ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/cvsroot/libecb/ecb.pod
(Generate patch)

Comparing cvsroot/libecb/ecb.pod (file contents):
Revision 1.70 by root, Tue Sep 1 16:14:42 2015 UTC vs.
Revision 1.93 by root, Sat Jul 31 14:39:16 2021 UTC

10 10
11Its homepage can be found here: 11Its homepage can be found here:
12 12
13 http://software.schmorp.de/pkg/libecb 13 http://software.schmorp.de/pkg/libecb
14 14
15It mainly provides a number of wrappers around GCC built-ins, together 15It mainly provides a number of wrappers around many compiler built-ins,
16with replacement functions for other compilers. In addition to this, 16together with replacement functions for other compilers. In addition
17it provides a number of other lowlevel C utilities, such as endianness 17to this, it provides a number of other lowlevel C utilities, such as
18detection, byte swapping or bit rotations. 18endianness detection, byte swapping or bit rotations.
19 19
20Or in other words, things that should be built into any standard C system, 20Or in other words, things that should be built into any standard C
21but aren't, implemented as efficient as possible with GCC, and still 21system, but aren't, implemented as efficient as possible with GCC (clang,
22correct with other compilers. 22msvc...), and still correct with other compilers.
23 23
24More might come. 24More might come.
25 25
26=head2 ABOUT THE HEADER 26=head2 ABOUT THE HEADER
27 27
58 58
59=head2 TYPES / TYPE SUPPORT 59=head2 TYPES / TYPE SUPPORT
60 60
61ecb.h makes sure that the following types are defined (in the expected way): 61ecb.h makes sure that the following types are defined (in the expected way):
62 62
63 int8_t uint8_t int16_t uint16_t 63 int8_t uint8_
64 int32_t uint32_t int64_t uint64_t 64 int16_t uint16_t
65 int32_t uint32_
66 int64_t uint64_t
67 int_fast8_t uint_fast8_t
68 int_fast16_t uint_fast16_t
69 int_fast32_t uint_fast32_t
70 int_fast64_t uint_fast64_t
65 intptr_t uintptr_t 71 intptr_t uintptr_t
66 72
67The macro C<ECB_PTRSIZE> is defined to the size of a pointer on this 73The macro C<ECB_PTRSIZE> is defined to the size of a pointer on this
68platform (currently C<4> or C<8>) and can be used in preprocessor 74platform (currently C<4> or C<8>) and can be used in preprocessor
69expressions. 75expressions.
70 76
71For C<ptrdiff_t> and C<size_t> use C<stddef.h>. 77For C<ptrdiff_t> and C<size_t> use C<stddef.h>/C<cstddef>.
72 78
73=head2 LANGUAGE/ENVIRONMENT/COMPILER VERSIONS 79=head2 LANGUAGE/ENVIRONMENT/COMPILER VERSIONS
74 80
75All the following symbols expand to an expression that can be tested in 81All the following symbols expand to an expression that can be tested in
76preprocessor instructions as well as treated as a boolean (use C<!!> to 82preprocessor instructions as well as treated as a boolean (use C<!!> to
77ensure it's either C<0> or C<1> if you need that). 83ensure it's either C<0> or C<1> if you need that).
78 84
79=over 4 85=over
80 86
81=item ECB_C 87=item ECB_C
82 88
83True if the implementation defines the C<__STDC__> macro to a true value, 89True if the implementation defines the C<__STDC__> macro to a true value,
84while not claiming to be C++. 90while not claiming to be C++, i..e C, but not C++.
85 91
86=item ECB_C99 92=item ECB_C99
87 93
88True if the implementation claims to be compliant to C99 (ISO/IEC 94True if the implementation claims to be compliant to C99 (ISO/IEC
899899:1999) or any later version, while not claiming to be C++. 959899:1999) or any later version, while not claiming to be C++.
90 96
91Note that later versions (ECB_C11) remove core features again (for 97Note that later versions (ECB_C11) remove core features again (for
92example, variable length arrays). 98example, variable length arrays).
93 99
94=item ECB_C11 100=item ECB_C11, ECB_C17
95 101
96True if the implementation claims to be compliant to C11 (ISO/IEC 102True if the implementation claims to be compliant to C11/C17 (ISO/IEC
979899:2011) or any later version, while not claiming to be C++. 1039899:2011, :20187) or any later version, while not claiming to be C++.
98 104
99=item ECB_CPP 105=item ECB_CPP
100 106
101True if the implementation defines the C<__cplusplus__> macro to a true 107True if the implementation defines the C<__cplusplus__> macro to a true
102value, which is typically true for C++ compilers. 108value, which is typically true for C++ compilers.
103 109
104=item ECB_CPP11 110=item ECB_CPP11, ECB_CPP14, ECB_CPP17
105 111
106True if the implementation claims to be compliant to ISO/IEC 14882:2011 112True if the implementation claims to be compliant to C++11/C++14/C++17
107(C++11) or any later version. 113(ISO/IEC 14882:2011, :2014, :2017) or any later version.
114
115Note that many C++20 features will likely have their own feature test
116macros (see e.g. L<http://eel.is/c++draft/cpp.predefined#1.8>).
117
118=item ECB_OPTIMIZE_SIZE
119
120Is C<1> when the compiler optimizes for size, C<0> otherwise. This symbol
121can also be defined before including F<ecb.h>, in which case it will be
122unchanged.
108 123
109=item ECB_GCC_VERSION (major, minor) 124=item ECB_GCC_VERSION (major, minor)
110 125
111Expands to a true value (suitable for testing in by the preprocessor) 126Expands to a true value (suitable for testing by the preprocessor) if the
112if the compiler used is GNU C and the version is the given version, or 127compiler used is GNU C and the version is the given version, or higher.
113higher.
114 128
115This macro tries to return false on compilers that claim to be GCC 129This macro tries to return false on compilers that claim to be GCC
116compatible but aren't. 130compatible but aren't.
117 131
118=item ECB_EXTERN_C 132=item ECB_EXTERN_C
137 151
138 ECB_EXTERN_C_END 152 ECB_EXTERN_C_END
139 153
140=item ECB_STDFP 154=item ECB_STDFP
141 155
142If this evaluates to a true value (suitable for testing in by the 156If this evaluates to a true value (suitable for testing by the
143preprocessor), then C<float> and C<double> use IEEE 754 single/binary32 157preprocessor), then C<float> and C<double> use IEEE 754 single/binary32
144and double/binary64 representations internally I<and> the endianness of 158and double/binary64 representations internally I<and> the endianness of
145both types match the endianness of C<uint32_t> and C<uint64_t>. 159both types match the endianness of C<uint32_t> and C<uint64_t>.
146 160
147This means you can just copy the bits of a C<float> (or C<double>) to an 161This means you can just copy the bits of a C<float> (or C<double>) to an
149without having to think about format or endianness. 163without having to think about format or endianness.
150 164
151This is true for basically all modern platforms, although F<ecb.h> might 165This is true for basically all modern platforms, although F<ecb.h> might
152not be able to deduce this correctly everywhere and might err on the safe 166not be able to deduce this correctly everywhere and might err on the safe
153side. 167side.
168
169=item ECB_64BIT_NATIVE
170
171Evaluates to a true value (suitable for both preprocessor and C code
172testing) if 64 bit integer types on this architecture are evaluated
173"natively", that is, with similar speeds as 32 bit integers. While 64 bit
174integer support is very common (and in fact required by libecb), 32 bit
175cpus have to emulate operations on them, so you might want to avoid them.
154 176
155=item ECB_AMD64, ECB_AMD64_X32 177=item ECB_AMD64, ECB_AMD64_X32
156 178
157These two macros are defined to C<1> on the x86_64/amd64 ABI and the X32 179These two macros are defined to C<1> on the x86_64/amd64 ABI and the X32
158ABI, respectively, and undefined elsewhere. 180ABI, respectively, and undefined elsewhere.
165 187
166=back 188=back
167 189
168=head2 MACRO TRICKERY 190=head2 MACRO TRICKERY
169 191
170=over 4 192=over
171 193
172=item ECB_CONCAT (a, b) 194=item ECB_CONCAT (a, b)
173 195
174Expands any macros in C<a> and C<b>, then concatenates the result to form 196Expands any macros in C<a> and C<b>, then concatenates the result to form
175a single token. This is mainly useful to form identifiers from components, 197a single token. This is mainly useful to form identifiers from components,
216declarations must be put before the whole declaration: 238declarations must be put before the whole declaration:
217 239
218 ecb_const int mysqrt (int a); 240 ecb_const int mysqrt (int a);
219 ecb_unused int i; 241 ecb_unused int i;
220 242
221=over 4 243=over
222 244
223=item ecb_unused 245=item ecb_unused
224 246
225Marks a function or a variable as "unused", which simply suppresses a 247Marks a function or a variable as "unused", which simply suppresses a
226warning by GCC when it detects it as unused. This is useful when you e.g. 248warning by the compiler when it detects it as unused. This is useful when
227declare a variable but do not always use it: 249you e.g. declare a variable but do not always use it:
228 250
229 { 251 {
230 ecb_unused int var; 252 ecb_unused int var;
231 253
232 #ifdef SOMECONDITION 254 #ifdef SOMECONDITION
248used instead of a generic depreciation message when the object is being 270used instead of a generic depreciation message when the object is being
249used. 271used.
250 272
251=item ecb_inline 273=item ecb_inline
252 274
253Expands either to C<static inline> or to just C<static>, if inline 275Expands either to (a compiler-specific equivalent of) C<static inline> or
254isn't supported. It should be used to declare functions that should be 276to just C<static>, if inline isn't supported. It should be used to declare
255inlined, for code size or speed reasons. 277functions that should be inlined, for code size or speed reasons.
256 278
257Example: inline this function, it surely will reduce codesize. 279Example: inline this function, it surely will reduce codesize.
258 280
259 ecb_inline int 281 ecb_inline int
260 negmul (int a, int b) 282 negmul (int a, int b)
400 422
401=back 423=back
402 424
403=head2 OPTIMISATION HINTS 425=head2 OPTIMISATION HINTS
404 426
405=over 4 427=over
406 428
407=item bool ecb_is_constant (expr) 429=item bool ecb_is_constant (expr)
408 430
409Returns true iff the expression can be deduced to be a compile-time 431Returns true iff the expression can be deduced to be a compile-time
410constant, and false otherwise. 432constant, and false otherwise.
567 589
568=back 590=back
569 591
570=head2 BIT FIDDLING / BIT WIZARDRY 592=head2 BIT FIDDLING / BIT WIZARDRY
571 593
572=over 4 594=over
573 595
574=item bool ecb_big_endian () 596=item bool ecb_big_endian ()
575 597
576=item bool ecb_little_endian () 598=item bool ecb_little_endian ()
577 599
583 605
584=item int ecb_ctz32 (uint32_t x) 606=item int ecb_ctz32 (uint32_t x)
585 607
586=item int ecb_ctz64 (uint64_t x) 608=item int ecb_ctz64 (uint64_t x)
587 609
610=item int ecb_ctz (T x) [C++]
611
588Returns the index of the least significant bit set in C<x> (or 612Returns the index of the least significant bit set in C<x> (or
589equivalently the number of bits set to 0 before the least significant bit 613equivalently the number of bits set to 0 before the least significant bit
590set), starting from 0. If C<x> is 0 the result is undefined. 614set), starting from 0. If C<x> is 0 the result is undefined.
591 615
592For smaller types than C<uint32_t> you can safely use C<ecb_ctz32>. 616For smaller types than C<uint32_t> you can safely use C<ecb_ctz32>.
593 617
618The overloaded C++ C<ecb_ctz> function supports C<uint8_t>, C<uint16_t>,
619C<uint32_t> and C<uint64_t> types.
620
594For example: 621For example:
595 622
596 ecb_ctz32 (3) = 0 623 ecb_ctz32 (3) = 0
597 ecb_ctz32 (6) = 1 624 ecb_ctz32 (6) = 1
598 625
599=item bool ecb_is_pot32 (uint32_t x) 626=item bool ecb_is_pot32 (uint32_t x)
600 627
601=item bool ecb_is_pot64 (uint32_t x) 628=item bool ecb_is_pot64 (uint32_t x)
602 629
630=item bool ecb_is_pot (T x) [C++]
631
603Returns true iff C<x> is a power of two or C<x == 0>. 632Returns true iff C<x> is a power of two or C<x == 0>.
604 633
605For smaller types than C<uint32_t> you can safely use C<ecb_is_pot32>. 634For smaller types than C<uint32_t> you can safely use C<ecb_is_pot32>.
606 635
636The overloaded C++ C<ecb_is_pot> function supports C<uint8_t>, C<uint16_t>,
637C<uint32_t> and C<uint64_t> types.
638
607=item int ecb_ld32 (uint32_t x) 639=item int ecb_ld32 (uint32_t x)
608 640
609=item int ecb_ld64 (uint64_t x) 641=item int ecb_ld64 (uint64_t x)
642
643=item int ecb_ld64 (T x) [C++]
610 644
611Returns the index of the most significant bit set in C<x>, or the number 645Returns the index of the most significant bit set in C<x>, or the number
612of digits the number requires in binary (so that C<< 2**ld <= x < 646of digits the number requires in binary (so that C<< 2**ld <= x <
6132**(ld+1) >>). If C<x> is 0 the result is undefined. A common use case is 6472**(ld+1) >>). If C<x> is 0 the result is undefined. A common use case is
614to compute the integer binary logarithm, i.e. C<floor (log2 (n))>, for 648to compute the integer binary logarithm, i.e. C<floor (log2 (n))>, for
619the given data type), while C<ecb_ld> returns how many bits the number 653the given data type), while C<ecb_ld> returns how many bits the number
620itself requires. 654itself requires.
621 655
622For smaller types than C<uint32_t> you can safely use C<ecb_ld32>. 656For smaller types than C<uint32_t> you can safely use C<ecb_ld32>.
623 657
658The overloaded C++ C<ecb_ld> function supports C<uint8_t>, C<uint16_t>,
659C<uint32_t> and C<uint64_t> types.
660
624=item int ecb_popcount32 (uint32_t x) 661=item int ecb_popcount32 (uint32_t x)
625 662
626=item int ecb_popcount64 (uint64_t x) 663=item int ecb_popcount64 (uint64_t x)
627 664
665=item int ecb_popcount (T x) [C++]
666
628Returns the number of bits set to 1 in C<x>. 667Returns the number of bits set to 1 in C<x>.
629 668
630For smaller types than C<uint32_t> you can safely use C<ecb_popcount32>. 669For smaller types than C<uint32_t> you can safely use C<ecb_popcount32>.
670
671The overloaded C++ C<ecb_popcount> function supports C<uint8_t>, C<uint16_t>,
672C<uint32_t> and C<uint64_t> types.
631 673
632For example: 674For example:
633 675
634 ecb_popcount32 (7) = 3 676 ecb_popcount32 (7) = 3
635 ecb_popcount32 (255) = 8 677 ecb_popcount32 (255) = 8
638 680
639=item uint16_t ecb_bitrev16 (uint16_t x) 681=item uint16_t ecb_bitrev16 (uint16_t x)
640 682
641=item uint32_t ecb_bitrev32 (uint32_t x) 683=item uint32_t ecb_bitrev32 (uint32_t x)
642 684
685=item T ecb_bitrev (T x) [C++]
686
643Reverses the bits in x, i.e. the MSB becomes the LSB, MSB-1 becomes LSB+1 687Reverses the bits in x, i.e. the MSB becomes the LSB, MSB-1 becomes LSB+1
644and so on. 688and so on.
645 689
690The overloaded C++ C<ecb_bitrev> function supports C<uint8_t>, C<uint16_t> and C<uint32_t> types.
691
646Example: 692Example:
647 693
648 ecb_bitrev8 (0xa7) = 0xea 694 ecb_bitrev8 (0xa7) = 0xea
649 ecb_bitrev32 (0xffcc4411) = 0x882233ff 695 ecb_bitrev32 (0xffcc4411) = 0x882233ff
650 696
697=item T ecb_bitrev (T x) [C++]
698
699Overloaded C++ bitrev function.
700
701C<T> must be one of C<uint8_t>, C<uint16_t> or C<uint32_t>.
702
651=item uint32_t ecb_bswap16 (uint32_t x) 703=item uint32_t ecb_bswap16 (uint32_t x)
652 704
653=item uint32_t ecb_bswap32 (uint32_t x) 705=item uint32_t ecb_bswap32 (uint32_t x)
654 706
655=item uint64_t ecb_bswap64 (uint64_t x) 707=item uint64_t ecb_bswap64 (uint64_t x)
708
709=item T ecb_bswap (T x)
656 710
657These functions return the value of the 16-bit (32-bit, 64-bit) value 711These functions return the value of the 16-bit (32-bit, 64-bit) value
658C<x> after reversing the order of bytes (0x11223344 becomes 0x44332211 in 712C<x> after reversing the order of bytes (0x11223344 becomes 0x44332211 in
659C<ecb_bswap32>). 713C<ecb_bswap32>).
660 714
715The overloaded C++ C<ecb_bswap> function supports C<uint8_t>, C<uint16_t>,
716C<uint32_t> and C<uint64_t> types.
717
661=item uint8_t ecb_rotl8 (uint8_t x, unsigned int count) 718=item uint8_t ecb_rotl8 (uint8_t x, unsigned int count)
662 719
663=item uint16_t ecb_rotl16 (uint16_t x, unsigned int count) 720=item uint16_t ecb_rotl16 (uint16_t x, unsigned int count)
664 721
665=item uint32_t ecb_rotl32 (uint32_t x, unsigned int count) 722=item uint32_t ecb_rotl32 (uint32_t x, unsigned int count)
676 733
677These two families of functions return the value of C<x> after rotating 734These two families of functions return the value of C<x> after rotating
678all the bits by C<count> positions to the right (C<ecb_rotr>) or left 735all the bits by C<count> positions to the right (C<ecb_rotr>) or left
679(C<ecb_rotl>). 736(C<ecb_rotl>).
680 737
738The valid range for C<count> is C<1> to the number of bits in the
739underlying datatype minus one (7/15/31/63). If you need a rotate count
740of zero you need to add an extra check before calling these functions
741currently.
742
681Current GCC versions understand these functions and usually compile them 743Current GCC/clang versions understand these functions and usually compile
682to "optimal" code (e.g. a single C<rol> or a combination of C<shld> on 744them to "optimal" code (e.g. a single C<rol> or a combination of C<shld>
683x86). 745on x86).
746
747=item T ecb_rotl (T x, unsigned int count) [C++]
748
749=item T ecb_rotr (T x, unsigned int count) [C++]
750
751Overloaded C++ rotl/rotr functions.
752
753C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
754
755=back
756
757=head2 HOST ENDIANNESS CONVERSION
758
759=over
760
761=item uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v)
762
763=item uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v)
764
765=item uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v)
766
767=item uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v)
768
769=item uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v)
770
771=item uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v)
772
773Convert an unsigned 16, 32 or 64 bit value from big or little endian to host byte order.
774
775The naming convention is C<ecb_>(C<be>|C<le>)C<_u>C<16|32|64>C<_to_host>,
776where C<be> and C<le> stand for big endian and little endian, respectively.
777
778=item uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v)
779
780=item uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v)
781
782=item uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v)
783
784=item uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v)
785
786=item uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v)
787
788=item uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v)
789
790Like above, but converts I<from> host byte order to the specified
791endianness.
792
793=back
794
795In C++ the following additional template functions are supported:
796
797=over
798
799=item T ecb_be_to_host (T v)
800
801=item T ecb_le_to_host (T v)
802
803=item T ecb_host_to_be (T v)
804
805=item T ecb_host_to_le (T v)
806
807=back
808
809These functions work like their C counterparts, above, but use templates,
810which make them useful in generic code.
811
812C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>
813(so unlike their C counterparts, there is a version for C<uint8_t>, which
814again can be useful in generic code).
815
816=head2 UNALIGNED LOAD/STORE
817
818These function load or store unaligned multi-byte values.
819
820=over
821
822=item uint_fast16_t ecb_peek_u16_u (const void *ptr)
823
824=item uint_fast32_t ecb_peek_u32_u (const void *ptr)
825
826=item uint_fast64_t ecb_peek_u64_u (const void *ptr)
827
828These functions load an unaligned, unsigned 16, 32 or 64 bit value from
829memory.
830
831=item uint_fast16_t ecb_peek_be_u16_u (const void *ptr)
832
833=item uint_fast32_t ecb_peek_be_u32_u (const void *ptr)
834
835=item uint_fast64_t ecb_peek_be_u64_u (const void *ptr)
836
837=item uint_fast16_t ecb_peek_le_u16_u (const void *ptr)
838
839=item uint_fast32_t ecb_peek_le_u32_u (const void *ptr)
840
841=item uint_fast64_t ecb_peek_le_u64_u (const void *ptr)
842
843Like above, but additionally convert from big endian (C<be>) or little
844endian (C<le>) byte order to host byte order while doing so.
845
846=item ecb_poke_u16_u (void *ptr, uint16_t v)
847
848=item ecb_poke_u32_u (void *ptr, uint32_t v)
849
850=item ecb_poke_u64_u (void *ptr, uint64_t v)
851
852These functions store an unaligned, unsigned 16, 32 or 64 bit value to
853memory.
854
855=item ecb_poke_be_u16_u (void *ptr, uint_fast16_t v)
856
857=item ecb_poke_be_u32_u (void *ptr, uint_fast32_t v)
858
859=item ecb_poke_be_u64_u (void *ptr, uint_fast64_t v)
860
861=item ecb_poke_le_u16_u (void *ptr, uint_fast16_t v)
862
863=item ecb_poke_le_u32_u (void *ptr, uint_fast32_t v)
864
865=item ecb_poke_le_u64_u (void *ptr, uint_fast64_t v)
866
867Like above, but additionally convert from host byte order to big endian
868(C<be>) or little endian (C<le>) byte order while doing so.
869
870=back
871
872In C++ the following additional template functions are supported:
873
874=over
875
876=item T ecb_peek<T> (const void *ptr)
877
878=item T ecb_peek_be<T> (const void *ptr)
879
880=item T ecb_peek_le<T> (const void *ptr)
881
882=item T ecb_peek_u<T> (const void *ptr)
883
884=item T ecb_peek_be_u<T> (const void *ptr)
885
886=item T ecb_peek_le_u<T> (const void *ptr)
887
888Similarly to their C counterparts, these functions load an unsigned 8, 16,
88932 or 64 bit value from memory, with optional conversion from big/little
890endian.
891
892Since the type cannot be deduced, it has to be specified explicitly, e.g.
893
894 uint_fast16_t v = ecb_peek<uint16_t> (ptr);
895
896C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
897
898Unlike their C counterparts, these functions support 8 bit quantities
899(C<uint8_t>) and also have an aligned version (without the C<_u> prefix),
900all of which hopefully makes them more useful in generic code.
901
902=item ecb_poke (void *ptr, T v)
903
904=item ecb_poke_be (void *ptr, T v)
905
906=item ecb_poke_le (void *ptr, T v)
907
908=item ecb_poke_u (void *ptr, T v)
909
910=item ecb_poke_be_u (void *ptr, T v)
911
912=item ecb_poke_le_u (void *ptr, T v)
913
914Again, similarly to their C counterparts, these functions store an
915unsigned 8, 16, 32 or z64 bit value to memory, with optional conversion to
916big/little endian.
917
918C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
919
920Unlike their C counterparts, these functions support 8 bit quantities
921(C<uint8_t>) and also have an aligned version (without the C<_u> prefix),
922all of which hopefully makes them more useful in generic code.
923
924=back
925
926=head2 FAST INTEGER TO STRING
927
928Libecb defines a set of very fast integer to decimal string (or integer
929to ascii, short C<i2a>) functions. These work by converting the integer
930to a fixed point representation and then successively multiplying out
931the topmost digits. Unlike some other, also very fast, libraries, ecb's
932algorithm should be completely branchless per digit, and does not rely on
933the presence of special cpu functions (such as clz).
934
935There is a high level API that takes an C<int32_t>, C<uint32_t>,
936C<int64_t> or C<uint64_t> as argument, and a low-level API, which is
937harder to use but supports slightly more formatting options.
938
939=head3 HIGH LEVEL API
940
941The high level API consists of four functions, one each for C<int32_t>,
942C<uint32_t>, C<int64_t> and C<uint64_t>:
943
944Example:
945
946 char buf[ECB_I2A_MAX_DIGITS + 1];
947 char *end = ecb_i2a_i32 (buf, 17262);
948 *end = 0;
949 // buf now contains "17262"
950
951=over
952
953=item ECB_I2A_I32_DIGITS (=11)
954
955=item char *ecb_i2a_u32 (char *ptr, uint32_t value)
956
957Takes an C<uint32_t> I<value> and formats it as a decimal number starting
958at I<ptr>, using at most C<ECB_I2A_I32_DIGITS> characters. Returns a
959pointer to just after the generated string, where you would normally put
960the terminating C<0> character. This function outputs the minimum number
961of digits.
962
963=item ECB_I2A_U32_DIGITS (=10)
964
965=item char *ecb_i2a_i32 (char *ptr, int32_t value)
966
967Same as C<ecb_i2a_u32>, but formats a C<int32_t> value, including a minus
968sign if needed.
969
970=item ECB_I2A_I64_DIGITS (=20)
971
972=item char *ecb_i2a_u64 (char *ptr, uint64_t value)
973
974=item ECB_I2A_U64_DIGITS (=21)
975
976=item char *ecb_i2a_i64 (char *ptr, int64_t value)
977
978Similar to their 32 bit counterparts, these take a 64 bit argument.
979
980=item ECB_I2A_MAX_DIGITS (=21)
981
982Instead of using a type specific length macro, youi can just use
983C<ECB_I2A_MAX_DIGITS>, which is good enough for any C<ecb_i2a> function.
984
985=back
986
987=head3 LOW-LEVEL API
988
989The functions above use a number of low-level APIs which have some strict
990limitations, but can be used as building blocks (study of C<ecb_i2a_i32>
991and related functions is recommended).
992
993There are three families of functions: functions that convert a number
994to a fixed number of digits with leading zeroes (C<ecb_i2a_0N>, C<0>
995for "leading zeroes"), functions that generate up to N digits, skipping
996leading zeroes (C<_N>), and functions that can generate more digits, but
997the leading digit has limited range (C<_xN>).
998
999None of the functions deal with negative numbers.
1000
1001Example: convert an IP address in an u32 into dotted-quad:
1002
1003 uint32_t ip = 0x0a000164; // 10.0.1.100
1004 char ips[3 * 4 + 3 + 1];
1005 char *ptr = ips;
1006 ptr = ecb_i2a_3 (ptr, ip >> 24 ); *ptr++ = '.';
1007 ptr = ecb_i2a_3 (ptr, (ip >> 16) & 0xff); *ptr++ = '.';
1008 ptr = ecb_i2a_3 (ptr, (ip >> 8) & 0xff); *ptr++ = '.';
1009 ptr = ecb_i2a_3 (ptr, ip & 0xff); *ptr++ = 0;
1010 printf ("ip: %s\n", ips); // prints "ip: 10.0.1.100"
1011
1012=over
1013
1014=item char *ecb_i2a_02 (char *ptr, uint32_t value) // 32 bit
1015
1016=item char *ecb_i2a_03 (char *ptr, uint32_t value) // 32 bit
1017
1018=item char *ecb_i2a_04 (char *ptr, uint32_t value) // 32 bit
1019
1020=item char *ecb_i2a_05 (char *ptr, uint32_t value) // 64 bit
1021
1022=item char *ecb_i2a_06 (char *ptr, uint32_t value) // 64 bit
1023
1024=item char *ecb_i2a_07 (char *ptr, uint32_t value) // 64 bit
1025
1026=item char *ecb_i2a_08 (char *ptr, uint32_t value) // 64 bit
1027
1028=item char *ecb_i2a_09 (char *ptr, uint32_t value) // 64 bit
1029
1030The C<< ecb_i2a_0I<N> > functions take an unsigned I<value> and convert
1031them to exactly I<N> digits, returning a pointer to the first character
1032after the digits. The I<value> must be in range. The functions marked with
1033I<32 bit> do their calculations internally in 32 bit, the ones marked with
1034I<64 bit> internally use 64 bit integers, which might be slow on 32 bit
1035architectures (the high level API decides on 32 vs. 64 bit versions using
1036C<ECB_64BIT_NATIVE>).
1037
1038=item char *ecb_i2a_2 (char *ptr, uint32_t value) // 32 bit
1039
1040=item char *ecb_i2a_3 (char *ptr, uint32_t value) // 32 bit
1041
1042=item char *ecb_i2a_4 (char *ptr, uint32_t value) // 32 bit
1043
1044=item char *ecb_i2a_5 (char *ptr, uint32_t value) // 64 bit
1045
1046=item char *ecb_i2a_6 (char *ptr, uint32_t value) // 64 bit
1047
1048=item char *ecb_i2a_7 (char *ptr, uint32_t value) // 64 bit
1049
1050=item char *ecb_i2a_8 (char *ptr, uint32_t value) // 64 bit
1051
1052=item char *ecb_i2a_9 (char *ptr, uint32_t value) // 64 bit
1053
1054Similarly, the C<< ecb_i2a_I<N> > functions take an unsigned I<value>
1055and convert them to at most I<N> digits, suppressing leading zeroes, and
1056returning a pointer to the first character after the digits.
1057
1058=item ECB_I2A_MAX_X5 (=59074)
1059
1060=item char *ecb_i2a_x5 (char *ptr, uint32_t value) // 32 bit
1061
1062=item ECB_I2A_MAX_X10 (=2932500665)
1063
1064=item char *ecb_i2a_x10 (char *ptr, uint32_t value) // 64 bit
1065
1066The C<< ecb_i2a_xI<N> >> functions are similar to the C<< ecb_i2a_I<N> >
1067functions, but they can generate one digit more, as long as the number
1068is within range, which is given by the symbols C<ECB_I2A_MAX_X5> (almost
106916 bit range) and C<ECB_I2A_MAX_X10> (a bit more than 31 bit range),
1070respectively.
1071
1072For example, the digit part of a 32 bit signed integer just fits into the
1073C<ECB_I2A_MAX_X10> range, so while C<ecb_i2a_x10> cannot convert a 10
1074digit number, it can convert all 32 bit signed numbers. Sadly, it's not
1075good enough for 32 bit unsigned numbers.
684 1076
685=back 1077=back
686 1078
687=head2 FLOATING POINT FIDDLING 1079=head2 FLOATING POINT FIDDLING
688 1080
689=over 4 1081=over
690 1082
691=item ECB_INFINITY 1083=item ECB_INFINITY [-UECB_NO_LIBM]
692 1084
693Evaluates to positive infinity if supported by the platform, otherwise to 1085Evaluates to positive infinity if supported by the platform, otherwise to
694a truly huge number. 1086a truly huge number.
695 1087
696=item ECB_NAN 1088=item ECB_NAN [-UECB_NO_LIBM]
697 1089
698Evaluates to a quiet NAN if supported by the platform, otherwise to 1090Evaluates to a quiet NAN if supported by the platform, otherwise to
699C<ECB_INFINITY>. 1091C<ECB_INFINITY>.
700 1092
701=item float ecb_ldexpf (float x, int exp) 1093=item float ecb_ldexpf (float x, int exp) [-UECB_NO_LIBM]
702 1094
703Same as C<ldexpf>, but always available. 1095Same as C<ldexpf>, but always available.
704 1096
1097=item uint32_t ecb_float_to_binary16 (float x) [-UECB_NO_LIBM]
1098
705=item uint32_t ecb_float_to_binary32 (float x) [-UECB_NO_LIBM] 1099=item uint32_t ecb_float_to_binary32 (float x) [-UECB_NO_LIBM]
706 1100
707=item uint64_t ecb_double_to_binary64 (double x) [-UECB_NO_LIBM] 1101=item uint64_t ecb_double_to_binary64 (double x) [-UECB_NO_LIBM]
708 1102
709These functions each take an argument in the native C<float> or C<double> 1103These functions each take an argument in the native C<float> or C<double>
710type and return the IEEE 754 bit representation of it. 1104type and return the IEEE 754 bit representation of it (binary16/half,
1105binary32/single or binary64/double precision).
711 1106
712The bit representation is just as IEEE 754 defines it, i.e. the sign bit 1107The bit representation is just as IEEE 754 defines it, i.e. the sign bit
713will be the most significant bit, followed by exponent and mantissa. 1108will be the most significant bit, followed by exponent and mantissa.
714 1109
715This function should work even when the native floating point format isn't 1110This function should work even when the native floating point format isn't
719 1114
720On all modern platforms (where C<ECB_STDFP> is true), the compiler should 1115On all modern platforms (where C<ECB_STDFP> is true), the compiler should
721be able to optimise away this function completely. 1116be able to optimise away this function completely.
722 1117
723These functions can be helpful when serialising floats to the network - you 1118These functions can be helpful when serialising floats to the network - you
724can serialise the return value like a normal uint32_t/uint64_t. 1119can serialise the return value like a normal uint16_t/uint32_t/uint64_t.
725 1120
726Another use for these functions is to manipulate floating point values 1121Another use for these functions is to manipulate floating point values
727directly. 1122directly.
728 1123
729Silly example: toggle the sign bit of a float. 1124Silly example: toggle the sign bit of a float.
739=item float ecb_binary32_to_float (uint32_t x) [-UECB_NO_LIBM] 1134=item float ecb_binary32_to_float (uint32_t x) [-UECB_NO_LIBM]
740 1135
741=item double ecb_binary64_to_double (uint64_t x) [-UECB_NO_LIBM] 1136=item double ecb_binary64_to_double (uint64_t x) [-UECB_NO_LIBM]
742 1137
743The reverse operation of the previous function - takes the bit 1138The reverse operation of the previous function - takes the bit
744representation of an IEEE binary16, binary32 or binary64 number and 1139representation of an IEEE binary16, binary32 or binary64 number (half,
745converts it to the native C<float> or C<double> format. 1140single or double precision) and converts it to the native C<float> or
1141C<double> format.
746 1142
747This function should work even when the native floating point format isn't 1143This function should work even when the native floating point format isn't
748IEEE compliant, of course at a speed and code size penalty, and of course 1144IEEE compliant, of course at a speed and code size penalty, and of course
749also within reasonable limits (it tries to convert normals and denormals, 1145also within reasonable limits (it tries to convert normals and denormals,
750and might be lucky for infinities, and with extraordinary luck, also for 1146and might be lucky for infinities, and with extraordinary luck, also for
751negative zero). 1147negative zero).
752 1148
753On all modern platforms (where C<ECB_STDFP> is true), the compiler should 1149On all modern platforms (where C<ECB_STDFP> is true), the compiler should
754be able to optimise away this function completely. 1150be able to optimise away this function completely.
755 1151
1152=item uint16_t ecb_binary32_to_binary16 (uint32_t x)
1153
1154=item uint32_t ecb_binary16_to_binary32 (uint16_t x)
1155
1156Convert a IEEE binary32/single precision to binary16/half format, and vice
1157versa, handling all details (round-to-nearest-even, subnormals, infinity
1158and NaNs) correctly.
1159
1160These are functions are available under C<-DECB_NO_LIBM>, since
1161they do not rely on the platform floating point format. The
1162C<ecb_float_to_binary16> and C<ecb_binary16_to_float> functions are
1163usually what you want.
1164
756=back 1165=back
757 1166
758=head2 ARITHMETIC 1167=head2 ARITHMETIC
759 1168
760=over 4 1169=over
761 1170
762=item x = ecb_mod (m, n) 1171=item x = ecb_mod (m, n)
763 1172
764Returns C<m> modulo C<n>, which is the same as the positive remainder 1173Returns C<m> modulo C<n>, which is the same as the positive remainder
765of the division operation between C<m> and C<n>, using floored 1174of the division operation between C<m> and C<n>, using floored
772C<n> must be strictly positive (i.e. C<< >= 1 >>), while C<m> must be 1181C<n> must be strictly positive (i.e. C<< >= 1 >>), while C<m> must be
773negatable, that is, both C<m> and C<-m> must be representable in its 1182negatable, that is, both C<m> and C<-m> must be representable in its
774type (this typically excludes the minimum signed integer value, the same 1183type (this typically excludes the minimum signed integer value, the same
775limitation as for C</> and C<%> in C). 1184limitation as for C</> and C<%> in C).
776 1185
777Current GCC versions compile this into an efficient branchless sequence on 1186Current GCC/clang versions compile this into an efficient branchless
778almost all CPUs. 1187sequence on almost all CPUs.
779 1188
780For example, when you want to rotate forward through the members of an 1189For example, when you want to rotate forward through the members of an
781array for increasing C<m> (which might be negative), then you should use 1190array for increasing C<m> (which might be negative), then you should use
782C<ecb_mod>, as the C<%> operator might give either negative results, or 1191C<ecb_mod>, as the C<%> operator might give either negative results, or
783change direction for negative values: 1192change direction for negative values:
796 1205
797=back 1206=back
798 1207
799=head2 UTILITY 1208=head2 UTILITY
800 1209
801=over 4 1210=over
802 1211
803=item element_count = ecb_array_length (name) 1212=item element_count = ecb_array_length (name)
804 1213
805Returns the number of elements in the array C<name>. For example: 1214Returns the number of elements in the array C<name>. For example:
806 1215
814 1223
815=head2 SYMBOLS GOVERNING COMPILATION OF ECB.H ITSELF 1224=head2 SYMBOLS GOVERNING COMPILATION OF ECB.H ITSELF
816 1225
817These symbols need to be defined before including F<ecb.h> the first time. 1226These symbols need to be defined before including F<ecb.h> the first time.
818 1227
819=over 4 1228=over
820 1229
821=item ECB_NO_THREADS 1230=item ECB_NO_THREADS
822 1231
823If F<ecb.h> is never used from multiple threads, then this symbol can 1232If F<ecb.h> is never used from multiple threads, then this symbol can
824be defined, in which case memory fences (and similar constructs) are 1233be defined, in which case memory fences (and similar constructs) are

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines