ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/cvsroot/libecb/ecb.pod
(Generate patch)

Comparing cvsroot/libecb/ecb.pod (file contents):
Revision 1.70 by root, Tue Sep 1 16:14:42 2015 UTC vs.
Revision 1.91 by root, Tue Jun 22 01:07:29 2021 UTC

10 10
11Its homepage can be found here: 11Its homepage can be found here:
12 12
13 http://software.schmorp.de/pkg/libecb 13 http://software.schmorp.de/pkg/libecb
14 14
15It mainly provides a number of wrappers around GCC built-ins, together 15It mainly provides a number of wrappers around many compiler built-ins,
16with replacement functions for other compilers. In addition to this, 16together with replacement functions for other compilers. In addition
17it provides a number of other lowlevel C utilities, such as endianness 17to this, it provides a number of other lowlevel C utilities, such as
18detection, byte swapping or bit rotations. 18endianness detection, byte swapping or bit rotations.
19 19
20Or in other words, things that should be built into any standard C system, 20Or in other words, things that should be built into any standard C
21but aren't, implemented as efficient as possible with GCC, and still 21system, but aren't, implemented as efficient as possible with GCC (clang,
22correct with other compilers. 22msvc...), and still correct with other compilers.
23 23
24More might come. 24More might come.
25 25
26=head2 ABOUT THE HEADER 26=head2 ABOUT THE HEADER
27 27
58 58
59=head2 TYPES / TYPE SUPPORT 59=head2 TYPES / TYPE SUPPORT
60 60
61ecb.h makes sure that the following types are defined (in the expected way): 61ecb.h makes sure that the following types are defined (in the expected way):
62 62
63 int8_t uint8_t int16_t uint16_t 63 int8_t uint8_
64 int32_t uint32_t int64_t uint64_t 64 int16_t uint16_t
65 int32_t uint32_
66 int64_t uint64_t
67 int_fast8_t uint_fast8_t
68 int_fast16_t uint_fast16_t
69 int_fast32_t uint_fast32_t
70 int_fast64_t uint_fast64_t
65 intptr_t uintptr_t 71 intptr_t uintptr_t
66 72
67The macro C<ECB_PTRSIZE> is defined to the size of a pointer on this 73The macro C<ECB_PTRSIZE> is defined to the size of a pointer on this
68platform (currently C<4> or C<8>) and can be used in preprocessor 74platform (currently C<4> or C<8>) and can be used in preprocessor
69expressions. 75expressions.
70 76
71For C<ptrdiff_t> and C<size_t> use C<stddef.h>. 77For C<ptrdiff_t> and C<size_t> use C<stddef.h>/C<cstddef>.
72 78
73=head2 LANGUAGE/ENVIRONMENT/COMPILER VERSIONS 79=head2 LANGUAGE/ENVIRONMENT/COMPILER VERSIONS
74 80
75All the following symbols expand to an expression that can be tested in 81All the following symbols expand to an expression that can be tested in
76preprocessor instructions as well as treated as a boolean (use C<!!> to 82preprocessor instructions as well as treated as a boolean (use C<!!> to
77ensure it's either C<0> or C<1> if you need that). 83ensure it's either C<0> or C<1> if you need that).
78 84
79=over 4 85=over
80 86
81=item ECB_C 87=item ECB_C
82 88
83True if the implementation defines the C<__STDC__> macro to a true value, 89True if the implementation defines the C<__STDC__> macro to a true value,
84while not claiming to be C++. 90while not claiming to be C++, i..e C, but not C++.
85 91
86=item ECB_C99 92=item ECB_C99
87 93
88True if the implementation claims to be compliant to C99 (ISO/IEC 94True if the implementation claims to be compliant to C99 (ISO/IEC
899899:1999) or any later version, while not claiming to be C++. 959899:1999) or any later version, while not claiming to be C++.
90 96
91Note that later versions (ECB_C11) remove core features again (for 97Note that later versions (ECB_C11) remove core features again (for
92example, variable length arrays). 98example, variable length arrays).
93 99
94=item ECB_C11 100=item ECB_C11, ECB_C17
95 101
96True if the implementation claims to be compliant to C11 (ISO/IEC 102True if the implementation claims to be compliant to C11/C17 (ISO/IEC
979899:2011) or any later version, while not claiming to be C++. 1039899:2011, :20187) or any later version, while not claiming to be C++.
98 104
99=item ECB_CPP 105=item ECB_CPP
100 106
101True if the implementation defines the C<__cplusplus__> macro to a true 107True if the implementation defines the C<__cplusplus__> macro to a true
102value, which is typically true for C++ compilers. 108value, which is typically true for C++ compilers.
103 109
104=item ECB_CPP11 110=item ECB_CPP11, ECB_CPP14, ECB_CPP17
105 111
106True if the implementation claims to be compliant to ISO/IEC 14882:2011 112True if the implementation claims to be compliant to C++11/C++14/C++17
107(C++11) or any later version. 113(ISO/IEC 14882:2011, :2014, :2017) or any later version.
114
115Note that many C++20 features will likely have their own feature test
116macros (see e.g. L<http://eel.is/c++draft/cpp.predefined#1.8>).
117
118=item ECB_OPTIMIZE_SIZE
119
120Is C<1> when the compiler optimizes for size, C<0> otherwise. This symbol
121can also be defined before including F<ecb.h>, in which case it will be
122unchanged.
108 123
109=item ECB_GCC_VERSION (major, minor) 124=item ECB_GCC_VERSION (major, minor)
110 125
111Expands to a true value (suitable for testing in by the preprocessor) 126Expands to a true value (suitable for testing by the preprocessor) if the
112if the compiler used is GNU C and the version is the given version, or 127compiler used is GNU C and the version is the given version, or higher.
113higher.
114 128
115This macro tries to return false on compilers that claim to be GCC 129This macro tries to return false on compilers that claim to be GCC
116compatible but aren't. 130compatible but aren't.
117 131
118=item ECB_EXTERN_C 132=item ECB_EXTERN_C
137 151
138 ECB_EXTERN_C_END 152 ECB_EXTERN_C_END
139 153
140=item ECB_STDFP 154=item ECB_STDFP
141 155
142If this evaluates to a true value (suitable for testing in by the 156If this evaluates to a true value (suitable for testing by the
143preprocessor), then C<float> and C<double> use IEEE 754 single/binary32 157preprocessor), then C<float> and C<double> use IEEE 754 single/binary32
144and double/binary64 representations internally I<and> the endianness of 158and double/binary64 representations internally I<and> the endianness of
145both types match the endianness of C<uint32_t> and C<uint64_t>. 159both types match the endianness of C<uint32_t> and C<uint64_t>.
146 160
147This means you can just copy the bits of a C<float> (or C<double>) to an 161This means you can just copy the bits of a C<float> (or C<double>) to an
149without having to think about format or endianness. 163without having to think about format or endianness.
150 164
151This is true for basically all modern platforms, although F<ecb.h> might 165This is true for basically all modern platforms, although F<ecb.h> might
152not be able to deduce this correctly everywhere and might err on the safe 166not be able to deduce this correctly everywhere and might err on the safe
153side. 167side.
168
169=item ECB_64BIT_NATIVE
170
171Evaluates to a true value (suitable for both preprocessor and C code
172testing) if 64 bit integer types on this architecture are evaluated
173"natively", that is, with similar speeds as 32 bit integerss. While 64 bit
174integer support is very common (and in fatc required by libecb), 32 bit
175cpus have to emulate operations on them, so you might want to avoid them.
154 176
155=item ECB_AMD64, ECB_AMD64_X32 177=item ECB_AMD64, ECB_AMD64_X32
156 178
157These two macros are defined to C<1> on the x86_64/amd64 ABI and the X32 179These two macros are defined to C<1> on the x86_64/amd64 ABI and the X32
158ABI, respectively, and undefined elsewhere. 180ABI, respectively, and undefined elsewhere.
165 187
166=back 188=back
167 189
168=head2 MACRO TRICKERY 190=head2 MACRO TRICKERY
169 191
170=over 4 192=over
171 193
172=item ECB_CONCAT (a, b) 194=item ECB_CONCAT (a, b)
173 195
174Expands any macros in C<a> and C<b>, then concatenates the result to form 196Expands any macros in C<a> and C<b>, then concatenates the result to form
175a single token. This is mainly useful to form identifiers from components, 197a single token. This is mainly useful to form identifiers from components,
216declarations must be put before the whole declaration: 238declarations must be put before the whole declaration:
217 239
218 ecb_const int mysqrt (int a); 240 ecb_const int mysqrt (int a);
219 ecb_unused int i; 241 ecb_unused int i;
220 242
221=over 4 243=over
222 244
223=item ecb_unused 245=item ecb_unused
224 246
225Marks a function or a variable as "unused", which simply suppresses a 247Marks a function or a variable as "unused", which simply suppresses a
226warning by GCC when it detects it as unused. This is useful when you e.g. 248warning by the compiler when it detects it as unused. This is useful when
227declare a variable but do not always use it: 249you e.g. declare a variable but do not always use it:
228 250
229 { 251 {
230 ecb_unused int var; 252 ecb_unused int var;
231 253
232 #ifdef SOMECONDITION 254 #ifdef SOMECONDITION
248used instead of a generic depreciation message when the object is being 270used instead of a generic depreciation message when the object is being
249used. 271used.
250 272
251=item ecb_inline 273=item ecb_inline
252 274
253Expands either to C<static inline> or to just C<static>, if inline 275Expands either to (a compiler-specific equivalent of) C<static inline> or
254isn't supported. It should be used to declare functions that should be 276to just C<static>, if inline isn't supported. It should be used to declare
255inlined, for code size or speed reasons. 277functions that should be inlined, for code size or speed reasons.
256 278
257Example: inline this function, it surely will reduce codesize. 279Example: inline this function, it surely will reduce codesize.
258 280
259 ecb_inline int 281 ecb_inline int
260 negmul (int a, int b) 282 negmul (int a, int b)
400 422
401=back 423=back
402 424
403=head2 OPTIMISATION HINTS 425=head2 OPTIMISATION HINTS
404 426
405=over 4 427=over
406 428
407=item bool ecb_is_constant (expr) 429=item bool ecb_is_constant (expr)
408 430
409Returns true iff the expression can be deduced to be a compile-time 431Returns true iff the expression can be deduced to be a compile-time
410constant, and false otherwise. 432constant, and false otherwise.
567 589
568=back 590=back
569 591
570=head2 BIT FIDDLING / BIT WIZARDRY 592=head2 BIT FIDDLING / BIT WIZARDRY
571 593
572=over 4 594=over
573 595
574=item bool ecb_big_endian () 596=item bool ecb_big_endian ()
575 597
576=item bool ecb_little_endian () 598=item bool ecb_little_endian ()
577 599
583 605
584=item int ecb_ctz32 (uint32_t x) 606=item int ecb_ctz32 (uint32_t x)
585 607
586=item int ecb_ctz64 (uint64_t x) 608=item int ecb_ctz64 (uint64_t x)
587 609
610=item int ecb_ctz (T x) [C++]
611
588Returns the index of the least significant bit set in C<x> (or 612Returns the index of the least significant bit set in C<x> (or
589equivalently the number of bits set to 0 before the least significant bit 613equivalently the number of bits set to 0 before the least significant bit
590set), starting from 0. If C<x> is 0 the result is undefined. 614set), starting from 0. If C<x> is 0 the result is undefined.
591 615
592For smaller types than C<uint32_t> you can safely use C<ecb_ctz32>. 616For smaller types than C<uint32_t> you can safely use C<ecb_ctz32>.
593 617
618The overloaded C++ C<ecb_ctz> function supports C<uint8_t>, C<uint16_t>,
619C<uint32_t> and C<uint64_t> types.
620
594For example: 621For example:
595 622
596 ecb_ctz32 (3) = 0 623 ecb_ctz32 (3) = 0
597 ecb_ctz32 (6) = 1 624 ecb_ctz32 (6) = 1
598 625
599=item bool ecb_is_pot32 (uint32_t x) 626=item bool ecb_is_pot32 (uint32_t x)
600 627
601=item bool ecb_is_pot64 (uint32_t x) 628=item bool ecb_is_pot64 (uint32_t x)
602 629
630=item bool ecb_is_pot (T x) [C++]
631
603Returns true iff C<x> is a power of two or C<x == 0>. 632Returns true iff C<x> is a power of two or C<x == 0>.
604 633
605For smaller types than C<uint32_t> you can safely use C<ecb_is_pot32>. 634For smaller types than C<uint32_t> you can safely use C<ecb_is_pot32>.
606 635
636The overloaded C++ C<ecb_is_pot> function supports C<uint8_t>, C<uint16_t>,
637C<uint32_t> and C<uint64_t> types.
638
607=item int ecb_ld32 (uint32_t x) 639=item int ecb_ld32 (uint32_t x)
608 640
609=item int ecb_ld64 (uint64_t x) 641=item int ecb_ld64 (uint64_t x)
642
643=item int ecb_ld64 (T x) [C++]
610 644
611Returns the index of the most significant bit set in C<x>, or the number 645Returns the index of the most significant bit set in C<x>, or the number
612of digits the number requires in binary (so that C<< 2**ld <= x < 646of digits the number requires in binary (so that C<< 2**ld <= x <
6132**(ld+1) >>). If C<x> is 0 the result is undefined. A common use case is 6472**(ld+1) >>). If C<x> is 0 the result is undefined. A common use case is
614to compute the integer binary logarithm, i.e. C<floor (log2 (n))>, for 648to compute the integer binary logarithm, i.e. C<floor (log2 (n))>, for
619the given data type), while C<ecb_ld> returns how many bits the number 653the given data type), while C<ecb_ld> returns how many bits the number
620itself requires. 654itself requires.
621 655
622For smaller types than C<uint32_t> you can safely use C<ecb_ld32>. 656For smaller types than C<uint32_t> you can safely use C<ecb_ld32>.
623 657
658The overloaded C++ C<ecb_ld> function supports C<uint8_t>, C<uint16_t>,
659C<uint32_t> and C<uint64_t> types.
660
624=item int ecb_popcount32 (uint32_t x) 661=item int ecb_popcount32 (uint32_t x)
625 662
626=item int ecb_popcount64 (uint64_t x) 663=item int ecb_popcount64 (uint64_t x)
627 664
665=item int ecb_popcount (T x) [C++]
666
628Returns the number of bits set to 1 in C<x>. 667Returns the number of bits set to 1 in C<x>.
629 668
630For smaller types than C<uint32_t> you can safely use C<ecb_popcount32>. 669For smaller types than C<uint32_t> you can safely use C<ecb_popcount32>.
670
671The overloaded C++ C<ecb_popcount> function supports C<uint8_t>, C<uint16_t>,
672C<uint32_t> and C<uint64_t> types.
631 673
632For example: 674For example:
633 675
634 ecb_popcount32 (7) = 3 676 ecb_popcount32 (7) = 3
635 ecb_popcount32 (255) = 8 677 ecb_popcount32 (255) = 8
638 680
639=item uint16_t ecb_bitrev16 (uint16_t x) 681=item uint16_t ecb_bitrev16 (uint16_t x)
640 682
641=item uint32_t ecb_bitrev32 (uint32_t x) 683=item uint32_t ecb_bitrev32 (uint32_t x)
642 684
685=item T ecb_bitrev (T x) [C++]
686
643Reverses the bits in x, i.e. the MSB becomes the LSB, MSB-1 becomes LSB+1 687Reverses the bits in x, i.e. the MSB becomes the LSB, MSB-1 becomes LSB+1
644and so on. 688and so on.
645 689
690The overloaded C++ C<ecb_bitrev> function supports C<uint8_t>, C<uint16_t> and C<uint32_t> types.
691
646Example: 692Example:
647 693
648 ecb_bitrev8 (0xa7) = 0xea 694 ecb_bitrev8 (0xa7) = 0xea
649 ecb_bitrev32 (0xffcc4411) = 0x882233ff 695 ecb_bitrev32 (0xffcc4411) = 0x882233ff
650 696
697=item T ecb_bitrev (T x) [C++]
698
699Overloaded C++ bitrev function.
700
701C<T> must be one of C<uint8_t>, C<uint16_t> or C<uint32_t>.
702
651=item uint32_t ecb_bswap16 (uint32_t x) 703=item uint32_t ecb_bswap16 (uint32_t x)
652 704
653=item uint32_t ecb_bswap32 (uint32_t x) 705=item uint32_t ecb_bswap32 (uint32_t x)
654 706
655=item uint64_t ecb_bswap64 (uint64_t x) 707=item uint64_t ecb_bswap64 (uint64_t x)
708
709=item T ecb_bswap (T x)
656 710
657These functions return the value of the 16-bit (32-bit, 64-bit) value 711These functions return the value of the 16-bit (32-bit, 64-bit) value
658C<x> after reversing the order of bytes (0x11223344 becomes 0x44332211 in 712C<x> after reversing the order of bytes (0x11223344 becomes 0x44332211 in
659C<ecb_bswap32>). 713C<ecb_bswap32>).
660 714
715The overloaded C++ C<ecb_bswap> function supports C<uint8_t>, C<uint16_t>,
716C<uint32_t> and C<uint64_t> types.
717
661=item uint8_t ecb_rotl8 (uint8_t x, unsigned int count) 718=item uint8_t ecb_rotl8 (uint8_t x, unsigned int count)
662 719
663=item uint16_t ecb_rotl16 (uint16_t x, unsigned int count) 720=item uint16_t ecb_rotl16 (uint16_t x, unsigned int count)
664 721
665=item uint32_t ecb_rotl32 (uint32_t x, unsigned int count) 722=item uint32_t ecb_rotl32 (uint32_t x, unsigned int count)
676 733
677These two families of functions return the value of C<x> after rotating 734These two families of functions return the value of C<x> after rotating
678all the bits by C<count> positions to the right (C<ecb_rotr>) or left 735all the bits by C<count> positions to the right (C<ecb_rotr>) or left
679(C<ecb_rotl>). 736(C<ecb_rotl>).
680 737
681Current GCC versions understand these functions and usually compile them 738Current GCC/clang versions understand these functions and usually compile
682to "optimal" code (e.g. a single C<rol> or a combination of C<shld> on 739them to "optimal" code (e.g. a single C<rol> or a combination of C<shld>
683x86). 740on x86).
741
742=item T ecb_rotl (T x, unsigned int count) [C++]
743
744=item T ecb_rotr (T x, unsigned int count) [C++]
745
746Overloaded C++ rotl/rotr functions.
747
748C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
749
750=back
751
752=head2 HOST ENDIANNESS CONVERSION
753
754=over
755
756=item uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v)
757
758=item uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v)
759
760=item uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v)
761
762=item uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v)
763
764=item uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v)
765
766=item uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v)
767
768Convert an unsigned 16, 32 or 64 bit value from big or little endian to host byte order.
769
770The naming convention is C<ecb_>(C<be>|C<le>)C<_u>C<16|32|64>C<_to_host>,
771where C<be> and C<le> stand for big endian and little endian, respectively.
772
773=item uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v)
774
775=item uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v)
776
777=item uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v)
778
779=item uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v)
780
781=item uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v)
782
783=item uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v)
784
785Like above, but converts I<from> host byte order to the specified
786endianness.
787
788=back
789
790In C++ the following additional template functions are supported:
791
792=over
793
794=item T ecb_be_to_host (T v)
795
796=item T ecb_le_to_host (T v)
797
798=item T ecb_host_to_be (T v)
799
800=item T ecb_host_to_le (T v)
801
802=back
803
804These functions work like their C counterparts, above, but use templates,
805which make them useful in generic code.
806
807C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>
808(so unlike their C counterparts, there is a version for C<uint8_t>, which
809again can be useful in generic code).
810
811=head2 UNALIGNED LOAD/STORE
812
813These function load or store unaligned multi-byte values.
814
815=over
816
817=item uint_fast16_t ecb_peek_u16_u (const void *ptr)
818
819=item uint_fast32_t ecb_peek_u32_u (const void *ptr)
820
821=item uint_fast64_t ecb_peek_u64_u (const void *ptr)
822
823These functions load an unaligned, unsigned 16, 32 or 64 bit value from
824memory.
825
826=item uint_fast16_t ecb_peek_be_u16_u (const void *ptr)
827
828=item uint_fast32_t ecb_peek_be_u32_u (const void *ptr)
829
830=item uint_fast64_t ecb_peek_be_u64_u (const void *ptr)
831
832=item uint_fast16_t ecb_peek_le_u16_u (const void *ptr)
833
834=item uint_fast32_t ecb_peek_le_u32_u (const void *ptr)
835
836=item uint_fast64_t ecb_peek_le_u64_u (const void *ptr)
837
838Like above, but additionally convert from big endian (C<be>) or little
839endian (C<le>) byte order to host byte order while doing so.
840
841=item ecb_poke_u16_u (void *ptr, uint16_t v)
842
843=item ecb_poke_u32_u (void *ptr, uint32_t v)
844
845=item ecb_poke_u64_u (void *ptr, uint64_t v)
846
847These functions store an unaligned, unsigned 16, 32 or 64 bit value to
848memory.
849
850=item ecb_poke_be_u16_u (void *ptr, uint_fast16_t v)
851
852=item ecb_poke_be_u32_u (void *ptr, uint_fast32_t v)
853
854=item ecb_poke_be_u64_u (void *ptr, uint_fast64_t v)
855
856=item ecb_poke_le_u16_u (void *ptr, uint_fast16_t v)
857
858=item ecb_poke_le_u32_u (void *ptr, uint_fast32_t v)
859
860=item ecb_poke_le_u64_u (void *ptr, uint_fast64_t v)
861
862Like above, but additionally convert from host byte order to big endian
863(C<be>) or little endian (C<le>) byte order while doing so.
864
865=back
866
867In C++ the following additional template functions are supported:
868
869=over
870
871=item T ecb_peek<T> (const void *ptr)
872
873=item T ecb_peek_be<T> (const void *ptr)
874
875=item T ecb_peek_le<T> (const void *ptr)
876
877=item T ecb_peek_u<T> (const void *ptr)
878
879=item T ecb_peek_be_u<T> (const void *ptr)
880
881=item T ecb_peek_le_u<T> (const void *ptr)
882
883Similarly to their C counterparts, these functions load an unsigned 8, 16,
88432 or 64 bit value from memory, with optional conversion from big/little
885endian.
886
887Since the type cannot be deduced, it has to be specified explicitly, e.g.
888
889 uint_fast16_t v = ecb_peek<uint16_t> (ptr);
890
891C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
892
893Unlike their C counterparts, these functions support 8 bit quantities
894(C<uint8_t>) and also have an aligned version (without the C<_u> prefix),
895all of which hopefully makes them more useful in generic code.
896
897=item ecb_poke (void *ptr, T v)
898
899=item ecb_poke_be (void *ptr, T v)
900
901=item ecb_poke_le (void *ptr, T v)
902
903=item ecb_poke_u (void *ptr, T v)
904
905=item ecb_poke_be_u (void *ptr, T v)
906
907=item ecb_poke_le_u (void *ptr, T v)
908
909Again, similarly to their C counterparts, these functions store an
910unsigned 8, 16, 32 or z64 bit value to memory, with optional conversion to
911big/little endian.
912
913C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
914
915Unlike their C counterparts, these functions support 8 bit quantities
916(C<uint8_t>) and also have an aligned version (without the C<_u> prefix),
917all of which hopefully makes them more useful in generic code.
918
919=back
920
921=head2 FAST INTEGER TO STRING
922
923Libecb defines a set of very fast integer to decimal string (or integer
924to ascii, short C<i2a>) functions. These work by converting the integer
925to a fixed point representation and then successively multiplying out
926the topmost digits. Unlike some other, also very fast, libraries, ecb's
927algorithm should be completely branchless per digit, and does not rely on
928the presence of special cpu functions (such as clz).
929
930There is a high level API that takes an C<int32_t>, C<uint32_t>,
931C<int64_t> or C<uint64_t> as argument, and a low-level API, which is
932harder to use but supports slightly more formatting options.
933
934=head3 HIGH LEVEL API
935
936The high level API consists of four functions, one each for C<int32_t>,
937C<uint32_t>, C<int64_t> and C<uint64_t>:
938
939Example:
940
941 char buf[ECB_I2A_MAX_DIGITS + 1];
942 char *end = ecb_i2a_i32 (buf, 17262);
943 *end = 0;
944 // buf now contains "17262"
945
946=over
947
948=item ECB_I2A_I32_DIGITS (=11)
949
950=item char *ecb_i2a_u32 (char *ptr, uint32_t value)
951
952Takes an C<uint32_t> I<value> and formats it as a decimal number starting
953at I<ptr>, using at most C<ECB_I2A_I32_DIGITS> characters. Returns a
954pointer to just after the generated string, where you would normally put
955the temrinating C<0> character. This function outputs the minimum number
956of digits.
957
958=item ECB_I2A_U32_DIGITS (=10)
959
960=item char *ecb_i2a_i32 (char *ptr, int32_t value)
961
962Same as C<ecb_i2a_u32>, but formats a C<int32_t> value, including a minus
963sign if needed.
964
965=item ECB_I2A_I64_DIGITS (=20)
966
967=item char *ecb_i2a_u64 (char *ptr, uint64_t value)
968
969=item ECB_I2A_U64_DIGITS (=21)
970
971=item char *ecb_i2a_i64 (char *ptr, int64_t value)
972
973Similar to their 32 bit counterparts, these take a 64 bit argument.
974
975=item ECB_I2A_MAX_DIGITS (=21)
976
977Instead of using a type specific length macro, youi can just use
978C<ECB_I2A_MAX_DIGITS>, which is good enough for any C<ecb_i2a> function.
979
980=back
981
982=head3 LOW-LEVEL API
983
984The functions above use a number of low-level APIs which have some strict
985limitaitons, but cna be used as building blocks (study of C<ecb_i2a_i32>
986and related cunctions is recommended).
987
988There are three families of functions: functions that convert a number
989to a fixed number of digits with leading zeroes (C<ecb_i2a_0N>, C<0>
990for "leading zeroes"), functions that generate up to N digits, skipping
991leading zeroes (C<_N>), and functions that can generate more digits, but
992the leading digit has limited range (C<_xN>).
993
994None of the functions deal with negative numbera.
995
996Example: convert an IP address in an u32 into dotted-quad:
997
998 uint32_t ip = 0x0a000164; // 10.0.1.100
999 char ips[3 * 4 + 3 + 1];
1000 char *ptr = ips;
1001 ptr = ecb_i2a_3 (ptr, ip >> 24 ); *ptr++ = '.';
1002 ptr = ecb_i2a_3 (ptr, (ip >> 16) & 0xff); *ptr++ = '.';
1003 ptr = ecb_i2a_3 (ptr, (ip >> 8) & 0xff); *ptr++ = '.';
1004 ptr = ecb_i2a_3 (ptr, ip & 0xff); *ptr++ = 0;
1005 printf ("ip: %s\n", ips); // prints "ip: 10.0.1.100"
1006
1007=over
1008
1009=item char *ecb_i2a_02 (char *ptr, uint32_t value) // 32 bit
1010
1011=item char *ecb_i2a_03 (char *ptr, uint32_t value) // 32 bit
1012
1013=item char *ecb_i2a_04 (char *ptr, uint32_t value) // 32 bit
1014
1015=item char *ecb_i2a_05 (char *ptr, uint32_t value) // 64 bit
1016
1017=item char *ecb_i2a_06 (char *ptr, uint32_t value) // 64 bit
1018
1019=item char *ecb_i2a_07 (char *ptr, uint32_t value) // 64 bit
1020
1021=item char *ecb_i2a_08 (char *ptr, uint32_t value) // 64 bit
1022
1023=item char *ecb_i2a_09 (char *ptr, uint32_t value) // 64 bit
1024
1025The C<< ecb_i2a_0I<N> > functions take an unsigned I<value> and convert
1026them to exactly I<N> digits, returning a pointer to the first character
1027after the digits. The I<value> must be in range. The functions marked with
1028I<32 bit> do their calculations internally in 32 bit, the ones marked with
1029I<64 bit> internally use 64 bit integers, which might be slow on 32 bit
1030architectures (the high level API decides on 32 vs. 64 bit versions using
1031C<ECB_64BIT_NATIVE>).
1032
1033=item char *ecb_i2a_2 (char *ptr, uint32_t value) // 32 bit
1034
1035=item char *ecb_i2a_3 (char *ptr, uint32_t value) // 32 bit
1036
1037=item char *ecb_i2a_4 (char *ptr, uint32_t value) // 32 bit
1038
1039=item char *ecb_i2a_5 (char *ptr, uint32_t value) // 64 bit
1040
1041=item char *ecb_i2a_6 (char *ptr, uint32_t value) // 64 bit
1042
1043=item char *ecb_i2a_7 (char *ptr, uint32_t value) // 64 bit
1044
1045=item char *ecb_i2a_8 (char *ptr, uint32_t value) // 64 bit
1046
1047=item char *ecb_i2a_9 (char *ptr, uint32_t value) // 64 bit
1048
1049Similarly, the C<< ecb_i2a_I<N> > functions take an unsigned I<value>
1050and convert them to at most I<N> digits, suppressing leading zeroes, and
1051returning a pointer to the first character after the digits.
1052
1053=item ECB_I2A_MAX_X5 (=59074)
1054
1055=item char *ecb_i2a_x5 (char *ptr, uint32_t value) // 32 bit
1056
1057=item ECB_I2A_MAX_X10 (=2932500665)
1058
1059=item char *ecb_i2a_x10 (char *ptr, uint32_t value) // 64 bit
1060
1061The C<< ecb_i2a_xI<N> >> functions are similar to the C<< ecb_i2a_I<N> >
1062functions, but they can generate one digit more, as long as the number
1063is within range, which is given by the symbols C<ECB_I2A_MAX_X5> (almost
106416 bit range) and C<ECB_I2A_MAX_X10> (a bit more than 31 bit range),
1065respectively.
1066
1067For example, the sigit part of a 32 bit signed integer just fits into the
1068C<ECB_I2A_MAX_X10> range, so while C<ecb_i2a_x10> cannot convert a 10
1069digit number, it can convert all 32 bit signed numbers. Sadly, it's not
1070good enough for 32 bit unsigned numbers.
684 1071
685=back 1072=back
686 1073
687=head2 FLOATING POINT FIDDLING 1074=head2 FLOATING POINT FIDDLING
688 1075
689=over 4 1076=over
690 1077
691=item ECB_INFINITY 1078=item ECB_INFINITY [-UECB_NO_LIBM]
692 1079
693Evaluates to positive infinity if supported by the platform, otherwise to 1080Evaluates to positive infinity if supported by the platform, otherwise to
694a truly huge number. 1081a truly huge number.
695 1082
696=item ECB_NAN 1083=item ECB_NAN [-UECB_NO_LIBM]
697 1084
698Evaluates to a quiet NAN if supported by the platform, otherwise to 1085Evaluates to a quiet NAN if supported by the platform, otherwise to
699C<ECB_INFINITY>. 1086C<ECB_INFINITY>.
700 1087
701=item float ecb_ldexpf (float x, int exp) 1088=item float ecb_ldexpf (float x, int exp) [-UECB_NO_LIBM]
702 1089
703Same as C<ldexpf>, but always available. 1090Same as C<ldexpf>, but always available.
704 1091
1092=item uint32_t ecb_float_to_binary16 (float x) [-UECB_NO_LIBM]
1093
705=item uint32_t ecb_float_to_binary32 (float x) [-UECB_NO_LIBM] 1094=item uint32_t ecb_float_to_binary32 (float x) [-UECB_NO_LIBM]
706 1095
707=item uint64_t ecb_double_to_binary64 (double x) [-UECB_NO_LIBM] 1096=item uint64_t ecb_double_to_binary64 (double x) [-UECB_NO_LIBM]
708 1097
709These functions each take an argument in the native C<float> or C<double> 1098These functions each take an argument in the native C<float> or C<double>
710type and return the IEEE 754 bit representation of it. 1099type and return the IEEE 754 bit representation of it (binary16/half,
1100binary32/single or binary64/double precision).
711 1101
712The bit representation is just as IEEE 754 defines it, i.e. the sign bit 1102The bit representation is just as IEEE 754 defines it, i.e. the sign bit
713will be the most significant bit, followed by exponent and mantissa. 1103will be the most significant bit, followed by exponent and mantissa.
714 1104
715This function should work even when the native floating point format isn't 1105This function should work even when the native floating point format isn't
719 1109
720On all modern platforms (where C<ECB_STDFP> is true), the compiler should 1110On all modern platforms (where C<ECB_STDFP> is true), the compiler should
721be able to optimise away this function completely. 1111be able to optimise away this function completely.
722 1112
723These functions can be helpful when serialising floats to the network - you 1113These functions can be helpful when serialising floats to the network - you
724can serialise the return value like a normal uint32_t/uint64_t. 1114can serialise the return value like a normal uint16_t/uint32_t/uint64_t.
725 1115
726Another use for these functions is to manipulate floating point values 1116Another use for these functions is to manipulate floating point values
727directly. 1117directly.
728 1118
729Silly example: toggle the sign bit of a float. 1119Silly example: toggle the sign bit of a float.
739=item float ecb_binary32_to_float (uint32_t x) [-UECB_NO_LIBM] 1129=item float ecb_binary32_to_float (uint32_t x) [-UECB_NO_LIBM]
740 1130
741=item double ecb_binary64_to_double (uint64_t x) [-UECB_NO_LIBM] 1131=item double ecb_binary64_to_double (uint64_t x) [-UECB_NO_LIBM]
742 1132
743The reverse operation of the previous function - takes the bit 1133The reverse operation of the previous function - takes the bit
744representation of an IEEE binary16, binary32 or binary64 number and 1134representation of an IEEE binary16, binary32 or binary64 number (half,
745converts it to the native C<float> or C<double> format. 1135single or double precision) and converts it to the native C<float> or
1136C<double> format.
746 1137
747This function should work even when the native floating point format isn't 1138This function should work even when the native floating point format isn't
748IEEE compliant, of course at a speed and code size penalty, and of course 1139IEEE compliant, of course at a speed and code size penalty, and of course
749also within reasonable limits (it tries to convert normals and denormals, 1140also within reasonable limits (it tries to convert normals and denormals,
750and might be lucky for infinities, and with extraordinary luck, also for 1141and might be lucky for infinities, and with extraordinary luck, also for
751negative zero). 1142negative zero).
752 1143
753On all modern platforms (where C<ECB_STDFP> is true), the compiler should 1144On all modern platforms (where C<ECB_STDFP> is true), the compiler should
754be able to optimise away this function completely. 1145be able to optimise away this function completely.
755 1146
1147=item uint16_t ecb_binary32_to_binary16 (uint32_t x)
1148
1149=item uint32_t ecb_binary16_to_binary32 (uint16_t x)
1150
1151Convert a IEEE binary32/single precision to binary16/half format, and vice
1152versa, handling all details (round-to-nearest-even, subnormals, infinity
1153and NaNs) correctly.
1154
1155These are functions are available under C<-DECB_NO_LIBM>, since
1156they do not rely on the platform floating point format. The
1157C<ecb_float_to_binary16> and C<ecb_binary16_to_float> functions are
1158usually what you want.
1159
756=back 1160=back
757 1161
758=head2 ARITHMETIC 1162=head2 ARITHMETIC
759 1163
760=over 4 1164=over
761 1165
762=item x = ecb_mod (m, n) 1166=item x = ecb_mod (m, n)
763 1167
764Returns C<m> modulo C<n>, which is the same as the positive remainder 1168Returns C<m> modulo C<n>, which is the same as the positive remainder
765of the division operation between C<m> and C<n>, using floored 1169of the division operation between C<m> and C<n>, using floored
772C<n> must be strictly positive (i.e. C<< >= 1 >>), while C<m> must be 1176C<n> must be strictly positive (i.e. C<< >= 1 >>), while C<m> must be
773negatable, that is, both C<m> and C<-m> must be representable in its 1177negatable, that is, both C<m> and C<-m> must be representable in its
774type (this typically excludes the minimum signed integer value, the same 1178type (this typically excludes the minimum signed integer value, the same
775limitation as for C</> and C<%> in C). 1179limitation as for C</> and C<%> in C).
776 1180
777Current GCC versions compile this into an efficient branchless sequence on 1181Current GCC/clang versions compile this into an efficient branchless
778almost all CPUs. 1182sequence on almost all CPUs.
779 1183
780For example, when you want to rotate forward through the members of an 1184For example, when you want to rotate forward through the members of an
781array for increasing C<m> (which might be negative), then you should use 1185array for increasing C<m> (which might be negative), then you should use
782C<ecb_mod>, as the C<%> operator might give either negative results, or 1186C<ecb_mod>, as the C<%> operator might give either negative results, or
783change direction for negative values: 1187change direction for negative values:
796 1200
797=back 1201=back
798 1202
799=head2 UTILITY 1203=head2 UTILITY
800 1204
801=over 4 1205=over
802 1206
803=item element_count = ecb_array_length (name) 1207=item element_count = ecb_array_length (name)
804 1208
805Returns the number of elements in the array C<name>. For example: 1209Returns the number of elements in the array C<name>. For example:
806 1210
814 1218
815=head2 SYMBOLS GOVERNING COMPILATION OF ECB.H ITSELF 1219=head2 SYMBOLS GOVERNING COMPILATION OF ECB.H ITSELF
816 1220
817These symbols need to be defined before including F<ecb.h> the first time. 1221These symbols need to be defined before including F<ecb.h> the first time.
818 1222
819=over 4 1223=over
820 1224
821=item ECB_NO_THREADS 1225=item ECB_NO_THREADS
822 1226
823If F<ecb.h> is never used from multiple threads, then this symbol can 1227If F<ecb.h> is never used from multiple threads, then this symbol can
824be defined, in which case memory fences (and similar constructs) are 1228be defined, in which case memory fences (and similar constructs) are

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines