is_pot32>.
628
629The overloaded C++ C<ecb_is_pot> function supports C<uint8_t>, C<uint16_t>,
630C<uint32_t> and C<uint64_t> types.
586 631
587=item int ecb_ld32 (uint32_t x) 632=item int ecb_ld32 (uint32_t x)
588 633
589=item int ecb_ld64 (uint64_t x) 634=item int ecb_ld64 (uint64_t x)
635
636=item int ecb_ld64 (T x) [C++]
590 637
591Returns the index of the most significant bit set in C<x>, or the number 638Returns the index of the most significant bit set in C<x>, or the number
592of digits the number requires in binary (so that C<< 2**ld <= x < 639of digits the number requires in binary (so that C<< 2**ld <= x <
5932**(ld+1) >>). If C<x> is 0 the result is undefined. A common use case is 6402**(ld+1) >>). If C<x> is 0 the result is undefined. A common use case is
594to compute the integer binary logarithm, i.e. C<floor (log2 (n))>, for 641to compute the integer binary logarithm, i.e. C<floor (log2 (n))>, for
599the given data type), while C<ecb_ld> returns how many bits the number 646the given data type), while C<ecb_ld> returns how many bits the number
600itself requires. 647itself requires.
601 648
602For smaller types than C<uint32_t> you can safely use C<ecb_ld32>. 649For smaller types than C<uint32_t> you can safely use C<ecb_ld32>.
603 650
651The overloaded C++ C<ecb_ld> function supports C<uint8_t>, C<uint16_t>,
652C<uint32_t> and C<uint64_t> types.
653
604=item int ecb_popcount32 (uint32_t x) 654=item int ecb_popcount32 (uint32_t x)
605 655
606=item int ecb_popcount64 (uint64_t x) 656=item int ecb_popcount64 (uint64_t x)
607 657
658=item int ecb_popcount (T x) [C++]
659
608Returns the number of bits set to 1 in C<x>. 660Returns the number of bits set to 1 in C<x>.
609 661
610For smaller types than C<uint32_t> you can safely use C<ecb_popcount32>. 662For smaller types than C<uint32_t> you can safely use C<ecb_popcount32>.
663
664The overloaded C++ C<ecb_popcount> function supports C<uint8_t>, C<uint16_t>,
665C<uint32_t> and C<uint64_t> types.
611 666
612For example: 667For example:
613 668
614 ecb_popcount32 (7) = 3 669 ecb_popcount32 (7) = 3
615 ecb_popcount32 (255) = 8 670 ecb_popcount32 (255) = 8
618 673
619=item uint16_t ecb_bitrev16 (uint16_t x) 674=item uint16_t ecb_bitrev16 (uint16_t x)
620 675
621=item uint32_t ecb_bitrev32 (uint32_t x) 676=item uint32_t ecb_bitrev32 (uint32_t x)
622 677
678=item T ecb_bitrev (T x) [C++]
679
623Reverses the bits in x, i.e. the MSB becomes the LSB, MSB-1 becomes LSB+1 680Reverses the bits in x, i.e. the MSB becomes the LSB, MSB-1 becomes LSB+1
624and so on. 681and so on.
625 682
683The overloaded C++ C<ecb_bitrev> function supports C<uint8_t>, C<uint16_t> and C<uint32_t> types.
684
626Example: 685Example:
627 686
628 ecb_bitrev8 (0xa7) = 0xea 687 ecb_bitrev8 (0xa7) = 0xea
629 ecb_bitrev32 (0xffcc4411) = 0x882233ff 688 ecb_bitrev32 (0xffcc4411) = 0x882233ff
630 689
690=item T ecb_bitrev (T x) [C++]
691
692Overloaded C++ bitrev function.
693
694C<T> must be one of C<uint8_t>, C<uint16_t> or C<uint32_t>.
695
631=item uint32_t ecb_bswap16 (uint32_t x) 696=item uint32_t ecb_bswap16 (uint32_t x)
632 697
633=item uint32_t ecb_bswap32 (uint32_t x) 698=item uint32_t ecb_bswap32 (uint32_t x)
634 699
635=item uint64_t ecb_bswap64 (uint64_t x) 700=item uint64_t ecb_bswap64 (uint64_t x)
701
702=item T ecb_bswap (T x)
636 703
637These functions return the value of the 16-bit (32-bit, 64-bit) value 704These functions return the value of the 16-bit (32-bit, 64-bit) value
638C<x> after reversing the order of bytes (0x11223344 becomes 0x44332211 in 705C<x> after reversing the order of bytes (0x11223344 becomes 0x44332211 in
639C<ecb_bswap32>). 706C<ecb_bswap32>).
640 707
708The overloaded C++ C<ecb_bswap> function supports C<uint8_t>, C<uint16_t>,
709C<uint32_t> and C<uint64_t> types.
710
641=item uint8_t ecb_rotl8 (uint8_t x, unsigned int count) 711=item uint8_t ecb_rotl8 (uint8_t x, unsigned int count)
642 712
643=item uint16_t ecb_rotl16 (uint16_t x, unsigned int count) 713=item uint16_t ecb_rotl16 (uint16_t x, unsigned int count)
644 714
645=item uint32_t ecb_rotl32 (uint32_t x, unsigned int count) 715=item uint32_t ecb_rotl32 (uint32_t x, unsigned int count)
660 730
661Current GCC versions understand these functions and usually compile them 731Current GCC versions understand these functions and usually compile them
662to "optimal" code (e.g. a single C<rol> or a combination of C<shld> on 732to "optimal" code (e.g. a single C<rol> or a combination of C<shld> on
663x86). 733x86).
664 734
735=item T ecb_rotl (T x, unsigned int count) [C++]
736
737=item T ecb_rotr (T x, unsigned int count) [C++]
738
739Overloaded C++ rotl/rotr functions.
740
741C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
742
665=back 743=back
666 744
745=head2 HOST ENDIANNESS CONVERSION
746
747=over 4
748
749=item uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v)
750
751=item uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v)
752
753=item uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v)
754
755=item uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v)
756
757=item uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v)
758
759=item uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v)
760
761Convert an unsigned 16, 32 or 64 bit value from big or little endian to host byte order.
762
763The naming convention is C<ecb_>(C<be>|C<le>)C<_u>C<16|32|64>C<_to_host>,
764where C<be> and C<le> stand for big endian and little endian, respectively.
765
766=item uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v)
767
768=item uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v)
769
770=item uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v)
771
772=item uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v)
773
774=item uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v)
775
776=item uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v)
777
778Like above, but converts I<from> host byte order to the specified
779endianness.
780
781=back
782
783In C++ the following additional template functions are supported:
784
785=over 4
786
787=item T ecb_be_to_host (T v)
788
789=item T ecb_le_to_host (T v)
790
791=item T ecb_host_to_be (T v)
792
793=item T ecb_host_to_le (T v)
794
795These functions work like their C counterparts, above, but use templates,
796which make them useful in generic code.
797
798C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>
799(so unlike their C counterparts, there is a version for C<uint8_t>, which
800again can be useful in generic code).
801
802=head2 UNALIGNED LOAD/STORE
803
804These function load or store unaligned multi-byte values.
805
806=over 4
807
808=item uint_fast16_t ecb_peek_u16_u (const void *ptr)
809
810=item uint_fast32_t ecb_peek_u32_u (const void *ptr)
811
812=item uint_fast64_t ecb_peek_u64_u (const void *ptr)
813
814These functions load an unaligned, unsigned 16, 32 or 64 bit value from
815memory.
816
817=item uint_fast16_t ecb_peek_be_u16_u (const void *ptr)
818
819=item uint_fast32_t ecb_peek_be_u32_u (const void *ptr)
820
821=item uint_fast64_t ecb_peek_be_u64_u (const void *ptr)
822
823=item uint_fast16_t ecb_peek_le_u16_u (const void *ptr)
824
825=item uint_fast32_t ecb_peek_le_u32_u (const void *ptr)
826
827=item uint_fast64_t ecb_peek_le_u64_u (const void *ptr)
828
829Like above, but additionally convert from big endian (C<be>) or little
830endian (C<le>) byte order to host byte order while doing so.
831
832=item ecb_poke_u16_u (void *ptr, uint16_t v)
833
834=item ecb_poke_u32_u (void *ptr, uint32_t v)
835
836=item ecb_poke_u64_u (void *ptr, uint64_t v)
837
838These functions store an unaligned, unsigned 16, 32 or 64 bit value to
839memory.
840
841=item ecb_poke_be_u16_u (void *ptr, uint_fast16_t v)
842
843=item ecb_poke_be_u32_u (void *ptr, uint_fast32_t v)
844
845=item ecb_poke_be_u64_u (void *ptr, uint_fast64_t v)
846
847=item ecb_poke_le_u16_u (void *ptr, uint_fast16_t v)
848
849=item ecb_poke_le_u32_u (void *ptr, uint_fast32_t v)
850
851=item ecb_poke_le_u64_u (void *ptr, uint_fast64_t v)
852
853Like above, but additionally convert from host byte order to big endian
854(C<be>) or little endian (C<le>) byte order while doing so.
855
856=back
857
858In C++ the following additional template functions are supported:
859
860=over 4
861
862=item T ecb_peek<T> (const void *ptr)
863
864=item T ecb_peek_be<T> (const void *ptr)
865
866=item T ecb_peek_le<T> (const void *ptr)
867
868=item T ecb_peek_u<T> (const void *ptr)
869
870=item T ecb_peek_be_u<T> (const void *ptr)
871
872=item T ecb_peek_le_u<T> (const void *ptr)
873
874Similarly to their C counterparts, these functions load an unsigned 8, 16,
87532 or 64 bit value from memory, with optional conversion from big/little
876endian.
877
878Since the type cannot be deduced, it has to be specified explicitly, e.g.
879
880 uint_fast16_t v = ecb_peek<uint16_t> (ptr);
881
882C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
883
884Unlike their C counterparts, these functions support 8 bit quantities
885(C<uint8_t>) and also have an aligned version (without the C<_u> prefix),
886all of which hopefully makes them more useful in generic code.
887
888=item ecb_poke (void *ptr, T v)
889
890=item ecb_poke_be (void *ptr, T v)
891
892=item ecb_poke_le (void *ptr, T v)
893
894=item ecb_poke_u (void *ptr, T v)
895
896=item ecb_poke_be_u (void *ptr, T v)
897
898=item ecb_poke_le_u (void *ptr, T v)
899
900Again, similarly to their C counterparts, these functions store an
901unsigned 8, 16, 32 or z64 bit value to memory, with optional conversion to
902big/little endian.
903
904C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
905
906Unlike their C counterparts, these functions support 8 bit quantities
907(C<uint8_t>) and also have an aligned version (without the C<_u> prefix),
908all of which hopefully makes them more useful in generic code.
909
910=back
911
667=head2 FLOATING POINT FIDDLING 912=head2 FLOATING POINT FIDDLING
668 913
669=over 4 914=over 4
670 915
671=item ECB_INFINITY 916=item ECB_INFINITY [-UECB_NO_LIBM]
672 917
673Evaluates to positive infinity if supported by the platform, otherwise to 918Evaluates to positive infinity if supported by the platform, otherwise to
674a truly huge number. 919a truly huge number.
675 920
676=item ECB_NON 921=item ECB_NAN [-UECB_NO_LIBM]
677 922
678Evaluates to a quiet NAN if supported by the platform, otherwise to 923Evaluates to a quiet NAN if supported by the platform, otherwise to
679C<ECB_INFINITY>. 924C<ECB_INFINITY>.
680 925
681=item float ecb_ldexpf (float x, int exp) 926=item float ecb_ldexpf (float x, int exp) [-UECB_NO_LIBM]
682 927
683Same as C<ldexpf>, but always available. 928Same as C<ldexpf>, but always available.
684 929
930=item uint32_t ecb_float_to_binary16 (float x) [-UECB_NO_LIBM]
931
685=item uint32_t ecb_float_to_binary32 (float x) [-UECB_NO_LIBM] 932=item uint32_t ecb_float_to_binary32 (float x) [-UECB_NO_LIBM]
686 933
687=item uint64_t ecb_double_to_binary64 (double x) [-UECB_NO_LIBM] 934=item uint64_t ecb_double_to_binary64 (double x) [-UECB_NO_LIBM]
688 935
689These functions each take an argument in the native C<float> or C<double> 936These functions each take an argument in the native C<float> or C<double>
690type and return the IEEE 754 bit representation of it. 937type and return the IEEE 754 bit representation of it (binary16/half,
938binary32/single or binary64/double precision).
691 939
692The bit representation is just as IEEE 754 defines it, i.e. the sign bit 940The bit representation is just as IEEE 754 defines it, i.e. the sign bit
693will be the most significant bit, followed by exponent and mantissa. 941will be the most significant bit, followed by exponent and mantissa.
694 942
695This function should work even when the native floating point format isn't 943This function should work even when the native floating point format isn't
699 947
700On all modern platforms (where C<ECB_STDFP> is true), the compiler should 948On all modern platforms (where C<ECB_STDFP> is true), the compiler should
701be able to optimise away this function completely. 949be able to optimise away this function completely.
702 950
703These functions can be helpful when serialising floats to the network - you 951These functions can be helpful when serialising floats to the network - you
704can serialise the return value like a normal uint32_t/uint64_t. 952can serialise the return value like a normal uint16_t/uint32_t/uint64_t.
705 953
706Another use for these functions is to manipulate floating point values 954Another use for these functions is to manipulate floating point values
707directly. 955directly.
708 956
709Silly example: toggle the sign bit of a float. 957Silly example: toggle the sign bit of a float.
716 964
717=item float ecb_binary16_to_float (uint16_t x) [-UECB_NO_LIBM] 965=item float ecb_binary16_to_float (uint16_t x) [-UECB_NO_LIBM]
718 966
719=item float ecb_binary32_to_float (uint32_t x) [-UECB_NO_LIBM] 967=item float ecb_binary32_to_float (uint32_t x) [-UECB_NO_LIBM]
720 968
721=item double ecb_binary32_to_double (uint64_t x) [-UECB_NO_LIBM] 969=item double ecb_binary64_to_double (uint64_t x) [-UECB_NO_LIBM]
722 970
723The reverse operation of the previous function - takes the bit 971The reverse operation of the previous function - takes the bit
724representation of an IEEE binary16, binary32 or binary64 number and 972representation of an IEEE binary16, binary32 or binary64 number (half,
725converts it to the native C<float> or C<double> format. 973single or double precision) and converts it to the native C<float> or
974C<double> format.
726 975
727This function should work even when the native floating point format isn't 976This function should work even when the native floating point format isn't
728IEEE compliant, of course at a speed and code size penalty, and of course 977IEEE compliant, of course at a speed and code size penalty, and of course
729also within reasonable limits (it tries to convert normals and denormals, 978also within reasonable limits (it tries to convert normals and denormals,
730and might be lucky for infinities, and with extraordinary luck, also for 979and might be lucky for infinities, and with extraordinary luck, also for
731negative zero). 980negative zero).
732 981
733On all modern platforms (where C<ECB_STDFP> is true), the compiler should 982On all modern platforms (where C<ECB_STDFP> is true), the compiler should
734be able to optimise away this function completely. 983be able to optimise away this function completely.
984
985=item uint16_t ecb_binary32_to_binary16 (uint32_t x)
986
987=item uint32_t ecb_binary16_to_binary32 (uint16_t x)
988
989Convert a IEEE binary32/single precision to binary16/half format, and vice
990versa, handling all details (round-to-nearest-even, subnormals, infinity
991and NaNs) correctly.
992
993These are functions are available under C<-DECB_NO_LIBM>, since
994they do not rely on the platform floating point format. The
995C<ecb_float_to_binary16> and C<ecb_binary16_to_float> functions are
996usually what you want.
735 997
736=back 998=back
737 999
738=head2 ARITHMETIC 1000=head2 ARITHMETIC
739 1001
820dependencies on the math library (usually called F<-lm>) - these are 1082dependencies on the math library (usually called F<-lm>) - these are
821marked with [-UECB_NO_LIBM]. 1083marked with [-UECB_NO_LIBM].
822 1084
823=back 1085=back
824 1086
1087=head1 UNDOCUMENTED FUNCTIONALITY
825 1088
1089F<ecb.h> is full of undocumented functionality as well, some of which is
1090intended to be internal-use only, some of which we forgot to document, and
1091some of which we hide because we are not sure we will keep the interface
1092stable.
1093
1094While you are welcome to rummage around and use whatever you find useful
1095(we can't stop you), keep in mind that we will change undocumented
1096functionality in incompatible ways without thinking twice, while we are
1097considerably more conservative with documented things.
1098
1099=head1 AUTHORS
1100
1101C<libecb> is designed and maintained by:
1102
1103 Emanuele Giaquinta <e.giaquinta@glauco.it>
1104 Marc Alexander Lehmann <schmorp@schmorp.de>
1105
1106

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines