ViewVC Help
View File | Revision Log | Show Annotations | Download File
/cvs/cvsroot/libecb/ecb.pod
(Generate patch)

Comparing cvsroot/libecb/ecb.pod (file contents):
Revision 1.54 by root, Wed Dec 19 23:33:47 2012 UTC vs.
Revision 1.84 by root, Mon Jan 20 21:10:16 2020 UTC

58 58
59=head2 TYPES / TYPE SUPPORT 59=head2 TYPES / TYPE SUPPORT
60 60
61ecb.h makes sure that the following types are defined (in the expected way): 61ecb.h makes sure that the following types are defined (in the expected way):
62 62
63 int8_t uint8_t int16_t uint16_t 63 int8_t uint8_
64 int32_t uint32_t int64_t uint64_t 64 int16_t uint16_t
65 int32_t uint32_
66 int64_t uint64_t
67 int_fast8_t uint_fast8_t
68 int_fast16_t uint_fast16_t
69 int_fast32_t uint_fast32_t
70 int_fast64_t uint_fast64_t
65 intptr_t uintptr_t 71 intptr_t uintptr_t
66 72
67The macro C<ECB_PTRSIZE> is defined to the size of a pointer on this 73The macro C<ECB_PTRSIZE> is defined to the size of a pointer on this
68platform (currently C<4> or C<8>) and can be used in preprocessor 74platform (currently C<4> or C<8>) and can be used in preprocessor
69expressions. 75expressions.
70 76
71For C<ptrdiff_t> and C<size_t> use C<stddef.h>. 77For C<ptrdiff_t> and C<size_t> use C<stddef.h>/C<cstddef>.
72 78
73=head2 LANGUAGE/COMPILER VERSIONS 79=head2 LANGUAGE/ENVIRONMENT/COMPILER VERSIONS
74 80
75All the following symbols expand to an expression that can be tested in 81All the following symbols expand to an expression that can be tested in
76preprocessor instructions as well as treated as a boolean (use C<!!> to 82preprocessor instructions as well as treated as a boolean (use C<!!> to
77ensure it's either C<0> or C<1> if you need that). 83ensure it's either C<0> or C<1> if you need that).
78 84
79=over 4 85=over 4
80 86
81=item ECB_C 87=item ECB_C
82 88
83True if the implementation defines the C<__STDC__> macro to a true value, 89True if the implementation defines the C<__STDC__> macro to a true value,
84which is typically true for both C and C++ compilers. 90while not claiming to be C++, i..e C, but not C++.
85 91
86=item ECB_C99 92=item ECB_C99
87 93
88True if the implementation claims to be compliant to C99 (ISO/IEC 94True if the implementation claims to be compliant to C99 (ISO/IEC
899899:1999) or any later version. 959899:1999) or any later version, while not claiming to be C++.
90 96
91Note that later versions (ECB_C11) remove core features again (for 97Note that later versions (ECB_C11) remove core features again (for
92example, variable length arrays). 98example, variable length arrays).
93 99
94=item ECB_C11 100=item ECB_C11, ECB_C17
95 101
96True if the implementation claims to be compliant to C11 (ISO/IEC 102True if the implementation claims to be compliant to C11/C17 (ISO/IEC
979899:2011) or any later version. 1039899:2011, :20187) or any later version, while not claiming to be C++.
98 104
99=item ECB_CPP 105=item ECB_CPP
100 106
101True if the implementation defines the C<__cplusplus__> macro to a true 107True if the implementation defines the C<__cplusplus__> macro to a true
102value, which is typically true for C++ compilers. 108value, which is typically true for C++ compilers.
103 109
104=item ECB_CPP11 110=item ECB_CPP11, ECB_CPP14, ECB_CPP17
105 111
106True if the implementation claims to be compliant to ISO/IEC 14882:2011 112True if the implementation claims to be compliant to C++11/C++14/C++17
107(C++11) or any later version. 113(ISO/IEC 14882:2011, :2014, :2017) or any later version.
108 114
115Note that many C++20 features will likely have their own feature test
116macros (see e.g. L<http://eel.is/c++draft/cpp.predefined#1.8>).
117
118=item ECB_OPTIMIZE_SIZE
119
120Is C<1> when the compiler optimizes for size, C<0> otherwise. This symbol
121can also be defined before including F<ecb.h>, in which case it will be
122unchanged.
123
109=item ECB_GCC_VERSION(major,minor) 124=item ECB_GCC_VERSION (major, minor)
110 125
111Expands to a true value (suitable for testing in by the preprocessor) 126Expands to a true value (suitable for testing by the preprocessor) if the
112if the compiler used is GNU C and the version is the given version, or 127compiler used is GNU C and the version is the given version, or higher.
113higher.
114 128
115This macro tries to return false on compilers that claim to be GCC 129This macro tries to return false on compilers that claim to be GCC
116compatible but aren't. 130compatible but aren't.
117 131
118=item ECB_EXTERN_C 132=item ECB_EXTERN_C
137 151
138 ECB_EXTERN_C_END 152 ECB_EXTERN_C_END
139 153
140=item ECB_STDFP 154=item ECB_STDFP
141 155
142If this evaluates to a true value (suitable for testing in by the 156If this evaluates to a true value (suitable for testing by the
143preprocessor), then C<float> and C<double> use IEEE 754 single/binary32 157preprocessor), then C<float> and C<double> use IEEE 754 single/binary32
144and double/binary64 representations internally I<and> the endianness of 158and double/binary64 representations internally I<and> the endianness of
145both types match the endianness of C<uint32_t> and C<uint64_t>. 159both types match the endianness of C<uint32_t> and C<uint64_t>.
146 160
147This means you can just copy the bits of a C<float> (or C<double>) to an 161This means you can just copy the bits of a C<float> (or C<double>) to an
163C<__x86_64> stands for, well, the x86-64 ABI, making these macros 177C<__x86_64> stands for, well, the x86-64 ABI, making these macros
164necessary. 178necessary.
165 179
166=back 180=back
167 181
182=head2 MACRO TRICKERY
183
184=over 4
185
186=item ECB_CONCAT (a, b)
187
188Expands any macros in C<a> and C<b>, then concatenates the result to form
189a single token. This is mainly useful to form identifiers from components,
190e.g.:
191
192 #define S1 str
193 #define S2 cpy
194
195 ECB_CONCAT (S1, S2)(dst, src); // == strcpy (dst, src);
196
197=item ECB_STRINGIFY (arg)
198
199Expands any macros in C<arg> and returns the stringified version of
200it. This is mainly useful to get the contents of a macro in string form,
201e.g.:
202
203 #define SQL_LIMIT 100
204 sql_exec ("select * from table limit " ECB_STRINGIFY (SQL_LIMIT));
205
206=item ECB_STRINGIFY_EXPR (expr)
207
208Like C<ECB_STRINGIFY>, but additionally evaluates C<expr> to make sure it
209is a valid expression. This is useful to catch typos or cases where the
210macro isn't available:
211
212 #include <errno.h>
213
214 ECB_STRINGIFY (EDOM); // "33" (on my system at least)
215 ECB_STRINGIFY_EXPR (EDOM); // "33"
216
217 // now imagine we had a typo:
218
219 ECB_STRINGIFY (EDAM); // "EDAM"
220 ECB_STRINGIFY_EXPR (EDAM); // error: EDAM undefined
221
222=back
223
168=head2 GCC ATTRIBUTES 224=head2 ATTRIBUTES
169 225
170A major part of libecb deals with GCC attributes. These are additional 226A major part of libecb deals with additional attributes that can be
171attributes that you can assign to functions, variables and sometimes even 227assigned to functions, variables and sometimes even types - much like
172types - much like C<const> or C<volatile> in C. 228C<const> or C<volatile> in C. They are implemented using either GCC
173 229attributes or other compiler/language specific features. Attributes
174While GCC allows declarations to show up in many surprising places,
175but not in many expected places, the safest way is to put attribute
176declarations before the whole declaration: 230declarations must be put before the whole declaration:
177 231
178 ecb_const int mysqrt (int a); 232 ecb_const int mysqrt (int a);
179 ecb_unused int i; 233 ecb_unused int i;
180 234
181For variables, it is often nicer to put the attribute after the name, and
182avoid multiple declarations using commas:
183
184 int i ecb_unused;
185
186=over 4 235=over 4
187
188=item ecb_attribute ((attrs...))
189
190A simple wrapper that expands to C<__attribute__((attrs))> on GCC, and to
191nothing on other compilers, so the effect is that only GCC sees these.
192
193Example: use the C<deprecated> attribute on a function.
194
195 ecb_attribute((__deprecated__)) void
196 do_not_use_me_anymore (void);
197 236
198=item ecb_unused 237=item ecb_unused
199 238
200Marks a function or a variable as "unused", which simply suppresses a 239Marks a function or a variable as "unused", which simply suppresses a
201warning by GCC when it detects it as unused. This is useful when you e.g. 240warning by GCC when it detects it as unused. This is useful when you e.g.
202declare a variable but do not always use it: 241declare a variable but do not always use it:
203 242
204 { 243 {
205 int var ecb_unused; 244 ecb_unused int var;
206 245
207 #ifdef SOMECONDITION 246 #ifdef SOMECONDITION
208 var = ...; 247 var = ...;
209 return var; 248 return var;
210 #else 249 #else
211 return 0; 250 return 0;
212 #endif 251 #endif
213 } 252 }
214 253
254=item ecb_deprecated
255
256Similar to C<ecb_unused>, but marks a function, variable or type as
257deprecated. This makes some compilers warn when the type is used.
258
259=item ecb_deprecated_message (message)
260
261Same as C<ecb_deprecated>, but if possible, the specified diagnostic is
262used instead of a generic depreciation message when the object is being
263used.
264
215=item ecb_inline 265=item ecb_inline
216 266
217This is not actually an attribute, but you use it like one. It expands 267Expands either to (a compiler-specific equivalent of) C<static inline> or
218either to C<static inline> or to just C<static>, if inline isn't 268to just C<static>, if inline isn't supported. It should be used to declare
219supported. It should be used to declare functions that should be inlined, 269functions that should be inlined, for code size or speed reasons.
220for code size or speed reasons.
221 270
222Example: inline this function, it surely will reduce codesize. 271Example: inline this function, it surely will reduce codesize.
223 272
224 ecb_inline int 273 ecb_inline int
225 negmul (int a, int b) 274 negmul (int a, int b)
227 return - (a * b); 276 return - (a * b);
228 } 277 }
229 278
230=item ecb_noinline 279=item ecb_noinline
231 280
232Prevent a function from being inlined - it might be optimised away, but 281Prevents a function from being inlined - it might be optimised away, but
233not inlined into other functions. This is useful if you know your function 282not inlined into other functions. This is useful if you know your function
234is rarely called and large enough for inlining not to be helpful. 283is rarely called and large enough for inlining not to be helpful.
235 284
236=item ecb_noreturn 285=item ecb_noreturn
237 286
258 307
259Example: multiply a vector, and allow the compiler to parallelise the 308Example: multiply a vector, and allow the compiler to parallelise the
260loop, because it knows it doesn't overwrite input values. 309loop, because it knows it doesn't overwrite input values.
261 310
262 void 311 void
263 multiply (float *ecb_restrict src, 312 multiply (ecb_restrict float *src,
264 float *ecb_restrict dst, 313 ecb_restrict float *dst,
265 int len, float factor) 314 int len, float factor)
266 { 315 {
267 int i; 316 int i;
268 317
269 for (i = 0; i < len; ++i) 318 for (i = 0; i < len; ++i)
367 416
368=head2 OPTIMISATION HINTS 417=head2 OPTIMISATION HINTS
369 418
370=over 4 419=over 4
371 420
372=item bool ecb_is_constant(expr) 421=item bool ecb_is_constant (expr)
373 422
374Returns true iff the expression can be deduced to be a compile-time 423Returns true iff the expression can be deduced to be a compile-time
375constant, and false otherwise. 424constant, and false otherwise.
376 425
377For example, when you have a C<rndm16> function that returns a 16 bit 426For example, when you have a C<rndm16> function that returns a 16 bit
395 return is_constant (n) && !(n & (n - 1)) 444 return is_constant (n) && !(n & (n - 1))
396 ? rndm16 () & (num - 1) 445 ? rndm16 () & (num - 1)
397 : (n * (uint32_t)rndm16 ()) >> 16; 446 : (n * (uint32_t)rndm16 ()) >> 16;
398 } 447 }
399 448
400=item bool ecb_expect (expr, value) 449=item ecb_expect (expr, value)
401 450
402Evaluates C<expr> and returns it. In addition, it tells the compiler that 451Evaluates C<expr> and returns it. In addition, it tells the compiler that
403the C<expr> evaluates to C<value> a lot, which can be used for static 452the C<expr> evaluates to C<value> a lot, which can be used for static
404branch optimisations. 453branch optimisations.
405 454
452 { 501 {
453 if (ecb_expect_false (current + size > end)) 502 if (ecb_expect_false (current + size > end))
454 real_reserve_method (size); /* presumably noinline */ 503 real_reserve_method (size); /* presumably noinline */
455 } 504 }
456 505
457=item bool ecb_assume (cond) 506=item ecb_assume (cond)
458 507
459Try to tell the compiler that some condition is true, even if it's not 508Tries to tell the compiler that some condition is true, even if it's not
460obvious. 509obvious. This is not a function, but a statement: it cannot be used in
510another expression.
461 511
462This can be used to teach the compiler about invariants or other 512This can be used to teach the compiler about invariants or other
463conditions that might improve code generation, but which are impossible to 513conditions that might improve code generation, but which are impossible to
464deduce form the code itself. 514deduce form the code itself.
465 515
482 532
483Then the compiler I<might> be able to optimise out the second call 533Then the compiler I<might> be able to optimise out the second call
484completely, as it knows that C<< current + 1 > end >> is false and the 534completely, as it knows that C<< current + 1 > end >> is false and the
485call will never be executed. 535call will never be executed.
486 536
487=item bool ecb_unreachable () 537=item ecb_unreachable ()
488 538
489This function does nothing itself, except tell the compiler that it will 539This function does nothing itself, except tell the compiler that it will
490never be executed. Apart from suppressing a warning in some cases, this 540never be executed. Apart from suppressing a warning in some cases, this
491function can be used to implement C<ecb_assume> or similar functions. 541function can be used to implement C<ecb_assume> or similar functionality.
492 542
493=item bool ecb_prefetch (addr, rw, locality) 543=item ecb_prefetch (addr, rw, locality)
494 544
495Tells the compiler to try to prefetch memory at the given C<addr>ess 545Tells the compiler to try to prefetch memory at the given C<addr>ess
496for either reading (C<rw> = 0) or writing (C<rw> = 1). A C<locality> of 546for either reading (C<rw> = 0) or writing (C<rw> = 1). A C<locality> of
497C<0> means that there will only be one access later, C<3> means that 547C<0> means that there will only be one access later, C<3> means that
498the data will likely be accessed very often, and values in between mean 548the data will likely be accessed very often, and values in between mean
499something... in between. The memory pointed to by the address does not 549something... in between. The memory pointed to by the address does not
500need to be accessible (it could be a null pointer for example), but C<rw> 550need to be accessible (it could be a null pointer for example), but C<rw>
501and C<locality> must be compile-time constants. 551and C<locality> must be compile-time constants.
502 552
553This is a statement, not a function: you cannot use it as part of an
554expression.
555
503An obvious way to use this is to prefetch some data far away, in a big 556An obvious way to use this is to prefetch some data far away, in a big
504array you loop over. This prefetches memory some 128 array elements later, 557array you loop over. This prefetches memory some 128 array elements later,
505in the hope that it will be ready when the CPU arrives at that location. 558in the hope that it will be ready when the CPU arrives at that location.
506 559
507 int sum = 0; 560 int sum = 0;
544 597
545=item int ecb_ctz32 (uint32_t x) 598=item int ecb_ctz32 (uint32_t x)
546 599
547=item int ecb_ctz64 (uint64_t x) 600=item int ecb_ctz64 (uint64_t x)
548 601
602=item int ecb_ctz (T x) [C++]
603
549Returns the index of the least significant bit set in C<x> (or 604Returns the index of the least significant bit set in C<x> (or
550equivalently the number of bits set to 0 before the least significant bit 605equivalently the number of bits set to 0 before the least significant bit
551set), starting from 0. If C<x> is 0 the result is undefined. 606set), starting from 0. If C<x> is 0 the result is undefined.
552 607
553For smaller types than C<uint32_t> you can safely use C<ecb_ctz32>. 608For smaller types than C<uint32_t> you can safely use C<ecb_ctz32>.
554 609
610The overloaded C++ C<ecb_ctz> function supports C<uint8_t>, C<uint16_t>,
611C<uint32_t> and C<uint64_t> types.
612
555For example: 613For example:
556 614
557 ecb_ctz32 (3) = 0 615 ecb_ctz32 (3) = 0
558 ecb_ctz32 (6) = 1 616 ecb_ctz32 (6) = 1
559 617
560=item bool ecb_is_pot32 (uint32_t x) 618=item bool ecb_is_pot32 (uint32_t x)
561 619
562=item bool ecb_is_pot64 (uint32_t x) 620=item bool ecb_is_pot64 (uint32_t x)
563 621
622=item bool ecb_is_pot (T x) [C++]
623
564Return true iff C<x> is a power of two or C<x == 0>. 624Returns true iff C<x> is a power of two or C<x == 0>.
565 625
566For smaller types then C<uint32_t> you can safely use C<ecb_is_pot32>. 626For smaller types than C<uint32_t> you can safely use C<ecb_is_pot32>.
627
628The overloaded C++ C<ecb_is_pot> function supports C<uint8_t>, C<uint16_t>,
629C<uint32_t> and C<uint64_t> types.
567 630
568=item int ecb_ld32 (uint32_t x) 631=item int ecb_ld32 (uint32_t x)
569 632
570=item int ecb_ld64 (uint64_t x) 633=item int ecb_ld64 (uint64_t x)
634
635=item int ecb_ld64 (T x) [C++]
571 636
572Returns the index of the most significant bit set in C<x>, or the number 637Returns the index of the most significant bit set in C<x>, or the number
573of digits the number requires in binary (so that C<< 2**ld <= x < 638of digits the number requires in binary (so that C<< 2**ld <= x <
5742**(ld+1) >>). If C<x> is 0 the result is undefined. A common use case is 6392**(ld+1) >>). If C<x> is 0 the result is undefined. A common use case is
575to compute the integer binary logarithm, i.e. C<floor (log2 (n))>, for 640to compute the integer binary logarithm, i.e. C<floor (log2 (n))>, for
580the given data type), while C<ecb_ld> returns how many bits the number 645the given data type), while C<ecb_ld> returns how many bits the number
581itself requires. 646itself requires.
582 647
583For smaller types than C<uint32_t> you can safely use C<ecb_ld32>. 648For smaller types than C<uint32_t> you can safely use C<ecb_ld32>.
584 649
650The overloaded C++ C<ecb_ld> function supports C<uint8_t>, C<uint16_t>,
651C<uint32_t> and C<uint64_t> types.
652
585=item int ecb_popcount32 (uint32_t x) 653=item int ecb_popcount32 (uint32_t x)
586 654
587=item int ecb_popcount64 (uint64_t x) 655=item int ecb_popcount64 (uint64_t x)
588 656
657=item int ecb_popcount (T x) [C++]
658
589Returns the number of bits set to 1 in C<x>. 659Returns the number of bits set to 1 in C<x>.
590 660
591For smaller types than C<uint32_t> you can safely use C<ecb_popcount32>. 661For smaller types than C<uint32_t> you can safely use C<ecb_popcount32>.
662
663The overloaded C++ C<ecb_popcount> function supports C<uint8_t>, C<uint16_t>,
664C<uint32_t> and C<uint64_t> types.
592 665
593For example: 666For example:
594 667
595 ecb_popcount32 (7) = 3 668 ecb_popcount32 (7) = 3
596 ecb_popcount32 (255) = 8 669 ecb_popcount32 (255) = 8
599 672
600=item uint16_t ecb_bitrev16 (uint16_t x) 673=item uint16_t ecb_bitrev16 (uint16_t x)
601 674
602=item uint32_t ecb_bitrev32 (uint32_t x) 675=item uint32_t ecb_bitrev32 (uint32_t x)
603 676
677=item T ecb_bitrev (T x) [C++]
678
604Reverses the bits in x, i.e. the MSB becomes the LSB, MSB-1 becomes LSB+1 679Reverses the bits in x, i.e. the MSB becomes the LSB, MSB-1 becomes LSB+1
605and so on. 680and so on.
606 681
682The overloaded C++ C<ecb_bitrev> function supports C<uint8_t>, C<uint16_t> and C<uint32_t> types.
683
607Example: 684Example:
608 685
609 ecb_bitrev8 (0xa7) = 0xea 686 ecb_bitrev8 (0xa7) = 0xea
610 ecb_bitrev32 (0xffcc4411) = 0x882233ff 687 ecb_bitrev32 (0xffcc4411) = 0x882233ff
611 688
689=item T ecb_bitrev (T x) [C++]
690
691Overloaded C++ bitrev function.
692
693C<T> must be one of C<uint8_t>, C<uint16_t> or C<uint32_t>.
694
612=item uint32_t ecb_bswap16 (uint32_t x) 695=item uint32_t ecb_bswap16 (uint32_t x)
613 696
614=item uint32_t ecb_bswap32 (uint32_t x) 697=item uint32_t ecb_bswap32 (uint32_t x)
615 698
616=item uint64_t ecb_bswap64 (uint64_t x) 699=item uint64_t ecb_bswap64 (uint64_t x)
700
701=item T ecb_bswap (T x)
617 702
618These functions return the value of the 16-bit (32-bit, 64-bit) value 703These functions return the value of the 16-bit (32-bit, 64-bit) value
619C<x> after reversing the order of bytes (0x11223344 becomes 0x44332211 in 704C<x> after reversing the order of bytes (0x11223344 becomes 0x44332211 in
620C<ecb_bswap32>). 705C<ecb_bswap32>).
621 706
707The overloaded C++ C<ecb_bswap> function supports C<uint8_t>, C<uint16_t>,
708C<uint32_t> and C<uint64_t> types.
709
622=item uint8_t ecb_rotl8 (uint8_t x, unsigned int count) 710=item uint8_t ecb_rotl8 (uint8_t x, unsigned int count)
623 711
624=item uint16_t ecb_rotl16 (uint16_t x, unsigned int count) 712=item uint16_t ecb_rotl16 (uint16_t x, unsigned int count)
625 713
626=item uint32_t ecb_rotl32 (uint32_t x, unsigned int count) 714=item uint32_t ecb_rotl32 (uint32_t x, unsigned int count)
641 729
642Current GCC versions understand these functions and usually compile them 730Current GCC versions understand these functions and usually compile them
643to "optimal" code (e.g. a single C<rol> or a combination of C<shld> on 731to "optimal" code (e.g. a single C<rol> or a combination of C<shld> on
644x86). 732x86).
645 733
734=item T ecb_rotl (T x, unsigned int count) [C++]
735
736=item T ecb_rotr (T x, unsigned int count) [C++]
737
738Overloaded C++ rotl/rotr functions.
739
740C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
741
646=back 742=back
647 743
744=head2 HOST ENDIANNESS CONVERSION
745
746=over 4
747
748=item uint_fast16_t ecb_be_u16_to_host (uint_fast16_t v)
749
750=item uint_fast32_t ecb_be_u32_to_host (uint_fast32_t v)
751
752=item uint_fast64_t ecb_be_u64_to_host (uint_fast64_t v)
753
754=item uint_fast16_t ecb_le_u16_to_host (uint_fast16_t v)
755
756=item uint_fast32_t ecb_le_u32_to_host (uint_fast32_t v)
757
758=item uint_fast64_t ecb_le_u64_to_host (uint_fast64_t v)
759
760Convert an unsigned 16, 32 or 64 bit value from big or little endian to host byte order.
761
762The naming convention is C<ecb_>(C<be>|C<le>)C<_u>C<16|32|64>C<_to_host>,
763where C<be> and C<le> stand for big endian and little endian, respectively.
764
765=item uint_fast16_t ecb_host_to_be_u16 (uint_fast16_t v)
766
767=item uint_fast32_t ecb_host_to_be_u32 (uint_fast32_t v)
768
769=item uint_fast64_t ecb_host_to_be_u64 (uint_fast64_t v)
770
771=item uint_fast16_t ecb_host_to_le_u16 (uint_fast16_t v)
772
773=item uint_fast32_t ecb_host_to_le_u32 (uint_fast32_t v)
774
775=item uint_fast64_t ecb_host_to_le_u64 (uint_fast64_t v)
776
777Like above, but converts I<from> host byte order to the specified
778endianness.
779
780=back
781
782In C++ the following additional template functions are supported:
783
784=over 4
785
786=item T ecb_be_to_host (T v)
787
788=item T ecb_le_to_host (T v)
789
790=item T ecb_host_to_be (T v)
791
792=item T ecb_host_to_le (T v)
793
794These functions work like their C counterparts, above, but use templates,
795which make them useful in generic code.
796
797C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>
798(so unlike their C counterparts, there is a version for C<uint8_t>, which
799again can be useful in generic code).
800
801=head2 UNALIGNED LOAD/STORE
802
803These function load or store unaligned multi-byte values.
804
805=over 4
806
807=item uint_fast16_t ecb_peek_u16_u (const void *ptr)
808
809=item uint_fast32_t ecb_peek_u32_u (const void *ptr)
810
811=item uint_fast64_t ecb_peek_u64_u (const void *ptr)
812
813These functions load an unaligned, unsigned 16, 32 or 64 bit value from
814memory.
815
816=item uint_fast16_t ecb_peek_be_u16_u (const void *ptr)
817
818=item uint_fast32_t ecb_peek_be_u32_u (const void *ptr)
819
820=item uint_fast64_t ecb_peek_be_u64_u (const void *ptr)
821
822=item uint_fast16_t ecb_peek_le_u16_u (const void *ptr)
823
824=item uint_fast32_t ecb_peek_le_u32_u (const void *ptr)
825
826=item uint_fast64_t ecb_peek_le_u64_u (const void *ptr)
827
828Like above, but additionally convert from big endian (C<be>) or little
829endian (C<le>) byte order to host byte order while doing so.
830
831=item ecb_poke_u16_u (void *ptr, uint16_t v)
832
833=item ecb_poke_u32_u (void *ptr, uint32_t v)
834
835=item ecb_poke_u64_u (void *ptr, uint64_t v)
836
837These functions store an unaligned, unsigned 16, 32 or 64 bit value to
838memory.
839
840=item ecb_poke_be_u16_u (void *ptr, uint_fast16_t v)
841
842=item ecb_poke_be_u32_u (void *ptr, uint_fast32_t v)
843
844=item ecb_poke_be_u64_u (void *ptr, uint_fast64_t v)
845
846=item ecb_poke_le_u16_u (void *ptr, uint_fast16_t v)
847
848=item ecb_poke_le_u32_u (void *ptr, uint_fast32_t v)
849
850=item ecb_poke_le_u64_u (void *ptr, uint_fast64_t v)
851
852Like above, but additionally convert from host byte order to big endian
853(C<be>) or little endian (C<le>) byte order while doing so.
854
855=back
856
857In C++ the following additional template functions are supported:
858
859=over 4
860
861=item T ecb_peek<T> (const void *ptr)
862
863=item T ecb_peek_be<T> (const void *ptr)
864
865=item T ecb_peek_le<T> (const void *ptr)
866
867=item T ecb_peek_u<T> (const void *ptr)
868
869=item T ecb_peek_be_u<T> (const void *ptr)
870
871=item T ecb_peek_le_u<T> (const void *ptr)
872
873Similarly to their C counterparts, these functions load an unsigned 8, 16,
87432 or 64 bit value from memory, with optional conversion from big/little
875endian.
876
877Since the type cannot be deduced, it has to be specified explicitly, e.g.
878
879 uint_fast16_t v = ecb_peek<uint16_t> (ptr);
880
881C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
882
883Unlike their C counterparts, these functions support 8 bit quantities
884(C<uint8_t>) and also have an aligned version (without the C<_u> prefix),
885all of which hopefully makes them more useful in generic code.
886
887=item ecb_poke (void *ptr, T v)
888
889=item ecb_poke_be (void *ptr, T v)
890
891=item ecb_poke_le (void *ptr, T v)
892
893=item ecb_poke_u (void *ptr, T v)
894
895=item ecb_poke_be_u (void *ptr, T v)
896
897=item ecb_poke_le_u (void *ptr, T v)
898
899Again, similarly to their C counterparts, these functions store an
900unsigned 8, 16, 32 or z64 bit value to memory, with optional conversion to
901big/little endian.
902
903C<T> must be one of C<uint8_t>, C<uint16_t>, C<uint32_t> or C<uint64_t>.
904
905Unlike their C counterparts, these functions support 8 bit quantities
906(C<uint8_t>) and also have an aligned version (without the C<_u> prefix),
907all of which hopefully makes them more useful in generic code.
908
909=back
910
648=head2 FLOATING POINT FIDDLING 911=head2 FLOATING POINT FIDDLING
649 912
650=over 4 913=over 4
651 914
915=item ECB_INFINITY [-UECB_NO_LIBM]
916
917Evaluates to positive infinity if supported by the platform, otherwise to
918a truly huge number.
919
920=item ECB_NAN [-UECB_NO_LIBM]
921
922Evaluates to a quiet NAN if supported by the platform, otherwise to
923C<ECB_INFINITY>.
924
925=item float ecb_ldexpf (float x, int exp) [-UECB_NO_LIBM]
926
927Same as C<ldexpf>, but always available.
928
929=item uint32_t ecb_float_to_binary16 (float x) [-UECB_NO_LIBM]
930
652=item uint32_t ecb_float_to_binary32 (float x) [-UECB_NO_LIBM] 931=item uint32_t ecb_float_to_binary32 (float x) [-UECB_NO_LIBM]
653 932
654=item uint64_t ecb_double_to_binary64 (double x) [-UECB_NO_LIBM] 933=item uint64_t ecb_double_to_binary64 (double x) [-UECB_NO_LIBM]
655 934
656These functions each take an argument in the native C<float> or C<double> 935These functions each take an argument in the native C<float> or C<double>
657type and return the IEEE 754 bit representation of it. 936type and return the IEEE 754 bit representation of it (binary16/half,
937binary32/single or binary64/double precision).
658 938
659The bit representation is just as IEEE 754 defines it, i.e. the sign bit 939The bit representation is just as IEEE 754 defines it, i.e. the sign bit
660will be the most significant bit, followed by exponent and mantissa. 940will be the most significant bit, followed by exponent and mantissa.
661 941
662This function should work even when the native floating point format isn't 942This function should work even when the native floating point format isn't
666 946
667On all modern platforms (where C<ECB_STDFP> is true), the compiler should 947On all modern platforms (where C<ECB_STDFP> is true), the compiler should
668be able to optimise away this function completely. 948be able to optimise away this function completely.
669 949
670These functions can be helpful when serialising floats to the network - you 950These functions can be helpful when serialising floats to the network - you
671can serialise the return value like a normal uint32_t/uint64_t. 951can serialise the return value like a normal uint16_t/uint32_t/uint64_t.
672 952
673Another use for these functions is to manipulate floating point values 953Another use for these functions is to manipulate floating point values
674directly. 954directly.
675 955
676Silly example: toggle the sign bit of a float. 956Silly example: toggle the sign bit of a float.
679 /* this results in a single add instruction to toggle the bit, and 4 extra */ 959 /* this results in a single add instruction to toggle the bit, and 4 extra */
680 /* instructions to move the float value to an integer register and back. */ 960 /* instructions to move the float value to an integer register and back. */
681 961
682 x = ecb_binary32_to_float (ecb_float_to_binary32 (x) ^ 0x80000000U) 962 x = ecb_binary32_to_float (ecb_float_to_binary32 (x) ^ 0x80000000U)
683 963
964=item float ecb_binary16_to_float (uint16_t x) [-UECB_NO_LIBM]
965
684=item float ecb_binary32_to_float (uint32_t x) [-UECB_NO_LIBM] 966=item float ecb_binary32_to_float (uint32_t x) [-UECB_NO_LIBM]
685 967
686=item double ecb_binary32_to_double (uint64_t x) [-UECB_NO_LIBM] 968=item double ecb_binary64_to_double (uint64_t x) [-UECB_NO_LIBM]
687 969
688The reverse operation of the previos function - takes the bit representation 970The reverse operation of the previous function - takes the bit
689of an IEEE binary32 or binary64 number and converts it to the native C<float> 971representation of an IEEE binary16, binary32 or binary64 number (half,
972single or double precision) and converts it to the native C<float> or
690or C<double> format. 973C<double> format.
691 974
692This function should work even when the native floating point format isn't 975This function should work even when the native floating point format isn't
693IEEE compliant, of course at a speed and code size penalty, and of course 976IEEE compliant, of course at a speed and code size penalty, and of course
694also within reasonable limits (it tries to convert normals and denormals, 977also within reasonable limits (it tries to convert normals and denormals,
695and might be lucky for infinities, and with extraordinary luck, also for 978and might be lucky for infinities, and with extraordinary luck, also for
696negative zero). 979negative zero).
697 980
698On all modern platforms (where C<ECB_STDFP> is true), the compiler should 981On all modern platforms (where C<ECB_STDFP> is true), the compiler should
699be able to optimise away this function completely. 982be able to optimise away this function completely.
983
984=item uint16_t ecb_binary32_to_binary16 (uint32_t x)
985
986=item uint32_t ecb_binary16_to_binary32 (uint16_t x)
987
988Convert a IEEE binary32/single precision to binary16/half format, and vice
989versa, handling all details (round-to-nearest-even, subnormals, infinity
990and NaNs) correctly.
991
992These are functions are available under C<-DECB_NO_LIBM>, since
993they do not rely on the platform floating point format. The
994C<ecb_float_to_binary16> and C<ecb_binary16_to_float> functions are
995usually what you want.
700 996
701=back 997=back
702 998
703=head2 ARITHMETIC 999=head2 ARITHMETIC
704 1000
785dependencies on the math library (usually called F<-lm>) - these are 1081dependencies on the math library (usually called F<-lm>) - these are
786marked with [-UECB_NO_LIBM]. 1082marked with [-UECB_NO_LIBM].
787 1083
788=back 1084=back
789 1085
1086=head1 UNDOCUMENTED FUNCTIONALITY
790 1087
1088F<ecb.h> is full of undocumented functionality as well, some of which is
1089intended to be internal-use only, some of which we forgot to document, and
1090some of which we hide because we are not sure we will keep the interface
1091stable.
1092
1093While you are welcome to rummage around and use whatever you find useful
1094(we can't stop you), keep in mind that we will change undocumented
1095functionality in incompatible ways without thinking twice, while we are
1096considerably more conservative with documented things.
1097
1098=head1 AUTHORS
1099
1100C<libecb> is designed and maintained by:
1101
1102 Emanuele Giaquinta <e.giaquinta@glauco.it>
1103 Marc Alexander Lehmann <schmorp@schmorp.de>
1104
1105

Diff Legend

Removed lines
+ Added lines
< Changed lines
> Changed lines